code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowerCamelCase : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 16_000 ) -> Tuple: """simple docstring""" A__ = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav A__ = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = field(default=UpperCAmelCase__ , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) UpperCAmelCase__ = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) UpperCAmelCase__ = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) UpperCAmelCase__ = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) UpperCAmelCase__ = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase__ = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) UpperCAmelCase__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Tuple: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , UpperCAmelCase__ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''') def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A__ , A__ , A__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A__ , A__ , A__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A__ = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. A__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. A__ = DatasetDict() A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' f"""{", ".join(raw_datasets["train"].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ '''Make sure to set `--label_column_name` to the correct text column - one of ''' f"""{", ".join(raw_datasets["train"].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy A__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. A__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) A__ = feature_extractor.model_input_names[0] def train_transforms(lowercase_ ): A__ = [] for audio in batch[data_args.audio_column_name]: A__ = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) A__ = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) A__ = {model_input_name: inputs.get(lowercase_ )} A__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase_ ): A__ = [audio['''array'''] for audio in batch[data_args.audio_column_name]] A__ = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) A__ = {model_input_name: inputs.get(lowercase_ )} A__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A__ = raw_datasets['''train'''].features[data_args.label_column_name].names A__ , A__ = {}, {} for i, label in enumerate(lowercase_ ): A__ = str(lowercase_ ) A__ = label # Load the accuracy metric from the datasets package A__ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase_ ): A__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) A__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: A__ = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: A__ = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer A__ = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: A__ = None if training_args.resume_from_checkpoint is not None: A__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A__ = last_checkpoint A__ = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A__ = trainer.evaluate() trainer.log_metrics('''eval''' , lowercase_ ) trainer.save_metrics('''eval''' , lowercase_ ) # Write model card and (optionally) push to hub A__ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
87
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ : torch.FloatTensor class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] ,UpperCamelCase : int = 3 ,UpperCamelCase : int = 3 ,UpperCamelCase : Tuple[str] = ("DownEncoderBlock2D",) ,UpperCamelCase : Tuple[str] = ("UpDecoderBlock2D",) ,UpperCamelCase : Tuple[int] = (64,) ,UpperCamelCase : int = 1 ,UpperCamelCase : str = "silu" ,UpperCamelCase : int = 3 ,UpperCamelCase : int = 32 ,UpperCamelCase : int = 256 ,UpperCamelCase : int = 32 ,UpperCamelCase : Optional[int] = None ,UpperCamelCase : float = 0.1_8_2_1_5 ,UpperCamelCase : str = "group" ,) -> List[Any]: super().__init__() # pass init params to Encoder _lowercase : Any = Encoder( in_channels=UpperCamelCase ,out_channels=UpperCamelCase ,down_block_types=UpperCamelCase ,block_out_channels=UpperCamelCase ,layers_per_block=UpperCamelCase ,act_fn=UpperCamelCase ,norm_num_groups=UpperCamelCase ,double_z=UpperCamelCase ,) _lowercase : Tuple = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowercase : List[str] = nn.Convad(UpperCamelCase ,UpperCamelCase ,1 ) _lowercase : Dict = VectorQuantizer(UpperCamelCase ,UpperCamelCase ,beta=0.2_5 ,remap=UpperCamelCase ,sane_index_shape=UpperCamelCase ) _lowercase : List[str] = nn.Convad(UpperCamelCase ,UpperCamelCase ,1 ) # pass init params to Decoder _lowercase : Optional[Any] = Decoder( in_channels=UpperCamelCase ,out_channels=UpperCamelCase ,up_block_types=UpperCamelCase ,block_out_channels=UpperCamelCase ,layers_per_block=UpperCamelCase ,act_fn=UpperCamelCase ,norm_num_groups=UpperCamelCase ,norm_type=UpperCamelCase ,) @apply_forward_hook def _lowerCamelCase ( self : Optional[int] ,UpperCamelCase : torch.FloatTensor ,UpperCamelCase : bool = True ) -> VQEncoderOutput: _lowercase : Optional[int] = self.encoder(UpperCamelCase ) _lowercase : Any = self.quant_conv(UpperCamelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCamelCase ) @apply_forward_hook def _lowerCamelCase ( self : Optional[int] ,UpperCamelCase : torch.FloatTensor ,UpperCamelCase : bool = False ,UpperCamelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: _lowercase , _lowercase , _lowercase : Optional[int] = self.quantize(UpperCamelCase ) else: _lowercase : Tuple = h _lowercase : Optional[int] = self.post_quant_conv(UpperCamelCase ) _lowercase : Dict = self.decoder(UpperCamelCase ,quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase ) def _lowerCamelCase ( self : Optional[Any] ,UpperCamelCase : torch.FloatTensor ,UpperCamelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: _lowercase : Dict = sample _lowercase : Dict = self.encode(UpperCamelCase ).latents _lowercase : str = self.decode(UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase )
125
0
import torch def _lowerCamelCase ( ): """simple docstring""" if torch.cuda.is_available(): _lowerCamelCase = torch.cuda.device_count() else: _lowerCamelCase = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
713
from __future__ import annotations from typing import Any def _lowerCamelCase ( _a ): """simple docstring""" if not postfix_notation: return 0 _lowerCamelCase = {'''+''', '''-''', '''*''', '''/'''} _lowerCamelCase = [] for token in postfix_notation: if token in operations: _lowerCamelCase , _lowerCamelCase = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_a ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
297
0
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def a (_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): SCREAMING_SNAKE_CASE_ = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): SCREAMING_SNAKE_CASE_ = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 SCREAMING_SNAKE_CASE_ = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] SCREAMING_SNAKE_CASE_ = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(_lowerCAmelCase )-1}" ) if "norm" in key: SCREAMING_SNAKE_CASE_ = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 SCREAMING_SNAKE_CASE_ = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] SCREAMING_SNAKE_CASE_ = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(_lowerCAmelCase )-1}" ) if "layer_norm1" in key: SCREAMING_SNAKE_CASE_ = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: SCREAMING_SNAKE_CASE_ = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 SCREAMING_SNAKE_CASE_ = key[key.find('''block''' ) + len('''block''' )] SCREAMING_SNAKE_CASE_ = key.replace(F"block{idx}" , F"block.{int(_lowerCAmelCase )-1}" ) if "attn.q" in key: SCREAMING_SNAKE_CASE_ = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: SCREAMING_SNAKE_CASE_ = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: SCREAMING_SNAKE_CASE_ = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: SCREAMING_SNAKE_CASE_ = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: SCREAMING_SNAKE_CASE_ = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: SCREAMING_SNAKE_CASE_ = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: SCREAMING_SNAKE_CASE_ = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) SCREAMING_SNAKE_CASE_ = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 SCREAMING_SNAKE_CASE_ = key[key.find('''linear_c''' ) + len('''linear_c''' )] SCREAMING_SNAKE_CASE_ = key.replace(F"linear_c{idx}" , F"linear_c.{int(_lowerCAmelCase )-1}" ) if "bot_conv" in key: SCREAMING_SNAKE_CASE_ = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: SCREAMING_SNAKE_CASE_ = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: SCREAMING_SNAKE_CASE_ = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: SCREAMING_SNAKE_CASE_ = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: SCREAMING_SNAKE_CASE_ = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: SCREAMING_SNAKE_CASE_ = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: SCREAMING_SNAKE_CASE_ = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): SCREAMING_SNAKE_CASE_ = key.replace('''module.last_layer_depth''' , '''head.head''' ) SCREAMING_SNAKE_CASE_ = value return new_state_dict def a (_lowerCAmelCase , _lowerCAmelCase ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) SCREAMING_SNAKE_CASE_ = state_dict.pop(F"glpn.encoder.block.{i}.{j}.attention.self.kv.weight" ) SCREAMING_SNAKE_CASE_ = state_dict.pop(F"glpn.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ = kv_weight[ : config.hidden_sizes[i], : ] SCREAMING_SNAKE_CASE_ = kv_bias[: config.hidden_sizes[i]] SCREAMING_SNAKE_CASE_ = kv_weight[ config.hidden_sizes[i] :, : ] SCREAMING_SNAKE_CASE_ = kv_bias[config.hidden_sizes[i] :] def a (): SCREAMING_SNAKE_CASE_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE_ = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return image @torch.no_grad() def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=None ): SCREAMING_SNAKE_CASE_ = GLPNConfig(hidden_sizes=[6_4, 1_2_8, 3_2_0, 5_1_2] , decoder_hidden_size=6_4 , depths=[3, 8, 2_7, 3] ) # load image processor (only resize + rescale) SCREAMING_SNAKE_CASE_ = GLPNImageProcessor() # prepare image SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict SCREAMING_SNAKE_CASE_ = torch.load(_lowerCAmelCase , map_location=torch.device('''cpu''' ) ) # rename keys SCREAMING_SNAKE_CASE_ = rename_keys(_lowerCAmelCase ) # key and value matrices need special treatment read_in_k_v(_lowerCAmelCase , _lowerCAmelCase ) # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE_ = GLPNForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # forward pass SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: SCREAMING_SNAKE_CASE_ = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: SCREAMING_SNAKE_CASE_ = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F"Unknown model name: {model_name}" ) SCREAMING_SNAKE_CASE_ = torch.Size([1, 4_8_0, 6_4_0] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=_lowerCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=_lowerCAmelCase , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
234
import numpy as np __SCREAMING_SNAKE_CASE =[ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class __magic_name__ : '''simple docstring''' def __init__( self: List[str] ): SCREAMING_SNAKE_CASE_ = np.array(_lowerCamelCase ) def _A ( self: str , _lowerCamelCase: str ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.where(letter == self.SQUARE ) SCREAMING_SNAKE_CASE_ = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _A ( self: Any , _lowerCamelCase: int , _lowerCamelCase: int ): SCREAMING_SNAKE_CASE_ = self.SQUARE[indexa - 1, indexa - 1] return letter def _A ( self: str , _lowerCamelCase: str ): SCREAMING_SNAKE_CASE_ = message.lower() SCREAMING_SNAKE_CASE_ = message.replace(''' ''' , '''''' ) SCREAMING_SNAKE_CASE_ = message.replace('''j''' , '''i''' ) SCREAMING_SNAKE_CASE_ = np.empty((2, len(_lowerCamelCase )) ) for letter_index in range(len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE_ = self.letter_to_numbers(message[letter_index] ) SCREAMING_SNAKE_CASE_ = numbers[0] SCREAMING_SNAKE_CASE_ = numbers[1] SCREAMING_SNAKE_CASE_ = first_step.reshape(2 * len(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = '''''' for numbers_index in range(len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE_ = int(second_step[numbers_index * 2] ) SCREAMING_SNAKE_CASE_ = int(second_step[(numbers_index * 2) + 1] ) SCREAMING_SNAKE_CASE_ = self.numbers_to_letter(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = encoded_message + letter return encoded_message def _A ( self: Tuple , _lowerCamelCase: str ): SCREAMING_SNAKE_CASE_ = message.lower() message.replace(''' ''' , '''''' ) SCREAMING_SNAKE_CASE_ = np.empty(2 * len(_lowerCamelCase ) ) for letter_index in range(len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE_ = self.letter_to_numbers(message[letter_index] ) SCREAMING_SNAKE_CASE_ = numbers[0] SCREAMING_SNAKE_CASE_ = numbers[1] SCREAMING_SNAKE_CASE_ = first_step.reshape((2, len(_lowerCamelCase )) ) SCREAMING_SNAKE_CASE_ = '''''' for numbers_index in range(len(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE_ = int(second_step[0, numbers_index] ) SCREAMING_SNAKE_CASE_ = int(second_step[1, numbers_index] ) SCREAMING_SNAKE_CASE_ = self.numbers_to_letter(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = decoded_message + letter return decoded_message
234
1
"""simple docstring""" def lowercase__ ( lowercase_ ) -> int: """simple docstring""" if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 ,len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _UpperCamelCase : Optional[Any] = grid[0] for row_n in range(1 ,len(lowercase_ ) ): _UpperCamelCase : int = grid[row_n] _UpperCamelCase : List[Any] = fill_row(lowercase_ ,lowercase_ ) _UpperCamelCase : List[str] = grid[row_n] return grid[-1][-1] def lowercase__ ( lowercase_ ,lowercase_ ) -> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 ,len(lowercase_ ) ): current_row[cell_n] += min(current_row[cell_n - 1] ,row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
51
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, float]: """simple docstring""" _UpperCamelCase : str = len([g for position, g in enumerate(lowercase_ ) if g == main_target[position]] ) return (item, float(lowercase_ )) def lowercase__ ( lowercase_ ,lowercase_ ) -> tuple[str, str]: """simple docstring""" _UpperCamelCase : Tuple = random.randint(0 ,len(lowercase_ ) - 1 ) _UpperCamelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] _UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = list(lowercase_ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: _UpperCamelCase : int = random.choice(lowercase_ ) return "".join(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,) -> list[str]: """simple docstring""" _UpperCamelCase : Optional[Any] = [] # Generate more children proportionally to the fitness score. _UpperCamelCase : List[str] = int(parent_a[1] * 100 ) + 1 _UpperCamelCase : Union[str, Any] = 10 if child_n >= 10 else child_n for _ in range(lowercase_ ): _UpperCamelCase : Dict = population_score[random.randint(0 ,lowercase_ )][0] _UpperCamelCase, _UpperCamelCase : Dict = crossover(parent_a[0] ,lowercase_ ) # Append new string to the population list. pop.append(mutate(lowercase_ ,lowercase_ ) ) pop.append(mutate(lowercase_ ,lowercase_ ) ) return pop def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: _UpperCamelCase : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(lowercase_ ) # Verify that the target contains no genes besides the ones inside genes variable. _UpperCamelCase : int = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _UpperCamelCase : int = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(lowercase_ ) # Generate random starting population. _UpperCamelCase : Union[str, Any] = [] for _ in range(lowercase_ ): population.append("".join([random.choice(lowercase_ ) for i in range(len(lowercase_ ) )] ) ) # Just some logs to know what the algorithms is doing. _UpperCamelCase, _UpperCamelCase : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _UpperCamelCase : int = [evaluate(lowercase_ ,lowercase_ ) for item in population] # Check if there is a matching evolution. _UpperCamelCase : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[1] ,reverse=lowercase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _UpperCamelCase : str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase_ ) # Normalize population score to be between 0 and 1. _UpperCamelCase : str = [ (item, score / len(lowercase_ )) for item, score in population_score ] # This is selection for i in range(lowercase_ ): population.extend(select(population_score[int(lowercase_ )] ,lowercase_ ,lowercase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase__ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCamelCase__ = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
51
1
import argparse import os import re import packaging.version __a = """examples/""" __a = { """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } __a = { """init""": """src/diffusers/__init__.py""", """setup""": """setup.py""", } __a = """README.md""" def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->Optional[Any]: with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace("""VERSION""" , lowerCAmelCase_ ) UpperCAmelCase = re_pattern.sub(lowerCAmelCase_ , lowerCAmelCase_ ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(lowerCAmelCase_ ) def _UpperCamelCase ( lowerCAmelCase_ ) ->int: for folder, directories, fnames in os.walk(lowerCAmelCase_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ , pattern="""examples""" ) def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False ) ->Optional[int]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if not patch: update_version_in_examples(lowerCAmelCase_ ) def _UpperCamelCase ( ) ->List[str]: UpperCAmelCase = """🤗 Transformers currently provides the following architectures""" UpperCAmelCase = """1. Want to contribute a new model?""" with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): UpperCAmelCase = lines[index].replace( """https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , ) index += 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowerCAmelCase_ ) def _UpperCamelCase ( ) ->List[str]: with open(REPLACE_FILES["""init"""] , """r""" ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS["""init"""][0].search(lowerCAmelCase_ ).groups()[0] return packaging.version.parse(lowerCAmelCase_ ) def _UpperCamelCase ( lowerCAmelCase_=False ) ->int: UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(F"""Which version are you releasing? [{default_version}]""" ) if len(lowerCAmelCase_ ) == 0: UpperCAmelCase = default_version print(F"""Updating version to {version}.""" ) global_version_update(lowerCAmelCase_ , patch=lowerCAmelCase_ ) def _UpperCamelCase ( ) ->int: UpperCAmelCase = get_version() UpperCAmelCase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(lowerCAmelCase_ ) == 0: UpperCAmelCase = dev_version print(F"""Updating version to {version}.""" ) global_version_update(lowerCAmelCase_ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") __a = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
377
def _UpperCamelCase ( lowerCAmelCase_ ) ->int: if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return 0 elif n == 2: return 1 else: UpperCAmelCase = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _UpperCamelCase ( lowerCAmelCase_ ) ->int: UpperCAmelCase = 0 UpperCAmelCase = 2 while digits < n: index += 1 UpperCAmelCase = len(str(fibonacci(lowerCAmelCase_ ) ) ) return index def _UpperCamelCase ( lowerCAmelCase_ = 1_0_0_0 ) ->int: return fibonacci_digits_index(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
377
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class __snake_case ( a ): def __init__( self : str , _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : Optional[int]=1024 , _snake_case : Optional[int]=1024 , _snake_case : Optional[int]=3.6): """simple docstring""" UpperCAmelCase_ = tokenizer UpperCAmelCase_ = tokenizer.bos_token_id UpperCAmelCase_ = dataset UpperCAmelCase_ = seq_length UpperCAmelCase_ = seq_length * chars_per_token * num_of_sequences def __iter__( self : int): """simple docstring""" UpperCAmelCase_ = iter(self.dataset) UpperCAmelCase_ = True while more_examples: UpperCAmelCase_ , UpperCAmelCase_ = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_snake_case)['''content''']) buffer_len += len(buffer[-1]) except StopIteration: UpperCAmelCase_ = False break UpperCAmelCase_ = tokenizer(_snake_case , truncation=_snake_case)['''input_ids'''] UpperCAmelCase_ = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id]) for i in range(0 , len(_snake_case) , self.seq_length): UpperCAmelCase_ = all_token_ids[i : i + self.seq_length] if len(_snake_case) == self.seq_length: yield torch.tensor(_snake_case) def A (__A : Any ) -> List[str]: """simple docstring""" UpperCAmelCase_ = {'''streaming''': True} UpperCAmelCase_ = load_dataset(args.dataset_name , split='''train''' , **__A ) UpperCAmelCase_ = ConstantLengthDataset(__A , __A , seq_length=args.seq_length ) UpperCAmelCase_ = DataLoader(__A , batch_size=args.batch_size ) return eval_dataloader def A (__A : str ) -> str: """simple docstring""" model.eval() UpperCAmelCase_ = [] for step, batch in enumerate(__A ): with torch.no_grad(): UpperCAmelCase_ = model(__A , labels=__A ) UpperCAmelCase_ = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__A ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break UpperCAmelCase_ = torch.mean(torch.cat(__A ) ) try: UpperCAmelCase_ = torch.exp(__A ) except OverflowError: UpperCAmelCase_ = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator snake_case_ : int = Accelerator() # Parse configuration snake_case_ : List[Any] = HfArgumentParser(EvaluationArguments) snake_case_ : Optional[int] = parser.parse_args() set_seed(args.seed) # Logging snake_case_ : Union[str, Any] = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) # Load model and tokenizer snake_case_ : Dict = AutoModelForCausalLM.from_pretrained(args.model_ckpt) snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader snake_case_ : Optional[int] = create_dataloader(args) # Prepare everything with our `accelerator`. snake_case_ , snake_case_ : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") snake_case_ , snake_case_ : Optional[int] = evaluate(args) logger.info(f"loss/eval: {eval_loss}, perplexity: {perplexity}")
169
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device snake_case_ : Tuple = False class __snake_case ( unittest.TestCase ): pass @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''') pipe.to(_snake_case) pipe.set_progress_bar_config(disable=_snake_case) UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''') UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = pipe( image=_snake_case , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCAmelCase_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
169
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase__ : Dict): # initialize config if "resnet-50" in model_name: lowerCamelCase : int = ResNetConfig.from_pretrained('microsoft/resnet-50') elif "resnet-101" in model_name: lowerCamelCase : str = ResNetConfig.from_pretrained('microsoft/resnet-101') else: raise ValueError('Model name should include either resnet50 or resnet101') lowerCamelCase : str = DetrConfig(use_timm_backbone=UpperCAmelCase__ , backbone_config=UpperCAmelCase__) # set label attributes lowerCamelCase : Optional[Any] = 'panoptic' in model_name if is_panoptic: lowerCamelCase : Dict = 2_50 else: lowerCamelCase : List[str] = 91 lowerCamelCase : List[Any] = 'huggingface/label-files' lowerCamelCase : List[str] = 'coco-detection-id2label.json' lowerCamelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type='dataset') , 'r')) lowerCamelCase : int = {int(UpperCAmelCase__): v for k, v in idalabel.items()} lowerCamelCase : List[Any] = idalabel lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCAmelCase ( UpperCAmelCase__ : Any): # here we list all keys to be renamed (original name on the left, our name on the right) lowerCamelCase : List[str] = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight')) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight')) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias')) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean')) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var')) # stages for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', )) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', )) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', )) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', )) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', )) # 3 convs for i in range(3): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', )) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', )) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', )) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', )) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', )) # fmt: on for i in range(config.encoder_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', )) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', )) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''')) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', )) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', )) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ]) return rename_keys def UpperCAmelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int]): lowerCamelCase : List[Any] = state_dict.pop(UpperCAmelCase__) lowerCamelCase : Dict = val def UpperCAmelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str=False): lowerCamelCase : List[Any] = '' if is_panoptic: lowerCamelCase : Tuple = 'detr.' # first: transformer encoder for i in range(6): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCamelCase : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''') lowerCamelCase : List[str] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''') # next, add query, keys and values (in that order) to the state dict lowerCamelCase : Union[str, Any] = in_proj_weight[:2_56, :] lowerCamelCase : Dict = in_proj_bias[:2_56] lowerCamelCase : Optional[Any] = in_proj_weight[2_56:5_12, :] lowerCamelCase : Any = in_proj_bias[2_56:5_12] lowerCamelCase : Optional[int] = in_proj_weight[-2_56:, :] lowerCamelCase : Tuple = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6): # read in weights + bias of input projection layer of self-attention lowerCamelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''') lowerCamelCase : Tuple = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''') # next, add query, keys and values (in that order) to the state dict lowerCamelCase : int = in_proj_weight[:2_56, :] lowerCamelCase : int = in_proj_bias[:2_56] lowerCamelCase : Union[str, Any] = in_proj_weight[2_56:5_12, :] lowerCamelCase : Optional[int] = in_proj_bias[2_56:5_12] lowerCamelCase : str = in_proj_weight[-2_56:, :] lowerCamelCase : Optional[Any] = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention lowerCamelCase : Optional[Any] = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''') lowerCamelCase : int = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''') # next, add query, keys and values (in that order) of cross-attention to the state dict lowerCamelCase : List[Any] = in_proj_weight_cross_attn[:2_56, :] lowerCamelCase : Any = in_proj_bias_cross_attn[:2_56] lowerCamelCase : Tuple = in_proj_weight_cross_attn[2_56:5_12, :] lowerCamelCase : str = in_proj_bias_cross_attn[2_56:5_12] lowerCamelCase : Dict = in_proj_weight_cross_attn[-2_56:, :] lowerCamelCase : List[str] = in_proj_bias_cross_attn[-2_56:] def UpperCAmelCase ( ): lowerCamelCase : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase : List[str] = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__).raw) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Dict=False): lowerCamelCase , lowerCamelCase : List[str] = get_detr_config(UpperCAmelCase__) # load original model from torch hub lowerCamelCase : Optional[Any] = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(F'''Converting model {model_name}...''') lowerCamelCase : List[Any] = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=UpperCAmelCase__).eval() lowerCamelCase : Tuple = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCAmelCase__): if is_panoptic: lowerCamelCase : Union[str, Any] = 'detr.' + src rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase__ , is_panoptic=UpperCAmelCase__) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCamelCase : int = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr') and not key.startswith('class_labels_classifier') and not key.startswith('bbox_predictor') ): lowerCamelCase : Optional[Any] = state_dict.pop(UpperCAmelCase__) lowerCamelCase : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCamelCase : Dict = state_dict.pop(UpperCAmelCase__) lowerCamelCase : Union[str, Any] = val elif key.startswith('bbox_attention') or key.startswith('mask_head'): continue else: lowerCamelCase : Dict = state_dict.pop(UpperCAmelCase__) lowerCamelCase : List[Any] = val else: if not key.startswith('class_labels_classifier') and not key.startswith('bbox_predictor'): lowerCamelCase : List[Any] = state_dict.pop(UpperCAmelCase__) lowerCamelCase : str = val # finally, create HuggingFace model and load state dict lowerCamelCase : Union[str, Any] = DetrForSegmentation(UpperCAmelCase__) if is_panoptic else DetrForObjectDetection(UpperCAmelCase__) model.load_state_dict(UpperCAmelCase__) model.eval() # verify our conversion on an image lowerCamelCase : Any = 'coco_panoptic' if is_panoptic else 'coco_detection' lowerCamelCase : int = DetrImageProcessor(format=UpperCAmelCase__) lowerCamelCase : List[Any] = processor(images=prepare_img() , return_tensors='pt') lowerCamelCase : List[str] = encoding['pixel_values'] lowerCamelCase : Optional[int] = detr(UpperCAmelCase__) lowerCamelCase : Union[str, Any] = model(UpperCAmelCase__) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1E-3) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1E-3) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1E-4) print('Looks ok!') if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''') Path(UpperCAmelCase__).mkdir(exist_ok=UpperCAmelCase__) model.save_pretrained(UpperCAmelCase__) processor.save_pretrained(UpperCAmelCase__) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...') model.push_to_hub(F'''nielsr/{model_name}''') processor.push_to_hub(F'''nielsr/{model_name}''') if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') A = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
320
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A = logging.get_logger(__name__) A = {'vocab_file': 'sentencepiece.bpe.model'} A = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } A = { 'camembert-base': 512, } A = '▁' class __snake_case ( a__): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self, A, A="<s>", A="</s>", A="</s>", A="<s>", A="<unk>", A="<pad>", A="<mask>", A=["<s>NOTUSED", "</s>NOTUSED"], A = None, **A, ): """simple docstring""" lowerCamelCase : List[str] = AddedToken(A, lstrip=A, rstrip=A ) if isinstance(A, A ) else mask_token lowerCamelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A, eos_token=A, unk_token=A, sep_token=A, cls_token=A, pad_token=A, mask_token=A, additional_special_tokens=A, sp_model_kwargs=self.sp_model_kwargs, **A, ) lowerCamelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) lowerCamelCase : List[Any] = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowerCamelCase : Union[str, Any] = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} lowerCamelCase : Union[str, Any] = len(self.fairseq_tokens_to_ids ) lowerCamelCase : Tuple = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowerCamelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase_ ( self, A, A = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase : Tuple = [self.cls_token_id] lowerCamelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self, A, A = None, A = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A, token_ids_a=A, already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def UpperCAmelCase_ ( self, A, A = None ): """simple docstring""" lowerCamelCase : Union[str, Any] = [self.sep_token_id] lowerCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase_ ( self ): """simple docstring""" return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self, A ): """simple docstring""" return self.sp_model.encode(A, out_type=A ) def UpperCAmelCase_ ( self, A ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(A ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(A ) def UpperCAmelCase_ ( self, A ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : int = [] lowerCamelCase : Dict = '' lowerCamelCase : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token lowerCamelCase : int = True lowerCamelCase : Optional[Any] = [] else: current_sub_tokens.append(A ) lowerCamelCase : Union[str, Any] = False out_string += self.sp_model.decode(A ) return out_string.strip() def __getstate__( self ): """simple docstring""" lowerCamelCase : List[str] = self.__dict__.copy() lowerCamelCase : int = None return state def __setstate__( self, A ): """simple docstring""" lowerCamelCase : List[Any] = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): lowerCamelCase : List[str] = {} lowerCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self, A, A = None ): """simple docstring""" if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase : str = os.path.join( A, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, A ) elif not os.path.isfile(self.vocab_file ): with open(A, 'wb' ) as fi: lowerCamelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
320
1
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(_UpperCamelCase , n - 1 , _UpperCamelCase ) * a) % mod else: __lowerCAmelCase : Dict = binary_exponentiation(_UpperCamelCase , n / 2 , _UpperCamelCase ) return (b * b) % mod # a prime number lowerCamelCase__ = 701 lowerCamelCase__ = 1_000_000_000 lowerCamelCase__ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
549
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase = False ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : str = F"Expected string as input, found {type(_UpperCamelCase )}" raise ValueError(_UpperCamelCase ) if not isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = F"Expected boolean as use_pascal parameter, found {type(_UpperCamelCase )}" raise ValueError(_UpperCamelCase ) __lowerCAmelCase : Tuple = input_str.split('_' ) __lowerCAmelCase : int = 0 if use_pascal else 1 __lowerCAmelCase : Any = words[start_index:] __lowerCAmelCase : Any = [word[0].upper() + word[1:] for word in words_to_capitalize] __lowerCAmelCase : Any = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
549
1
"""simple docstring""" from datetime import datetime import requests def __A (_SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ :str = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' lowerCAmelCase__ :List[str] = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(__lowerCAmelCase ).content if __name__ == "__main__": __A = input("""Enter Video/IGTV url: """).strip() __A = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
93
'''simple docstring''' from math import factorial def _a ( __lowerCAmelCase : int = 20 ): """simple docstring""" snake_case__ : Union[str, Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case__ : List[str] = n // 2 return int(factorial(__lowerCAmelCase ) / (factorial(__lowerCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: lowerCAmelCase__ : Dict = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
347
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :Union[str, Any] = "bert" def __init__( self , __UpperCAmelCase=3_0522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) a__ : Tuple = vocab_size a__ : Union[str, Any] = hidden_size a__ : str = num_hidden_layers a__ : Tuple = num_attention_heads a__ : str = hidden_act a__ : List[Any] = intermediate_size a__ : str = hidden_dropout_prob a__ : List[Any] = attention_probs_dropout_prob a__ : Optional[Any] = max_position_embeddings a__ : Tuple = type_vocab_size a__ : Union[str, Any] = initializer_range a__ : str = layer_norm_eps a__ : Any = position_embedding_type a__ : Tuple = use_cache a__ : str = classifier_dropout class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _A ( self ): """simple docstring""" if self.task == "multiple-choice": a__ : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: a__ : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
207
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
207
1
from __future__ import annotations def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,): """simple docstring""" snake_case = len(UpperCamelCase_ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(UpperCamelCase_ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] ,[*diagonal_right_collisions, row - col] ,[*diagonal_left_collisions, row + col] ,UpperCamelCase_ ,UpperCamelCase_ ,) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = [] depth_first_search([] ,[] ,[] ,UpperCamelCase_ ,UpperCamelCase_ ) # Print all the boards for board in boards: for column in board: print(UpperCamelCase_ ) print('''''' ) print(len(UpperCamelCase_ ) ,'''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
550
from ..utils import DummyObject, requires_backends class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['flax', 'transformers'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''flax''', '''transformers'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['flax', 'transformers'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''flax''', '''transformers'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['flax', 'transformers'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''flax''', '''transformers'''] ) class A__ ( metaclass=snake_case__ ): """simple docstring""" __magic_name__ = ['flax', 'transformers'] def __init__( self , *__snake_case , **__snake_case ): requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def a_ ( cls , *__snake_case , **__snake_case ): requires_backends(cls , ['''flax''', '''transformers'''] )
550
1
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __magic_name__ ( lowercase_ ): """simple docstring""" _UpperCamelCase = "segformer" def __init__( self , a__=3 , a__=4 , a__=[2, 2, 2, 2] , a__=[8, 4, 2, 1] , a__=[32, 64, 1_60, 2_56] , a__=[7, 3, 3, 3] , a__=[4, 2, 2, 2] , a__=[1, 2, 5, 8] , a__=[4, 4, 4, 4] , a__="gelu" , a__=0.0 , a__=0.0 , a__=0.1 , a__=0.02 , a__=0.1 , a__=1E-6 , a__=2_56 , a__=2_55 , **a__ , ): super().__init__(**a__ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( '''Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be''' ''' removed, as the behaviour will default to that of reshape_last_stage = True.''' , a__ , ) _lowerCamelCase = num_channels _lowerCamelCase = num_encoder_blocks _lowerCamelCase = depths _lowerCamelCase = sr_ratios _lowerCamelCase = hidden_sizes _lowerCamelCase = patch_sizes _lowerCamelCase = strides _lowerCamelCase = mlp_ratios _lowerCamelCase = num_attention_heads _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = classifier_dropout_prob _lowerCamelCase = initializer_range _lowerCamelCase = drop_path_rate _lowerCamelCase = layer_norm_eps _lowerCamelCase = decoder_hidden_size _lowerCamelCase = kwargs.get('''reshape_last_stage''' , a__ ) _lowerCamelCase = semantic_loss_ignore_index class __magic_name__ ( lowercase_ ): """simple docstring""" _UpperCamelCase = version.parse("1.11" ) @property def _UpperCAmelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _UpperCAmelCase ( self ): return 1E-4 @property def _UpperCAmelCase ( self ): return 12
297
import heapq def _lowerCamelCase ( _a ): """simple docstring""" _lowerCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_a , [-1 * len(_a ), (key, value)] ) # chosen_vertices = set of chosen vertices _lowerCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _lowerCamelCase = heapq.heappop(_a )[1][0] chosen_vertices.add(_a ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _lowerCamelCase = elem[1][1].index(_a ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_a ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
297
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=__a ): __SCREAMING_SNAKE_CASE :str = ["note_seq"] def __init__( self : int , *a__ : Optional[int] , **a__ : Dict ): requires_backends(self , ['''note_seq'''] ) @classmethod def snake_case__ ( cls : Tuple , *a__ : Dict , **a__ : List[str] ): requires_backends(cls , ['''note_seq'''] ) @classmethod def snake_case__ ( cls : int , *a__ : Optional[Any] , **a__ : List[Any] ): requires_backends(cls , ['''note_seq'''] )
432
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __lowerCAmelCase = 8 def _lowercase ( a__ : Optional[Any] , a__ : Any=BITS ) -> Dict: """simple docstring""" _UpperCamelCase = x.device _UpperCamelCase = (x * 2_55).int().clamp(0 , 2_55 ) _UpperCamelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=a__ ) _UpperCamelCase = rearrange(a__ , "d -> d 1 1" ) _UpperCamelCase = rearrange(a__ , "b c h w -> b c 1 h w" ) _UpperCamelCase = ((x & mask) != 0).float() _UpperCamelCase = rearrange(a__ , "b c d h w -> b (c d) h w" ) _UpperCamelCase = bits * 2 - 1 return bits def _lowercase ( a__ : Optional[Any] , a__ : str=BITS ) -> Tuple: """simple docstring""" _UpperCamelCase = x.device _UpperCamelCase = (x > 0).int() _UpperCamelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=a__ , dtype=torch.intaa ) _UpperCamelCase = rearrange(a__ , "d -> d 1 1" ) _UpperCamelCase = rearrange(a__ , "b (c d) h w -> b c d h w" , d=8 ) _UpperCamelCase = reduce(x * mask , "b c d h w -> b c h w" , "sum" ) return (dec / 2_55).clamp(0.0 , 1.0 ) def _lowercase ( self : Optional[Any] , a__ : torch.FloatTensor , a__ : int , a__ : torch.FloatTensor , a__ : float = 0.0 , a__ : bool = True , a__ : Any=None , a__ : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _UpperCamelCase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _UpperCamelCase = self.alphas_cumprod[timestep] _UpperCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _UpperCamelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _UpperCamelCase = self.bit_scale if self.config.clip_sample: _UpperCamelCase = torch.clamp(a__ , -scale , a__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _UpperCamelCase = self._get_variance(a__ , a__ ) _UpperCamelCase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _UpperCamelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCamelCase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCamelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _UpperCamelCase = model_output.device if torch.is_tensor(a__ ) else "cpu" _UpperCamelCase = torch.randn(model_output.shape , dtype=model_output.dtype , generator=a__ ).to(a__ ) _UpperCamelCase = self._get_variance(a__ , a__ ) ** 0.5 * eta * noise _UpperCamelCase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=a__ , pred_original_sample=a__ ) def _lowercase ( self : str , a__ : torch.FloatTensor , a__ : int , a__ : torch.FloatTensor , a__ : int="epsilon" , a__ : int=None , a__ : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: """simple docstring""" _UpperCamelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _UpperCamelCase , _UpperCamelCase = torch.split(a__ , sample.shape[1] , dim=1 ) else: _UpperCamelCase = None # 1. compute alphas, betas _UpperCamelCase = self.alphas_cumprod[t] _UpperCamelCase = self.alphas_cumprod[t - 1] if t > 0 else self.one _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _UpperCamelCase = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" _UpperCamelCase = self.bit_scale if self.config.clip_sample: _UpperCamelCase = torch.clamp(a__ , -scale , a__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCamelCase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _UpperCamelCase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _UpperCamelCase = 0 if t > 0: _UpperCamelCase = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=a__ ).to(model_output.device ) _UpperCamelCase = (self._get_variance(a__ , predicted_variance=a__ ) ** 0.5) * noise _UpperCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=a__ , pred_original_sample=a__ ) class lowerCamelCase_ ( lowercase ): def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1.0 , ) -> Dict: """simple docstring""" super().__init__() _UpperCamelCase = bit_scale _UpperCamelCase = ( ddim_bit_scheduler_step if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self , lowerCamelCase_ = 2_56 , lowerCamelCase_ = 2_56 , lowerCamelCase_ = 50 , lowerCamelCase_ = None , lowerCamelCase_ = 1 , lowerCamelCase_ = "pil" , lowerCamelCase_ = True , **lowerCamelCase_ , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" _UpperCamelCase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=lowerCamelCase_ , ) _UpperCamelCase = decimal_to_bits(lowerCamelCase_ ) * self.bit_scale _UpperCamelCase = latents.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample _UpperCamelCase = bits_to_decimal(lowerCamelCase_ ) if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
147
0
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowercase ( __A : Dict , __A : int=10 ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = [] for _ in range(__A ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowercase ( __A : str , __A : List[str]=10 ) -> Union[str, Any]: '''simple docstring''' snake_case : List[Any] = [] for step in range(__A ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: snake_case : int = os.path.join(__A , """schedule.bin""" ) torch.save(scheduler.state_dict() , __A ) snake_case : Any = torch.load(__A ) scheduler.load_state_dict(__A ) return lrs @require_torch class _A ( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,len(SCREAMING_SNAKE_CASE_ ) ) for a, b in zip(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,delta=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[Any] = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = torch.tensor([0.4, 0.2, -0.5] ) snake_case : str = nn.MSELoss() # No warmup, constant schedule, no gradient clipping snake_case : Tuple = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(100 ): snake_case : List[str] = criterion(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def snake_case_ ( self ): '''simple docstring''' snake_case : Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=SCREAMING_SNAKE_CASE_ ) snake_case : Any = torch.tensor([0.4, 0.2, -0.5] ) snake_case : int = nn.MSELoss() # No warmup, constant schedule, no gradient clipping snake_case : Dict = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=SCREAMING_SNAKE_CASE_ ,weight_decay=0.0 ,relative_step=SCREAMING_SNAKE_CASE_ ,scale_parameter=SCREAMING_SNAKE_CASE_ ,warmup_init=SCREAMING_SNAKE_CASE_ ,) for _ in range(1000 ): snake_case : Dict = criterion(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class _A ( unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None __lowerCamelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None __lowerCamelCase : Dict = 1_0 def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=None ): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,len(SCREAMING_SNAKE_CASE_ ) ) for a, b in zip(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,delta=SCREAMING_SNAKE_CASE_ ,msg=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : int = {"""num_warmup_steps""": 2, """num_training_steps""": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) snake_case : Any = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"""num_warmup_steps""": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, """num_cycles""": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, """power""": 2.0, """lr_end""": 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {"""num_warmup_steps""": 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): snake_case , snake_case : Union[str, Any] = data snake_case : Optional[Any] = scheduler_func(self.optimizer ,**SCREAMING_SNAKE_CASE_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) snake_case : Tuple = unwrap_schedule(SCREAMING_SNAKE_CASE_ ,self.num_steps ) self.assertListAlmostEqual( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,tol=1E-2 ,msg=F"""failed for {scheduler_func} in normal scheduler""" ,) snake_case : List[str] = scheduler_func(self.optimizer ,**SCREAMING_SNAKE_CASE_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(SCREAMING_SNAKE_CASE_ ) # wrap to test picklability of the schedule snake_case : Union[str, Any] = unwrap_and_save_reload_schedule(SCREAMING_SNAKE_CASE_ ,self.num_steps ) self.assertListEqual(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,msg=F"""failed for {scheduler_func} in save and reload""" ) class _A : '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Optional[int] = fn def __call__( self ,*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return self.fn(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) @classmethod def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Tuple = list(map(self ,scheduler.lr_lambdas ) )
315
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : Optional[Any] = r''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class _A ( snake_case ): '''simple docstring''' @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' raise NotImplementedError("""StoppingCriteria needs to be subclassed""" ) class _A ( snake_case ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' snake_case : Optional[Any] = max_length snake_case : List[Any] = max_position_embeddings @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Dict = input_ids.shape[-1] snake_case : List[Any] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( """This is a friendly reminder - the current text generation call will exceed the model's predefined """ F"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ """exceptions, performance degradation, or nothing at all.""" ) return is_done class _A ( snake_case ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' warnings.warn( """The class `MaxNewTokensCriteria` is deprecated. """ F"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ """with `max_length = start_length + max_new_tokens` instead.""" ,SCREAMING_SNAKE_CASE_ ,) snake_case : Tuple = start_length snake_case : List[str] = max_new_tokens snake_case : Optional[Any] = start_length + max_new_tokens @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return input_ids.shape[-1] >= self.max_length class _A ( snake_case ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' snake_case : List[str] = max_time snake_case : int = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class _A ( snake_case ): '''simple docstring''' @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return any(criteria(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) for criteria in self ) @property def snake_case_ ( self ): '''simple docstring''' for stopping_criterium in self: if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): return stopping_criterium.max_length elif isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): return stopping_criterium.max_length return None def lowercase ( __A : StoppingCriteriaList , __A : int ) -> StoppingCriteriaList: '''simple docstring''' snake_case : List[Any] = stopping_criteria.max_length snake_case : List[str] = deepcopy(__A ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("""You set different `max_length` for stopping criteria and `max_length` parameter""" , __A ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__A ) ) return new_stopping_criteria
315
1
"""simple docstring""" class _snake_case : '''simple docstring''' def __init__( self : Optional[int] , snake_case : list[int] ): UpperCAmelCase_ :List[Any] = len(snake_case ) UpperCAmelCase_ :Dict = [0] * len_array if len_array > 0: UpperCAmelCase_ :List[Any] = array[0] for i in range(1 , snake_case ): UpperCAmelCase_ :Any = self.prefix_sum[i - 1] + array[i] def snake_case_ ( self : Dict , snake_case : int , snake_case : int ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def snake_case_ ( self : Tuple , snake_case : int ): UpperCAmelCase_ :Optional[Any] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(snake_case ) return False if __name__ == "__main__": import doctest doctest.testmod()
608
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def a ( __snake_case : List[Any], __snake_case : Union[str, Any], __snake_case : str=1E-12 ): '''simple docstring''' UpperCAmelCase_ :int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(__snake_case, axis=1 ), a_min=__snake_case ) ).T UpperCAmelCase_ :List[Any] = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(__snake_case, axis=1 ), a_min=__snake_case ) ).T return jnp.matmul(__snake_case, norm_emb_a.T ) class _snake_case ( nn.Module ): '''simple docstring''' UpperCamelCase__ =42 UpperCamelCase__ =jnp.floataa def snake_case_ ( self : List[Any] ): UpperCAmelCase_ :Optional[Any] = FlaxCLIPVisionModule(self.config.vision_config ) UpperCAmelCase_ :Any = nn.Dense(self.config.projection_dim , use_bias=snake_case , dtype=self.dtype ) UpperCAmelCase_ :Tuple = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) UpperCAmelCase_ :Union[str, Any] = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCAmelCase_ :Tuple = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) UpperCAmelCase_ :List[str] = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self : Any , snake_case : Dict ): UpperCAmelCase_ :Union[str, Any] = self.vision_model(snake_case )[1] UpperCAmelCase_ :Any = self.visual_projection(snake_case ) UpperCAmelCase_ :Any = jax_cosine_distance(snake_case , self.special_care_embeds ) UpperCAmelCase_ :List[str] = jax_cosine_distance(snake_case , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCAmelCase_ :List[str] = 0.0 UpperCAmelCase_ :Any = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCAmelCase_ :List[str] = jnp.round(snake_case , 3 ) UpperCAmelCase_ :Any = jnp.any(special_scores > 0 , axis=1 , keepdims=snake_case ) # Use a lower threshold if an image has any special care concept UpperCAmelCase_ :Tuple = is_special_care * 0.01 UpperCAmelCase_ :int = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCAmelCase_ :Any = jnp.round(snake_case , 3 ) UpperCAmelCase_ :Optional[Any] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _snake_case ( A__ ): '''simple docstring''' UpperCamelCase__ =CLIPConfig UpperCamelCase__ ="""clip_input""" UpperCamelCase__ =FlaxStableDiffusionSafetyCheckerModule def __init__( self : int , snake_case : CLIPConfig , snake_case : Optional[Tuple] = None , snake_case : int = 0 , snake_case : jnp.dtype = jnp.floataa , snake_case : bool = True , **snake_case : Optional[int] , ): if input_shape is None: UpperCAmelCase_ :str = (1, 224, 224, 3) UpperCAmelCase_ :Optional[int] = self.module_class(config=snake_case , dtype=snake_case , **snake_case ) super().__init__(snake_case , snake_case , input_shape=snake_case , seed=snake_case , dtype=snake_case , _do_init=_do_init ) def snake_case_ ( self : List[str] , snake_case : jax.random.KeyArray , snake_case : Tuple , snake_case : FrozenDict = None ): # init input tensor UpperCAmelCase_ :Optional[int] = jax.random.normal(snake_case , snake_case ) UpperCAmelCase_ ,UpperCAmelCase_ :Tuple = jax.random.split(snake_case ) UpperCAmelCase_ :Dict = {'''params''': params_rng, '''dropout''': dropout_rng} UpperCAmelCase_ :List[str] = self.module.init(snake_case , snake_case )['''params'''] return random_params def __call__( self : Dict , snake_case : Optional[int] , snake_case : dict = None , ): UpperCAmelCase_ :Union[str, Any] = jnp.transpose(snake_case , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(snake_case , dtype=jnp.floataa ) , rngs={} , )
608
1
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple ) -> Dict: '''simple docstring''' lowercase = Mock() lowercase = conn, Mock() lowercase = iter([1, None] ) lowercase = lambda lowerCAmelCase__ : next(__lowerCAmelCase ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=__lowerCAmelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
718
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _A ( lowerCAmelCase ): snake_case__ : int = 'blenderbot-small' snake_case__ : Optional[Any] = ['past_key_values'] snake_case__ : Optional[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __lowerCAmelCase=5_0265 , __lowerCAmelCase=512 , __lowerCAmelCase=8 , __lowerCAmelCase=2048 , __lowerCAmelCase=16 , __lowerCAmelCase=8 , __lowerCAmelCase=2048 , __lowerCAmelCase=16 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase="gelu" , __lowerCAmelCase=512 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1 , __lowerCAmelCase=False , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , __lowerCAmelCase=2 , **__lowerCAmelCase , ): """simple docstring""" lowercase = vocab_size lowercase = max_position_embeddings lowercase = d_model lowercase = encoder_ffn_dim lowercase = encoder_layers lowercase = encoder_attention_heads lowercase = decoder_ffn_dim lowercase = decoder_layers lowercase = decoder_attention_heads lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = activation_function lowercase = init_std lowercase = encoder_layerdrop lowercase = decoder_layerdrop lowercase = use_cache lowercase = encoder_layers lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , forced_eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) class _A ( lowerCAmelCase ): @property def A__ ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowercase = {0: """batch"""} lowercase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowercase = {0: """batch""", 1: """decoder_sequence"""} lowercase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__lowerCAmelCase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowercase , lowercase = self.num_layers for i in range(__lowerCAmelCase ): lowercase = {0: """batch""", 2: """past_sequence + sequence"""} lowercase = {0: """batch""", 2: """past_sequence + sequence"""} else: lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def A__ ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase = super().outputs else: lowercase = super(__lowerCAmelCase , self ).outputs if self.use_past: lowercase , lowercase = self.num_layers for i in range(__lowerCAmelCase ): lowercase = {0: """batch""", 2: """past_sequence + sequence"""} lowercase = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , ): """simple docstring""" lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Generate decoder inputs lowercase = seq_length if not self.use_past else 1 lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} lowercase = dict(**__lowerCAmelCase , **__lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase , lowercase = common_inputs["""input_ids"""].shape lowercase = common_inputs["""decoder_input_ids"""].shape[1] lowercase , lowercase = self.num_attention_heads lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase = decoder_seq_length + 3 lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__lowerCAmelCase , __lowerCAmelCase )] , dim=1 ) lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase , lowercase = self.num_layers lowercase = min(__lowerCAmelCase , __lowerCAmelCase ) lowercase = max(__lowerCAmelCase , __lowerCAmelCase ) - min_num_layers lowercase = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(__lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase ), ) ) # TODO: test this. lowercase = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(__lowerCAmelCase , __lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) ) return common_inputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , ): """simple docstring""" lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowercase , lowercase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase = seqlen + 2 lowercase , lowercase = self.num_layers lowercase , lowercase = self.num_attention_heads lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase = common_inputs["""attention_mask"""].dtype lowercase = torch.cat( [common_inputs["""attention_mask"""], torch.ones(__lowerCAmelCase , __lowerCAmelCase , dtype=__lowerCAmelCase )] , dim=1 ) lowercase = [ (torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) for _ in range(__lowerCAmelCase ) ] return common_inputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , ): """simple docstring""" lowercase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase = tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) lowercase = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence lowercase = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase = dict(tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase ) ) return common_inputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = -1 , __lowerCAmelCase = -1 , __lowerCAmelCase = False , __lowerCAmelCase = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) elif self.task == "causal-lm": lowercase = self._generate_dummy_inputs_for_causal_lm( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) else: lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) return common_inputs def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowercase = super()._flatten_past_key_values_(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: lowercase = super(__lowerCAmelCase , self )._flatten_past_key_values_( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
197
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ='https://openaipublic.azureedge.net/jukebox/models/' __lowerCAmelCase : str ={ 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def _UpperCamelCase ( lowercase__ ): if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: __SCREAMING_SNAKE_CASE : List[str] = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: __SCREAMING_SNAKE_CASE : Optional[Any] = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: __SCREAMING_SNAKE_CASE : str = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: __SCREAMING_SNAKE_CASE : str = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: __SCREAMING_SNAKE_CASE : Optional[int] = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: __SCREAMING_SNAKE_CASE : Dict = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __SCREAMING_SNAKE_CASE : Dict = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: __SCREAMING_SNAKE_CASE : List[str] = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = {} import re __SCREAMING_SNAKE_CASE : List[str] = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __SCREAMING_SNAKE_CASE : int = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __SCREAMING_SNAKE_CASE : str = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __SCREAMING_SNAKE_CASE : int = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __SCREAMING_SNAKE_CASE : Tuple = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __SCREAMING_SNAKE_CASE : Optional[int] = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __SCREAMING_SNAKE_CASE : Any = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __SCREAMING_SNAKE_CASE : str = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowercase__ ): __SCREAMING_SNAKE_CASE : int = re_encoder_block_conv_in.match(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = regex_match.groups() __SCREAMING_SNAKE_CASE : Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) __SCREAMING_SNAKE_CASE : List[Any] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' __SCREAMING_SNAKE_CASE : Any = re_encoder_block_conv_in.sub(lowercase__ , lowercase__ ) elif re_encoder_block_resnet.fullmatch(lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = re_encoder_block_resnet.match(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = regex_match.groups() __SCREAMING_SNAKE_CASE : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) __SCREAMING_SNAKE_CASE : List[Any] = {'''1''': 1, '''3''': 2}[groups[-2]] __SCREAMING_SNAKE_CASE : str = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' __SCREAMING_SNAKE_CASE : Dict = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' __SCREAMING_SNAKE_CASE : Tuple = prefix + resnet_block __SCREAMING_SNAKE_CASE : int = re_encoder_block_resnet.sub(lowercase__ , lowercase__ ) elif re_encoder_block_proj_out.fullmatch(lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = re_encoder_block_proj_out.match(lowercase__ ) __SCREAMING_SNAKE_CASE : int = regex_match.groups() __SCREAMING_SNAKE_CASE : Any = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' __SCREAMING_SNAKE_CASE : Any = re_encoder_block_proj_out.sub(lowercase__ , lowercase__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowercase__ ): __SCREAMING_SNAKE_CASE : int = re_decoder_block_conv_out.match(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = regex_match.groups() __SCREAMING_SNAKE_CASE : List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 __SCREAMING_SNAKE_CASE : Tuple = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' __SCREAMING_SNAKE_CASE : str = re_decoder_block_conv_out.sub(lowercase__ , lowercase__ ) elif re_decoder_block_resnet.fullmatch(lowercase__ ): __SCREAMING_SNAKE_CASE : str = re_decoder_block_resnet.match(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = regex_match.groups() __SCREAMING_SNAKE_CASE : str = int(groups[2] ) * 2 + int(groups[3] ) - 2 __SCREAMING_SNAKE_CASE : Tuple = {'''1''': 1, '''3''': 2}[groups[-2]] __SCREAMING_SNAKE_CASE : List[Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' __SCREAMING_SNAKE_CASE : Union[str, Any] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' __SCREAMING_SNAKE_CASE : Dict = prefix + resnet_block __SCREAMING_SNAKE_CASE : Any = re_decoder_block_resnet.sub(lowercase__ , lowercase__ ) elif re_decoder_block_proj_in.fullmatch(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = re_decoder_block_proj_in.match(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = regex_match.groups() __SCREAMING_SNAKE_CASE : int = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' __SCREAMING_SNAKE_CASE : Any = re_decoder_block_proj_in.sub(lowercase__ , lowercase__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = re_prior_cond_conv_out.match(lowercase__ ) __SCREAMING_SNAKE_CASE : int = regex_match.groups() __SCREAMING_SNAKE_CASE : List[str] = int(groups[1] ) * 2 + int(groups[2] ) - 2 __SCREAMING_SNAKE_CASE : List[str] = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' __SCREAMING_SNAKE_CASE : int = re_prior_cond_conv_out.sub(lowercase__ , lowercase__ ) elif re_prior_cond_resnet.fullmatch(lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = re_prior_cond_resnet.match(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = regex_match.groups() __SCREAMING_SNAKE_CASE : Tuple = int(groups[1] ) * 2 + int(groups[2] ) - 2 __SCREAMING_SNAKE_CASE : Optional[int] = {'''1''': 1, '''3''': 2}[groups[-2]] __SCREAMING_SNAKE_CASE : Union[str, Any] = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' __SCREAMING_SNAKE_CASE : Tuple = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' __SCREAMING_SNAKE_CASE : List[str] = prefix + resnet_block __SCREAMING_SNAKE_CASE : Tuple = re_prior_cond_resnet.sub(lowercase__ , lowercase__ ) elif re_prior_cond_proj_in.fullmatch(lowercase__ ): __SCREAMING_SNAKE_CASE : int = re_prior_cond_proj_in.match(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = regex_match.groups() __SCREAMING_SNAKE_CASE : Optional[Any] = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' __SCREAMING_SNAKE_CASE : Union[str, Any] = re_prior_cond_proj_in.sub(lowercase__ , lowercase__ ) # keep original key else: __SCREAMING_SNAKE_CASE : Optional[Any] = original_key __SCREAMING_SNAKE_CASE : Any = replace_key(lowercase__ ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: __SCREAMING_SNAKE_CASE : Any = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) __SCREAMING_SNAKE_CASE : int = original_key __SCREAMING_SNAKE_CASE : Union[str, Any] = original_key __SCREAMING_SNAKE_CASE : str = value return new_dict @torch.no_grad() def _UpperCamelCase ( lowercase__=None , lowercase__=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): __SCREAMING_SNAKE_CASE : Any = requests.get(F'''{PREFIX}{file}''' , allow_redirects=lowercase__ ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=lowercase__ ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content ) __SCREAMING_SNAKE_CASE : str = MODEL_MAPPING[model_name.split('''/''' )[-1]] __SCREAMING_SNAKE_CASE : List[Any] = JukeboxConfig.from_pretrained(lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = JukeboxModel(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE : Dict = {} for i, dict_name in enumerate(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model'''] __SCREAMING_SNAKE_CASE : Tuple = {} for k in old_dic.keys(): if k.endswith('''.b''' ): __SCREAMING_SNAKE_CASE : List[Any] = old_dic[k] elif k.endswith('''.w''' ): __SCREAMING_SNAKE_CASE : int = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __SCREAMING_SNAKE_CASE : Any = old_dic[k] else: __SCREAMING_SNAKE_CASE : List[Any] = old_dic[k] __SCREAMING_SNAKE_CASE : Dict = '''vqvae''' if i == 0 else F'''priors.{3 - i}''' __SCREAMING_SNAKE_CASE : str = fix_jukebox_keys(lowercase__ , model.state_dict() , lowercase__ , lowercase__ ) weight_dict.append(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = weight_dict.pop(0 ) model.vqvae.load_state_dict(lowercase__ ) for i in range(len(lowercase__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(lowercase__ , lowercase__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) return weight_dict if __name__ == "__main__": __lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) __lowerCAmelCase : List[str] =parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
696
import os import sys import unittest __lowerCAmelCase : List[Any] =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowerCAmelCase : Optional[Any] =os.path.join(git_repo_path, 'src', 'transformers') __lowerCAmelCase : Optional[Any] ='\n{0} = None\n' __lowerCAmelCase : Tuple ='\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' __lowerCAmelCase : Dict ='\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tokenizers''' ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tensorflow_text''' ) __SCREAMING_SNAKE_CASE : Tuple = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers''' ) __SCREAMING_SNAKE_CASE : Any = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tensorflow_text''' ) __SCREAMING_SNAKE_CASE : List[str] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers_and_vision''' ) def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCAmelCase__ ) self.assertIn('''tensorflow_text''' , lowerCAmelCase__ ) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , '''\nCONSTANT = None\n''' ) __SCREAMING_SNAKE_CASE : List[str] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( lowerCAmelCase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __SCREAMING_SNAKE_CASE : int = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' __SCREAMING_SNAKE_CASE : Optional[Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , lowerCAmelCase__ )
696
1
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class UpperCAmelCase_ : def __init__( self : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any]=99 , __UpperCamelCase : Optional[Any]=13 , __UpperCamelCase : List[str]=7 , __UpperCamelCase : List[Any]=9 , __UpperCamelCase : Dict=True , __UpperCamelCase : str=True , __UpperCamelCase : List[Any]=False , __UpperCamelCase : Union[str, Any]=32 , __UpperCamelCase : List[Any]=5 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : Tuple=37 , __UpperCamelCase : Optional[int]=8 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Union[str, Any]=0.0_0_2 , __UpperCamelCase : Optional[Any]=1 , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : List[str]=0 , __UpperCamelCase : Dict=None , __UpperCamelCase : Dict=None , ) -> Tuple: _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = encoder_seq_length _UpperCamelCase = decoder_seq_length # For common tests _UpperCamelCase = self.decoder_seq_length _UpperCamelCase = is_training _UpperCamelCase = use_attention_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = d_ff _UpperCamelCase = relative_attention_num_buckets _UpperCamelCase = dropout_rate _UpperCamelCase = initializer_factor _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = decoder_start_token_id _UpperCamelCase = None _UpperCamelCase = decoder_layers def _UpperCamelCase ( self : Optional[int] ) -> Any: return TaConfig.from_pretrained('''google/umt5-base''' ) def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str=None , __UpperCamelCase : Dict=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Any=None , __UpperCamelCase : str=None , ) -> int: if attention_mask is None: _UpperCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _UpperCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _UpperCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_A ) if decoder_head_mask is None: _UpperCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_A ) if cross_attn_head_mask is None: _UpperCamelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_A ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCamelCase ( self : Dict ) -> int: _UpperCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCamelCase = input_ids.clamp(self.pad_token_id + 1 ) _UpperCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _UpperCamelCase = self.get_config() _UpperCamelCase = config.num_attention_heads _UpperCamelCase = self.prepare_inputs_dict(_A , _A , _A ) return config, input_dict def _UpperCamelCase ( self : Optional[Any] ) -> List[str]: _UpperCamelCase , _UpperCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCamelCase ( self : int ) -> str: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCamelCase ( self : str , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , ) -> List[str]: _UpperCamelCase = UMTaModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model( input_ids=_A , decoder_input_ids=_A , attention_mask=_A , decoder_attention_mask=_A , ) _UpperCamelCase = model(input_ids=_A , decoder_input_ids=_A ) _UpperCamelCase = result.last_hidden_state _UpperCamelCase = result.past_key_values _UpperCamelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_A ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , ) -> List[Any]: _UpperCamelCase = UMTaModel(config=_A ).get_decoder().to(_A ).eval() # first forward pass _UpperCamelCase = model(_A , use_cache=_A ) _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A , use_cache=_A ) self.parent.assertTrue(len(_A ) == len(_A ) ) self.parent.assertTrue(len(_A ) == len(_A ) + 1 ) _UpperCamelCase , _UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCamelCase = model(_A )['''last_hidden_state'''] _UpperCamelCase = model(_A , past_key_values=_A )['''last_hidden_state'''] # select random slice _UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1E-3 ) ) def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , ) -> Tuple: _UpperCamelCase = UMTaModel(config=_A ).to(_A ).half().eval() _UpperCamelCase = model(**_A )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(_A ).any().item() ) @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase): snake_case__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) snake_case__ = (UMTaForConditionalGeneration,) if is_torch_available() else () snake_case__ = ( { '''conversational''': UMTaForConditionalGeneration, '''feature-extraction''': UMTaModel, '''summarization''': UMTaForConditionalGeneration, '''text2text-generation''': UMTaForConditionalGeneration, '''translation''': UMTaForConditionalGeneration, '''question-answering''': UMTaForQuestionAnswering, } if is_torch_available() else {} ) snake_case__ = True snake_case__ = False snake_case__ = False snake_case__ = True snake_case__ = True # The small UMT5 model needs higher percentages for CPU/MP tests snake_case__ = [0.8, 0.9] def _UpperCamelCase ( self : Optional[int] ) -> int: _UpperCamelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _UpperCamelCase ( self : Tuple ) -> Optional[Any]: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() _UpperCamelCase = UMTaModel(config_and_inputs[0] ).to(_A ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _A , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=_A , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _UpperCamelCase ( self : Any ) -> str: _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_A ) def _UpperCamelCase ( self : Optional[int] ) -> List[str]: _UpperCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _UpperCamelCase = self.model_tester.prepare_config_and_inputs() _UpperCamelCase = config_and_inputs[0] _UpperCamelCase = UMTaForConditionalGeneration(_A ).eval() model.to(_A ) _UpperCamelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=_A ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=_A ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=_A ), } for attn_name, (name, mask) in zip(_A , head_masking.items() ): _UpperCamelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _UpperCamelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=_A ) _UpperCamelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=_A , return_dict_in_generate=_A , **_A , ) # We check the state of decoder_attentions and cross_attentions just from the last step _UpperCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _UpperCamelCase ( self : List[str] ) -> Optional[int]: pass @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _UpperCamelCase ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=_A ).to(_A ) _UpperCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=_A , legacy=_A ) _UpperCamelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _UpperCamelCase = tokenizer(_A , return_tensors='''pt''' , padding=_A ).input_ids # fmt: off _UpperCamelCase = torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_A , _A ) _UpperCamelCase = model.generate(input_ids.to(_A ) ) _UpperCamelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _UpperCamelCase = tokenizer.batch_decode(_A ) self.assertEqual(_A , _A )
705
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def lowercase ( a__ : Union[str, Any] , a__ : str ) -> int: _UpperCamelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''encoder.deit.blocks.{i}.norm1.weight''', F'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm1.bias''', F'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.weight''', F'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.bias''', F'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.norm2.weight''', F'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm2.bias''', F'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.weight''', F'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.bias''', F'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc2.weight''', F'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.mlp.fc2.bias''', F'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowercase ( a__ : List[str] , a__ : List[Any] ) -> Optional[Any]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _UpperCamelCase = state_dict.pop(F'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) _UpperCamelCase = in_proj_weight[ : encoder_config.hidden_size, : ] _UpperCamelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _UpperCamelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowercase ( a__ : List[Any] , a__ : List[str] , a__ : Dict ) -> str: _UpperCamelCase = dct.pop(a__ ) _UpperCamelCase = val def lowercase ( a__ : List[Any] ) -> Union[str, Any]: if "handwritten" in checkpoint_url: _UpperCamelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _UpperCamelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' _UpperCamelCase = Image.open(requests.get(a__ , stream=a__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowercase ( a__ : Any , a__ : List[str] ) -> Tuple: _UpperCamelCase = ViTConfig(image_size=384 , qkv_bias=a__ ) _UpperCamelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _UpperCamelCase = 768 elif "large" in checkpoint_url: # use ViT-large encoder _UpperCamelCase = 1024 _UpperCamelCase = 4096 _UpperCamelCase = 24 _UpperCamelCase = 16 _UpperCamelCase = 1024 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _UpperCamelCase = False _UpperCamelCase = '''relu''' _UpperCamelCase = 1024 _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = False # load HuggingFace model _UpperCamelCase = ViTModel(a__ , add_pooling_layer=a__ ) _UpperCamelCase = TrOCRForCausalLM(a__ ) _UpperCamelCase = VisionEncoderDecoderModel(encoder=a__ , decoder=a__ ) model.eval() # load state_dict of original model, rename some keys _UpperCamelCase = torch.hub.load_state_dict_from_url(a__ , map_location='''cpu''' , check_hash=a__ )['''model'''] _UpperCamelCase = create_rename_keys(a__ , a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _UpperCamelCase = state_dict.pop(a__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: _UpperCamelCase = val else: _UpperCamelCase = val # load state dict model.load_state_dict(a__ ) # Check outputs on an image _UpperCamelCase = ViTImageProcessor(size=encoder_config.image_size ) _UpperCamelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) _UpperCamelCase = TrOCRProcessor(a__ , a__ ) _UpperCamelCase = processor(images=prepare_img(a__ ) , return_tensors='''pt''' ).pixel_values # verify logits _UpperCamelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _UpperCamelCase = model(pixel_values=a__ , decoder_input_ids=a__ ) _UpperCamelCase = outputs.logits _UpperCamelCase = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: _UpperCamelCase = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: _UpperCamelCase = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: _UpperCamelCase = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: _UpperCamelCase = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , a__ , atol=1e-3 ), "First elements of logits not as expected" Path(a__ ).mkdir(exist_ok=a__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) UpperCAmelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
342
0
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a_ ( a , unittest.TestCase ): A__ : List[str] = BioGptTokenizer A__ : Tuple = False def lowerCAmelCase( self : List[Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] snake_case : int = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) snake_case : Tuple = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] snake_case : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase__ ) ) def lowerCAmelCase( self : Optional[int] , UpperCAmelCase__ : Optional[int] ): """simple docstring""" snake_case : Tuple = '''lower newer''' snake_case : Union[str, Any] = '''lower newer''' return input_text, output_text def lowerCAmelCase( self : Tuple ): """simple docstring""" snake_case : List[str] = BioGptTokenizer(self.vocab_file , self.merges_file ) snake_case : Optional[Any] = '''lower''' snake_case : Union[str, Any] = ['''low''', '''er</w>'''] snake_case : Any = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) snake_case : List[Any] = tokens + ['''<unk>'''] snake_case : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) @slow def lowerCAmelCase( self : str ): """simple docstring""" snake_case : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase__ ) snake_case : Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase__ ) snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) snake_case : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
598
def a_ ( __magic_name__ = 1_000 ) -> int: """simple docstring""" snake_case , snake_case : Optional[Any] = 1, 1 snake_case : Optional[Any] = 2 while True: snake_case : Dict = 0 snake_case : List[Any] = fa + fa snake_case , snake_case : Dict = fa, f index += 1 for _ in str(__magic_name__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
598
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Dict = """unispeech""" def __init__( self , __lowercase=32 , __lowercase=768 , __lowercase=12 , __lowercase=12 , __lowercase=3_072 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.02 , __lowercase=1E-5 , __lowercase="group" , __lowercase="gelu" , __lowercase=(512, 512, 512, 512, 512, 512, 512) , __lowercase=(5, 2, 2, 2, 2, 2, 2) , __lowercase=(10, 3, 3, 3, 3, 2, 2) , __lowercase=False , __lowercase=128 , __lowercase=16 , __lowercase=False , __lowercase=True , __lowercase=0.05 , __lowercase=10 , __lowercase=2 , __lowercase=0.0 , __lowercase=10 , __lowercase=0 , __lowercase=320 , __lowercase=2 , __lowercase=0.1 , __lowercase=100 , __lowercase=256 , __lowercase=256 , __lowercase=0.1 , __lowercase="mean" , __lowercase=False , __lowercase=False , __lowercase=256 , __lowercase=80 , __lowercase=0 , __lowercase=1 , __lowercase=2 , __lowercase=0.5 , **__lowercase , ) -> Optional[int]: super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase) __UpperCamelCase :str = hidden_size __UpperCamelCase :List[str] = feat_extract_norm __UpperCamelCase :str = feat_extract_activation __UpperCamelCase :str = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :Any = conv_bias __UpperCamelCase :List[Any] = num_conv_pos_embeddings __UpperCamelCase :Tuple = num_conv_pos_embedding_groups __UpperCamelCase :Optional[int] = len(self.conv_dim) __UpperCamelCase :Optional[int] = num_hidden_layers __UpperCamelCase :Union[str, Any] = intermediate_size __UpperCamelCase :Tuple = hidden_act __UpperCamelCase :Optional[int] = num_attention_heads __UpperCamelCase :Any = hidden_dropout __UpperCamelCase :List[str] = attention_dropout __UpperCamelCase :int = activation_dropout __UpperCamelCase :int = feat_proj_dropout __UpperCamelCase :Any = final_dropout __UpperCamelCase :Optional[Any] = layerdrop __UpperCamelCase :Any = layer_norm_eps __UpperCamelCase :List[str] = initializer_range __UpperCamelCase :Tuple = num_ctc_classes __UpperCamelCase :Union[str, Any] = vocab_size __UpperCamelCase :List[Any] = do_stable_layer_norm __UpperCamelCase :Dict = use_weighted_layer_sum __UpperCamelCase :str = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase :List[Any] = apply_spec_augment __UpperCamelCase :Optional[int] = mask_time_prob __UpperCamelCase :int = mask_time_length __UpperCamelCase :Any = mask_time_min_masks __UpperCamelCase :Any = mask_feature_prob __UpperCamelCase :str = mask_feature_length __UpperCamelCase :Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCamelCase :Optional[Any] = num_codevectors_per_group __UpperCamelCase :Dict = num_codevector_groups __UpperCamelCase :Optional[int] = contrastive_logits_temperature __UpperCamelCase :Union[str, Any] = feat_quantizer_dropout __UpperCamelCase :List[str] = num_negatives __UpperCamelCase :Union[str, Any] = codevector_dim __UpperCamelCase :int = proj_codevector_dim __UpperCamelCase :Tuple = diversity_loss_weight # ctc loss __UpperCamelCase :List[Any] = ctc_loss_reduction __UpperCamelCase :int = ctc_zero_infinity # pretraining loss __UpperCamelCase :Optional[Any] = replace_prob @property def UpperCamelCase__ ( self) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1)
452
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowercase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowercase = cvtColor(img, COLOR_BGR2GRAY) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Optional[Any] = cn.convert_to_negative(SCREAMING_SNAKE_CASE ) # assert negative_img array for at least one True assert negative_img.any() def lowerCamelCase ( ): '''simple docstring''' with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE , 110 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :List[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :List[str] = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 ) # assert ambiguous array for all == True assert canny_img.all() __UpperCamelCase :str = canny.canny(SCREAMING_SNAKE_CASE ) # assert canny array for at least one True assert canny_array.any() def lowerCamelCase ( ): '''simple docstring''' assert gg.gaussian_filter(SCREAMING_SNAKE_CASE , 5 , sigma=0.9 ).all() def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :List[str] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __UpperCamelCase :Optional[Any] = conv.img_convolve(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).astype(SCREAMING_SNAKE_CASE ) assert res.any() def lowerCamelCase ( ): '''simple docstring''' assert med.median_filter(SCREAMING_SNAKE_CASE , 3 ).any() def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase :Dict = sob.sobel_filter(SCREAMING_SNAKE_CASE ) assert grad.any() and theta.any() def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Dict = sp.make_sepia(SCREAMING_SNAKE_CASE , 20 ) assert sepia.all() def lowerCamelCase ( SCREAMING_SNAKE_CASE = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' __UpperCamelCase :Dict = bs.Burkes(imread(SCREAMING_SNAKE_CASE , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCamelCase ( SCREAMING_SNAKE_CASE = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' __UpperCamelCase :List[str] = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. __UpperCamelCase :Optional[int] = imread(SCREAMING_SNAKE_CASE , 0 ) # Test for get_neighbors_pixel function() return not None __UpperCamelCase :Optional[int] = 0 __UpperCamelCase :List[Any] = 0 __UpperCamelCase :Dict = image[x_coordinate][y_coordinate] __UpperCamelCase :int = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __UpperCamelCase :Tuple = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __UpperCamelCase :Optional[int] = lbp.local_binary_value(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert lbp_image.any()
452
1
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCAmelCase_ : Any = threading.Lock() UpperCAmelCase_ : Optional[logging.Handler] = None UpperCAmelCase_ : str = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } UpperCAmelCase_ : int = logging.WARNING UpperCAmelCase_ : Optional[Any] = True def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[int] = os.getenv("TRANSFORMERS_VERBOSITY" , _lowerCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ' F'has to be one of: { ", ".join(log_levels.keys() ) }' ) return _default_log_level def A_ ( ): """simple docstring""" return __name__.split("." )[0] def A_ ( ): """simple docstring""" return logging.getLogger(_get_library_name() ) def A_ ( ): """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _lowerCamelCase : int = logging.StreamHandler() # Set sys.stderr as stream. _lowerCamelCase : Tuple = sys.stderr.flush # Apply our default configuration to the library root logger. _lowerCamelCase : Optional[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _lowerCamelCase : Dict = False def A_ ( ): """simple docstring""" global _default_handler with _lock: if not _default_handler: return _lowerCamelCase : Dict = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _lowerCamelCase : int = None def A_ ( ): """simple docstring""" return log_levels def A_ ( _lowerCAmelCase : Optional[str] = None ): """simple docstring""" if name is None: _lowerCamelCase : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def A_ ( _lowerCAmelCase : int ): """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" return set_verbosity(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def A_ ( ): """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def A_ ( _lowerCAmelCase : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : logging.Handler ): """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _configure_library_root_logger() _lowerCamelCase : str = False def A_ ( ): """simple docstring""" _configure_library_root_logger() _lowerCamelCase : int = True def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = _get_library_root_logger().handlers for handler in handlers: _lowerCamelCase : str = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _lowerCamelCase : Dict = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_lowerCAmelCase ) def A_ ( self : Optional[Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Union[str, Any] = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , _lowerCAmelCase ) if no_advisory_warnings: return self.warning(*_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ : int = warning_advice @functools.lru_cache(_lowerCAmelCase ) def A_ ( self : int , *_lowerCAmelCase : str , **_lowerCAmelCase : Tuple ): """simple docstring""" self.warning(*_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ : Dict = warning_once class UpperCAmelCase__ : def __init__( self : Any,*__A : str,**__A : Tuple ): # pylint: disable=unused-argument _lowerCamelCase : Any = args[0] if args else None def __iter__( self : List[Any] ): return iter(self._iterator ) def __getattr__( self : Any,__A : int ): def empty_fn(*__A : int,**__A : str ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Optional[int] ): return self def __exit__( self : List[Any],__A : List[str],__A : List[str],__A : List[str] ): return class UpperCAmelCase__ : def __call__( self : List[Any],*__A : Dict,**__A : List[str] ): if _tqdm_active: return tqdm_lib.tqdm(*__A,**__A ) else: return EmptyTqdm(*__A,**__A ) def lowerCamelCase_ ( self : Any,*__A : Tuple,**__A : List[Any] ): _lowerCamelCase : str = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__A,**__A ) def lowerCamelCase_ ( self : Any ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase_ : str = _tqdm_cls() def A_ ( ): """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def A_ ( ): """simple docstring""" global _tqdm_active _lowerCamelCase : Any = True hf_hub_utils.enable_progress_bars() def A_ ( ): """simple docstring""" global _tqdm_active _lowerCamelCase : Any = False hf_hub_utils.disable_progress_bars()
44
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCamelCase = (3, 9, -11, 0, 7, 5, 1, -1) UpperCamelCase = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _lowerCamelCase : """simple docstring""" snake_case = 42 snake_case = 42 class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE )->None: '''simple docstring''' A_ : Node | None = None for i in sorted(_SCREAMING_SNAKE_CASE , reverse=_SCREAMING_SNAKE_CASE ): A_ : Dict = Node(_SCREAMING_SNAKE_CASE , self.head ) def __iter__( self )->Iterator[int]: '''simple docstring''' A_ : str = self.head while node: yield node.data A_ : Tuple = node.next_node def __len__( self )->int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self )->str: '''simple docstring''' return " -> ".join([str(_SCREAMING_SNAKE_CASE ) for node in self] ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return SortedLinkedList(list(SCREAMING_SNAKE_CASE ) + list(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
590
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): snake_case = """pt""" elif is_tf_available(): snake_case = """tf""" else: snake_case = """jax""" class lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): A_ : Dict = ByTaTokenizer A_ : Any = False def _A ( self : Tuple ): '''simple docstring''' super().setUp() lowerCAmelCase__ : int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _A ( self : List[str] ): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def _A ( self : Union[str, Any] , **a__ : Optional[int] ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **a__ ) def _A ( self : str , a__ : Any , a__ : Optional[int]=False , a__ : str=20 , a__ : Union[str, Any]=5 ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = [] for i in range(len(a__ ) ): try: lowerCAmelCase__ : str = tokenizer.decode([i] , clean_up_tokenization_spaces=a__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCAmelCase__ : Tuple = list(filter(lambda a__ : re.match(r"^[ a-zA-Z]+$" , t[1] ) , a__ ) ) lowerCAmelCase__ : int = list(filter(lambda a__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=a__ ) , a__ ) ) if max_length is not None and len(a__ ) > max_length: lowerCAmelCase__ : Any = toks[:max_length] if min_length is not None and len(a__ ) < min_length and len(a__ ) > 0: while len(a__ ) < min_length: lowerCAmelCase__ : Tuple = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase__ : int = [t[0] for t in toks] # Ensure consistency lowerCAmelCase__ : str = tokenizer.decode(a__ , clean_up_tokenization_spaces=a__ ) if " " not in output_txt and len(a__ ) > 1: lowerCAmelCase__ : Dict = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a__ ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a__ ) ) if with_prefix_space: lowerCAmelCase__ : Dict = " " + output_txt lowerCAmelCase__ : Any = tokenizer.encode(a__ , add_special_tokens=a__ ) return output_txt, output_ids def _A ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : str = self.ta_base_tokenizer lowerCAmelCase__ : List[Any] = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowerCAmelCase__ : int = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"] , batch_without_eos_added["input_ids"] ) def _A ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.ta_base_tokenizer lowerCAmelCase__ : List[str] = "Unicode €." lowerCAmelCase__ : Optional[int] = tokenizer(a__ ) lowerCAmelCase__ : List[str] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"] , a__ ) # decoding lowerCAmelCase__ : Any = tokenizer.decode(a__ ) self.assertEqual(a__ , "Unicode €.</s>" ) lowerCAmelCase__ : Tuple = tokenizer("e è é ê ë" ) lowerCAmelCase__ : List[str] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"] , a__ ) # decoding lowerCAmelCase__ : Optional[int] = tokenizer.decode(a__ ) self.assertEqual(a__ , "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "e è é ê ë</s>" ) def _A ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.ta_base_tokenizer lowerCAmelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowerCAmelCase__ : int = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowerCAmelCase__ : Tuple = tokenizer(a__ , padding=a__ , return_tensors=a__ ) self.assertIsInstance(a__ , a__ ) if FRAMEWORK != "jax": lowerCAmelCase__ : Dict = list(batch.input_ids.numpy()[0] ) else: lowerCAmelCase__ : int = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a__ , a__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _A ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.ta_base_tokenizer lowerCAmelCase__ : Optional[Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCAmelCase__ : Dict = tokenizer(a__ , padding=a__ , return_tensors=a__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , a__ ) self.assertIn("attention_mask" , a__ ) self.assertNotIn("decoder_input_ids" , a__ ) self.assertNotIn("decoder_attention_mask" , a__ ) def _A ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.ta_base_tokenizer lowerCAmelCase__ : Optional[int] = [ "Summary of the text.", "Another summary.", ] lowerCAmelCase__ : str = tokenizer( text_target=a__ , max_length=32 , padding="max_length" , truncation=a__ , return_tensors=a__ ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _A ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.ta_base_tokenizer lowerCAmelCase__ : List[Any] = ["A long paragraph for summarization. </s>"] lowerCAmelCase__ : Tuple = ["Summary of the text. </s>"] # fmt: off lowerCAmelCase__ : Union[str, Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowerCAmelCase__ : Optional[int] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowerCAmelCase__ : List[Any] = tokenizer(a__ , text_target=a__ ) self.assertEqual(a__ , batch["input_ids"][0] ) self.assertEqual(a__ , batch["labels"][0] ) def _A ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCAmelCase__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() lowerCAmelCase__ : int = " He is very happy, UNwant\u00E9d,running" lowerCAmelCase__ : List[Any] = tokenizer.encode(a__ , add_special_tokens=a__ ) tokenizer.save_pretrained(a__ ) lowerCAmelCase__ : Tuple = tokenizer.__class__.from_pretrained(a__ ) lowerCAmelCase__ : Tuple = after_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) shutil.rmtree(a__ ) lowerCAmelCase__ : Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase__ : Tuple = tempfile.mkdtemp() lowerCAmelCase__ : Any = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowerCAmelCase__ : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowerCAmelCase__ : str = tokenizer.encode(a__ , add_special_tokens=a__ ) tokenizer.save_pretrained(a__ ) lowerCAmelCase__ : Optional[int] = tokenizer.__class__.from_pretrained(a__ ) lowerCAmelCase__ : Any = after_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCAmelCase__ : str = tokenizer.__class__.from_pretrained(a__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(a__ ) def _A ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Any = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a__ ) with open(os.path.join(a__ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: lowerCAmelCase__ : Any = json.load(a__ ) with open(os.path.join(a__ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: lowerCAmelCase__ : Optional[Any] = json.load(a__ ) lowerCAmelCase__ : List[Any] = [F'''<extra_id_{i}>''' for i in range(125 )] lowerCAmelCase__ : Any = added_tokens_extra_ids + [ "an_additional_special_token" ] lowerCAmelCase__ : Dict = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(a__ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a__ , a__ ) with open(os.path.join(a__ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a__ , a__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase__ : str = tokenizer_class.from_pretrained( a__ , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase__ : Union[str, Any] = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=a__ )] lowerCAmelCase__ : Optional[int] = tokenizer_class.from_pretrained( a__ , additional_special_tokens=a__ , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def _A ( self : Any ): '''simple docstring''' lowerCAmelCase__ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a__ ) lowerCAmelCase__ : Optional[int] = tokenizer_class.from_pretrained(a__ ) self.assertTrue(tokenizer.decode([255] ) == "" ) def _A ( self : Optional[int] ): '''simple docstring''' pass def _A ( self : Optional[Any] ): '''simple docstring''' pass def _A ( self : Tuple ): '''simple docstring''' pass def _A ( self : Optional[Any] ): '''simple docstring''' pass def _A ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Any = self.get_tokenizers(fast=a__ , do_lower_case=a__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase__ : Optional[int] = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowerCAmelCase__ : str = tokenizer.convert_tokens_to_string(a__ ) self.assertIsInstance(a__ , a__ ) def _A ( self : int ): '''simple docstring''' lowerCAmelCase__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase__ : int = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : int = tokenizer.convert_ids_to_tokens( a__ , skip_special_tokens=a__ ) for attr in attributes_list: setattr(a__ , attr + "_id" , a__ ) self.assertEqual(getattr(a__ , a__ ) , a__ ) self.assertEqual(getattr(a__ , attr + "_id" ) , a__ ) setattr(a__ , attr + "_id" , a__ ) self.assertEqual(getattr(a__ , a__ ) , a__ ) self.assertEqual(getattr(a__ , attr + "_id" ) , a__ ) setattr(a__ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(a__ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(a__ , "additional_special_tokens_ids" ) , [] ) setattr(a__ , "additional_special_tokens_ids" , [token_id_to_test_setters] ) self.assertListEqual(getattr(a__ , "additional_special_tokens" ) , [token_to_test_setters] ) self.assertListEqual(getattr(a__ , "additional_special_tokens_ids" ) , [token_id_to_test_setters] )
721
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): A_ : Union[str, Any] = OpenAIGPTTokenizer A_ : Optional[int] = OpenAIGPTTokenizerFast A_ : Optional[int] = True A_ : Any = False def _A ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase__ : int = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] lowerCAmelCase__ : List[Any] = dict(zip(a__ , range(len(a__ ) ) ) ) lowerCAmelCase__ : Tuple = ["#version: 0.2", "l o", "lo w", "e r</w>", ""] lowerCAmelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(a__ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(a__ ) ) def _A ( self : Union[str, Any] , a__ : str ): '''simple docstring''' return "lower newer", "lower newer" def _A ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase__ : Union[str, Any] = "lower" lowerCAmelCase__ : List[Any] = ["low", "er</w>"] lowerCAmelCase__ : Dict = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) lowerCAmelCase__ : Tuple = tokens + ["<unk>"] lowerCAmelCase__ : Tuple = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def _A ( self : Union[str, Any] , a__ : List[str]=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input lowerCAmelCase__ : Tuple = "This is a simple input" lowerCAmelCase__ : Tuple = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase__ : int = ("This is a simple input", "This is a pair") lowerCAmelCase__ : Union[str, Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="max_length" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="max_length" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="max_length" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="max_length" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="max_length" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="max_length" , ) def _A ( self : Any ): '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class lowerCAmelCase ( UpperCamelCase_ ): pass
568
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class A( UpperCamelCase ): '''simple docstring''' def __init__( self : List[Any] , A_ : List[Any] , A_ : Any ) -> List[str]: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self : List[Any] , A_ : int = 1 , A_ : int = 100 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : Optional[float] = None , A_ : bool = True , ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if audio_length_in_s is None: lowerCamelCase_ = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase_ = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase_ = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) lowerCamelCase_ = int(A_ ) if sample_size % down_scale_factor != 0: lowerCamelCase_ = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ' process.' ) lowerCamelCase_ = int(A_ ) lowerCamelCase_ = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase_ = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(A_ , A_ ) and len(A_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(A_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) lowerCamelCase_ = randn_tensor(A_ , generator=A_ , device=self.device , dtype=A_ ) # set step values self.scheduler.set_timesteps(A_ , device=audio.device ) lowerCamelCase_ = self.scheduler.timesteps.to(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase_ = self.unet(A_ , A_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase_ = self.scheduler.step(A_ , A_ , A_ ).prev_sample lowerCamelCase_ = audio.clamp(-1 , 1 ).float().cpu().numpy() lowerCamelCase_ = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=A_ )
70
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : List[Any] = Dict[str, Any] lowerCamelCase : Dict = List[Prediction] @add_end_docstrings(UpperCamelCase ) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Tuple , *A_ : int , **A_ : int ) -> Optional[int]: """simple docstring""" super().__init__(*A_ , **A_ ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def a__ ( self : Union[str, Any] , **A_ : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = {} if "threshold" in kwargs: lowerCamelCase_ = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self : str , *A_ : Optional[int] , **A_ : Tuple ) -> Union[Predictions, List[Prediction]]: """simple docstring""" return super().__call__(*A_ , **A_ ) def a__ ( self : Union[str, Any] , A_ : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = load_image(A_ ) lowerCamelCase_ = torch.IntTensor([[image.height, image.width]] ) lowerCamelCase_ = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: lowerCamelCase_ = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) lowerCamelCase_ = target_size return inputs def a__ ( self : Union[str, Any] , A_ : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = model_inputs.pop('target_size' ) lowerCamelCase_ = self.model(**A_ ) lowerCamelCase_ = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: lowerCamelCase_ = model_inputs['bbox'] return model_outputs def a__ ( self : str , A_ : Any , A_ : Tuple=0.9 ) -> str: """simple docstring""" lowerCamelCase_ = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowerCamelCase_ , lowerCamelCase_ = target_size[0].tolist() def unnormalize(A_ : Dict ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) lowerCamelCase_ , lowerCamelCase_ = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) lowerCamelCase_ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowerCamelCase_ = [unnormalize(A_ ) for bbox in model_outputs['bbox'].squeeze(0 )] lowerCamelCase_ = ['score', 'label', 'box'] lowerCamelCase_ = [dict(zip(A_ , A_ ) ) for vals in zip(scores.tolist() , A_ , A_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowerCamelCase_ = self.image_processor.post_process_object_detection(A_ , A_ , A_ ) lowerCamelCase_ = raw_annotations[0] lowerCamelCase_ = raw_annotation['scores'] lowerCamelCase_ = raw_annotation['labels'] lowerCamelCase_ = raw_annotation['boxes'] lowerCamelCase_ = scores.tolist() lowerCamelCase_ = [self.model.config.idalabel[label.item()] for label in labels] lowerCamelCase_ = [self._get_bounding_box(A_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowerCamelCase_ = ['score', 'label', 'box'] lowerCamelCase_ = [ dict(zip(A_ , A_ ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def a__ ( self : Union[str, Any] , A_ : "torch.Tensor" ) -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = box.int().tolist() lowerCamelCase_ = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
70
1
"""simple docstring""" def a__ ( __lowercase ) -> list: if any(not isinstance(__lowercase , __lowercase ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__lowercase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__lowercase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
621
"""simple docstring""" import numpy as np def a__ ( __lowercase , __lowercase ) -> np.ndarray: return np.where(vector > 0 , __lowercase , (alpha * (np.exp(__lowercase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
621
1
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class lowerCamelCase__ ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , ): """simple docstring""" snake_case : Union[str, Any] = parent snake_case : Any = batch_size snake_case : Union[str, Any] = image_size snake_case : Optional[Any] = patch_size snake_case : Tuple = num_channels snake_case : Dict = is_training snake_case : List[str] = use_labels snake_case : Optional[int] = hidden_size snake_case : Any = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Optional[Any] = intermediate_size snake_case : Optional[int] = hidden_act snake_case : List[Any] = hidden_dropout_prob snake_case : Union[str, Any] = attention_probs_dropout_prob snake_case : str = type_sequence_label_size snake_case : Any = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case : List[str] = (image_size // patch_size) ** 2 snake_case : Optional[Any] = num_patches + 1 def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Dict = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowercase , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : List[str] = FlaxViTModel(config=__lowercase ) snake_case : int = model(__lowercase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) snake_case : Dict = (self.image_size, self.image_size) snake_case : int = (self.patch_size, self.patch_size) snake_case : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[int] = self.type_sequence_label_size snake_case : Dict = FlaxViTForImageClassification(config=__lowercase ) snake_case : Tuple = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case : Dict = 1 snake_case : Any = FlaxViTForImageClassification(__lowercase ) snake_case : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case : Dict = model(__lowercase ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = self.prepare_config_and_inputs() ( snake_case ) : int = config_and_inputs snake_case : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class lowerCamelCase__ ( __UpperCAmelCase , unittest.TestCase ): a__ : List[str] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = FlaxViTModelTester(self ) snake_case : str = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def lowerCamelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = model_class(__lowercase ) snake_case : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : List[Any] = [*signature.parameters.keys()] snake_case : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case : Tuple = self._prepare_for_class(__lowercase , __lowercase ) snake_case : Optional[Any] = model_class(__lowercase ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): return model(pixel_values=__lowercase , **__lowercase ) with self.subTest("JIT Enabled" ): snake_case : Optional[int] = model_jitted(**__lowercase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): snake_case : Union[str, Any] = model_jitted(**__lowercase ).to_tuple() self.assertEqual(len(__lowercase ) , len(__lowercase ) ) for jitted_output, output in zip(__lowercase , __lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: snake_case : Dict = model_class_name.from_pretrained("google/vit-base-patch16-224" ) snake_case : Optional[int] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__lowercase )
134
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowercase__ :Union[str, Any] = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') lowercase__ :List[Any] = parser.parse_args() lowercase__ :Tuple = 'cpu' lowercase__ :Any = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' lowercase__ :Optional[int] = 'path-to-your-trained-model' lowercase__ :Union[str, Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowercase__ :Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowercase__ :List[str] = pipe.to(device) # to channels last lowercase__ :List[Any] = pipe.unet.to(memory_format=torch.channels_last) lowercase__ :Dict = pipe.vae.to(memory_format=torch.channels_last) lowercase__ :str = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowercase__ :Tuple = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowercase__ :Optional[int] = torch.randn(2, 4, 6_4, 6_4) lowercase__ :str = torch.rand(1) * 9_9_9 lowercase__ :Optional[int] = torch.randn(2, 7_7, 7_6_8) lowercase__ :str = (sample, timestep, encoder_hidden_status) try: lowercase__ :Dict = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowercase__ :Optional[int] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowercase__ :Optional[int] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowercase__ :Any = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowercase__ :Tuple = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowercase__ :Any = 6_6_6 lowercase__ :Tuple = torch.Generator(device).manual_seed(seed) lowercase__ :Tuple = {'generator': generator} if args.steps is not None: lowercase__ :List[str] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowercase__ :List[Any] = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
522
0
'''simple docstring''' def lowercase_ ( _lowercase ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ : Optional[int] = 0 while len(_UpperCAmelCase ) > 1: lowerCamelCase_ : Tuple = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): lowerCamelCase_ : Union[str, Any] = files.index(min(_UpperCAmelCase ) ) temp += files[min_index] files.pop(_UpperCAmelCase ) files.append(_UpperCAmelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : str = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : str = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __lowercase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
0
import warnings from .generation import TFGenerationMixin class lowercase_ ( _UpperCAmelCase ): # warning at import time warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , _UpperCAmelCase , )
443
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) a_ = logging.getLogger(__name__) a_ = {'''facebook/bart-base''': BartForConditionalGeneration} a_ = {'''facebook/bart-base''': BartTokenizer} def _a ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=UpperCamelCase_ , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=UpperCamelCase_ , default=UpperCamelCase_ , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=UpperCamelCase_ , help="Path to pretrained model or model identifier from huggingface.co/models." , required=UpperCamelCase_ , ) parser.add_argument( "--config_name" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=UpperCamelCase_ , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="Where to store the final ONNX file." ) lowerCAmelCase__ = parser.parse_args() return args def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str="cpu" ) -> Tuple: """simple docstring""" lowerCAmelCase__ = model_dict[model_name].from_pretrained(UpperCamelCase_ ).to(UpperCamelCase_ ) lowerCAmelCase__ = tokenizer_dict[model_name].from_pretrained(UpperCamelCase_ ) if model_name in ["facebook/bart-base"]: lowerCAmelCase__ = 0 lowerCAmelCase__ = None lowerCAmelCase__ = 0 return huggingface_model, tokenizer def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : Tuple ) -> Union[str, Any]: """simple docstring""" model.eval() lowerCAmelCase__ = None lowerCAmelCase__ = torch.jit.script(BARTBeamSearchGenerator(UpperCamelCase_ ) ) with torch.no_grad(): lowerCAmelCase__ = "My friends are cool but they eat too many carbs." lowerCAmelCase__ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors="pt" ).to(model.device ) lowerCAmelCase__ = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=UpperCamelCase_ , max_length=UpperCamelCase_ , early_stopping=UpperCamelCase_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( UpperCamelCase_ , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , UpperCamelCase_ , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=UpperCamelCase_ , ) logger.info("Model exported to {}".format(UpperCamelCase_ ) ) lowerCAmelCase__ = remove_dup_initializers(os.path.abspath(UpperCamelCase_ ) ) logger.info("Deduplicated and optimized model written to {}".format(UpperCamelCase_ ) ) lowerCAmelCase__ = onnxruntime.InferenceSession(UpperCamelCase_ ) lowerCAmelCase__ = ort_sess.run( UpperCamelCase_ , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(UpperCamelCase_ ), "max_length": np.array(UpperCamelCase_ ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def _a ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = parse_args() lowerCAmelCase__ = 5 lowerCAmelCase__ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() lowerCAmelCase__ = torch.device(args.device ) lowerCAmelCase__ , lowerCAmelCase__ = load_model_tokenizer(args.model_name_or_path , UpperCamelCase_ ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(UpperCamelCase_ ) if args.max_length: lowerCAmelCase__ = args.max_length if args.num_beams: lowerCAmelCase__ = args.num_beams if args.output_file_path: lowerCAmelCase__ = args.output_file_path else: lowerCAmelCase__ = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
339
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""", # See all DPT models at https://huggingface.co/models?filter=dpt } class A__ ( __lowerCAmelCase ): lowerCAmelCase__ : Tuple = '''dpt''' def __init__( self : str , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : str=30_72 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Union[str, Any]=1e-1_2 , _UpperCAmelCase : Dict=3_84 , _UpperCAmelCase : Dict=16 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple=[2, 5, 8, 11] , _UpperCAmelCase : Optional[int]="project" , _UpperCAmelCase : Optional[Any]=[4, 2, 1, 0.5] , _UpperCAmelCase : List[str]=[96, 1_92, 3_84, 7_68] , _UpperCAmelCase : Any=2_56 , _UpperCAmelCase : Union[str, Any]=-1 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]=0.4 , _UpperCAmelCase : Union[str, Any]=2_55 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=[1, 10_24, 24, 24] , _UpperCAmelCase : List[str]=[0, 1] , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[str] , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase_ ) __lowercase = hidden_size __lowercase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) __lowercase = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } __lowercase = BitConfig(**lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): logger.info('Initializing the config with a `BiT` backbone.' ) __lowercase = BitConfig(**lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase = backbone_config else: raise ValueError( f"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) __lowercase = backbone_featmap_shape __lowercase = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: __lowercase = None __lowercase = None __lowercase = [] __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) __lowercase = readout_type __lowercase = reassemble_factors __lowercase = neck_hidden_sizes __lowercase = fusion_hidden_size __lowercase = head_in_index __lowercase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __lowercase = use_auxiliary_head __lowercase = auxiliary_loss_weight __lowercase = semantic_loss_ignore_index __lowercase = semantic_classifier_dropout def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
717
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['words'] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def a__ ( self : str ) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) snake_case_ = "CIDAS/clipseg-rd64-refined" snake_case_ = "image_segmenter" snake_case_ = CLIPSegForImageSegmentation snake_case_ = ["image", "text"] snake_case_ = ["image"] def __init__( self : List[Any] ,*A : List[Any] ,**A : Dict ): requires_backends(self ,["vision"] ) super().__init__(*A ,**A ) def UpperCamelCase_ ( self : int ,A : "Image" ,A : str ): return self.pre_processor(text=[label] ,images=[image] ,padding=A ,return_tensors="pt" ) def UpperCamelCase_ ( self : str ,A : List[Any] ): with torch.no_grad(): __A = self.model(**A ).logits return logits def UpperCamelCase_ ( self : List[str] ,A : str ): __A = outputs.cpu().detach().numpy() __A = 0 __A = 1 return Image.fromarray((array * 2_55).astype(np.uinta ) )
55
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case = """data2vec-audio""" def __init__( self , UpperCAmelCase_=32 , UpperCAmelCase_=7_68 , UpperCAmelCase_=12 , UpperCAmelCase_=12 , UpperCAmelCase_=30_72 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.02 , UpperCAmelCase_=1e-5 , UpperCAmelCase_="gelu" , UpperCAmelCase_=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , UpperCAmelCase_=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_=False , UpperCAmelCase_=16 , UpperCAmelCase_=19 , UpperCAmelCase_=5 , UpperCAmelCase_=0.05 , UpperCAmelCase_=10 , UpperCAmelCase_=2 , UpperCAmelCase_=0.0 , UpperCAmelCase_=10 , UpperCAmelCase_=0 , UpperCAmelCase_="sum" , UpperCAmelCase_=False , UpperCAmelCase_=False , UpperCAmelCase_=2_56 , UpperCAmelCase_=(5_12, 5_12, 5_12, 5_12, 15_00) , UpperCAmelCase_=(5, 3, 3, 1, 1) , UpperCAmelCase_=(1, 2, 3, 1, 1) , UpperCAmelCase_=5_12 , UpperCAmelCase_=0 , UpperCAmelCase_=1 , UpperCAmelCase_=2 , UpperCAmelCase_=False , UpperCAmelCase_=3 , UpperCAmelCase_=2 , UpperCAmelCase_=3 , UpperCAmelCase_=None , **UpperCAmelCase_ , ): super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) snake_case_ = hidden_size snake_case_ = feat_extract_activation snake_case_ = list(UpperCAmelCase_ ) snake_case_ = list(UpperCAmelCase_ ) snake_case_ = list(UpperCAmelCase_ ) snake_case_ = conv_bias snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = conv_pos_kernel_size snake_case_ = len(self.conv_dim ) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = vocab_size snake_case_ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length snake_case_ = mask_feature_min_masks # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # adapter snake_case_ = add_adapter snake_case_ = adapter_kernel_size snake_case_ = adapter_stride snake_case_ = num_adapter_layers snake_case_ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case_ = list(UpperCAmelCase_ ) snake_case_ = list(UpperCAmelCase_ ) snake_case_ = list(UpperCAmelCase_ ) snake_case_ = xvector_output_dim @property def _lowercase ( self ): return math.prod(self.conv_stride )
508
0
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _A () -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) SCREAMING_SNAKE_CASE_ : List[str] = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(__a ) DownloadCommand.register_subcommand(__a ) EnvironmentCommand.register_subcommand(__a ) RunCommand.register_subcommand(__a ) ServeCommand.register_subcommand(__a ) UserCommands.register_subcommand(__a ) AddNewModelCommand.register_subcommand(__a ) AddNewModelLikeCommand.register_subcommand(__a ) LfsCommands.register_subcommand(__a ) PTtoTFCommand.register_subcommand(__a ) # Let's go SCREAMING_SNAKE_CASE_ : Union[str, Any] = parser.parse_args() if not hasattr(__a , '''func''' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ : Union[str, Any] = args.func(__a ) service.run() if __name__ == "__main__": main()
176
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCAmelCase_ : Tuple = """pt""" elif is_tf_available(): UpperCAmelCase_ : Optional[Any] = """tf""" else: UpperCAmelCase_ : str = """jax""" class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ByTaTokenizer __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE_ : Dict = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return ByTaTokenizer.from_pretrained('''google/byt5-small''') def _SCREAMING_SNAKE_CASE ( self : List[Any] , **lowercase_ : Tuple): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : List[Any]=False , lowercase_ : Tuple=20 , lowercase_ : List[str]=5): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = [] for i in range(len(lowercase_)): try: SCREAMING_SNAKE_CASE_ : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase_) except UnicodeDecodeError: pass toks.append((i, tok)) SCREAMING_SNAKE_CASE_ : Dict = list(filter(lambda lowercase_: re.match(r'''^[ a-zA-Z]+$''' , t[1]) , lowercase_)) SCREAMING_SNAKE_CASE_ : Any = list(filter(lambda lowercase_: [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowercase_) , lowercase_)) if max_length is not None and len(lowercase_) > max_length: SCREAMING_SNAKE_CASE_ : List[Any] = toks[:max_length] if min_length is not None and len(lowercase_) < min_length and len(lowercase_) > 0: while len(lowercase_) < min_length: SCREAMING_SNAKE_CASE_ : int = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_) if " " not in output_txt and len(lowercase_) > 1: SCREAMING_SNAKE_CASE_ : Optional[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase_) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase_) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ : List[str] = ''' ''' + output_txt SCREAMING_SNAKE_CASE_ : Dict = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) return output_txt, output_ids def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>''']) SCREAMING_SNAKE_CASE_ : Any = tokenizer(['''hi''', '''I went to the gym''', '''''']) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids''']) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ : Any = '''Unicode €.''' SCREAMING_SNAKE_CASE_ : Any = tokenizer(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['''input_ids'''] , lowercase_) # decoding SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(lowercase_) self.assertEqual(lowercase_ , '''Unicode €.</s>''') SCREAMING_SNAKE_CASE_ : List[str] = tokenizer('''e è é ê ë''') SCREAMING_SNAKE_CASE_ : List[Any] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['''input_ids'''] , lowercase_) # decoding SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.decode(lowercase_) self.assertEqual(lowercase_ , '''e è é ê ë</s>''') # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''')) , '''e è é ê ë</s>''') def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off SCREAMING_SNAKE_CASE_ : Dict = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer(lowercase_ , padding=lowercase_ , return_tensors=lowercase_) self.assertIsInstance(lowercase_ , lowercase_) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(batch.input_ids.numpy()[0]) else: SCREAMING_SNAKE_CASE_ : int = list(batch.input_ids.tolist()[0]) self.assertListEqual(lowercase_ , lowercase_) self.assertEqual((2, 37) , batch.input_ids.shape) self.assertEqual((2, 37) , batch.attention_mask.shape) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ : Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] SCREAMING_SNAKE_CASE_ : Any = tokenizer(lowercase_ , padding=lowercase_ , return_tensors=lowercase_) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowercase_) self.assertIn('''attention_mask''' , lowercase_) self.assertNotIn('''decoder_input_ids''' , lowercase_) self.assertNotIn('''decoder_attention_mask''' , lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ : List[str] = [ '''Summary of the text.''', '''Another summary.''', ] SCREAMING_SNAKE_CASE_ : List[str] = tokenizer( text_target=lowercase_ , max_length=32 , padding='''max_length''' , truncation=lowercase_ , return_tensors=lowercase_) self.assertEqual(32 , targets['''input_ids'''].shape[1]) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['''A long paragraph for summarization. </s>'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = ['''Summary of the text. </s>'''] # fmt: off SCREAMING_SNAKE_CASE_ : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ : Tuple = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(lowercase_ , text_target=lowercase_) self.assertEqual(lowercase_ , batch['''input_ids'''][0]) self.assertEqual(lowercase_ , batch['''labels'''][0]) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): self.assertNotEqual(tokenizer.model_max_length , 42) # Now let's start the test SCREAMING_SNAKE_CASE_ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Optional[Any] = ''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) tokenizer.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Any = tokenizer.__class__.from_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = after_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) self.assertListEqual(lowercase_ , lowercase_) shutil.rmtree(lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ : List[str] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Any = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam''']) SCREAMING_SNAKE_CASE_ : str = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''') tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens}) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) tokenizer.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.__class__.from_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = after_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) self.assertListEqual(lowercase_ , lowercase_) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length , 42) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.__class__.from_pretrained(lowercase_ , model_max_length=43) self.assertEqual(tokenizer.model_max_length , 43) shutil.rmtree(lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase_) with open(os.path.join(lowercase_ , '''special_tokens_map.json''') , encoding='''utf-8''') as json_file: SCREAMING_SNAKE_CASE_ : List[Any] = json.load(lowercase_) with open(os.path.join(lowercase_ , '''tokenizer_config.json''') , encoding='''utf-8''') as json_file: SCREAMING_SNAKE_CASE_ : Tuple = json.load(lowercase_) SCREAMING_SNAKE_CASE_ : str = [F'<extra_id_{i}>' for i in range(125)] SCREAMING_SNAKE_CASE_ : Optional[int] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] SCREAMING_SNAKE_CASE_ : int = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowercase_ , '''special_tokens_map.json''') , '''w''' , encoding='''utf-8''') as outfile: json.dump(lowercase_ , lowercase_) with open(os.path.join(lowercase_ , '''tokenizer_config.json''') , '''w''' , encoding='''utf-8''') as outfile: json.dump(lowercase_ , lowercase_) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_class.from_pretrained( lowercase_ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''])) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ : Union[str, Any] = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowercase_)] SCREAMING_SNAKE_CASE_ : int = tokenizer_class.from_pretrained( lowercase_ , additional_special_tokens=lowercase_ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''])) , ) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : str = tokenizer_class.from_pretrained(lowercase_) self.assertTrue(tokenizer.decode([255]) == '''''') def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizers(fast=lowercase_ , do_lower_case=lowercase_) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): SCREAMING_SNAKE_CASE_ : Any = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.convert_tokens_to_string(lowercase_) self.assertIsInstance(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): SCREAMING_SNAKE_CASE_ : int = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : str = tokenizer.convert_ids_to_tokens( lowercase_ , skip_special_tokens=lowercase_) for attr in attributes_list: setattr(lowercase_ , attr + '''_id''' , lowercase_) self.assertEqual(getattr(lowercase_ , lowercase_) , lowercase_) self.assertEqual(getattr(lowercase_ , attr + '''_id''') , lowercase_) setattr(lowercase_ , attr + '''_id''' , lowercase_) self.assertEqual(getattr(lowercase_ , lowercase_) , lowercase_) self.assertEqual(getattr(lowercase_ , attr + '''_id''') , lowercase_) setattr(lowercase_ , '''additional_special_tokens_ids''' , []) self.assertListEqual(getattr(lowercase_ , '''additional_special_tokens''') , []) self.assertListEqual(getattr(lowercase_ , '''additional_special_tokens_ids''') , []) setattr(lowercase_ , '''additional_special_tokens_ids''' , [token_id_to_test_setters]) self.assertListEqual(getattr(lowercase_ , '''additional_special_tokens''') , [token_to_test_setters]) self.assertListEqual(getattr(lowercase_ , '''additional_special_tokens_ids''') , [token_id_to_test_setters])
176
1
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase_ = logging.getLogger(__name__) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = np.argmax(_UpperCamelCase , axis=1 ) return np.sum(outputs == labels ) def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" with open(_UpperCamelCase , encoding='''utf_8''' ) as f: snake_case_ : List[str] = csv.reader(_UpperCamelCase ) snake_case_ : Dict = [] next(_UpperCamelCase ) # skip the first line for line in tqdm(_UpperCamelCase ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : Dict = [] for dataset in encoded_datasets: snake_case_ : List[str] = len(_UpperCamelCase ) snake_case_ : Dict = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) snake_case_ : Optional[Any] = np.zeros((n_batch, 2) , dtype=np.intaa ) snake_case_ : List[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) snake_case_ : Dict = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_UpperCamelCase ): snake_case_ : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] snake_case_ : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] snake_case_ : List[Any] = with_conta snake_case_ : List[str] = with_conta snake_case_ : Optional[Any] = len(_UpperCamelCase ) - 1 snake_case_ : int = len(_UpperCamelCase ) - 1 snake_case_ : Optional[Any] = with_conta snake_case_ : Union[str, Any] = with_conta snake_case_ : Any = mc_label snake_case_ : List[str] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_UpperCamelCase ) for t in all_inputs ) ) return tensor_datasets def lowerCamelCase_ ( ) -> int: """simple docstring""" snake_case_ : str = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=_UpperCamelCase , default='''openai-gpt''' , help='''pretrained model name''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=_UpperCamelCase , default='''''' ) parser.add_argument('''--eval_dataset''' , type=_UpperCamelCase , default='''''' ) parser.add_argument('''--seed''' , type=_UpperCamelCase , default=42 ) parser.add_argument('''--num_train_epochs''' , type=_UpperCamelCase , default=3 ) parser.add_argument('''--train_batch_size''' , type=_UpperCamelCase , default=8 ) parser.add_argument('''--eval_batch_size''' , type=_UpperCamelCase , default=16 ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=_UpperCamelCase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , type=_UpperCamelCase , default=1 ) parser.add_argument( '''--max_steps''' , default=-1 , type=_UpperCamelCase , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=_UpperCamelCase , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=_UpperCamelCase , default=6.25E-5 ) parser.add_argument('''--warmup_steps''' , default=0 , type=_UpperCamelCase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' , type=_UpperCamelCase , default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' , type=_UpperCamelCase , default=0.01 ) parser.add_argument('''--lm_coef''' , type=_UpperCamelCase , default=0.9 ) parser.add_argument('''--n_valid''' , type=_UpperCamelCase , default=374 ) parser.add_argument('''--server_ip''' , type=_UpperCamelCase , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=_UpperCamelCase , default='''''' , help='''Can be used for distant debugging.''' ) snake_case_ : List[Any] = parser.parse_args() print(_UpperCamelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_UpperCamelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) snake_case_ : int = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case_ : str = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(_UpperCamelCase , _UpperCamelCase ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset snake_case_ : Dict = ['''_start_''', '''_delimiter_''', '''_classify_'''] snake_case_ : Any = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_UpperCamelCase ) snake_case_ : Tuple = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) snake_case_ : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_UpperCamelCase ) ) model.to(_UpperCamelCase ) # Load and encode the datasets def tokenize_and_encode(_UpperCamelCase ): if isinstance(_UpperCamelCase , _UpperCamelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_UpperCamelCase ) ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): return obj return [tokenize_and_encode(_UpperCamelCase ) for o in obj] logger.info('''Encoding dataset...''' ) snake_case_ : Tuple = load_rocstories_dataset(args.train_dataset ) snake_case_ : Dict = load_rocstories_dataset(args.eval_dataset ) snake_case_ : Optional[Any] = (train_dataset, eval_dataset) snake_case_ : Union[str, Any] = tokenize_and_encode(_UpperCamelCase ) # Compute the max input length for the Transformer snake_case_ : Dict = model.config.n_positions // 2 - 2 snake_case_ : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) snake_case_ : str = min(_UpperCamelCase , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders snake_case_ : int = pre_process_datasets(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ) snake_case_ , snake_case_ : str = tensor_datasets[0], tensor_datasets[1] snake_case_ : List[str] = TensorDataset(*_UpperCamelCase ) snake_case_ : int = RandomSampler(_UpperCamelCase ) snake_case_ : Union[str, Any] = DataLoader(_UpperCamelCase , sampler=_UpperCamelCase , batch_size=args.train_batch_size ) snake_case_ : Any = TensorDataset(*_UpperCamelCase ) snake_case_ : str = SequentialSampler(_UpperCamelCase ) snake_case_ : int = DataLoader(_UpperCamelCase , sampler=_UpperCamelCase , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: snake_case_ : Tuple = args.max_steps snake_case_ : Union[str, Any] = args.max_steps // (len(_UpperCamelCase ) // args.gradient_accumulation_steps) + 1 else: snake_case_ : List[Any] = len(_UpperCamelCase ) // args.gradient_accumulation_steps * args.num_train_epochs snake_case_ : Optional[Any] = list(model.named_parameters() ) snake_case_ : List[str] = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] snake_case_ : str = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0}, ] snake_case_ : Optional[int] = AdamW(_UpperCamelCase , lr=args.learning_rate , eps=args.adam_epsilon ) snake_case_ : Optional[int] = get_linear_schedule_with_warmup( _UpperCamelCase , num_warmup_steps=args.warmup_steps , num_training_steps=_UpperCamelCase ) if args.do_train: snake_case_ , snake_case_ , snake_case_ : List[str] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ): snake_case_ : Tuple = 0 snake_case_ : Union[str, Any] = 0 snake_case_ : Any = tqdm(_UpperCamelCase , desc='''Training''' ) for step, batch in enumerate(_UpperCamelCase ): snake_case_ : Dict = tuple(t.to(_UpperCamelCase ) for t in batch ) snake_case_ , snake_case_ , snake_case_ , snake_case_ : int = batch snake_case_ : Union[str, Any] = model(_UpperCamelCase , mc_token_ids=_UpperCamelCase , lm_labels=_UpperCamelCase , mc_labels=_UpperCamelCase ) snake_case_ : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() snake_case_ : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 snake_case_ : int = '''Training loss: {:.2e} lr: {:.2e}'''.format(_UpperCamelCase , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer snake_case_ : List[Any] = model.module if hasattr(_UpperCamelCase , '''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` snake_case_ : Any = os.path.join(args.output_dir , _UpperCamelCase ) snake_case_ : Optional[Any] = os.path.join(args.output_dir , _UpperCamelCase ) torch.save(model_to_save.state_dict() , _UpperCamelCase ) model_to_save.config.to_json_file(_UpperCamelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned snake_case_ : int = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) snake_case_ : str = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_UpperCamelCase ) if args.do_eval: model.eval() snake_case_ , snake_case_ : str = 0, 0 snake_case_ , snake_case_ : Any = 0, 0 for batch in tqdm(_UpperCamelCase , desc='''Evaluating''' ): snake_case_ : Any = tuple(t.to(_UpperCamelCase ) for t in batch ) snake_case_ , snake_case_ , snake_case_ , snake_case_ : int = batch with torch.no_grad(): snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[int] = model( _UpperCamelCase , mc_token_ids=_UpperCamelCase , lm_labels=_UpperCamelCase , mc_labels=_UpperCamelCase ) snake_case_ : Optional[Any] = mc_logits.detach().cpu().numpy() snake_case_ : List[Any] = mc_labels.to('''cpu''' ).numpy() snake_case_ : Any = accuracy(_UpperCamelCase , _UpperCamelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 snake_case_ : Any = eval_loss / nb_eval_steps snake_case_ : Optional[int] = eval_accuracy / nb_eval_examples snake_case_ : int = tr_loss / nb_tr_steps if args.do_train else None snake_case_ : Optional[Any] = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} snake_case_ : List[str] = os.path.join(args.output_dir , '''eval_results.txt''' ) with open(_UpperCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , _UpperCamelCase , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
60
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : List[Any]=2_81_23 ) -> str: __snake_case = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i __snake_case = set() __snake_case = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(_UpperCAmelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
69
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" @staticmethod @abstractmethod def lowercase ( lowerCAmelCase_ : ArgumentParser ) -> int: raise NotImplementedError() @abstractmethod def lowercase ( self : List[str] ) -> Optional[int]: raise NotImplementedError()
421
_snake_case : List[Any] = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] _snake_case : List[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] _snake_case : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] _snake_case : Any = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] _snake_case : Tuple = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] _snake_case : Optional[int] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] _snake_case : int = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] _snake_case : Optional[Any] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
421
1
__UpperCamelCase : Tuple = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
80
def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> bool: return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> bool: UpperCamelCase__ : Tuple = credit_card_number UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : Any = len(__UpperCAmelCase ) - 2 for i in range(__UpperCAmelCase , -1 , -2 ): # double the value of every second digit UpperCamelCase__ : List[str] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCamelCase__ : List[Any] = cc_number[:i] + str(__UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> bool: UpperCamelCase__ : str = f"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(f"{error_message} it has nonnumerical characters." ) return False if not 13 <= len(__UpperCAmelCase ) <= 16: print(f"{error_message} of its length." ) return False if not validate_initial_digits(__UpperCAmelCase ): print(f"{error_message} of its first two digits." ) return False if not luhn_validation(__UpperCAmelCase ): print(f"{error_message} it fails the Luhn check." ) return False print(f"{credit_card_number} is a valid credit card number." ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
253
0
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __A : int = logging.getLogger(__name__) def lowerCAmelCase_ ( a : List[str] , a : Dict , a : Any = None , a : List[Any] = None , a : Optional[int] = None , a : Tuple = None , a : Optional[int] = None , a : Union[str, Any] = False , ): a__ = bnb_quantization_config.load_in_abit a__ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) a__ = [] # custom device map if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: a__ = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: a__ = get_keys_to_not_convert(_SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_SCREAMING_SNAKE_CASE ) a__ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: a__ = [] a__ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_SCREAMING_SNAKE_CASE ) # compatibility with peft a__ = load_in_abit a__ = load_in_abit a__ = get_parameter_device(_SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) a__ = replace_with_bnb_layers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , modules_to_not_convert=_SCREAMING_SNAKE_CASE ) # convert param to the right dtype a__ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: a__ = name.replace('.weight' , '' ).replace('.bias' , '' ) a__ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_SCREAMING_SNAKE_CASE ): param.to(_SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): a__ = replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , modules_to_not_convert=_SCREAMING_SNAKE_CASE ) a__ = get_quantized_model_device_map( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_memory=_SCREAMING_SNAKE_CASE , no_split_module_classes=_SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): a__ = True a__ = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=_SCREAMING_SNAKE_CASE , offload_state_dict=_SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_SCREAMING_SNAKE_CASE , device_map=_SCREAMING_SNAKE_CASE , offload_dir=_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( a : Optional[int] , a : Dict , a : Dict=None , a : Union[str, Any]=None , a : Tuple=None ): if device_map is None: if torch.cuda.is_available(): a__ = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) a__ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) a__ = {} a__ = special_dtypes a__ = no_split_module_classes a__ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": a__ = get_balanced_memory( _SCREAMING_SNAKE_CASE , low_zero=(device_map == 'balanced_low_0') , max_memory=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) a__ = max_memory a__ = infer_auto_device_map(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu a__ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules a__ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def lowerCAmelCase_ ( a : Optional[Any] , a : List[str] , a : Any=None , a : Optional[int]=None ): if modules_to_not_convert is None: a__ = [] a__ , a__ = _replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def lowerCAmelCase_ ( a : Dict , a : Any , a : Dict=None , a : List[str]=None , ): a__ = False for name, module in model.named_children(): if current_key_name is None: a__ = [] current_key_name.append(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` a__ = '.'.join(_SCREAMING_SNAKE_CASE ) a__ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: a__ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: a__ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: a__ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) a__ = module.weight.data if module.bias is not None: a__ = module.bias.data bnb_module.requires_grad_(_SCREAMING_SNAKE_CASE ) setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__ = True if len(list(module.children() ) ) > 0: a__ , a__ = _replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCAmelCase_ ( a : Tuple ): # Create a copy of the model with init_empty_weights(): a__ = deepcopy(_SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` a__ = find_tied_parameters(_SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: a__ = sum(_SCREAMING_SNAKE_CASE , [] ) a__ = len(_SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model a__ = False if hasattr(_SCREAMING_SNAKE_CASE , 'base_model_prefix' ): a__ = not hasattr(_SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head a__ = list(model.named_children() ) a__ = [list_modules[-1][0]] # add last module together with tied weights a__ = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) a__ = list(set(_SCREAMING_SNAKE_CASE ) ) + list(_SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys a__ = ['.weight', '.bias'] a__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: a__ = name.replace(_SCREAMING_SNAKE_CASE , '' ) filtered_module_names.append(_SCREAMING_SNAKE_CASE ) return filtered_module_names def lowerCAmelCase_ ( a : Tuple ): for m in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def lowerCAmelCase_ ( a : Dict ): return next(parameter.parameters() ).device def lowerCAmelCase_ ( a : Union[str, Any] , a : Any , a : int , a : Tuple , a : str , a : List[Any] , a : int ): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 , dtype=_SCREAMING_SNAKE_CASE , value=_SCREAMING_SNAKE_CASE ) a__ = param_name a__ = model if "." in tensor_name: a__ = tensor_name.split('.' ) for split in splits[:-1]: a__ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) a__ = new_module a__ = splits[-1] # offload weights a__ = False offload_weight(module._parameters[tensor_name] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE , ) else: offload_weight(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) offload_weight(_SCREAMING_SNAKE_CASE , param_name.replace('weight' , 'SCB' ) , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'meta' , dtype=_SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
702
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __A : Optional[int] = datasets.load_iris() __A : Optional[Any] = np.array(data['data']) __A : Tuple = np.array(data['target']) __A : int = data['target_names'] __A , __A , __A , __A : Optional[Any] = train_test_split(X, y) def lowerCAmelCase_ ( a : str , a : int ): return np.linalg.norm(np.array(a ) - np.array(a ) ) def lowerCAmelCase_ ( a : Dict , a : str , a : List[Any] , a : Any , a : Dict=5 ): a__ = zip(a , a ) # List of distances of all points from the point to be classified a__ = [] for data_point in data: a__ = euclidean_distance(data_point[0] , a ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. a__ = [i[1] for i in sorted(a )[:k]] # Most commonly occurring class among them # is the class into which the point is classified a__ = Counter(a ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
126
0
'''simple docstring''' import unittest from transformers import DonutProcessor a = "naver-clova-ix/donut-base" class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = DonutProcessor.from_pretrained(lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = { """name""": """John Doe""", """age""": """99""", """city""": """Atlanta""", """state""": """GA""", """zip""": """30301""", """phone""": """123-4567""", """nicknames""": [{"""nickname""": """Johnny"""}, {"""nickname""": """JD"""}], } __SCREAMING_SNAKE_CASE = ( """<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>""" """<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>""" """<s_nicknames><s_nickname>Johnny</s_nickname>""" """<sep/><s_nickname>JD</s_nickname></s_nicknames>""" ) __SCREAMING_SNAKE_CASE = self.processor.tokenajson(lowerCamelCase ) self.assertDictEqual(lowerCamelCase ,lowerCamelCase )
109
"""simple docstring""" A_ = 2_56 # Modulus to hash a string A_ = 1_00_00_03 def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str ): """simple docstring""" _snake_case : Any = len(snake_case__ ) _snake_case : Tuple = len(snake_case__ ) if p_len > t_len: return False _snake_case : str = 0 _snake_case : Tuple = 0 _snake_case : Tuple = 1 # Calculating the hash of pattern and substring of text for i in range(snake_case__ ): _snake_case : Optional[int] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _snake_case : int = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _snake_case : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _snake_case : List[str] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[Any] = """abc1abc12""" _snake_case : Tuple = """alskfjaldsabc1abc1abc12k23adsfabcabc""" _snake_case : Optional[Any] = """alskfjaldsk23adsfabcabc""" assert rabin_karp(snake_case__ , snake_case__ ) and not rabin_karp(snake_case__ , snake_case__ ) # Test 2) _snake_case : Tuple = """ABABX""" _snake_case : Optional[Any] = """ABABZABABYABABX""" assert rabin_karp(snake_case__ , snake_case__ ) # Test 3) _snake_case : Union[str, Any] = """AAAB""" _snake_case : str = """ABAAAAAB""" assert rabin_karp(snake_case__ , snake_case__ ) # Test 4) _snake_case : List[str] = """abcdabcy""" _snake_case : Optional[int] = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(snake_case__ , snake_case__ ) # Test 5) _snake_case : Union[str, Any] = """Lü""" _snake_case : Optional[int] = """Lüsai""" assert rabin_karp(snake_case__ , snake_case__ ) _snake_case : Any = """Lue""" assert not rabin_karp(snake_case__ , snake_case__ ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
609
0
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __lowerCamelCase : Any = parse(importlib.metadata.version("""torch""")) def A__ ( _a : Union[str, Version] , _a : str , _a : str ): '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}" ) snake_case__ : List[str] =STR_OPERATION_TO_FUNC[operation] if isinstance(_a , _a ): snake_case__ : Optional[int] =parse(importlib.metadata.version(_a ) ) return operation(_a , parse(_a ) ) def A__ ( _a : str , _a : str ): '''simple docstring''' return compare_versions(_a , _a , _a )
448
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) def A__ ( _a : np.ndarray , _a : Union[int, Iterable[int]] , _a : bool , _a : int ): '''simple docstring''' def constraint_to_multiple_of(_a : Union[str, Any] , _a : List[str] , _a : str=0 , _a : Any=None ): snake_case__ : Any =round(val / multiple ) * multiple if max_val is not None and x > max_val: snake_case__ : int =math.floor(val / multiple ) * multiple if x < min_val: snake_case__ : Dict =math.ceil(val / multiple ) * multiple return x snake_case__ : str =(output_size, output_size) if isinstance(_a , _a ) else output_size snake_case__ , snake_case__ : Dict =get_image_size(_a ) snake_case__ , snake_case__ : int =output_size # determine new height and width snake_case__ : Tuple =output_height / input_height snake_case__ : Optional[Any] =output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width snake_case__ : Optional[int] =scale_width else: # fit height snake_case__ : Any =scale_height snake_case__ : Optional[int] =constraint_to_multiple_of(scale_height * input_height , multiple=_a ) snake_case__ : str =constraint_to_multiple_of(scale_width * input_width , multiple=_a ) return (new_height, new_width) class _lowercase ( _A ): _a : List[Any] = ['pixel_values'] def __init__( self , a = True , a = None , a = PILImageResampling.BILINEAR , a = False , a = 1 , a = True , a = 1 / 2_5_5 , a = True , a = None , a = None , **a , ): super().__init__(**a ) snake_case__ : Any =size if size is not None else {"""height""": 3_8_4, """width""": 3_8_4} snake_case__ : List[Any] =get_size_dict(a ) snake_case__ : Tuple =do_resize snake_case__ : Tuple =size snake_case__ : Any =keep_aspect_ratio snake_case__ : List[Any] =ensure_multiple_of snake_case__ : Tuple =resample snake_case__ : str =do_rescale snake_case__ : int =rescale_factor snake_case__ : Tuple =do_normalize snake_case__ : int =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ : Any =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self , a , a , a = False , a = 1 , a = PILImageResampling.BICUBIC , a = None , **a , ): snake_case__ : Tuple =get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) snake_case__ : Optional[int] =get_resize_output_image_size( a , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=a , multiple=a , ) return resize(a , size=a , resample=a , data_format=a , **a ) def lowercase__ ( self , a , a , a = None , **a , ): return rescale(a , scale=a , data_format=a , **a ) def lowercase__ ( self , a , a , a , a = None , **a , ): return normalize(a , mean=a , std=a , data_format=a , **a ) def lowercase__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ): snake_case__ : Optional[int] =do_resize if do_resize is not None else self.do_resize snake_case__ : List[Any] =size if size is not None else self.size snake_case__ : int =get_size_dict(a ) snake_case__ : Optional[int] =keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio snake_case__ : int =ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of snake_case__ : Optional[Any] =resample if resample is not None else self.resample snake_case__ : Optional[int] =do_rescale if do_rescale is not None else self.do_rescale snake_case__ : str =rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ : Optional[Any] =do_normalize if do_normalize is not None else self.do_normalize snake_case__ : Tuple =image_mean if image_mean is not None else self.image_mean snake_case__ : int =image_std if image_std is not None else self.image_std snake_case__ : int =make_list_of_images(a ) if not valid_images(a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case__ : int =[to_numpy_array(a ) for image in images] if do_resize: snake_case__ : List[str] =[self.resize(image=a , size=a , resample=a ) for image in images] if do_rescale: snake_case__ : List[Any] =[self.rescale(image=a , scale=a ) for image in images] if do_normalize: snake_case__ : str =[self.normalize(image=a , mean=a , std=a ) for image in images] snake_case__ : List[Any] =[to_channel_dimension_format(a , a ) for image in images] snake_case__ : Union[str, Any] ={"""pixel_values""": images} return BatchFeature(data=a , tensor_type=a ) def lowercase__ ( self , a , a = None ): snake_case__ : Optional[Any] =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a ) != len(a ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(a ): snake_case__ : Optional[Any] =target_sizes.numpy() snake_case__ : Optional[Any] =[] for idx in range(len(a ) ): snake_case__ : List[str] =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=a ) snake_case__ : List[Any] =resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a ) else: snake_case__ : List[str] =logits.argmax(dim=1 ) snake_case__ : Optional[int] =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
448
1
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _lowerCAmelCase : str ="""hf-internal-testing/tiny-random-bert""" _lowerCAmelCase : int =os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""") _lowerCAmelCase : Any ="""9b8c223d42b2188cb49d29af482996f9d0f3e5a6""" class __UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ): UpperCAmelCase__: Optional[int] = cached_file(lowerCamelCase__ , lowerCamelCase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(lowerCamelCase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(lowerCamelCase__ , lowerCamelCase__ ) ) ) with open(os.path.join(lowerCamelCase__ , "refs" , "main" ) ) as f: UpperCAmelCase__: Optional[int] = f.read() self.assertEqual(lowerCamelCase__ , os.path.join(lowerCamelCase__ , "snapshots" , lowerCamelCase__ , lowerCamelCase__ ) ) self.assertTrue(os.path.isfile(lowerCamelCase__ ) ) # File is cached at the same place the second time. UpperCAmelCase__: Union[str, Any] = cached_file(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) # Using a specific revision to test the full commit hash. UpperCAmelCase__: Dict = cached_file(lowerCamelCase__ , lowerCamelCase__ , revision="9b8c223" ) self.assertEqual(lowerCamelCase__ , os.path.join(lowerCamelCase__ , "snapshots" , lowerCamelCase__ , lowerCamelCase__ ) ) def _UpperCAmelCase ( self ): with self.assertRaisesRegex(lowerCamelCase__ , "is not a valid model identifier" ): UpperCAmelCase__: Union[str, Any] = cached_file("tiny-random-bert" , lowerCamelCase__ ) with self.assertRaisesRegex(lowerCamelCase__ , "is not a valid git identifier" ): UpperCAmelCase__: List[Any] = cached_file(lowerCamelCase__ , lowerCamelCase__ , revision="aaaa" ) with self.assertRaisesRegex(lowerCamelCase__ , "does not appear to have a file named" ): UpperCAmelCase__: List[str] = cached_file(lowerCamelCase__ , "conf" ) def _UpperCAmelCase ( self ): with self.assertRaisesRegex(lowerCamelCase__ , "does not appear to have a file named" ): UpperCAmelCase__: int = cached_file(lowerCamelCase__ , "conf" ) with open(os.path.join(lowerCamelCase__ , "refs" , "main" ) ) as f: UpperCAmelCase__: Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(lowerCamelCase__ , ".no_exist" , lowerCamelCase__ , "conf" ) ) ) UpperCAmelCase__: List[str] = cached_file(lowerCamelCase__ , "conf" , _raise_exceptions_for_missing_entries=lowerCamelCase__ ) self.assertIsNone(lowerCamelCase__ ) UpperCAmelCase__: List[Any] = cached_file(lowerCamelCase__ , "conf" , local_files_only=lowerCamelCase__ , _raise_exceptions_for_missing_entries=lowerCamelCase__ ) self.assertIsNone(lowerCamelCase__ ) UpperCAmelCase__: Dict = mock.Mock() UpperCAmelCase__: str = 5_0_0 UpperCAmelCase__: Union[str, Any] = {} UpperCAmelCase__: int = HTTPError UpperCAmelCase__: Dict = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=lowerCamelCase__ ) as mock_head: UpperCAmelCase__: Optional[int] = cached_file(lowerCamelCase__ , "conf" , _raise_exceptions_for_connection_errors=lowerCamelCase__ ) self.assertIsNone(lowerCamelCase__ ) # This check we did call the fake head request mock_head.assert_called() def _UpperCAmelCase ( self ): self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCamelCase__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCamelCase__ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowerCamelCase__ ) ) def _UpperCAmelCase ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(lowerCamelCase__ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , lowerCamelCase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(lowerCamelCase__ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , lowerCamelCase__ , revision="ahaha" ) UpperCAmelCase__: Optional[int] = get_file_from_repo("bert-base-cased" , lowerCamelCase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. UpperCAmelCase__: Any = json.loads(open(lowerCamelCase__ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 7_6_8 ) def _UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__: List[str] = Path(lowerCamelCase__ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(lowerCamelCase__ , "a.txt" ) , str(lowerCamelCase__ ) ) self.assertIsNone(get_file_from_repo(lowerCamelCase__ , "b.txt" ) )
113
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowerCAmelCase : int ="""src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase : Dict =direct_transformers_import(PATH_TO_TRANSFORMERS) _lowerCAmelCase : List[str] =transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _lowerCAmelCase : int =re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") _lowerCAmelCase : Union[str, Any] ={ """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: str = None # source code of `config_class` UpperCAmelCase__: Optional[int] = inspect.getsource(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: List[Any] = _re_checkpoint.findall(SCREAMING_SNAKE_CASE ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): UpperCAmelCase__: Any = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCAmelCase__: int = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: UpperCAmelCase__: Optional[int] = ckpt_name break return checkpoint def _A ( ): UpperCAmelCase__: List[str] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCAmelCase__: Optional[Any] = get_checkpoint_from_config_class(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: List[str] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: UpperCAmelCase__: Dict = "\n".join(sorted(SCREAMING_SNAKE_CASE ) ) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
113
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCamelCase : str = { '''configuration_transfo_xl''': ['''TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TransfoXLConfig'''], '''tokenization_transfo_xl''': ['''TransfoXLCorpus''', '''TransfoXLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ '''TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AdaptiveEmbedding''', '''TransfoXLForSequenceClassification''', '''TransfoXLLMHeadModel''', '''TransfoXLModel''', '''TransfoXLPreTrainedModel''', '''load_tf_weights_in_transfo_xl''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ '''TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAdaptiveEmbedding''', '''TFTransfoXLForSequenceClassification''', '''TFTransfoXLLMHeadModel''', '''TFTransfoXLMainLayer''', '''TFTransfoXLModel''', '''TFTransfoXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys _lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
516
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar _lowerCamelCase : Optional[int] = TypeVar('''T''') class lowerCAmelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self , lowercase__ , lowercase__ ): '''simple docstring''' __A =None __A =len(lowercase__ ) __A =[any_type for _ in range(self.N )] + arr __A =fnc self.build() def __UpperCamelCase ( self ): '''simple docstring''' for p in range(self.N - 1 , 0 , -1 ): __A =self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCamelCase ( self , lowercase__ , lowercase__ ): '''simple docstring''' p += self.N __A =v while p > 1: __A =p // 2 __A =self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCamelCase ( self , lowercase__ , lowercase__ ): # noqa: E741 '''simple docstring''' __A , __A =l + self.N, r + self.N __A =None while l <= r: if l % 2 == 1: __A =self.st[l] if res is None else self.fn(lowercase__ , self.st[l] ) if r % 2 == 0: __A =self.st[r] if res is None else self.fn(lowercase__ , self.st[r] ) __A , __A =(l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce _lowerCamelCase : Dict = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] _lowerCamelCase : Union[str, Any] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } _lowerCamelCase : Dict = SegmentTree(test_array, min) _lowerCamelCase : int = SegmentTree(test_array, max) _lowerCamelCase : Optional[Any] = SegmentTree(test_array, lambda a, b: a + b) def A__ ( ) ->None: for i in range(len(__A ) ): for j in range(__A , len(__A ) ): __A =reduce(__A , test_array[i : j + 1] ) __A =reduce(__A , test_array[i : j + 1] ) __A =reduce(lambda __A , __A : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__A , __A ) assert max_range == max_segment_tree.query(__A , __A ) assert sum_range == sum_segment_tree.query(__A , __A ) test_all_segments() for index, value in test_updates.items(): _lowerCamelCase : Union[str, Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
516
1
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCAmelCase = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __lowercase : snake_case_ = PegasusConfig snake_case_ = {} snake_case_ = """gelu""" def __init__( self : List[Any] ,A : int ,A : Optional[Any]=13 ,A : Dict=7 ,A : Dict=True ,A : Any=False ,A : Dict=99 ,A : int=32 ,A : Optional[int]=5 ,A : Union[str, Any]=4 ,A : Union[str, Any]=37 ,A : str=0.1 ,A : int=0.1 ,A : Optional[int]=20 ,A : Tuple=2 ,A : str=1 ,A : Optional[Any]=0 ,): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : List[Any] = seq_length UpperCAmelCase__ : int = is_training UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : int = vocab_size UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Any = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Union[str, Any] = eos_token_id UpperCAmelCase__ : Union[str, Any] = pad_token_id UpperCAmelCase__ : List[str] = bos_token_id def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ).clip(3 ,self.vocab_size ) UpperCAmelCase__ : List[str] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) ,1 ) UpperCAmelCase__ : Any = np.concatenate([input_ids, eos_tensor] ,axis=1 ) UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : str = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) UpperCAmelCase__ : Optional[Any] = prepare_pegasus_inputs_dict(A ,A ,A ) return config, inputs_dict def __lowercase ( self : Any ,A : Optional[int] ,A : str ,A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = 20 UpperCAmelCase__ : Dict = model_class_name(A ) UpperCAmelCase__ : str = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase__ : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] ,A ,A ) UpperCAmelCase__ : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) ,dtype="""i4""" ) UpperCAmelCase__ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) UpperCAmelCase__ : Optional[int] = model.decode( decoder_input_ids[:, :-1] ,A ,decoder_attention_mask=A ,past_key_values=A ,decoder_position_ids=A ,) UpperCAmelCase__ : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="""i4""" ) UpperCAmelCase__ : int = model.decode( decoder_input_ids[:, -1:] ,A ,decoder_attention_mask=A ,past_key_values=outputs_cache.past_key_values ,decoder_position_ids=A ,) UpperCAmelCase__ : Dict = model.decode(A ,A ) UpperCAmelCase__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=f"Max diff is {diff}" ) def __lowercase ( self : Optional[int] ,A : str ,A : Dict ,A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = 20 UpperCAmelCase__ : str = model_class_name(A ) UpperCAmelCase__ : Any = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase__ : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] ,axis=-1 ,) UpperCAmelCase__ : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] ,A ,A ) UpperCAmelCase__ : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) UpperCAmelCase__ : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] ,A ,decoder_attention_mask=A ,past_key_values=A ,decoder_position_ids=A ,) UpperCAmelCase__ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="""i4""" ) UpperCAmelCase__ : Dict = model.decode( decoder_input_ids[:, -1:] ,A ,past_key_values=outputs_cache.past_key_values ,decoder_attention_mask=A ,decoder_position_ids=A ,) UpperCAmelCase__ : Union[str, Any] = model.decode(A ,A ,decoder_attention_mask=A ) UpperCAmelCase__ : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=f"Max diff is {diff}" ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase__ : Union[str, Any] = np.not_equal(__UpperCamelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCAmelCase__ : Tuple = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) snake_case_ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = FlaxPegasusModelTester(self ) UpperCAmelCase__ : Optional[Any] = ConfigTester(self ,config_class=A ) def __lowercase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A ,A ,A ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A ,A ,A ) def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : List[Any] = self._prepare_for_class(A ,A ) UpperCAmelCase__ : int = model_class(A ) @jax.jit def encode_jitted(A : Optional[int] ,A : Union[str, Any]=None ,**A : Optional[Any] ): return model.encode(input_ids=A ,attention_mask=A ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase__ : int = encode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase__ : Dict = encode_jitted(**A ).to_tuple() self.assertEqual(len(A ) ,len(A ) ) for jitted_output, output in zip(A ,A ): self.assertEqual(jitted_output.shape ,output.shape ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : Dict = model_class(A ) UpperCAmelCase__ : str = model.encode(inputs_dict["""input_ids"""] ,inputs_dict["""attention_mask"""] ) UpperCAmelCase__ : Dict = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(A : List[Any] ,A : Any ,A : List[Any] ): return model.decode( decoder_input_ids=A ,decoder_attention_mask=A ,encoder_outputs=A ,) with self.subTest("""JIT Enabled""" ): UpperCAmelCase__ : Tuple = decode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase__ : str = decode_jitted(**A ).to_tuple() self.assertEqual(len(A ) ,len(A ) ) for jitted_output, output in zip(A ,A ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def __lowercase ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class_name.from_pretrained("""google/pegasus-large""" ,from_pt=A ) UpperCAmelCase__ : Any = np.ones((1, 1) ) UpperCAmelCase__ : Optional[Any] = model(A ) self.assertIsNotNone(A ) @slow def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase__ : Optional[Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase__ : Union[str, Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] UpperCAmelCase__ : str = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] UpperCAmelCase__ : str = tokenizer(A ,return_tensors="""np""" ,truncation=A ,max_length=512 ,padding=A ) UpperCAmelCase__ : Union[str, Any] = model.generate(**A ,num_beams=2 ).sequences UpperCAmelCase__ : int = tokenizer.batch_decode(A ,skip_special_tokens=A ) assert tgt_text == decoded
65
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : Optional[Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str]=13 , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : int=32 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : List[Any]=37 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : int=0 , ): SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Tuple = seq_length SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : str = use_input_mask SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = type_sequence_label_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : int = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : str = scope SCREAMING_SNAKE_CASE : Union[str, Any] = projection_dim def _A ( self : int ): SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Any = None if self.use_labels: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Dict = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) SCREAMING_SNAKE_CASE : Tuple = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = TFDPRContextEncoder(config=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _A ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE : Optional[Any] = TFDPRQuestionEncoder(config=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _A ( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : Dict = TFDPRReader(config=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Optional[Any] = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( A_ , A_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) UpperCamelCase_ : Optional[int] = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} UpperCamelCase_ : int = False UpperCamelCase_ : Dict = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : str = False def _A ( self : int ): SCREAMING_SNAKE_CASE : List[Any] = TFDPRModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def _A ( self : Any ): self.config_tester.run_common_tests() def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCAmelCase_ ) def _A ( self : str ): SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCAmelCase_ ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCAmelCase_ ) @slow def _A ( self : Tuple ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[str] = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Dict = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : int = TFDPRQuestionEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[Any] = TFDPRReader.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Any = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) SCREAMING_SNAKE_CASE : List[Any] = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCAmelCase_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. SCREAMING_SNAKE_CASE : Union[str, Any] = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
708
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = '''markuplm''' def __init__( self : int , UpperCAmelCase_ : List[str]=3_0522 , UpperCAmelCase_ : Optional[Any]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : Union[str, Any]=3072 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Dict=512 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Dict=1E-12 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : str=256 , UpperCAmelCase_ : str=1024 , UpperCAmelCase_ : List[str]=216 , UpperCAmelCase_ : List[Any]=1001 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : Dict=50 , UpperCAmelCase_ : Optional[int]="absolute" , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : Any , ): super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : int = position_embedding_type SCREAMING_SNAKE_CASE : List[str] = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout # additional properties SCREAMING_SNAKE_CASE : Any = max_depth SCREAMING_SNAKE_CASE : int = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE : List[str] = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE : Optional[int] = tag_pad_id SCREAMING_SNAKE_CASE : Optional[Any] = subs_pad_id SCREAMING_SNAKE_CASE : List[Any] = xpath_unit_hidden_size
488
0
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort lowerCAmelCase__ = '''1''' lowerCAmelCase__ = '''0''' lowerCAmelCase__ = '''1''' lowerCAmelCase__ = ort.SessionOptions() lowerCAmelCase__ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('''Create inference session...''') lowerCAmelCase__ = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] lowerCAmelCase__ = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider) lowerCAmelCase__ = ort.RunOptions() lowerCAmelCase__ = 128 lowerCAmelCase__ = 1 lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) print('''Warm up phase...''') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Start inference...''') lowerCAmelCase__ = time.time() lowerCAmelCase__ = 2000 lowerCAmelCase__ = {} for iter in range(max_iters): lowerCAmelCase__ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 1000 / max_iters))
83
"""simple docstring""" from collections import namedtuple lowerCAmelCase__ = namedtuple('''from_to''', '''from_ to''') lowerCAmelCase__ = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.0_0_1, 1000), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_0_4_5_4, 2_6_4.1_7_2), '''cubicyard''': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), '''cubicfoot''': from_to(0.0_2_8, 3_5.3_1_4_7), '''cup''': from_to(0.0_0_0_2_3_6_5_8_8, 4_2_2_6.7_5), } def snake_case_ ( A_ : float, A_ : str, A_ : str ): '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ''', '''.join(A_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ''', '''.join(A_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
83
1
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Union[str, Any] = 0 __lowerCamelCase : Optional[Any] = number while duplicate > 0: __lowerCamelCase , __lowerCamelCase : Dict = divmod(SCREAMING_SNAKE_CASE__ , 10 ) fact_sum += factorial(SCREAMING_SNAKE_CASE__ ) return fact_sum == number if __name__ == "__main__": print('Program to check whether a number is a Krisnamurthy Number or not.') lowercase_ = int(input('Enter number: ').strip()) print( F"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
230
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = RoFormerTokenizer __snake_case = RoFormerTokenizerFast __snake_case = True __snake_case = True def _snake_case ( self: Dict ): super().setUp() def _snake_case ( self: Optional[int] , **a: Tuple ): return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **a ) def _snake_case ( self: Tuple , **a: int ): return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **a ) def _snake_case ( self: Tuple ): __lowerCamelCase : Tuple = '永和服装饰品有限公司,今天天气非常好' __lowerCamelCase : str = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def _snake_case ( self: str ): __lowerCamelCase : Optional[int] = self.get_tokenizer() __lowerCamelCase , __lowerCamelCase : str = self.get_chinese_input_output_texts() __lowerCamelCase : Any = tokenizer.tokenize(a ) self.assertListEqual(a , output_text.split() ) __lowerCamelCase : Optional[int] = tokens + [tokenizer.unk_token] __lowerCamelCase : str = [2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) def _snake_case ( self: Dict ): __lowerCamelCase : List[str] = self.get_rust_tokenizer() __lowerCamelCase , __lowerCamelCase : List[Any] = self.get_chinese_input_output_texts() __lowerCamelCase : Optional[Any] = tokenizer.tokenize(a ) self.assertListEqual(a , output_text.split() ) __lowerCamelCase : int = tokens + [tokenizer.unk_token] __lowerCamelCase : Any = [2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) def _snake_case ( self: int ): pass def _snake_case ( self: Optional[Any] ): pass def _snake_case ( self: str ): pass
230
1
'''simple docstring''' import json import sys def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : List[str],_SCREAMING_SNAKE_CASE : Any ): """simple docstring""" with open(_SCREAMING_SNAKE_CASE,encoding='utf-8' ) as f: __A= json.load(_SCREAMING_SNAKE_CASE ) __A= ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(_SCREAMING_SNAKE_CASE ): __A= results[benchmark_name] __A= benchmark_name.split('/' )[-1] output_md.append(f"""### Benchmark: {benchmark_file_name}""" ) __A= '| metric |' __A= '|--------|' __A= '| new / old (diff) |' for metric_name in sorted(_SCREAMING_SNAKE_CASE ): __A= benchmark_res[metric_name] __A= metric_vals['new'] __A= metric_vals.get('old',_SCREAMING_SNAKE_CASE ) __A= metric_vals.get('diff',_SCREAMING_SNAKE_CASE ) __A= f""" {new_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE,(int, float) ) else 'None' if old_val is not None: val_str += f""" / {old_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE,(int, float) ) else "None" if dif_val is not None: val_str += f""" ({dif_val:f})""" if isinstance(_SCREAMING_SNAKE_CASE,(int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(_SCREAMING_SNAKE_CASE,'w',encoding='utf-8' ) as f: f.writelines('\n'.join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": UpperCAmelCase__ = sys.argv[1] UpperCAmelCase__ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
186
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil UpperCAmelCase__ = 1_0_0 UpperCAmelCase__ = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCAmelCase__ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __A= set() __A= 42 __A= 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int = 5000 ): """simple docstring""" for number_to_partition in range(1,_SCREAMING_SNAKE_CASE ): if len(partition(_SCREAMING_SNAKE_CASE ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
186
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self :Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase ( self :Optional[int] ): A = 1 A = 3 A = (32, 32) A = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCamelCase ) return image @property def lowerCamelCase ( self :int ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def lowerCamelCase ( self :List[str] ): torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowerCamelCase ( self :Tuple ): torch.manual_seed(0 ) A = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__UpperCamelCase ) @property def lowerCamelCase ( self :str ): def extract(*__UpperCamelCase :List[Any] , **__UpperCamelCase :Optional[Any] ): class _UpperCAmelCase : def __init__( self :Optional[int] ): A = torch.ones([0] ) def lowerCamelCase ( self :int , __UpperCamelCase :Union[str, Any] ): self.pixel_values.to(__UpperCamelCase ) return self return Out() return extract def lowerCamelCase ( self :Optional[int] ): A = "cpu" # ensure determinism for the device-dependent torch.Generator A = self.dummy_cond_unet A = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) A = self.dummy_vae A = self.dummy_text_encoder A = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) A = 77 A = self.dummy_image.to(__UpperCamelCase ) A = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk A = AltDiffusionImgaImgPipeline( unet=__UpperCamelCase , scheduler=__UpperCamelCase , vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=self.dummy_extractor , ) A = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__UpperCamelCase ) A = alt_pipe.to(__UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = "A painting of a squirrel eating a burger" A = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) A = alt_pipe( [prompt] , generator=__UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__UpperCamelCase , ) A = output.images A = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) A = alt_pipe( [prompt] , generator=__UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__UpperCamelCase , return_dict=__UpperCamelCase , )[0] A = image[0, -3:, -3:, -1] A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowerCamelCase ( self :Dict ): A = self.dummy_cond_unet A = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) A = self.dummy_vae A = self.dummy_text_encoder A = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) A = 77 A = self.dummy_image.to(__UpperCamelCase ) # put models in fp16 A = unet.half() A = vae.half() A = bert.half() # make sure here that pndm scheduler skips prk A = AltDiffusionImgaImgPipeline( unet=__UpperCamelCase , scheduler=__UpperCamelCase , vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=self.dummy_extractor , ) A = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__UpperCamelCase ) A = alt_pipe.to(__UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = "A painting of a squirrel eating a burger" A = torch.manual_seed(0 ) A = alt_pipe( [prompt] , generator=__UpperCamelCase , num_inference_steps=2 , output_type="np" , image=__UpperCamelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowerCamelCase ( self :Tuple ): A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 A = init_image.resize((7_60, 5_04) ) A = "BAAI/AltDiffusion" A = AltDiffusionImgaImgPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() A = "A fantasy landscape, trending on artstation" A = torch.manual_seed(0 ) A = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__UpperCamelCase , output_type="np" , ) A = output.images[0] A = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) A = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self :Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self :List[str] ): A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) A = init_image.resize((7_68, 5_12) ) A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) A = "BAAI/AltDiffusion" A = AltDiffusionImgaImgPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() A = "A fantasy landscape, trending on artstation" A = torch.manual_seed(0 ) A = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__UpperCamelCase , output_type="np" , ) A = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
524
"""simple docstring""" from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : Optional[int] = 'T5Config' class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = '''mt5''' UpperCamelCase = MTaConfig class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = '''mt5''' UpperCamelCase = MTaConfig class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = '''mt5''' UpperCamelCase = MTaConfig
524
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : List[Any] = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
542
import string from math import logaa def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): A : List[str] = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) A : Optional[int] = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): A : Dict = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' A : Dict = corpus_without_punctuation.split('''\n''' ) A : List[Any] = term.lower() return (len([doc for doc in docs if term in doc] ), len(lowerCamelCase_ )) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ): if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): return round(tf * idf , 3 )
542
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a__ ( unittest.TestCase ): def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : str = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Any = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on __UpperCAmelCase : List[Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_)))) __UpperCAmelCase : Optional[int] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] __UpperCAmelCase : int = {"unk_token": "<unk>"} __UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(UpperCamelCase_) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(UpperCamelCase_)) __UpperCAmelCase : int = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } __UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCamelCase_) with open(self.image_processor_file , "w" , encoding="utf-8") as fp: json.dump(UpperCamelCase_ , UpperCamelCase_) def a_ ( self : List[Any] , **UpperCamelCase_ : Optional[int]): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **UpperCamelCase_) def a_ ( self : Union[str, Any] , **UpperCamelCase_ : List[str]): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **UpperCamelCase_) def a_ ( self : List[str] , **UpperCamelCase_ : Tuple): """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_) def a_ ( self : Optional[Any]): """simple docstring""" shutil.rmtree(self.tmpdirname) def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] __UpperCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : int = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : Dict = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) processor_slow.save_pretrained(self.tmpdirname) __UpperCAmelCase : Union[str, Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase_) __UpperCAmelCase : int = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) processor_fast.save_pretrained(self.tmpdirname) __UpperCAmelCase : Tuple = OwlViTProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase_) def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : Optional[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __UpperCAmelCase : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") __UpperCAmelCase : Optional[Any] = self.get_image_processor(do_normalize=UpperCamelCase_) __UpperCAmelCase : List[str] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCamelCase_) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCamelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCamelCase_) def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : int = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) __UpperCAmelCase : Tuple = self.prepare_image_inputs() __UpperCAmelCase : Tuple = image_processor(UpperCamelCase_ , return_tensors="np") __UpperCAmelCase : List[Any] = processor(images=UpperCamelCase_ , return_tensors="np") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : List[str] = self.get_image_processor() __UpperCAmelCase : int = self.get_tokenizer() __UpperCAmelCase : str = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) __UpperCAmelCase : List[str] = "lower newer" __UpperCAmelCase : Any = processor(text=UpperCamelCase_ , return_tensors="np") __UpperCAmelCase : Optional[int] = tokenizer(UpperCamelCase_ , return_tensors="np") for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist()) def a_ ( self : Optional[Any]): """simple docstring""" __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Dict = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) __UpperCAmelCase : int = "lower newer" __UpperCAmelCase : Optional[int] = self.prepare_image_inputs() __UpperCAmelCase : Union[str, Any] = processor(text=UpperCamelCase_ , images=UpperCamelCase_) self.assertListEqual(list(inputs.keys()) , ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_): processor() def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : List[Any] = "google/owlvit-base-patch32" __UpperCAmelCase : Any = OwlViTProcessor.from_pretrained(UpperCamelCase_) __UpperCAmelCase : Tuple = ["cat", "nasa badge"] __UpperCAmelCase : List[str] = processor(text=UpperCamelCase_) __UpperCAmelCase : List[Any] = 16 self.assertListEqual(list(inputs.keys()) , ["input_ids", "attention_mask"]) self.assertEqual(inputs["input_ids"].shape , (2, seq_length)) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_): processor() def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Union[str, Any] = "google/owlvit-base-patch32" __UpperCAmelCase : str = OwlViTProcessor.from_pretrained(UpperCamelCase_) __UpperCAmelCase : Dict = [["cat", "nasa badge"], ["person"]] __UpperCAmelCase : List[Any] = processor(text=UpperCamelCase_) __UpperCAmelCase : Optional[Any] = 16 __UpperCAmelCase : Optional[int] = len(UpperCamelCase_) __UpperCAmelCase : Optional[Any] = max([len(UpperCamelCase_) for texts in input_texts]) self.assertListEqual(list(inputs.keys()) , ["input_ids", "attention_mask"]) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length)) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_): processor() def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Union[str, Any] = "google/owlvit-base-patch32" __UpperCAmelCase : Dict = OwlViTProcessor.from_pretrained(UpperCamelCase_) __UpperCAmelCase : Any = ["cat", "nasa badge"] __UpperCAmelCase : List[Any] = processor(text=UpperCamelCase_) __UpperCAmelCase : Optional[int] = 16 __UpperCAmelCase : Optional[int] = inputs["input_ids"] __UpperCAmelCase : Optional[Any] = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys()) , ["input_ids", "attention_mask"]) self.assertEqual(inputs["input_ids"].shape , (2, seq_length)) self.assertListEqual(list(input_ids[0]) , predicted_ids[0]) self.assertListEqual(list(input_ids[1]) , predicted_ids[1]) def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.get_image_processor() __UpperCAmelCase : Optional[int] = self.get_tokenizer() __UpperCAmelCase : Any = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) __UpperCAmelCase : Tuple = self.prepare_image_inputs() __UpperCAmelCase : Optional[int] = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(images=UpperCamelCase_ , query_images=UpperCamelCase_) self.assertListEqual(list(inputs.keys()) , ["query_pixel_values", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_): processor() def a_ ( self : int): """simple docstring""" __UpperCAmelCase : Optional[int] = self.get_image_processor() __UpperCAmelCase : Optional[int] = self.get_tokenizer() __UpperCAmelCase : Any = OwlViTProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_) __UpperCAmelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : Optional[int] = processor.batch_decode(UpperCamelCase_) __UpperCAmelCase : int = tokenizer.batch_decode(UpperCamelCase_) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_)
487
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class a__ : lowercase_ = None def a_ ( self : List[Any]): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict) __UpperCAmelCase : Any = json.loads(feat_extract.to_json_string()) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase_) def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(UpperCamelCase_ , "feat_extract.json") feat_extract_first.to_json_file(UpperCamelCase_) __UpperCAmelCase : Optional[Any] = self.feature_extraction_class.from_json_file(UpperCamelCase_) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict()) def a_ ( self : List[str]): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Tuple = feat_extract_first.save_pretrained(UpperCamelCase_)[0] check_json_file_has_correct_format(UpperCamelCase_) __UpperCAmelCase : List[Any] = self.feature_extraction_class.from_pretrained(UpperCamelCase_) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict()) def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase_)
487
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ : Any = False class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" pass @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Optional[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( image=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images _UpperCamelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
98
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowercase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=[10, 20, 30, 40] , __UpperCAmelCase=[2, 2, 3, 2] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=["stage2", "stage3", "stage4"] , __UpperCAmelCase=3 , __UpperCAmelCase=None , ) -> Optional[Any]: A : Tuple = parent A : Any = batch_size A : List[Any] = image_size A : Tuple = num_channels A : Any = num_stages A : Any = hidden_sizes A : List[str] = depths A : str = is_training A : Any = use_labels A : Any = intermediate_size A : List[str] = hidden_act A : List[Any] = type_sequence_label_size A : Optional[int] = initializer_range A : Tuple = out_features A : Tuple = num_labels A : Tuple = scope A : int = num_stages def snake_case ( self ) -> Optional[Any]: A : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Any = None if self.use_labels: A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Any = self.get_config() return config, pixel_values, labels def snake_case ( self ) -> Optional[int]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def snake_case ( self ) -> Tuple: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__UpperCAmelCase , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: A : List[Any] = UperNetForSemanticSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A : int = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def snake_case ( self ) -> Tuple: A : List[str] = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ) : Tuple = config_and_inputs A : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str = (UperNetForSemanticSegmentation,) if is_torch_available() else () UpperCAmelCase_ : Union[str, Any] = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} UpperCAmelCase_ : int = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : int = False UpperCAmelCase_ : Dict = False def snake_case ( self ) -> Union[str, Any]: A : int = UperNetModelTester(self ) A : Any = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def snake_case ( self ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self ) -> Optional[int]: return def snake_case ( self ) -> Any: A , A : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : int = model_class(__UpperCAmelCase ) A : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Union[str, Any] = [*signature.parameters.keys()] A : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def snake_case ( self ) -> List[str]: A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def snake_case ( self ) -> Optional[Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def snake_case ( self ) -> int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def snake_case ( self ) -> int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def snake_case ( self ) -> Any: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def snake_case ( self ) -> List[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case ( self ) -> Optional[Any]: pass def snake_case ( self ) -> Union[str, Any]: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): A : Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): A : List[str] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) A : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A : List[str] = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A , A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : List[str] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A : Any = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ) -> Tuple: A , A : Dict = self.model_tester.prepare_config_and_inputs_for_common() A : Dict = _config_zero_init(__UpperCAmelCase ) A : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: A : Any = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def snake_case ( self ) -> Tuple: pass @slow def snake_case ( self ) -> str: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Tuple = UperNetForSemanticSegmentation.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def snake_case__ ( ): A : Tuple = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) A : Optional[Any] = Image.open(lowerCamelCase_ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class __lowercase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ) -> Dict: A : List[Any] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) A : List[str] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(__UpperCAmelCase ) A : List[str] = prepare_img() A : str = processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) with torch.no_grad(): A : str = model(**__UpperCAmelCase ) A : Optional[int] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) A : List[Any] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) def snake_case ( self ) -> int: A : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) A : Any = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(__UpperCAmelCase ) A : str = prepare_img() A : List[Any] = processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) with torch.no_grad(): A : List[Any] = model(**__UpperCAmelCase ) A : List[str] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) A : Tuple = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
542
0
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __A: @staticmethod def lowercase__ ( *__UpperCamelCase : str , **__UpperCamelCase : Dict ): pass def __lowerCAmelCase ( UpperCAmelCase__ : Image ) -> str: lowerCamelCase_ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __A( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : int ): lowerCamelCase_ = DepthEstimationPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , __UpperCamelCase ) import datasets lowerCamelCase_ = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) lowerCamelCase_ = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , __UpperCamelCase , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def lowercase__ ( self : Optional[int] ): pass @slow @require_torch def lowercase__ ( self : List[Any] ): lowerCamelCase_ = """Intel/dpt-large""" lowerCamelCase_ = pipeline("""depth-estimation""" , model=__UpperCamelCase ) lowerCamelCase_ = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) lowerCamelCase_ = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 ) @require_torch def lowercase__ ( self : Dict ): # This is highly irregular to have no small tests. self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
103
from abc import ABC, abstractmethod from argparse import ArgumentParser class __A( UpperCAmelCase ): @staticmethod @abstractmethod def lowercase__ ( __UpperCamelCase : ArgumentParser ): raise NotImplementedError() @abstractmethod def lowercase__ ( self : Any ): raise NotImplementedError()
103
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCAmelCase__ : Optional[int] =logging.get_logger(__name__) @add_end_docstrings( __SCREAMING_SNAKE_CASE , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" if self.framework == "tf": SCREAMING_SNAKE_CASE_ : Optional[int] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": SCREAMING_SNAKE_CASE_ : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase__ ) else: raise ValueError('Unsupported framework' ) return masked_index def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.get_masked_index(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , F'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ): """simple docstring""" if return_tensors is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.framework SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.ensure_exactly_one_mask_token(lowerCAmelCase__ ) return model_inputs def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = model_inputs['input_ids'] return model_outputs def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__=5 , lowerCAmelCase__=None ): """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: SCREAMING_SNAKE_CASE_ : Dict = target_ids.shape[0] SCREAMING_SNAKE_CASE_ : Optional[int] = model_outputs['input_ids'][0] SCREAMING_SNAKE_CASE_ : Dict = model_outputs['logits'] if self.framework == "tf": SCREAMING_SNAKE_CASE_ : Any = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.numpy() SCREAMING_SNAKE_CASE_ : str = outputs[0, masked_index, :] SCREAMING_SNAKE_CASE_ : Optional[Any] = stable_softmax(lowerCAmelCase__ , axis=-1 ) if target_ids is not None: SCREAMING_SNAKE_CASE_ : Any = tf.gather_nd(tf.squeeze(lowerCAmelCase__ , 0 ) , target_ids.reshape(-1 , 1 ) ) SCREAMING_SNAKE_CASE_ : str = tf.expand_dims(lowerCAmelCase__ , 0 ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = topk.values.numpy(), topk.indices.numpy() else: SCREAMING_SNAKE_CASE_ : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase__ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample SCREAMING_SNAKE_CASE_ : int = outputs[0, masked_index, :] SCREAMING_SNAKE_CASE_ : Any = logits.softmax(dim=-1 ) if target_ids is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = probs[..., target_ids] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = probs.topk(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : int = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): SCREAMING_SNAKE_CASE_ : Dict = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place SCREAMING_SNAKE_CASE_ : str = input_ids.numpy().copy() if target_ids is not None: SCREAMING_SNAKE_CASE_ : Tuple = target_ids[p].tolist() SCREAMING_SNAKE_CASE_ : Tuple = p # Filter padding out: SCREAMING_SNAKE_CASE_ : int = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(lowerCAmelCase__ ) result.append(lowerCAmelCase__ ) if single_mask: return result[0] return result def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ): """simple docstring""" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [targets] try: SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer.get_vocab() except Exception: SCREAMING_SNAKE_CASE_ : str = {} SCREAMING_SNAKE_CASE_ : List[str] = [] for target in targets: SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab.get(lowerCAmelCase__ , lowerCAmelCase__ ) if id_ is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer( lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , max_length=1 , truncation=lowerCAmelCase__ , )['input_ids'] if len(lowerCAmelCase__ ) == 0: logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' 'We cannot replace it with anything meaningful, ignoring it' ) continue SCREAMING_SNAKE_CASE_ : List[str] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' F'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) SCREAMING_SNAKE_CASE_ : int = list(set(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) == 0: raise ValueError('At least one target must be provided when passed.' ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.array(lowerCAmelCase__ ) return target_ids def UpperCamelCase__ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = {} if targets is not None: SCREAMING_SNAKE_CASE_ : str = self.get_target_ids(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = target_ids if top_k is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) == 1: return outputs[0] return outputs
101
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): # initialize config if "resnet-50" in model_name: snake_case__ : List[Any] = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: snake_case__ : Dict = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) snake_case__ : str = DetrConfig(use_timm_backbone=snake_case_ , backbone_config=snake_case_ ) # set label attributes snake_case__ : Optional[int] = "panoptic" in model_name if is_panoptic: snake_case__ : Any = 250 else: snake_case__ : str = 91 snake_case__ : str = "huggingface/label-files" snake_case__ : Union[str, Any] = "coco-detection-id2label.json" snake_case__ : List[Any] = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) snake_case__ : Union[str, Any] = {int(snake_case_ ): v for k, v in idalabel.items()} snake_case__ : Dict = idalabel snake_case__ : str = {v: k for k, v in idalabel.items()} return config, is_panoptic def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ : Dict = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : str ): snake_case__ : str = state_dict.pop(snake_case_ ) snake_case__ : str = val def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : str=False ): snake_case__ : List[Any] = "" if is_panoptic: snake_case__ : Union[str, Any] = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case__ : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case__ : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : str = in_proj_weight[:256, :] snake_case__ : str = in_proj_bias[:256] snake_case__ : Dict = in_proj_weight[256:512, :] snake_case__ : List[str] = in_proj_bias[256:512] snake_case__ : int = in_proj_weight[-256:, :] snake_case__ : List[str] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention snake_case__ : Tuple = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case__ : List[str] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Dict = in_proj_weight[:256, :] snake_case__ : Union[str, Any] = in_proj_bias[:256] snake_case__ : Optional[int] = in_proj_weight[256:512, :] snake_case__ : Dict = in_proj_bias[256:512] snake_case__ : int = in_proj_weight[-256:, :] snake_case__ : Dict = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention snake_case__ : Dict = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) snake_case__ : Dict = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict snake_case__ : Tuple = in_proj_weight_cross_attn[:256, :] snake_case__ : List[str] = in_proj_bias_cross_attn[:256] snake_case__ : Dict = in_proj_weight_cross_attn[256:512, :] snake_case__ : Optional[Any] = in_proj_bias_cross_attn[256:512] snake_case__ : Optional[int] = in_proj_weight_cross_attn[-256:, :] snake_case__ : Optional[int] = in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case__ : List[Any] = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Dict=None , snake_case_ : str=False ): snake_case__, snake_case__ : Optional[int] = get_detr_config(snake_case_ ) # load original model from torch hub snake_case__ : Tuple = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F'''Converting model {model_name}...''' ) snake_case__ : int = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=snake_case_ ).eval() snake_case__ : List[Any] = detr.state_dict() # rename keys for src, dest in create_rename_keys(snake_case_ ): if is_panoptic: snake_case__ : Any = "detr." + src rename_key(snake_case_ , snake_case_ , snake_case_ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case_ , is_panoptic=snake_case_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case__ : Union[str, Any] = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): snake_case__ : Tuple = state_dict.pop(snake_case_ ) snake_case__ : Optional[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case__ : Optional[Any] = state_dict.pop(snake_case_ ) snake_case__ : Optional[int] = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: snake_case__ : str = state_dict.pop(snake_case_ ) snake_case__ : Dict = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): snake_case__ : Any = state_dict.pop(snake_case_ ) snake_case__ : Any = val # finally, create HuggingFace model and load state dict snake_case__ : str = DetrForSegmentation(snake_case_ ) if is_panoptic else DetrForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() # verify our conversion on an image snake_case__ : Tuple = "coco_panoptic" if is_panoptic else "coco_detection" snake_case__ : List[Any] = DetrImageProcessor(format=snake_case_ ) snake_case__ : str = processor(images=prepare_img() , return_tensors="pt" ) snake_case__ : List[str] = encoding["pixel_values"] snake_case__ : Union[str, Any] = detr(snake_case_ ) snake_case__ : str = model(snake_case_ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") __lowerCamelCase : Dict = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
297
0
from collections.abc import Callable import numpy as np def __UpperCamelCase ( A , A , A , A , A ): UpperCamelCase__ = int(np.ceil((x_end - xa) / step_size ) ) UpperCamelCase__ = np.zeros((n + 1,) ) UpperCamelCase__ = ya UpperCamelCase__ = xa for k in range(A ): UpperCamelCase__ = y[k] + step_size * ode_func(A , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
469
import math import tensorflow as tf from packaging import version def __UpperCamelCase ( A ): UpperCamelCase__ = tf.convert_to_tensor(A ) UpperCamelCase__ = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __UpperCamelCase ( A ): UpperCamelCase__ = tf.convert_to_tensor(A ) UpperCamelCase__ = tf.cast(math.pi , x.dtype ) UpperCamelCase__ = tf.cast(0.04_47_15 , x.dtype ) UpperCamelCase__ = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(A , 3 )) )) return x * cdf def __UpperCamelCase ( A ): UpperCamelCase__ = tf.convert_to_tensor(A ) return x * tf.tanh(tf.math.softplus(A ) ) def __UpperCamelCase ( A ): UpperCamelCase__ = tf.convert_to_tensor(A ) UpperCamelCase__ = tf.cast(0.04_47_15 , x.dtype ) UpperCamelCase__ = tf.cast(0.79_78_84_56_08 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __UpperCamelCase ( A ): UpperCamelCase__ = tf.convert_to_tensor(A ) UpperCamelCase__ = tf.cast(1.7_02 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __UpperCamelCase ( A ): return tf.clip_by_value(_gelu(A ) , -10 , 10 ) def __UpperCamelCase ( A , A=-1 ): UpperCamelCase__ , UpperCamelCase__ = tf.split(A , 2 , axis=A ) return a * tf.math.sigmoid(A ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def __UpperCamelCase ( A ): return tf.keras.activations.gelu(A , approximate=A ) __magic_name__ =tf.keras.activations.gelu __magic_name__ =approximate_gelu_wrap else: __magic_name__ =_gelu __magic_name__ =_gelu_new __magic_name__ ={ '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def __UpperCamelCase ( A ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
469
1
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class a : @staticmethod def UpperCAmelCase__ ( *snake_case__ : Any , **snake_case__ : List[str] ): """simple docstring""" pass def _UpperCAmelCase ( UpperCamelCase: Image ): """simple docstring""" __lowerCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class a ( unittest.TestCase ): lowercase_ : Union[str, Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCAmelCase__ ( self : str , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Optional[int] ): """simple docstring""" __lowerCAmelCase = DepthEstimationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Tuple ): """simple docstring""" __lowerCAmelCase = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , lowerCamelCase_ ) import datasets __lowerCAmelCase = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) __lowerCAmelCase = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , lowerCamelCase_ , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" pass @slow @require_torch def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __lowerCAmelCase = '''Intel/dpt-large''' __lowerCAmelCase = pipeline("depth-estimation" , model=lowerCamelCase_ ) __lowerCAmelCase = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) __lowerCAmelCase = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 2_9.3_0_4 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.6_6_2 ) @require_torch def UpperCAmelCase__ ( self : Any ): """simple docstring""" self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
611
'''simple docstring''' from __future__ import annotations def __UpperCamelCase( _A : list[int] , _A : int , _A : int , _A : int ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = array[indexa], array[indexa] def __UpperCamelCase( _A : list[int] , _A : int , _A : int , _A : int ): '''simple docstring''' if length > 1: UpperCAmelCase__ : List[Any] = int(length / 2 ) for i in range(_A , low + middle ): comp_and_swap(_A , _A , i + middle , _A ) bitonic_merge(_A , _A , _A , _A ) bitonic_merge(_A , low + middle , _A , _A ) def __UpperCamelCase( _A : list[int] , _A : int , _A : int , _A : int ): '''simple docstring''' if length > 1: UpperCAmelCase__ : Optional[int] = int(length / 2 ) bitonic_sort(_A , _A , _A , 1 ) bitonic_sort(_A , low + middle , _A , 0 ) bitonic_merge(_A , _A , _A , _A ) if __name__ == "__main__": UpperCamelCase__ : Dict = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase__ : Tuple = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
614
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCamelCase : int = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase ( _lowerCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase__ =CanineTokenizer UpperCamelCase__ =False def UpperCAmelCase__ ( self : Tuple ) -> List[str]: super().setUp() __magic_name__ : Optional[int] = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: return CanineTokenizer.from_pretrained('''google/canine-s''' ) def UpperCAmelCase__ ( self : Dict , **lowerCamelCase_ : Optional[int] ) -> CanineTokenizer: __magic_name__ : int = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) __magic_name__ : List[str] = 1024 return tokenizer @require_torch def UpperCAmelCase__ ( self : int ) -> int: __magic_name__ : List[Any] = self.canine_tokenizer __magic_name__ : Any = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off __magic_name__ : Optional[int] = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: on __magic_name__ : List[Any] = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors='''pt''' ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) __magic_name__ : Tuple = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]: __magic_name__ : Any = self.canine_tokenizer __magic_name__ : Dict = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] __magic_name__ : Dict = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' , lowerCamelCase_ ) self.assertIn('''attention_mask''' , lowerCamelCase_ ) self.assertIn('''token_type_ids''' , lowerCamelCase_ ) @require_torch def UpperCAmelCase__ ( self : int ) -> Optional[int]: __magic_name__ : int = self.canine_tokenizer __magic_name__ : Dict = [ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] __magic_name__ : List[Any] = tokenizer( text_target=lowerCamelCase_ , max_length=32 , padding='''max_length''' , truncation=lowerCamelCase_ , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: # safety check on max_len default value so we are sure the test works __magic_name__ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : Any = ''' He is very happy, UNwant\u00E9d,running''' __magic_name__ : str = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) __magic_name__ : str = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) __magic_name__ : Tuple = after_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) shutil.rmtree(lowerCamelCase_ ) __magic_name__ : Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ : Any = tempfile.mkdtemp() __magic_name__ : Any = ''' He is very happy, UNwant\u00E9d,running''' __magic_name__ : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __magic_name__ : str = chr(0XE007 ) additional_special_tokens.append(lowerCamelCase_ ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __magic_name__ : Tuple = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) __magic_name__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_ ) __magic_name__ : Optional[int] = after_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertIn(lowerCamelCase_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ : List[Any] = tokenizer.__class__.from_pretrained(lowerCamelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCamelCase_ ) def UpperCAmelCase__ ( self : int ) -> Optional[int]: __magic_name__ : Any = self.get_tokenizers(do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __magic_name__ , __magic_name__ : str = self.get_clean_sequence(lowerCamelCase_ ) # a special token for Canine can be defined as follows: __magic_name__ : Optional[Any] = 0XE005 __magic_name__ : Optional[Any] = chr(lowerCamelCase_ ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) __magic_name__ : Optional[int] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(len(lowerCamelCase_ ) , 1 ) __magic_name__ : Union[str, Any] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowerCamelCase_ ) __magic_name__ : str = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) __magic_name__ : Optional[Any] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , input_encoded + special_token_id ) __magic_name__ : Any = tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: __magic_name__ : str = self.get_tokenizers(do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __magic_name__ : Tuple = chr(0XE005 ) __magic_name__ : Optional[int] = chr(0XE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowerCamelCase_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) __magic_name__ : List[str] = tokenizer.tokenize(lowerCamelCase_ ) __magic_name__ : Optional[int] = tokenizer.tokenize(lowerCamelCase_ ) self.assertEqual(len(lowerCamelCase_ ) , 1 ) self.assertEqual(len(lowerCamelCase_ ) , 1 ) self.assertEqual(token_a[0] , lowerCamelCase_ ) self.assertEqual(token_a[0] , lowerCamelCase_ ) @require_tokenizers def UpperCAmelCase__ ( self : str ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __magic_name__ : str = 0XE006 __magic_name__ : Optional[int] = chr(lowerCamelCase_ ) __magic_name__ : Optional[Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowerCamelCase_ ) tokenizer.from_pretrained(lowerCamelCase_ ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: __magic_name__ : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: __magic_name__ : List[Any] = json.load(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: __magic_name__ : int = json.load(lowerCamelCase_ ) # a special token for Canine can be defined as follows: __magic_name__ : List[str] = 0XE006 __magic_name__ : List[str] = chr(lowerCamelCase_ ) __magic_name__ : int = [new_token_a] __magic_name__ : str = [new_token_a] with open(os.path.join(lowerCamelCase_ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCamelCase_ , lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCamelCase_ , lowerCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ : int = tokenizer_class.from_pretrained(lowerCamelCase_ , extra_ids=0 ) self.assertIn(lowerCamelCase_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __magic_name__ : Optional[int] = 0XE007 __magic_name__ : List[str] = chr(lowerCamelCase_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ : List[str] = [AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ )] __magic_name__ : str = tokenizer_class.from_pretrained( lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , extra_ids=0 ) self.assertIn(lowerCamelCase_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def UpperCAmelCase__ ( self : Any ) -> List[str]: __magic_name__ : Optional[int] = self.get_tokenizers(do_lower_case=lowerCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __magic_name__ : Union[str, Any] = '''hello world''' if self.space_between_special_tokens: __magic_name__ : List[Any] = '''[CLS] hello world [SEP]''' else: __magic_name__ : List[str] = input __magic_name__ : Dict = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) __magic_name__ : Union[str, Any] = tokenizer.decode(lowerCamelCase_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowerCamelCase_ , [output, output.lower()] ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: __magic_name__ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __magic_name__ : str = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] __magic_name__ : Any = '''a''' __magic_name__ : List[str] = ord(lowerCamelCase_ ) for attr in attributes_list: setattr(lowerCamelCase_ , attr + '''_id''' , lowerCamelCase_ ) self.assertEqual(getattr(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(getattr(lowerCamelCase_ , attr + '''_id''' ) , lowerCamelCase_ ) setattr(lowerCamelCase_ , attr + '''_id''' , lowerCamelCase_ ) self.assertEqual(getattr(lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(getattr(lowerCamelCase_ , attr + '''_id''' ) , lowerCamelCase_ ) setattr(lowerCamelCase_ , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(lowerCamelCase_ , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(lowerCamelCase_ , '''additional_special_tokens_ids''' ) , [] ) __magic_name__ : Any = 0XE006 __magic_name__ : str = chr(lowerCamelCase_ ) setattr(lowerCamelCase_ , '''additional_special_tokens_ids''' , [additional_special_token_id] ) self.assertListEqual(getattr(lowerCamelCase_ , '''additional_special_tokens''' ) , [additional_special_token] ) self.assertListEqual(getattr(lowerCamelCase_ , '''additional_special_tokens_ids''' ) , [additional_special_token_id] ) def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: pass def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: pass def UpperCAmelCase__ ( self : Tuple ) -> Any: pass def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: pass def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: pass def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: pass def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: pass def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]: pass
501
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ : List[str] = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE__ : Dict = { """roberta-base""": 5_12, """roberta-large""": 5_12, """roberta-large-mnli""": 5_12, """distilroberta-base""": 5_12, """roberta-base-openai-detector""": 5_12, """roberta-large-openai-detector""": 5_12, } class UpperCAmelCase_ ( __lowercase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ['''input_ids''', '''attention_mask'''] __lowerCamelCase = RobertaTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="replace" , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase=False , _lowerCAmelCase=True , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase , **_lowerCAmelCase , ) UpperCAmelCase__ : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowerCAmelCase ) != add_prefix_space: UpperCAmelCase__ : Union[str, Any] = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) UpperCAmelCase__ : Optional[Any] = add_prefix_space UpperCAmelCase__ : List[str] = pre_tok_class(**_lowerCAmelCase ) UpperCAmelCase__ : int = add_prefix_space UpperCAmelCase__ : Dict = """post_processor""" UpperCAmelCase__ : List[Any] = getattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase ) if tokenizer_component_instance: UpperCAmelCase__ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase__ : Optional[Any] = tuple(state["""sep"""] ) if "cls" in state: UpperCAmelCase__ : str = tuple(state["""cls"""] ) UpperCAmelCase__ : Optional[int] = False if state.get("""add_prefix_space""" , _lowerCAmelCase ) != add_prefix_space: UpperCAmelCase__ : Union[str, Any] = add_prefix_space UpperCAmelCase__ : List[str] = True if state.get("""trim_offsets""" , _lowerCAmelCase ) != trim_offsets: UpperCAmelCase__ : List[str] = trim_offsets UpperCAmelCase__ : Any = True if changes_to_apply: UpperCAmelCase__ : Tuple = getattr(_lowerCAmelCase , state.pop("""type""" ) ) UpperCAmelCase__ : str = component_class(**_lowerCAmelCase ) setattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase ) @property def __UpperCAmelCase ( self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self , _lowerCAmelCase ): UpperCAmelCase__ : List[Any] = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else value UpperCAmelCase__ : List[Any] = value def __UpperCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): UpperCAmelCase__ : Any = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def __UpperCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): UpperCAmelCase__ : List[str] = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): UpperCAmelCase__ : int = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=None ): UpperCAmelCase__ : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): UpperCAmelCase__ : List[str] = [self.sep_token_id] UpperCAmelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
79
'''simple docstring''' from __future__ import annotations __UpperCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the reference grid __snake_case : Tuple = 1 __snake_case : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_lowerCamelCase ) ) ] # the action grid __snake_case : List[str] = init[0] __snake_case : str = init[1] __snake_case : int = 0 __snake_case : int = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : List[str] = [[f, g, x, y]] __snake_case : Any = False # flag that is set when search is complete __snake_case : int = False # flag set if we can't find expand while not found and not resign: if len(_lowerCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : Tuple = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : List[Any] = next_cell[3] __snake_case : int = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Optional[Any] = True else: for i in range(len(_lowerCamelCase ) ): # to try out different valid actions __snake_case : Union[str, Any] = x + DIRECTIONS[i][0] __snake_case : str = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_lowerCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : str = g + cost __snake_case : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : List[str] = 1 __snake_case : Optional[int] = i __snake_case : List[str] = [] __snake_case : Optional[int] = goal[0] __snake_case : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Dict = x - DIRECTIONS[action[x][y]][0] __snake_case : int = y - DIRECTIONS[action[x][y]][1] __snake_case : Optional[int] = xa __snake_case : int = ya invpath.append([x, y] ) __snake_case : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): path.append(invpath[len(_lowerCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __UpperCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __UpperCamelCase = [0, 0] # all coordinates are given in format [y,x] __UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1] __UpperCamelCase = 1 # the cost map which pushes the path closer to the goal __UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __UpperCamelCase = 99 __UpperCamelCase , __UpperCamelCase = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
26
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : int , snake_case_ : float = 1 / sqrt(2 ) ) ->IIRFilter: '''simple docstring''' _lowercase : Dict = tau * frequency / samplerate _lowercase : Dict = sin(snake_case_ ) _lowercase : Dict = cos(snake_case_ ) _lowercase : Tuple = _sin / (2 * q_factor) _lowercase : Optional[Any] = (1 - _cos) / 2 _lowercase : Union[str, Any] = 1 - _cos _lowercase : Optional[Any] = 1 + alpha _lowercase : Union[str, Any] = -2 * _cos _lowercase : Optional[Any] = 1 - alpha _lowercase : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : int , snake_case_ : float = 1 / sqrt(2 ) ) ->IIRFilter: '''simple docstring''' _lowercase : List[str] = tau * frequency / samplerate _lowercase : Optional[Any] = sin(snake_case_ ) _lowercase : int = cos(snake_case_ ) _lowercase : str = _sin / (2 * q_factor) _lowercase : Optional[Any] = (1 + _cos) / 2 _lowercase : Tuple = -1 - _cos _lowercase : str = 1 + alpha _lowercase : List[str] = -2 * _cos _lowercase : Any = 1 - alpha _lowercase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : int , snake_case_ : float = 1 / sqrt(2 ) ) ->IIRFilter: '''simple docstring''' _lowercase : List[str] = tau * frequency / samplerate _lowercase : List[Any] = sin(snake_case_ ) _lowercase : Dict = cos(snake_case_ ) _lowercase : Optional[int] = _sin / (2 * q_factor) _lowercase : Dict = _sin / 2 _lowercase : int = 0 _lowercase : Optional[Any] = -ba _lowercase : Optional[Any] = 1 + alpha _lowercase : List[Any] = -2 * _cos _lowercase : str = 1 - alpha _lowercase : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : int , snake_case_ : float = 1 / sqrt(2 ) ) ->IIRFilter: '''simple docstring''' _lowercase : int = tau * frequency / samplerate _lowercase : Tuple = sin(snake_case_ ) _lowercase : List[Any] = cos(snake_case_ ) _lowercase : str = _sin / (2 * q_factor) _lowercase : Any = 1 - alpha _lowercase : Optional[Any] = -2 * _cos _lowercase : List[Any] = 1 + alpha _lowercase : Any = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : int , snake_case_ : float , snake_case_ : float = 1 / sqrt(2 ) , ) ->IIRFilter: '''simple docstring''' _lowercase : List[Any] = tau * frequency / samplerate _lowercase : Optional[Any] = sin(snake_case_ ) _lowercase : Tuple = cos(snake_case_ ) _lowercase : List[Any] = _sin / (2 * q_factor) _lowercase : int = 10 ** (gain_db / 40) _lowercase : Tuple = 1 + alpha * big_a _lowercase : Tuple = -2 * _cos _lowercase : Union[str, Any] = 1 - alpha * big_a _lowercase : Dict = 1 + alpha / big_a _lowercase : Dict = -2 * _cos _lowercase : Union[str, Any] = 1 - alpha / big_a _lowercase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : int , snake_case_ : float , snake_case_ : float = 1 / sqrt(2 ) , ) ->IIRFilter: '''simple docstring''' _lowercase : Optional[Any] = tau * frequency / samplerate _lowercase : List[str] = sin(snake_case_ ) _lowercase : Any = cos(snake_case_ ) _lowercase : Dict = _sin / (2 * q_factor) _lowercase : int = 10 ** (gain_db / 40) _lowercase : str = (big_a + 1) - (big_a - 1) * _cos _lowercase : Optional[int] = (big_a + 1) + (big_a - 1) * _cos _lowercase : str = (big_a - 1) - (big_a + 1) * _cos _lowercase : List[str] = (big_a - 1) + (big_a + 1) * _cos _lowercase : Any = 2 * sqrt(snake_case_ ) * alpha _lowercase : Optional[Any] = big_a * (pmc + aaa) _lowercase : Dict = 2 * big_a * mpc _lowercase : Any = big_a * (pmc - aaa) _lowercase : Dict = ppmc + aaa _lowercase : Dict = -2 * pmpc _lowercase : str = ppmc - aaa _lowercase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : int , snake_case_ : float , snake_case_ : float = 1 / sqrt(2 ) , ) ->IIRFilter: '''simple docstring''' _lowercase : List[Any] = tau * frequency / samplerate _lowercase : List[Any] = sin(snake_case_ ) _lowercase : int = cos(snake_case_ ) _lowercase : Union[str, Any] = _sin / (2 * q_factor) _lowercase : int = 10 ** (gain_db / 40) _lowercase : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _lowercase : Tuple = (big_a + 1) + (big_a - 1) * _cos _lowercase : List[Any] = (big_a - 1) - (big_a + 1) * _cos _lowercase : Optional[Any] = (big_a - 1) + (big_a + 1) * _cos _lowercase : Tuple = 2 * sqrt(snake_case_ ) * alpha _lowercase : Optional[int] = big_a * (ppmc + aaa) _lowercase : str = -2 * big_a * pmpc _lowercase : Union[str, Any] = big_a * (ppmc - aaa) _lowercase : List[Any] = pmc + aaa _lowercase : List[str] = 2 * mpc _lowercase : Optional[int] = pmc - aaa _lowercase : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
411
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCamelCase__ = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _SCREAMING_SNAKE_CASE( snake_case_ : int ) ->str: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _SCREAMING_SNAKE_CASE( snake_case_ : List[Any] , snake_case_ : Dict ) ->List[Any]: '''simple docstring''' if args.student_type == "roberta": _lowercase : List[str] = False elif args.student_type == "gpt2": _lowercase : List[Any] = False def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : List[Any] ) ->Any: '''simple docstring''' if args.student_type == "roberta": _lowercase : Optional[int] = False def _SCREAMING_SNAKE_CASE( ) ->Any: '''simple docstring''' _lowercase : Union[str, Any] = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=snake_case_ , required=snake_case_ , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=snake_case_ , required=snake_case_ , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=snake_case_ , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=snake_case_ , required=snake_case_ , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=snake_case_ , type=snake_case_ , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=snake_case_ , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=snake_case_ , required=snake_case_ , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=snake_case_ , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=snake_case_ , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=snake_case_ , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=snake_case_ , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=snake_case_ , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=snake_case_ , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.1_5 , type=snake_case_ , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=snake_case_ , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=snake_case_ , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=snake_case_ , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=snake_case_ , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=snake_case_ , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=snake_case_ , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case_ , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.0_5 , type=snake_case_ , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=snake_case_ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=snake_case_ , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=snake_case_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=snake_case_ , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.0_2 , type=snake_case_ , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=snake_case_ , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=snake_case_ , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=snake_case_ , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=snake_case_ , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=snake_case_ , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=snake_case_ , default=40_00 , help='''Checkpoint interval.''' ) _lowercase : List[str] = parser.parse_args() sanity_checks(snake_case_ ) # ARGS # init_gpu_params(snake_case_ ) set_seed(snake_case_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(F"Param: {args}" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(snake_case_ ) , snake_case_ , indent=4 ) git_log(args.dump_path ) _lowercase , _lowercase , _lowercase : Dict = MODEL_CLASSES[args.student_type] _lowercase , _lowercase , _lowercase : int = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _lowercase : Optional[Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _lowercase : Union[str, Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _lowercase : Optional[Any] = tokenizer.all_special_tokens.index(snake_case_ ) _lowercase : Any = tokenizer.all_special_ids[idx] logger.info(F"Special tokens {special_tok_ids}" ) _lowercase : Union[str, Any] = special_tok_ids _lowercase : Union[str, Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"Loading data from {args.data_file}" ) with open(args.data_file , '''rb''' ) as fp: _lowercase : List[Any] = pickle.load(snake_case_ ) if args.mlm: logger.info(F"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , '''rb''' ) as fp: _lowercase : Any = pickle.load(snake_case_ ) _lowercase : List[str] = np.maximum(snake_case_ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _lowercase : Any = 0.0 # do not predict special tokens _lowercase : Dict = torch.from_numpy(snake_case_ ) else: _lowercase : str = None _lowercase : str = LmSeqsDataset(params=snake_case_ , data=snake_case_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F"Loading student config from {args.student_config}" ) _lowercase : str = student_config_class.from_pretrained(args.student_config ) _lowercase : List[str] = True if args.student_pretrained_weights is not None: logger.info(F"Loading pretrained weights from {args.student_pretrained_weights}" ) _lowercase : int = student_model_class.from_pretrained(args.student_pretrained_weights , config=snake_case_ ) else: _lowercase : Optional[int] = student_model_class(snake_case_ ) if args.n_gpu > 0: student.to(F"cuda:{args.local_rank}" ) logger.info('''Student loaded.''' ) # TEACHER # _lowercase : str = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=snake_case_ ) if args.n_gpu > 0: teacher.to(F"cuda:{args.local_rank}" ) logger.info(F"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(snake_case_ , snake_case_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(snake_case_ , snake_case_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _lowercase : int = Distiller( params=snake_case_ , dataset=snake_case_ , token_probs=snake_case_ , student=snake_case_ , teacher=snake_case_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
411
1
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(snake_case ) class lowerCamelCase__ ( snake_case ): def __init__( self ,**A ): super().__init__(**A ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self ,A ,**A ): return super().__call__(A ,**A ) def _UpperCamelCase ( self ,**A ): UpperCAmelCase = {} if "candidate_labels" in kwargs: UpperCAmelCase = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: UpperCAmelCase = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _UpperCamelCase ( self ,A ,A=None ,A="This is a photo of {}." ): UpperCAmelCase = load_image(A ) UpperCAmelCase = self.image_processor(images=[image] ,return_tensors=self.framework ) UpperCAmelCase = candidate_labels UpperCAmelCase = [hypothesis_template.format(A ) for x in candidate_labels] UpperCAmelCase = self.tokenizer(A ,return_tensors=self.framework ,padding=A ) UpperCAmelCase = [text_inputs] return inputs def _UpperCamelCase ( self ,A ): UpperCAmelCase = model_inputs.pop("""candidate_labels""" ) UpperCAmelCase = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,A ): UpperCAmelCase = text_inputs[0] else: # Batching case. UpperCAmelCase = text_inputs[0][0] UpperCAmelCase = self.model(**A ,**A ) UpperCAmelCase = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def _UpperCamelCase ( self ,A ): UpperCAmelCase = model_outputs.pop("""candidate_labels""" ) UpperCAmelCase = model_outputs["""logits"""][0] if self.framework == "pt": UpperCAmelCase = logits.softmax(dim=-1 ).squeeze(-1 ) UpperCAmelCase = probs.tolist() if not isinstance(A ,A ): UpperCAmelCase = [scores] elif self.framework == "tf": UpperCAmelCase = stable_softmax(A ,axis=-1 ) UpperCAmelCase = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) UpperCAmelCase = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(A ,A ) ,key=lambda A : -x[0] ) ] return result
341
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCamelCase__ : def __init__( self ,A ,A=13 ,A=7 ,A=True ,A=True ,A=True ,A=99 ,A=32 ,A=5 ,A=4 ,A=37 ,A="gelu" ,A=0.1 ,A=0.1 ,A=512 ,A=16 ,A=2 ,A=0.02 ,A=3 ,A=4 ,A=None ,): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = self.vocab_size - 1 def _UpperCamelCase ( self ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _UpperCamelCase ( self ,A ,A ,A ,A ,*A ): UpperCAmelCase = OpenAIGPTModel(config=A ) model.to(A ) model.eval() UpperCAmelCase = model(A ,token_type_ids=A ,head_mask=A ) UpperCAmelCase = model(A ,token_type_ids=A ) UpperCAmelCase = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,*A ): UpperCAmelCase = OpenAIGPTLMHeadModel(A ) model.to(A ) model.eval() UpperCAmelCase = model(A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,*A ): UpperCAmelCase = OpenAIGPTDoubleHeadsModel(A ) model.to(A ) model.eval() UpperCAmelCase = model(A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,*A ): UpperCAmelCase = self.num_labels UpperCAmelCase = OpenAIGPTForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase = model(A ,token_type_ids=A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class lowerCamelCase__ ( snake_case , snake_case , snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _UpperCamelCase ( self ,A ,A ,A=False ): UpperCAmelCase = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=A ,) UpperCAmelCase = inputs_dict["""labels"""] UpperCAmelCase = inputs_dict["""labels"""] UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=A ,) UpperCAmelCase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) return inputs_dict def _UpperCamelCase ( self ): UpperCAmelCase = OpenAIGPTModelTester(self ) UpperCAmelCase = ConfigTester(self ,config_class=A ,n_embd=37 ) def _UpperCamelCase ( self ): self.config_tester.run_common_tests() def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A ) @slow def _UpperCamelCase ( self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = OpenAIGPTModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class lowerCamelCase__ ( unittest.TestCase ): @slow def _UpperCamelCase ( self ): UpperCAmelCase = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(A ) UpperCAmelCase = torch.tensor([[481, 4_735, 544]] ,dtype=torch.long ,device=A ) # the president is UpperCAmelCase = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCAmelCase = model.generate(A ,do_sample=A ) self.assertListEqual(output_ids[0].tolist() ,A )
341
1
def _SCREAMING_SNAKE_CASE ( __lowercase : str ) -> bool: """simple docstring""" __A = 0 for ch in input_str: __A = ord(__lowercase ) __A = pow(2 , __lowercase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
199
from typing import TYPE_CHECKING from ...utils import _LazyModule __a : Optional[int] = {"tokenization_bertweet": ["BertweetTokenizer"]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys __a : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
199
1
from __future__ import annotations class lowercase : def __init__( self , snake_case=None ): snake_case_ = data snake_case_ = None def __repr__( self ): snake_case_ = [] snake_case_ = self while temp: string_rep.append(F'''{temp.data}''' ) snake_case_ = temp.next return "->".join(snake_case ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if not elements_list: raise Exception('The Elements List is empty' ) snake_case_ = snake_case_ = Node(elements_list[0] ) for i in range(1 , len(UpperCamelCase__ ) ): snake_case_ = Node(elements_list[i] ) snake_case_ = current.next return head def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if head_node is not None and isinstance(UpperCamelCase__ , UpperCamelCase__ ): print_reverse(head_node.next ) print(head_node.data ) def __lowerCamelCase ( ): '''simple docstring''' from doctest import testmod testmod() snake_case_ = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(UpperCamelCase__ ) print('Elements in Reverse:' ) print_reverse(UpperCamelCase__ ) if __name__ == "__main__": main()
362
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : Dict = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class lowercase ( lowercase_ , lowercase_ ): __SCREAMING_SNAKE_CASE : List[str] = '''resnet''' __SCREAMING_SNAKE_CASE : Dict = ['''basic''', '''bottleneck'''] def __init__( self , snake_case=3 , snake_case=64 , snake_case=[256, 512, 1024, 2048] , snake_case=[3, 4, 6, 3] , snake_case="bottleneck" , snake_case="relu" , snake_case=False , snake_case=None , snake_case=None , **snake_case , ): super().__init__(**snake_case ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(snake_case ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : List[Any] = version.parse('''1.11''' ) @property def a ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def a ( self ): return 1e-3
362
1
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def lowercase__ ( ) -> Optional[Any]: '''simple docstring''' a__ : Any = 9 a__ : List[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] a__ : Optional[Any] = kruskal(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Any = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(lowerCAmelCase__ ) == sorted(lowerCAmelCase__ )
251
"""simple docstring""" def lowercase__ ( lowerCAmelCase__ : int ) -> bool: '''simple docstring''' if num < 0: return False a__ : int = num a__ : int = 0 while num > 0: a__ : Dict = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
251
1
import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowerCamelCase (__UpperCamelCase ): _lowercase = "naver-clova-ix/donut-base-finetuned-docvqa" _lowercase = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) _lowercase = "document_qa" _lowercase = AutoProcessor _lowercase = VisionEncoderDecoderModel _lowercase = ["image", "text"] _lowercase = ["text"] def __init__( self: Union[str, Any],*A_: Any,**A_: Any ): '''simple docstring''' if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*snake_case__,**snake_case__ ) def snake_case_ ( self: Dict,A_: "Image",A_: str ): '''simple docstring''' __UpperCamelCase = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' __UpperCamelCase = task_prompt.replace('{user_input}',snake_case__ ) __UpperCamelCase = self.pre_processor.tokenizer( snake_case__,add_special_tokens=snake_case__,return_tensors='pt' ).input_ids __UpperCamelCase = self.pre_processor(snake_case__,return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def snake_case_ ( self: Tuple,A_: Tuple ): '''simple docstring''' return self.model.generate( inputs['pixel_values'].to(self.device ),decoder_input_ids=inputs['decoder_input_ids'].to(self.device ),max_length=self.model.decoder.config.max_position_embeddings,early_stopping=snake_case__,pad_token_id=self.pre_processor.tokenizer.pad_token_id,eos_token_id=self.pre_processor.tokenizer.eos_token_id,use_cache=snake_case__,num_beams=1,bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]],return_dict_in_generate=snake_case__,).sequences def snake_case_ ( self: Dict,A_: Tuple ): '''simple docstring''' __UpperCamelCase = self.pre_processor.batch_decode(snake_case__ )[0] __UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.eos_token,'' ) __UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.pad_token,'' ) __UpperCamelCase = re.sub(r'<.*?>','',snake_case__,count=1 ).strip() # remove first task start token __UpperCamelCase = self.pre_processor.tokenajson(snake_case__ ) return sequence["answer"]
1
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return abs(lowerCamelCase__ ) if a == 0 else greatest_common_divisor(b % a , lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while y: # --> when y=0 then loop will terminate and return x as final GCD. lowerCAmelCase__ , lowerCAmelCase__ = y, x % y return abs(lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" try: lowerCAmelCase__ = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) lowerCAmelCase__ = int(nums[0] ) lowerCAmelCase__ = int(nums[1] ) print( f"""greatest_common_divisor({num_a}, {num_a}) = """ f"""{greatest_common_divisor(lowerCamelCase__ , lowerCamelCase__ )}""" ) print(f"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(lowerCamelCase__ , lowerCamelCase__ )}""" ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
644
0
import heapq def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : dict ) -> set[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__UpperCamelCase , [-1 * len(__UpperCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices SCREAMING_SNAKE_CASE__ = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices SCREAMING_SNAKE_CASE__ = heapq.heappop(__UpperCamelCase )[1][0] chosen_vertices.add(__UpperCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: SCREAMING_SNAKE_CASE__ = elem[1][1].index(__UpperCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__UpperCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase : Dict = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
379
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : List[Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
379
1
import numpy as np import datasets SCREAMING_SNAKE_CASE__ = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' SCREAMING_SNAKE_CASE__ = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' SCREAMING_SNAKE_CASE__ = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'X': datasets.Sequence(datasets.Value('float' , id='sequence' ) , id='X' ), } ) , ) def _a ( self : Tuple , _snake_case : Union[str, Any] , _snake_case : Any ): """simple docstring""" A__ = np.array(_snake_case ) A__ = np.array(_snake_case ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('Expected `X` to be a 2D vector' ) if len(reference_distribution.shape ) != 2: raise ValueError('Expected `reference_distribution` to be a 2D vector' ) if reference_distribution.shape[0] < 2: raise ValueError( 'Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension' ) # Get mahalanobis distance for each prediction A__ = X - np.mean(_snake_case ) A__ = np.cov(reference_distribution.T ) try: A__ = np.linalg.inv(_snake_case ) except np.linalg.LinAlgError: A__ = np.linalg.pinv(_snake_case ) A__ = np.dot(_snake_case , _snake_case ) A__ = np.dot(_snake_case , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
9
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : jnp.ndarray _UpperCAmelCase : jnp.ndarray class __SCREAMING_SNAKE_CASE ( nn.Module ): _UpperCAmelCase : int _UpperCAmelCase : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) _UpperCAmelCase : jnp.dtype = jnp.floataa def __lowerCamelCase ( self : str ) ->Any: lowerCamelCase__ : List[str] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Any = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCamelCase__ : Dict = self.block_out_channels[i] lowerCamelCase__ : Union[str, Any] = self.block_out_channels[i + 1] lowerCamelCase__ : Dict = nn.Conv( A , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(A ) lowerCamelCase__ : Union[str, Any] = nn.Conv( A , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(A ) lowerCamelCase__ : int = blocks lowerCamelCase__ : List[str] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Any , A : Dict ) ->int: lowerCamelCase__ : Tuple = self.conv_in(A ) lowerCamelCase__ : Dict = nn.silu(A ) for block in self.blocks: lowerCamelCase__ : Optional[int] = block(A ) lowerCamelCase__ : Optional[int] = nn.silu(A ) lowerCamelCase__ : Union[str, Any] = self.conv_out(A ) return embedding @flax_register_to_config class __SCREAMING_SNAKE_CASE ( nn.Module ,lowerCAmelCase_ ,lowerCAmelCase_ ): _UpperCAmelCase : int = 3_2 _UpperCAmelCase : int = 4 _UpperCAmelCase : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _UpperCAmelCase : Union[bool, Tuple[bool]] = False _UpperCAmelCase : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) _UpperCAmelCase : int = 2 _UpperCAmelCase : Union[int, Tuple[int]] = 8 _UpperCAmelCase : Optional[Union[int, Tuple[int]]] = None _UpperCAmelCase : int = 1_2_8_0 _UpperCAmelCase : float = 0.0 _UpperCAmelCase : bool = False _UpperCAmelCase : jnp.dtype = jnp.floataa _UpperCAmelCase : bool = True _UpperCAmelCase : int = 0 _UpperCAmelCase : str = "rgb" _UpperCAmelCase : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def __lowerCamelCase ( self : int , A : jax.random.KeyArray ) ->FrozenDict: # init input tensors lowerCamelCase__ : Optional[Any] = (1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase__ : List[Any] = jnp.zeros(A , dtype=jnp.floataa ) lowerCamelCase__ : int = jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase__ : List[str] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase__ : int = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCamelCase__ : Union[str, Any] = jnp.zeros(A , dtype=jnp.floataa ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] = jax.random.split(A ) lowerCamelCase__ : Any = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(A , A , A , A , A )["params"] def __lowerCamelCase ( self : List[Any] ) ->Dict: lowerCamelCase__ : int = self.block_out_channels lowerCamelCase__ : Tuple = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase__ : Optional[Any] = self.num_attention_heads or self.attention_head_dim # input lowerCamelCase__ : List[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase__ : Optional[Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase__ : int = FlaxTimestepEmbedding(A , dtype=self.dtype ) lowerCamelCase__ : int = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCamelCase__ : Optional[int] = self.only_cross_attention if isinstance(A , A ): lowerCamelCase__ : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(A , A ): lowerCamelCase__ : Tuple = (num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : Optional[int] = block_out_channels[0] lowerCamelCase__ : Tuple = nn.Conv( A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A ) for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase__ : Any = output_channel lowerCamelCase__ : int = block_out_channels[i] lowerCamelCase__ : Dict = i == len(A ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase__ : Tuple = FlaxCrossAttnDownBlockaD( in_channels=A , out_channels=A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCamelCase__ : Optional[Any] = FlaxDownBlockaD( in_channels=A , out_channels=A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(A ) for _ in range(self.layers_per_block ): lowerCamelCase__ : str = nn.Conv( A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A ) if not is_final_block: lowerCamelCase__ : int = nn.Conv( A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A ) lowerCamelCase__ : Union[str, Any] = down_blocks lowerCamelCase__ : Tuple = controlnet_down_blocks # mid lowerCamelCase__ : Dict = block_out_channels[-1] lowerCamelCase__ : Any = FlaxUNetMidBlockaDCrossAttn( in_channels=A , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCamelCase__ : int = nn.Conv( A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Any , A : Dict , A : Tuple , A : List[str] , A : int , A : float = 1.0 , A : bool = True , A : bool = False , ) ->Union[FlaxControlNetOutput, Tuple]: lowerCamelCase__ : List[Any] = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCamelCase__ : Union[str, Any] = jnp.flip(A , axis=1 ) # 1. time if not isinstance(A , jnp.ndarray ): lowerCamelCase__ : Tuple = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(A , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase__ : str = timesteps.astype(dtype=jnp.floataa ) lowerCamelCase__ : Optional[Any] = jnp.expand_dims(A , 0 ) lowerCamelCase__ : Dict = self.time_proj(A ) lowerCamelCase__ : List[Any] = self.time_embedding(A ) # 2. pre-process lowerCamelCase__ : int = jnp.transpose(A , (0, 2, 3, 1) ) lowerCamelCase__ : List[Any] = self.conv_in(A ) lowerCamelCase__ : Dict = jnp.transpose(A , (0, 2, 3, 1) ) lowerCamelCase__ : List[str] = self.controlnet_cond_embedding(A ) sample += controlnet_cond # 3. down lowerCamelCase__ : List[Any] = (sample,) for down_block in self.down_blocks: if isinstance(A , A ): lowerCamelCase__ , lowerCamelCase__ : List[str] = down_block(A , A , A , deterministic=not train ) else: lowerCamelCase__ , lowerCamelCase__ : str = down_block(A , A , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCamelCase__ : Any = self.mid_block(A , A , A , deterministic=not train ) # 5. contronet blocks lowerCamelCase__ : Optional[Any] = () for down_block_res_sample, controlnet_block in zip(A , self.controlnet_down_blocks ): lowerCamelCase__ : str = controlnet_block(A ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCamelCase__ : str = controlnet_down_block_res_samples lowerCamelCase__ : Optional[int] = self.controlnet_mid_block(A ) # 6. scaling lowerCamelCase__ : Optional[Any] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=A , mid_block_res_sample=A )
315
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ : Any = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[int] = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Tuple = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Union[str, Any] = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) class __snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCamelCase = None __lowerCamelCase = None class __snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCamelCase = datasets.Audio() __lowerCamelCase = """audio""" __lowerCamelCase = AudioFolderConfig __lowerCamelCase = 42 # definition at the bottom of the script __lowerCamelCase = AudioClassification(audio_column="""audio""" ,label_column="""label""" ) lowerCAmelCase__ : Tuple = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] lowerCAmelCase__ : List[Any] = AUDIO_EXTENSIONS
699
0
'''simple docstring''' def lowercase__( _UpperCamelCase : Tuple = 1000 )-> Dict: """simple docstring""" return sum(e for e in range(3 , _UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
138
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self , __magic_name__ , __magic_name__=3 , __magic_name__=3_2 , __magic_name__=3 , __magic_name__=1_0 , __magic_name__=[1_0, 2_0, 3_0, 4_0] , __magic_name__=[1, 1, 2, 1] , __magic_name__=True , __magic_name__=True , __magic_name__="relu" , __magic_name__=3 , __magic_name__=None , ): lowerCamelCase : Tuple = parent lowerCamelCase : Tuple = batch_size lowerCamelCase : List[Any] = image_size lowerCamelCase : Optional[Any] = num_channels lowerCamelCase : Dict = embeddings_size lowerCamelCase : Optional[int] = hidden_sizes lowerCamelCase : Union[str, Any] = depths lowerCamelCase : Optional[Any] = is_training lowerCamelCase : Union[str, Any] = use_labels lowerCamelCase : Dict = hidden_act lowerCamelCase : Any = num_labels lowerCamelCase : int = scope lowerCamelCase : Optional[Any] = len(__magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : Tuple = None if self.use_labels: lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase : Dict = TFResNetModel(config=__magic_name__ ) lowerCamelCase : Tuple = model(__magic_name__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase : str = self.num_labels lowerCamelCase : Dict = TFResNetForImageClassification(__magic_name__ ) lowerCamelCase : Union[str, Any] = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase : Union[str, Any] = config_and_inputs lowerCamelCase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): _UpperCAmelCase : Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase : List[str] = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Dict = False _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Any = False def UpperCamelCase__ ( self ): lowerCamelCase : int = TFResNetModelTester(self ) lowerCamelCase : str = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def UpperCamelCase__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ): return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): lowerCamelCase , lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : List[str] = model_class(__magic_name__ ) lowerCamelCase : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : Tuple = [*signature.parameters.keys()] lowerCamelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCamelCase__ ( self ): def check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase : Any = model_class(__magic_name__ ) lowerCamelCase : List[Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) lowerCamelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(__magic_name__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase , lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : Tuple = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase : Union[str, Any] = layer_type lowerCamelCase : str = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : int = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def UpperCamelCase__ ( self ): lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @slow def UpperCamelCase__ ( self ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Any = TFResNetModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ): lowerCamelCase : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class A__ ( unittest.TestCase): @cached_property def UpperCamelCase__ ( self ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): lowerCamelCase : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase : List[str] = self.default_image_processor lowerCamelCase : str = prepare_img() lowerCamelCase : Tuple = image_processor(images=__magic_name__ , return_tensors="""tf""" ) # forward pass lowerCamelCase : Tuple = model(**__magic_name__ ) # verify the logits lowerCamelCase : Optional[Any] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) lowerCamelCase : Optional[Any] = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __magic_name__ , atol=1e-4 ) )
681
0
from __future__ import annotations def A ( _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> Tuple: SCREAMING_SNAKE_CASE : List[str] = cipher_alphabet or [chr(UpperCAmelCase__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) SCREAMING_SNAKE_CASE : Optional[int] = { '''a''': 0.0_8497, '''b''': 0.0_1492, '''c''': 0.0_2202, '''d''': 0.0_4253, '''e''': 0.1_1162, '''f''': 0.0_2228, '''g''': 0.0_2015, '''h''': 0.0_6094, '''i''': 0.0_7546, '''j''': 0.0_0153, '''k''': 0.0_1292, '''l''': 0.0_4025, '''m''': 0.0_2406, '''n''': 0.0_6749, '''o''': 0.0_7507, '''p''': 0.0_1929, '''q''': 0.0_0095, '''r''': 0.0_7587, '''s''': 0.0_6327, '''t''': 0.0_9356, '''u''': 0.0_2758, '''v''': 0.0_0978, '''w''': 0.0_2560, '''x''': 0.0_0150, '''y''': 0.0_1994, '''z''': 0.0_0077, } else: # Custom frequencies dictionary SCREAMING_SNAKE_CASE : Any = frequencies_dict if not case_sensitive: SCREAMING_SNAKE_CASE : Optional[Any] = ciphertext.lower() # Chi squared statistic values SCREAMING_SNAKE_CASE : Optional[int] = {} # cycle through all of the shifts for shift in range(len(UpperCAmelCase__ ) ): SCREAMING_SNAKE_CASE : Dict = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet SCREAMING_SNAKE_CASE : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len( UpperCAmelCase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter SCREAMING_SNAKE_CASE : Optional[int] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: SCREAMING_SNAKE_CASE : str = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message SCREAMING_SNAKE_CASE : List[Any] = decrypted_with_shift.lower().count(UpperCAmelCase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies SCREAMING_SNAKE_CASE : List[str] = frequencies[letter] * occurrences # Complete the chi squared statistic formula SCREAMING_SNAKE_CASE : Tuple = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message SCREAMING_SNAKE_CASE : Optional[Any] = decrypted_with_shift.count(UpperCAmelCase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies SCREAMING_SNAKE_CASE : Union[str, Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula SCREAMING_SNAKE_CASE : Optional[Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary SCREAMING_SNAKE_CASE : Optional[Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_lowercase ) -> tuple[float, str]: return chi_squared_statistic_values[key] SCREAMING_SNAKE_CASE : Tuple = min( UpperCAmelCase__ , key=UpperCAmelCase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[int] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
713
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""")) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""") @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ]) class lowercase__ ( unittest.TestCase): def __A ( self : Any ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=UpperCamelCase__ , ) assert hasattr(self , '''env''' ) def __A ( self : str , UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = f"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings SCREAMING_SNAKE_CASE : Any = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=UpperCamelCase__ , instance_count=UpperCamelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase__ , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=UpperCamelCase__ , py_version='''py36''' , ) def __A ( self : Optional[Any] , UpperCamelCase__ : List[str] ): '''simple docstring''' TrainingJobAnalytics(UpperCamelCase__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __A ( self : Tuple , UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.create_estimator(UpperCamelCase__ ) # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE : List[str] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) SCREAMING_SNAKE_CASE : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE : List[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , UpperCamelCase__ )
34
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _snake_case = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowercase ): """simple docstring""" UpperCAmelCase__ = ["pixel_values"] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0.9 , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) __UpperCamelCase = size if size is not None else {'shortest_edge': 224} __UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} __UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='crop_size' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = crop_pct __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: __UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCamelCase = int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCamelCase = int(size['height'] / crop_pct ) else: __UpperCamelCase = (int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(_SCREAMING_SNAKE_CASE ) ) __UpperCamelCase = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) else: if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size['shortest_edge'] , default_to_square=_SCREAMING_SNAKE_CASE ) elif "height" in size and "width" in size: __UpperCamelCase = (size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(_SCREAMING_SNAKE_CASE ) ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: __UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size['height'], size['width']) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='crop_size' ) __UpperCamelCase = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , crop_pct=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] __UpperCamelCase = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
383
from __future__ import annotations from collections import Counter from random import random class lowerCAmelCase_ : """simple docstring""" def __init__( self ) -> List[str]: __UpperCamelCase = {} def __lowercase( self , _SCREAMING_SNAKE_CASE ) -> None: __UpperCamelCase = {} def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: if nodea not in self.connections: self.add_node(_SCREAMING_SNAKE_CASE ) if nodea not in self.connections: self.add_node(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = probability def __lowercase( self ) -> list[str]: return list(self.connections ) def __lowercase( self , _SCREAMING_SNAKE_CASE ) -> str: __UpperCamelCase = 0 __UpperCamelCase = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def _a ( __lowercase , __lowercase , __lowercase ) -> dict[str, int]: """simple docstring""" __UpperCamelCase = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__lowercase , __lowercase , __lowercase ) __UpperCamelCase = Counter(graph.get_nodes() ) __UpperCamelCase = start for _ in range(__lowercase ): __UpperCamelCase = graph.transition(__lowercase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
383
1
'''simple docstring''' def _A ( snake_case__ : Any = 1_00 ): snake_case__ : Any = (n * (n + 1) // 2) ** 2 snake_case__ : Dict = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
711
'''simple docstring''' def _A ( snake_case__ : float ): return 10 - x * x def _A ( snake_case__ : float , snake_case__ : float ): # Bolzano theory in order to find if there is a root between a and b if equation(snake_case__ ) * equation(snake_case__ ) >= 0: raise ValueError('''Wrong space!''' ) snake_case__ : List[str] = a while (b - a) >= 0.01: # Find middle point snake_case__ : Optional[int] = (a + b) / 2 # Check if middle point is root if equation(snake_case__ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case__ ) * equation(snake_case__ ) < 0: snake_case__ : Dict = c else: snake_case__ : List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
694
0
"""simple docstring""" import warnings from .generation import TFGenerationMixin class UpperCamelCase ( _SCREAMING_SNAKE_CASE ): warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , _SCREAMING_SNAKE_CASE , )
389
"""simple docstring""" from math import ceil def __a ( a, a ): """simple docstring""" _a = list(range(0, a ) ) _a = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _a = [] for i in device_map_blocks: if device_map_blocks.count(a ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(a ) # Missing blocks _a = [i for i in blocks if i not in device_map_blocks] _a = [i for i in device_map_blocks if i not in blocks] if len(a ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(a ) ) if len(a ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(a ) ) if len(a ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(a ) ) def __a ( a, a ): """simple docstring""" _a = list(range(a ) ) _a = int(ceil(n_layers / len(a ) ) ) _a = [layers[i : i + n_blocks] for i in range(0, a, a )] return dict(zip(a, a ) )
388
0
def __lowercase ( lowerCamelCase_ : list , lowerCamelCase_ : list , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ): if index == number_of_items: return 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = knapsack(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , index + 1 ) if weights[index] <= max_weight: SCREAMING_SNAKE_CASE__ = values[index] + knapsack( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , max_weight - weights[index] , index + 1 ) return max(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
707
"""simple docstring""" from math import factorial def __lowercase ( lowerCamelCase_ : int = 100 ): return sum(int(lowerCamelCase_ ) for x in str(factorial(lowerCamelCase_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
112
0
'''simple docstring''' from math import loga def UpperCamelCase__ ( __magic_name__ : int ) -> int: '''simple docstring''' if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
38
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , __a : List[str] , __a : str=7 , __a : Union[str, Any]=3 , __a : Optional[int]=18 , __a : Dict=30 , __a : Dict=400 , __a : int=True , __a : Dict=None , __a : Optional[int]=True , ) -> Tuple: """simple docstring""" __lowercase : int = size if size is not None else {"""height""": 18, """width""": 18} __lowercase : Any = parent __lowercase : List[Any] = batch_size __lowercase : Tuple = num_channels __lowercase : Dict = image_size __lowercase : Optional[Any] = min_resolution __lowercase : str = max_resolution __lowercase : Optional[Any] = do_resize __lowercase : Optional[Any] = size __lowercase : List[str] = do_normalize def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = ImageGPTImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Tuple = ImageGPTImageProcessingTester(self ) @property def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , """clusters""" ) ) self.assertTrue(hasattr(__a , """do_resize""" ) ) self.assertTrue(hasattr(__a , """size""" ) ) self.assertTrue(hasattr(__a , """do_normalize""" ) ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __lowercase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" __lowercase : Any = self.image_processing_class(**self.image_processor_dict ) __lowercase : List[Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(__a , obj[key] ) ) else: self.assertEqual(obj[key] , __a ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : str = os.path.join(__a , """image_processor.json""" ) image_processor_first.to_json_file(__a ) __lowercase : Optional[Any] = self.image_processing_class.from_json_file(__a ).to_dict() __lowercase : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__a , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(__a ) __lowercase : List[Any] = self.image_processing_class.from_pretrained(__a ).to_dict() __lowercase : int = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__a , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __a ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass def snake_case_ ( ): __lowercase : Optional[int] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) __lowercase : Optional[Any] = Image.open(dataset[4]["""file"""] ) __lowercase : Union[str, Any] = Image.open(dataset[5]["""file"""] ) __lowercase : int = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : Any = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) __lowercase : int = prepare_images() # test non-batched __lowercase : List[str] = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) __lowercase : Tuple = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , __a ) # test batched __lowercase : List[str] = image_processing(__a , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) __lowercase : Optional[Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , __a )
149
0
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _lowercase = "hf-internal-testing/tiny-random-bert" _lowercase = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') _lowercase = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class _lowercase ( unittest.TestCase ): def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case = cached_file(_UpperCamelCase , _UpperCamelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCamelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCamelCase , _UpperCamelCase ) ) ) with open(os.path.join(_UpperCamelCase , '''refs''' , '''main''' ) ) as f: snake_case = f.read() self.assertEqual(_UpperCamelCase , os.path.join(_UpperCamelCase , '''snapshots''' , _UpperCamelCase , _UpperCamelCase ) ) self.assertTrue(os.path.isfile(_UpperCamelCase ) ) # File is cached at the same place the second time. snake_case = cached_file(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) # Using a specific revision to test the full commit hash. snake_case = cached_file(_UpperCamelCase , _UpperCamelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCamelCase , os.path.join(_UpperCamelCase , '''snapshots''' , _UpperCamelCase , _UpperCamelCase ) ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex(_UpperCamelCase , '''is not a valid model identifier''' ): snake_case = cached_file('''tiny-random-bert''' , _UpperCamelCase ) with self.assertRaisesRegex(_UpperCamelCase , '''is not a valid git identifier''' ): snake_case = cached_file(_UpperCamelCase , _UpperCamelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCamelCase , '''does not appear to have a file named''' ): snake_case = cached_file(_UpperCamelCase , '''conf''' ) def UpperCamelCase ( self ) -> str: '''simple docstring''' with self.assertRaisesRegex(_UpperCamelCase , '''does not appear to have a file named''' ): snake_case = cached_file(_UpperCamelCase , '''conf''' ) with open(os.path.join(_UpperCamelCase , '''refs''' , '''main''' ) ) as f: snake_case = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCamelCase , '''.no_exist''' , _UpperCamelCase , '''conf''' ) ) ) snake_case = cached_file(_UpperCamelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCamelCase ) self.assertIsNone(_UpperCamelCase ) snake_case = cached_file(_UpperCamelCase , '''conf''' , local_files_only=_UpperCamelCase , _raise_exceptions_for_missing_entries=_UpperCamelCase ) self.assertIsNone(_UpperCamelCase ) snake_case = mock.Mock() snake_case = 5_00 snake_case = {} snake_case = HTTPError snake_case = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCamelCase ) as mock_head: snake_case = cached_file(_UpperCamelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCamelCase ) self.assertIsNone(_UpperCamelCase ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase ( self ) -> Any: '''simple docstring''' self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCamelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCamelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCamelCase ) ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCamelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCamelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCamelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCamelCase , revision='''ahaha''' ) snake_case = get_file_from_repo('''bert-base-cased''' , _UpperCamelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case = json.loads(open(_UpperCamelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 7_68 ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case = Path(_UpperCamelCase ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(_UpperCamelCase , '''a.txt''' ) , str(_UpperCamelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCamelCase , '''b.txt''' ) )
715
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _lowercase : @staticmethod def UpperCamelCase ( *A__ , **A__ ) -> List[Any]: pass def __UpperCamelCase ( a : Image ) ->str: snake_case = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _lowercase ( unittest.TestCase ): _UpperCAmelCase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCamelCase ( self , A__ , A__ , A__ ) -> Union[str, Any]: snake_case = DepthEstimationPipeline(model=A__ , image_processor=A__ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCamelCase ( self , A__ , A__ ) -> List[Any]: snake_case = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , A__ ) import datasets snake_case = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) snake_case = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , A__ , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def UpperCamelCase ( self ) -> Optional[Any]: pass @slow @require_torch def UpperCamelCase ( self ) -> Dict: snake_case = '''Intel/dpt-large''' snake_case = pipeline('''depth-estimation''' , model=A__ ) snake_case = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) snake_case = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 2_9.3_0_4 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.6_6_2 ) @require_torch def UpperCamelCase ( self ) -> Any: # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
44
0
import argparse import datetime def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={ '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } __a ={0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_snake_case ) < 11: raise ValueError('Must be 10 characters long' ) # Get month __a =int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) __a =date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day __a =int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator __a =date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year __a =int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation __a =datetime.date(int(_snake_case ) , int(_snake_case ) , int(_snake_case ) ) # Start math if m <= 2: __a =y - 1 __a =m + 12 # maths var __a =int(str(_snake_case )[:2] ) __a =int(str(_snake_case )[2:] ) __a =int(2.6 * m - 5.39 ) __a =int(c / 4 ) __a =int(k / 4 ) __a =int(d + k ) __a =int(t + u + v + x ) __a =int(z - (2 * c) ) __a =round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response __a =F'Your date {date_input}, is a {days[str(_snake_case )]}!' return response if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[str] = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) _lowerCAmelCase : List[str] = parser.parse_args() zeller(args.date_input)
242
from jiwer import compute_measures import datasets _lowerCAmelCase : Union[str, Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" _lowerCAmelCase : List[str] = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" _lowerCAmelCase : int = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def __magic_name__ ( self ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def __magic_name__ ( self , __snake_case=None , __snake_case=None , __snake_case=False ) -> Any: '''simple docstring''' if concatenate_texts: return compute_measures(__snake_case , __snake_case )["wer"] else: __a =0 __a =0 for prediction, reference in zip(__snake_case , __snake_case ): __a =compute_measures(__snake_case , __snake_case ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
242
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase : Any ={"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Any =["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[int] =["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[int] =[ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[int] =[ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str =[ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys _UpperCamelCase : List[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
703
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : List[str] ={ "configuration_bigbird_pegasus": [ "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] =[ "BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST", "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _UpperCamelCase : Tuple =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
575
0
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup lowerCAmelCase__: Dict = logging.get_logger(__name__) class snake_case_ ( UpperCamelCase_ ): def __init__( self , **__lowerCAmelCase ): requires_backends(self , ['bs4'] ) super().__init__(**__UpperCamelCase ) def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : Dict = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag SCREAMING_SNAKE_CASE_ : Tuple = parent.find_all(child.name , recursive=__UpperCamelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__UpperCamelCase ) else next(i for i, s in enumerate(__UpperCamelCase , 1 ) if s is child ) ) SCREAMING_SNAKE_CASE_ : Tuple = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = BeautifulSoup(__UpperCamelCase , 'html.parser' ) SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : int = [] for element in html_code.descendants: if type(__UpperCamelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue SCREAMING_SNAKE_CASE_ : List[Any] = html.unescape(__UpperCamelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.xpath_soup(__UpperCamelCase ) stringaxtag_seq.append(__UpperCamelCase ) stringaxsubs_seq.append(__UpperCamelCase ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError('Number of doc strings and xtags does not correspond' ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError('Number of doc strings and xsubs does not correspond' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def __A ( self , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = '''''' for tagname, subs in zip(__UpperCamelCase , __UpperCamelCase ): xpath += F'/{tagname}' if subs != 0: xpath += F'[{subs}]' return xpath def __call__( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = False # Check that strings has a valid type if isinstance(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Dict = True elif isinstance(__UpperCamelCase , (list, tuple) ): if len(__UpperCamelCase ) == 0 or isinstance(html_strings[0] , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Tuple = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' F'but is of type {type(__UpperCamelCase )}.' ) SCREAMING_SNAKE_CASE_ : Any = bool(isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(html_strings[0] , __UpperCamelCase )) ) if not is_batched: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [html_strings] # Get nodes + xpaths SCREAMING_SNAKE_CASE_ : Tuple = [] SCREAMING_SNAKE_CASE_ : Dict = [] for html_string in html_strings: SCREAMING_SNAKE_CASE_ : str = self.get_three_from_single(__UpperCamelCase ) nodes.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for node, tag_list, sub_list in zip(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.construct_xpath(__UpperCamelCase , __UpperCamelCase ) xpath_strings.append(__UpperCamelCase ) xpaths.append(__UpperCamelCase ) # return as Dict SCREAMING_SNAKE_CASE_ : List[Any] = {'''nodes''': nodes, '''xpaths''': xpaths} SCREAMING_SNAKE_CASE_ : Optional[int] = BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase ) return encoded_inputs
345
import sys import turtle def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, ) -> None: my_pen.up() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) my_pen.goto(vertexa[0], vertexa[1] ) if depth == 0: return triangle(snake_case_, get_mid(snake_case_, snake_case_ ), get_mid(snake_case_, snake_case_ ), depth - 1 ) triangle(snake_case_, get_mid(snake_case_, snake_case_ ), get_mid(snake_case_, snake_case_ ), depth - 1 ) triangle(snake_case_, get_mid(snake_case_, snake_case_ ), get_mid(snake_case_, snake_case_ ), depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) __lowerCamelCase : str = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") __lowerCamelCase : List[Any] = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
416
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[str] = { 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
75
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE=[2, 2, 3, 2] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=["stage2", "stage3", "stage4"] , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , )-> Tuple: lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =image_size lowerCamelCase_ =num_channels lowerCamelCase_ =num_stages lowerCamelCase_ =hidden_sizes lowerCamelCase_ =depths lowerCamelCase_ =is_training lowerCamelCase_ =use_labels lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =out_features lowerCamelCase_ =num_labels lowerCamelCase_ =scope lowerCamelCase_ =num_stages def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ =self.get_config() return config, pixel_values, labels def _snake_case ( self )-> List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _snake_case ( self )-> Union[str, Any]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_SCREAMING_SNAKE_CASE , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_SCREAMING_SNAKE_CASE , loss_ignore_index=255 , num_labels=self.num_labels , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[Any]: lowerCamelCase_ =UperNetForSemanticSegmentation(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _snake_case ( self )-> str: lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =config_and_inputs lowerCamelCase_ ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Optional[Any] = (UperNetForSemanticSegmentation,) if is_torch_available() else () _UpperCamelCase:Any = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} _UpperCamelCase:Optional[Any] = False _UpperCamelCase:Dict = False _UpperCamelCase:int = False _UpperCamelCase:Any = False _UpperCamelCase:Optional[Any] = False _UpperCamelCase:Optional[Any] = False def _snake_case ( self )-> int: lowerCamelCase_ =UperNetModelTester(self ) lowerCamelCase_ =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _snake_case ( self )-> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self )-> Tuple: return def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ =model_class(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ =[*signature.parameters.keys()] lowerCamelCase_ =["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Tuple: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def _snake_case ( self )-> str: pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def _snake_case ( self )-> str: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _snake_case ( self )-> Optional[Any]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _snake_case ( self )-> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _snake_case ( self )-> List[Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _snake_case ( self )-> str: pass def _snake_case ( self )-> Optional[int]: def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCamelCase_ =model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCamelCase_ =model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ =self.model_tester.num_stages self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ =True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ =True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ =_config_zero_init(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =_config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: lowerCamelCase_ =model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def _snake_case ( self )-> Dict: pass @slow def _snake_case ( self )-> Tuple: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =UperNetForSemanticSegmentation.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( ) ->Tuple: """simple docstring""" lowerCamelCase_ =hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) lowerCamelCase_ =Image.open(_A ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def _snake_case ( self )-> List[Any]: lowerCamelCase_ =AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) lowerCamelCase_ =UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =prepare_img() lowerCamelCase_ =processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) with torch.no_grad(): lowerCamelCase_ =model(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) def _snake_case ( self )-> int: lowerCamelCase_ =AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) lowerCamelCase_ =UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =prepare_img() lowerCamelCase_ =processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) with torch.no_grad(): lowerCamelCase_ =model(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
75
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = MobileBertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = MobileBertForPreTraining(__lowercase) # Load weights from tf checkpoint UpperCamelCase_ = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
23
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
348
0
'''simple docstring''' import re import subprocess import sys snake_case : str = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') snake_case : Optional[int] = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode('utf-8').split() ) snake_case : List[Any] = '|'.join(sys.argv[1:]) snake_case : int = re.compile(rF"""^({joined_dirs}).*?\.py$""") snake_case : int = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
711
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowercase__ ( __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict ): '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): __lowercase = np.full((len(__UpperCamelCase ), sequence_length, 2) , __UpperCamelCase ) else: __lowercase = np.full((len(__UpperCamelCase ), sequence_length) , __UpperCamelCase ) for i, tensor in enumerate(__UpperCamelCase ): if padding_side == "right": if isinstance(__UpperCamelCase , __UpperCamelCase ): __lowercase = tensor[:sequence_length] else: __lowercase = tensor[:sequence_length] else: if isinstance(__UpperCamelCase , __UpperCamelCase ): __lowercase = tensor[:sequence_length] else: __lowercase = tensor[:sequence_length] return out_tensor.tolist() def lowercase__ ( __UpperCamelCase : Dict ): '''simple docstring''' __lowercase = ord(__UpperCamelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __lowercase = unicodedata.category(__UpperCamelCase ) if cat.startswith("""P""" ): return True return False @dataclass class lowerCamelCase__( snake_case_ ): UpperCamelCase : PreTrainedTokenizerBase UpperCamelCase : Union[bool, str, PaddingStrategy] = True UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[int] = None UpperCamelCase : int = -100 UpperCamelCase : str = "pt" def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" import torch __lowercase = """label""" if """label""" in features[0].keys() else """labels""" __lowercase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __lowercase = self.tokenizer.pad( __UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch __lowercase = torch.tensor(batch["""entity_ids"""] ).shape[1] __lowercase = self.tokenizer.padding_side if padding_side == "right": __lowercase = [ list(__UpperCAmelCase ) + [self.label_pad_token_id] * (sequence_length - len(__UpperCAmelCase )) for label in labels ] else: __lowercase = [ [self.label_pad_token_id] * (sequence_length - len(__UpperCAmelCase )) + list(__UpperCAmelCase ) for label in labels ] __lowercase = [feature["""ner_tags"""] for feature in features] __lowercase = padding_tensor(__UpperCAmelCase , -1 , __UpperCAmelCase , __UpperCAmelCase ) __lowercase = [feature["""original_entity_spans"""] for feature in features] __lowercase = padding_tensor(__UpperCAmelCase , (-1, -1) , __UpperCAmelCase , __UpperCAmelCase ) __lowercase = {k: torch.tensor(__UpperCAmelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
339
0
import re from filelock import FileLock try: import nltk a__ : Optional[int] = True except (ImportError, ModuleNotFoundError): a__ : str = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def UpperCAmelCase_ ( _UpperCAmelCase :int ) -> str: '''simple docstring''' re.sub('''<n>''' , '''''' , _UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_UpperCAmelCase ) )
188
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } lowerCAmelCase_ = { 'gpt2': 10_24, 'gpt2-medium': 10_24, 'gpt2-large': 10_24, 'gpt2-xl': 10_24, 'distilgpt2': 10_24, } class _A ( _lowerCamelCase ): _UpperCamelCase : str = VOCAB_FILES_NAMES _UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : Optional[Any] = GPTaTokenizer def __init__( self : Optional[Any] , _A : Optional[Any]=None , _A : Any=None , _A : Tuple=None , _A : Optional[int]="<|endoftext|>" , _A : List[Any]="<|endoftext|>" , _A : Union[str, Any]="<|endoftext|>" , _A : Any=False , **_A : Optional[int] , ) -> Optional[Any]: """simple docstring""" super().__init__( _A , _A , tokenizer_file=_A , unk_token=_A , bos_token=_A , eos_token=_A , add_prefix_space=_A , **_A , ) lowercase : List[str] = kwargs.pop('''add_bos_token''' , _A ) lowercase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _A ) != add_prefix_space: lowercase : Optional[int] = getattr(_A , pre_tok_state.pop('''type''' ) ) lowercase : List[str] = add_prefix_space lowercase : List[Any] = pre_tok_class(**_A ) lowercase : Dict = add_prefix_space def __a ( self : List[Any] , *_A : Optional[Any] , **_A : Any ) -> BatchEncoding: """simple docstring""" lowercase : List[str] = kwargs.get('''is_split_into_words''' , _A ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_A , **_A ) def __a ( self : Dict , *_A : List[str] , **_A : Dict ) -> BatchEncoding: """simple docstring""" lowercase : Any = kwargs.get('''is_split_into_words''' , _A ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_A , **_A ) def __a ( self : str , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def __a ( self : Dict , _A : "Conversation" ) -> List[int]: """simple docstring""" lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] ) if len(_A ) > self.model_max_length: lowercase : int = input_ids[-self.model_max_length :] return input_ids
217
0
"""simple docstring""" def __a ( _lowercase , _lowercase , _lowercase ): """simple docstring""" return round(float(moles / volume ) * nfactor ) def __a ( _lowercase , _lowercase , _lowercase ): """simple docstring""" return round(float((moles * 0.0821 * temperature) / (volume) ) ) def __a ( _lowercase , _lowercase , _lowercase ): """simple docstring""" return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def __a ( _lowercase , _lowercase , _lowercase ): """simple docstring""" return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
720
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __a ( _lowercase , _lowercase , _lowercase=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCamelCase__ : Any = nn.Parameter(_lowercase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCamelCase__ : Optional[int] = nn.Parameter(_lowercase ) def __a ( _lowercase , _lowercase , _lowercase ): """simple docstring""" lowerCamelCase__ : int = np.asarray(weights[0] ) lowerCamelCase__ : List[Any] = np.asarray(weights[1] ) lowerCamelCase__ : Union[str, Any] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.output.dense , torch.tensor(_lowercase ).view(-1 , _lowercase ).contiguous().transpose(0 , 1 ) , ) def __a ( _lowercase , _lowercase , _lowercase ): """simple docstring""" lowerCamelCase__ : Optional[Any] = np.asarray(weights[0] ) lowerCamelCase__ : str = np.asarray(weights[1] ) lowerCamelCase__ : str = np.asarray(weights[2] ) lowerCamelCase__ : Optional[Any] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.output.dense , torch.tensor(_lowercase ).view(-1 , _lowercase ).contiguous().transpose(0 , 1 ) , ) def __a ( _lowercase , _lowercase , _lowercase ): """simple docstring""" lowerCamelCase__ : Optional[Any] = weights[0][0][0] lowerCamelCase__ : List[Any] = np.asarray(layer_norm_a[0] ) lowerCamelCase__ : Any = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) , ) # lsh weights + output lowerCamelCase__ : Any = weights[0][1] if len(_lowercase ) < 4: set_layer_weights_in_torch_lsh(_lowercase , torch_block.attention , _lowercase ) else: set_layer_weights_in_torch_local(_lowercase , torch_block.attention , _lowercase ) # intermediate weighs lowerCamelCase__ : Optional[int] = weights[2][0][1][2] # Chunked Feed Forward if len(_lowercase ) == 4: lowerCamelCase__ : Tuple = intermediate_weights[2] # layernorm 2 lowerCamelCase__ : Optional[Any] = np.asarray(intermediate_weights[0][0] ) lowerCamelCase__ : Dict = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) , ) # intermediate dense lowerCamelCase__ : List[Any] = np.asarray(intermediate_weights[1][0] ) lowerCamelCase__ : Dict = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowercase ) , ) # intermediate out lowerCamelCase__ : Union[str, Any] = np.asarray(intermediate_weights[4][0] ) lowerCamelCase__ : Optional[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowercase ) , ) def __a ( _lowercase , _lowercase , _lowercase ): """simple docstring""" lowerCamelCase__ : int = torch_model.reformer # word embeds lowerCamelCase__ : Union[str, Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_lowercase ) , ) if isinstance(weights[3] , _lowercase ): lowerCamelCase__ : List[Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCamelCase__ : Tuple = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCamelCase__ : List[Any] = nn.Parameter(torch.tensor(_lowercase ) ) lowerCamelCase__ : Optional[int] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _lowercase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCamelCase__ : Optional[int] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_lowercase , _lowercase , _lowercase ) # output layer norm lowerCamelCase__ : Optional[int] = np.asarray(weights[7][0] ) lowerCamelCase__ : List[str] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) , ) # output embeddings lowerCamelCase__ : Any = np.asarray(weights[9][0] ) lowerCamelCase__ : Tuple = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowercase ) , ) def __a ( _lowercase , _lowercase , _lowercase ): """simple docstring""" lowerCamelCase__ : Optional[Any] = ReformerConfig.from_json_file(_lowercase ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCamelCase__ : List[Any] = ReformerModelWithLMHead(_lowercase ) with open(_lowercase , '''rb''' ) as f: lowerCamelCase__ : Optional[Any] = pickle.load(_lowercase )['''weights'''] set_model_weights_in_torch(_lowercase , _lowercase , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase : List[str] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
121
0
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _UpperCAmelCase ( *A , A = None , A=True , A=2 ): '''simple docstring''' from .. import __version__ UpperCAmelCase__ =take_from UpperCAmelCase__ =() if not isinstance(args[0] , A ): UpperCAmelCase__ =(args,) for attribute, version_name, message in args: if version.parse(version.parse(A ).base_version ) >= version.parse(A ): raise ValueError( F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" F""" version {__version__} is >= {version_name}""" ) UpperCAmelCase__ =None if isinstance(A , A ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(A ),) UpperCAmelCase__ =F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(A , A ): values += (getattr(A , A ),) UpperCAmelCase__ =F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: UpperCAmelCase__ =F"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: UpperCAmelCase__ =warning + " " if standard_warn else "" warnings.warn(warning + message , A , stacklevel=A ) if isinstance(A , A ) and len(A ) > 0: UpperCAmelCase__ =inspect.getouterframes(inspect.currentframe() )[1] UpperCAmelCase__ =call_frame.filename UpperCAmelCase__ =call_frame.lineno UpperCAmelCase__ =call_frame.function UpperCAmelCase__ , UpperCAmelCase__ =next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(A ) == 0: return elif len(A ) == 1: return values[0] return values
625
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 'EncodecFeatureExtractor' __UpperCamelCase = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self, A_, A_ ) -> Optional[int]: super().__init__(A_, A_ ) UpperCAmelCase__ =self.feature_extractor UpperCAmelCase__ =False def __UpperCAmelCase ( self, A_=None, A_=None, A_=True ) -> Union[str, Any]: return self.tokenizer.get_decoder_prompt_ids(task=A_, language=A_, no_timestamps=A_ ) def __call__( self, *A_, **A_ ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A_, **A_ ) UpperCAmelCase__ =kwargs.pop("audio", A_ ) UpperCAmelCase__ =kwargs.pop("sampling_rate", A_ ) UpperCAmelCase__ =kwargs.pop("text", A_ ) if len(A_ ) > 0: UpperCAmelCase__ =args[0] UpperCAmelCase__ =args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: UpperCAmelCase__ =self.tokenizer(A_, **A_ ) if audio is not None: UpperCAmelCase__ =self.feature_extractor(A_, *A_, sampling_rate=A_, **A_ ) if audio is None: return inputs elif text is None: return audio_inputs else: UpperCAmelCase__ =audio_inputs["input_values"] if "padding_mask" in audio_inputs: UpperCAmelCase__ =audio_inputs["padding_mask"] return inputs def __UpperCAmelCase ( self, *A_, **A_ ) -> Dict: UpperCAmelCase__ =kwargs.pop("audio", A_ ) UpperCAmelCase__ =kwargs.pop("padding_mask", A_ ) if len(A_ ) > 0: UpperCAmelCase__ =args[0] UpperCAmelCase__ =args[1:] if audio_values is not None: return self._decode_audio(A_, padding_mask=A_ ) else: return self.tokenizer.batch_decode(*A_, **A_ ) def __UpperCAmelCase ( self, *A_, **A_ ) -> int: return self.tokenizer.decode(*A_, **A_ ) def __UpperCAmelCase ( self, A_, A_ = None ) -> List[np.ndarray]: UpperCAmelCase__ =to_numpy(A_ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =audio_values.shape if padding_mask is None: return list(A_ ) UpperCAmelCase__ =to_numpy(A_ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) UpperCAmelCase__ =seq_len - padding_mask.shape[-1] UpperCAmelCase__ =1 - self.feature_extractor.padding_value UpperCAmelCase__ =np.pad(A_, ((0, 0), (0, difference)), "constant", constant_values=A_ ) UpperCAmelCase__ =audio_values.tolist() for i in range(A_ ): UpperCAmelCase__ =np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] UpperCAmelCase__ =sliced_audio.reshape(A_, -1 ) return audio_values
625
1
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __A : Optional[int] = get_logger(__name__) def lowercase ( UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int]=0 ): """simple docstring""" os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) with FSDP.state_dict_type( lowerCamelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): A__ : Any =model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: A__ : str =F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' A__ : int =os.path.join(lowerCamelCase__ , lowerCamelCase__ ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(lowerCamelCase__ , lowerCamelCase__ ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: A__ : Dict =( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) A__ : Tuple =os.path.join(lowerCamelCase__ , lowerCamelCase__ ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(lowerCamelCase__ , lowerCamelCase__ ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: A__ : Optional[Any] =os.path.join(lowerCamelCase__ , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) logger.info(F'''Saving model to {ckpt_dir}''' ) A__ : Optional[Any] ={"model": state_dict} dist_cp.save_state_dict( state_dict=lowerCamelCase__ , storage_writer=dist_cp.FileSystemWriter(lowerCamelCase__ ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def lowercase ( UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : str=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( lowerCamelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(lowerCamelCase__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return A__ : Union[str, Any] =F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' A__ : Any =os.path.join(lowerCamelCase__ , lowerCamelCase__ ) logger.info(F'''Loading model from {input_model_file}''' ) A__ : List[str] =torch.load(lowerCamelCase__ ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: A__ : Any =( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) A__ : List[str] =os.path.join(lowerCamelCase__ , lowerCamelCase__ ) logger.info(F'''Loading model from {input_model_file}''' ) A__ : Union[str, Any] =torch.load(lowerCamelCase__ ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: A__ : Optional[int] =( os.path.join(lowerCamelCase__ , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) A__ : int ={"model": model.state_dict()} dist_cp.load_state_dict( state_dict=lowerCamelCase__ , storage_reader=dist_cp.FileSystemReader(lowerCamelCase__ ) , planner=DefaultLoadPlanner() , ) A__ : Tuple =state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(lowerCamelCase__ ) def lowercase ( UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : int=0 ): """simple docstring""" os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) with FSDP.state_dict_type( lowerCamelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): A__ : Dict =FSDP.optim_state_dict(lowerCamelCase__ , lowerCamelCase__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: A__ : Optional[Any] =( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) A__ : Optional[int] =os.path.join(lowerCamelCase__ , lowerCamelCase__ ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(lowerCamelCase__ , lowerCamelCase__ ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: A__ : str =os.path.join(lowerCamelCase__ , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(lowerCamelCase__ ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def lowercase ( UpperCamelCase : str , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( lowerCamelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: A__ : List[str] =None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: A__ : Any =( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) A__ : Any =os.path.join(lowerCamelCase__ , lowerCamelCase__ ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) A__ : int =torch.load(lowerCamelCase__ ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: A__ : List[Any] =( os.path.join(lowerCamelCase__ , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) A__ : Optional[Any] =load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(lowerCamelCase__ ) , ) A__ : Dict =optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) A__ : Optional[Any] =FSDP.optim_state_dict_to_load(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) optimizer.load_state_dict(lowerCamelCase__ )
715
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
595
0
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = None # Automatically constructed SCREAMING_SNAKE_CASE_ = "dict" SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = field(default='Translation' , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def __call__( self ) -> Optional[Any]: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCamelCase( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None # Automatically constructed SCREAMING_SNAKE_CASE_ = "dict" SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = field(default='TranslationVariableLanguages' , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ = len(self.languages ) if self.languages else None def __call__( self ) -> Dict: '''simple docstring''' return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' lowerCamelCase_ = set(self.languages ) if self.languages and set(SCREAMING_SNAKE_CASE_ ) - lang_set: raise ValueError( f'''Some languages in example ({", ".join(sorted(set(SCREAMING_SNAKE_CASE_ ) - lang_set ) )}) are not in valid set ({", ".join(SCREAMING_SNAKE_CASE_ )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ = [] for lang, text in translation_dict.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_ ,lowerCamelCase_ = zip(*sorted(SCREAMING_SNAKE_CASE_ ) ) return {"language": languages, "translation": translations} def UpperCamelCase( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
42
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ = 16 A_ = 32 def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase = 16 ,__UpperCamelCase = "bert-base-cased" ) -> List[Any]: lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = load_dataset('glue' ,'mrpc' ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase_ = datasets.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase ,padding='max_length' ,max_length=1_28 ,return_tensors='pt' ) return tokenizer.pad(__UpperCamelCase ,padding='longest' ,return_tensors='pt' ) # Instantiate dataloaders. lowerCamelCase_ = DataLoader( tokenized_datasets['train'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) lowerCamelCase_ = DataLoader( tokenized_datasets['validation'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: model.eval() lowerCamelCase_ = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**__UpperCamelCase ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCamelCase_ ,lowerCamelCase_ = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCamelCase ) - 1: lowerCamelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCamelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCamelCase ,references=__UpperCamelCase ,) lowerCamelCase_ = metric.compute() return eval_metric["accuracy"] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[str]: # Initialize accelerator lowerCamelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ = config['lr'] lowerCamelCase_ = int(config['num_epochs'] ) lowerCamelCase_ = int(config['seed'] ) lowerCamelCase_ = int(config['batch_size'] ) lowerCamelCase_ = args.model_name_or_path set_seed(__UpperCamelCase ) lowerCamelCase_ ,lowerCamelCase_ = get_dataloaders(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase ,return_dict=__UpperCamelCase ) # Instantiate optimizer lowerCamelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase_ = optimizer_cls(params=model.parameters() ,lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: lowerCamelCase_ = 1 lowerCamelCase_ = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase_ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase ,num_warmup_steps=0 ,num_training_steps=__UpperCamelCase ,) else: lowerCamelCase_ = DummyScheduler(__UpperCamelCase ,total_num_steps=__UpperCamelCase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = accelerator.prepare( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # We need to keep track of how many total steps we have iterated over lowerCamelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase_ = 0 lowerCamelCase_ = evaluate.load('glue' ,'mrpc' ) lowerCamelCase_ = num_epochs if args.partial_train_epoch is not None: lowerCamelCase_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCamelCase_ = args.resume_from_checkpoint.split('epoch_' )[1] lowerCamelCase_ = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCamelCase_ = int(__UpperCamelCase ) + 1 lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) accelerator.print('resumed checkpoint performance:' ,__UpperCamelCase ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' ,lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' ,optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir ,f'''state_{starting_epoch-1}.json''' ) ,'r' ) as f: lowerCamelCase_ = json.load(__UpperCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCamelCase_ = {} for epoch in range(__UpperCamelCase ,__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): lowerCamelCase_ = model(**__UpperCamelCase ) lowerCamelCase_ = outputs.loss lowerCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCamelCase_ = f'''epoch_{epoch}''' lowerCamelCase_ = os.path.join(args.output_dir ,__UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) lowerCamelCase_ = evaluation_loop(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowerCamelCase_ = accuracy lowerCamelCase_ = lr_scheduler.get_lr()[0] lowerCamelCase_ = optimizer.param_groups[0]['lr'] lowerCamelCase_ = epoch lowerCamelCase_ = overall_step accelerator.print(f'''epoch {epoch}:''' ,__UpperCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,f'''state_{epoch}.json''' ) ,'w' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( ) -> str: lowerCamelCase_ = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' ,type=__UpperCamelCase ,default='bert-base-cased' ,help='Path to pretrained model or model identifier from huggingface.co/models.' ,required=__UpperCamelCase ,) parser.add_argument( '--output_dir' ,type=__UpperCamelCase ,default='.' ,help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' ,) parser.add_argument( '--resume_from_checkpoint' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If the training should continue from a checkpoint folder.' ,) parser.add_argument( '--partial_train_epoch' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='If passed, the training will stop after this number of epochs.' ,) parser.add_argument( '--num_epochs' ,type=__UpperCamelCase ,default=2 ,help='Number of train epochs.' ,) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": main()
42
1
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="shi-labs/oneformer_demo" ): with open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) as f: lowercase = json.load(__SCREAMING_SNAKE_CASE ) lowercase = {} lowercase = [] lowercase = [] for key, info in class_info.items(): lowercase = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(__SCREAMING_SNAKE_CASE ) ) lowercase = thing_ids lowercase = class_names return metadata class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=30 , snake_case=400 , snake_case=None , snake_case=True , snake_case=True , snake_case=[0.5, 0.5, 0.5] , snake_case=[0.5, 0.5, 0.5] , snake_case=10 , snake_case=False , snake_case=255 , snake_case="shi-labs/oneformer_demo" , snake_case="ade20k_panoptic.json" , snake_case=10 , ): lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = {'shortest_edge': 32, 'longest_edge': 1333} if size is None else size lowercase = do_normalize lowercase = image_mean lowercase = image_std lowercase = class_info_file lowercase = prepare_metadata(snake_case , snake_case ) lowercase = num_text lowercase = repo_path # for the post_process_functions lowercase = 2 lowercase = 10 lowercase = 10 lowercase = 3 lowercase = 4 lowercase = num_labels lowercase = do_reduce_labels lowercase = ignore_index def SCREAMING_SNAKE_CASE__ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=False ): if not batched: lowercase = image_inputs[0] if isinstance(snake_case , Image.Image ): lowercase , lowercase = image.size else: lowercase , lowercase = image.shape[1], image.shape[2] if w < h: lowercase = int(self.size['shortest_edge'] * h / w ) lowercase = self.size['shortest_edge'] elif w > h: lowercase = self.size['shortest_edge'] lowercase = int(self.size['shortest_edge'] * w / h ) else: lowercase = self.size['shortest_edge'] lowercase = self.size['shortest_edge'] else: lowercase = [] for image in image_inputs: lowercase , lowercase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase = max(snake_case , key=lambda snake_case : item[0] )[0] lowercase = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE__ ( self ): return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class A_ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Any = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _UpperCamelCase : Optional[int] = image_processing_class def SCREAMING_SNAKE_CASE__ ( self ): lowercase = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ): return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'image_mean' ) ) self.assertTrue(hasattr(snake_case , 'image_std' ) ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) self.assertTrue(hasattr(snake_case , 'ignore_index' ) ) self.assertTrue(hasattr(snake_case , 'class_info_file' ) ) self.assertTrue(hasattr(snake_case , 'num_text' ) ) self.assertTrue(hasattr(snake_case , 'repo_path' ) ) self.assertTrue(hasattr(snake_case , 'metadata' ) ) self.assertTrue(hasattr(snake_case , 'do_reduce_labels' ) ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processor lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input lowercase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values lowercase , lowercase = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) lowercase = image_processor( snake_case , ['semantic'] * len(snake_case ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processor lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input lowercase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values lowercase , lowercase = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) lowercase = image_processor( snake_case , ['semantic'] * len(snake_case ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processor lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input lowercase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values lowercase , lowercase = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) lowercase = image_processor( snake_case , ['semantic'] * len(snake_case ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case=False , snake_case=False , snake_case="np" ): lowercase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target lowercase = self.image_processing_tester.num_labels lowercase = None lowercase = None lowercase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) if with_segmentation_maps: lowercase = num_labels if is_instance_map: lowercase = list(range(snake_case ) ) * 2 lowercase = dict(enumerate(snake_case ) ) lowercase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": lowercase = [Image.fromarray(snake_case ) for annotation in annotations] lowercase = image_processor( snake_case , ['semantic'] * len(snake_case ) , snake_case , return_tensors='pt' , instance_id_to_semantic_id=snake_case , pad_and_return_pixel_mask=snake_case , ) return inputs def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): def common(snake_case=False , snake_case=None ): lowercase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case , is_instance_map=snake_case , segmentation_type=snake_case ) lowercase = inputs['mask_labels'] lowercase = inputs['class_labels'] lowercase = inputs['pixel_values'] lowercase = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(snake_case , snake_case , snake_case ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case ) common(is_instance_map=snake_case , segmentation_type='pil' ) common(is_instance_map=snake_case , segmentation_type='pil' ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = np.zeros((20, 50) ) lowercase = 1 lowercase = 1 lowercase = 1 lowercase = binary_mask_to_rle(snake_case ) self.assertEqual(len(snake_case ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) lowercase = self.image_processing_tester.get_fake_oneformer_outputs() lowercase = fature_extractor.post_process_semantic_segmentation(snake_case ) self.assertEqual(len(snake_case ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) lowercase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] lowercase = fature_extractor.post_process_semantic_segmentation(snake_case , target_sizes=snake_case ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) lowercase = self.image_processing_tester.get_fake_oneformer_outputs() lowercase = image_processor.post_process_instance_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , snake_case ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) lowercase = self.image_processing_tester.get_fake_oneformer_outputs() lowercase = image_processor.post_process_panoptic_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , snake_case ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
715
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCAmelCase = logging.get_logger(__name__) class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , *snake_case , **snake_case ): warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , snake_case , ) super().__init__(*snake_case , **snake_case )
565
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Optional[int] = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowerCamelCase__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
def UpperCAmelCase_ ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] lowerCamelCase__ : List[Any] = generate_large_matrix() lowerCamelCase__ : List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> None: assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE_ = (left + right) // 2 SCREAMING_SNAKE_CASE_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE_ = mid + 1 else: SCREAMING_SNAKE_CASE_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_ ( __UpperCAmelCase : list[list[int]] ) -> int: SCREAMING_SNAKE_CASE_ = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def UpperCAmelCase_ ( ) -> None: from timeit import timeit print('Running benchmarks' ) SCREAMING_SNAKE_CASE_ = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE_ = timeit(f"{func}(grid=grid)" , setup=__UpperCAmelCase , number=5_00 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
31
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=lowercase__ ): """simple docstring""" a : Any =["torch", "scipy"] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["torch", "scipy"] ) @classmethod def lowercase__ ( cls , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(cls , ["torch", "scipy"] ) @classmethod def lowercase__ ( cls , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(cls , ["torch", "scipy"] )
700
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[Any] = embeddings_size lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Optional[int] = depths lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_labels lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : Tuple = scope lowerCAmelCase : int = len(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFResNetModel(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : str = TFResNetForImageClassification(snake_case__ ) lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = config_and_inputs lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Any =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a : Tuple =( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) a : int =False a : List[str] =False a : Optional[int] =False a : Union[str, Any] =False a : Any =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFResNetModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : Optional[Any] = layer_type lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFResNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase : Any = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : str = model(**snake_case__ ) # verify the logits lowerCAmelCase : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
681
0
"""simple docstring""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ = 1_000 ) -> int: a_ : List[Any] = 2**power a_ : Dict = 0 while n: a_ , a_ : Union[str, Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
237
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = """▁""" SCREAMING_SNAKE_CASE_ = {"""vocab_file""": """sentencepiece.bpe.model"""} SCREAMING_SNAKE_CASE_ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } SCREAMING_SNAKE_CASE_ = { """xlm-roberta-base""": 5_12, """xlm-roberta-large""": 5_12, """xlm-roberta-large-finetuned-conll02-dutch""": 5_12, """xlm-roberta-large-finetuned-conll02-spanish""": 5_12, """xlm-roberta-large-finetuned-conll03-english""": 5_12, """xlm-roberta-large-finetuned-conll03-german""": 5_12, } class snake_case_ ( a_ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , a_ , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_ = None , **a_ , ): # Mask token behave like a normal word, i.e. include the space before it a_ : List[str] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token a_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , cls_token=a_ , pad_token=a_ , mask_token=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) a_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a_ ) ) a_ : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token a_ : Optional[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a_ : int = 1 a_ : Dict = len(self.sp_model ) + self.fairseq_offset a_ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): a_ : Any = self.__dict__.copy() a_ : Optional[int] = None a_ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , a_ ): a_ : List[str] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a_ : str = {} a_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self , a_ , a_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : List[str] = [self.cls_token_id] a_ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self , a_ , a_ = None , a_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1] def snake_case_ ( self , a_ , a_ = None ): a_ : Dict = [self.sep_token_id] a_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def snake_case_ ( self ): a_ : Union[str, Any] = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self , a_ ): return self.sp_model.encode(a_ , out_type=a_ ) def snake_case_ ( self , a_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : str = self.sp_model.PieceToId(a_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self , a_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self , a_ ): a_ : str = "".join(a_ ).replace(a_ , " " ).strip() return out_string def snake_case_ ( self , a_ , a_ = None ): if not os.path.isdir(a_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a_ : List[Any] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , "wb" ) as fi: a_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
237
1
'''simple docstring''' def __UpperCamelCase ( _UpperCAmelCase ): # noqa: E741 __UpperCAmelCase : Any = len(_UpperCAmelCase ) __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[Any] = [0] * n __UpperCAmelCase : Any = [False] * n __UpperCAmelCase : Any = [False] * n def dfs(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): if parent == root: out_edge_count += 1 __UpperCAmelCase : List[Any] = True __UpperCAmelCase : List[str] = at for to in l[at]: if to == parent: pass elif not visited[to]: __UpperCAmelCase : List[Any] = dfs(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) __UpperCAmelCase : Tuple = min(low[at], low[to] ) # AP found via bridge if at < low[to]: __UpperCAmelCase : Union[str, Any] = True # AP found via cycle if at == low[to]: __UpperCAmelCase : Tuple = True else: __UpperCAmelCase : Union[str, Any] = min(low[at], _UpperCAmelCase ) return out_edge_count for i in range(_UpperCAmelCase ): if not visited[i]: __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Optional[int] = dfs(_UpperCAmelCase, _UpperCAmelCase, -1, _UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = out_edge_count > 1 for x in range(len(_UpperCAmelCase ) ): if is_art[x] is True: print(_UpperCAmelCase ) # Adjacency list of graph lowerCAmelCase__ : Optional[int] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
711
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ : int = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Union[str, Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowerCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
329
0
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=17 , SCREAMING_SNAKE_CASE_=23 , SCREAMING_SNAKE_CASE_=11 , SCREAMING_SNAKE_CASE_=True , ) -> Optional[int]: __lowerCamelCase : Union[str, Any] = parent __lowerCamelCase : str = batch_size __lowerCamelCase : Dict = seq_length __lowerCamelCase : Tuple = act_dim __lowerCamelCase : int = state_dim __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : int = max_length __lowerCamelCase : str = is_training def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : str = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __lowerCamelCase : Optional[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __lowerCamelCase : List[str] = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowerCamelCase : Tuple = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowerCamelCase : List[Any] = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 ) __lowerCamelCase : Any = random_attention_mask((self.batch_size, self.seq_length) ) __lowerCamelCase : str = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowercase_ ( self ) -> Optional[int]: return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Optional[int]: __lowerCamelCase : List[Any] = DecisionTransformerModel(config=_snake_case ) model.to(_snake_case ) model.eval() __lowerCamelCase : Tuple = model(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : Tuple = config_and_inputs __lowerCamelCase : Optional[Any] = { 'states': states, 'actions': actions, 'rewards': rewards, 'returns_to_go': returns_to_go, 'timesteps': timesteps, 'attention_mask': attention_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ (_lowercase , _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (DecisionTransformerModel,) if is_torch_available() else () lowerCamelCase : Optional[int] = () lowerCamelCase : Any = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCamelCase : List[str] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCamelCase : Dict = False lowerCamelCase : str = False lowerCamelCase : Any = False lowerCamelCase : str = False lowerCamelCase : List[Any] = False lowerCamelCase : Optional[Any] = False lowerCamelCase : str = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : int = False def lowercase_ ( self ) -> str: __lowerCamelCase : Tuple = DecisionTransformerModelTester(self ) __lowerCamelCase : Dict = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def lowercase_ ( self ) -> Tuple: self.config_tester.run_common_tests() def lowercase_ ( self ) -> Any: __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @slow def lowercase_ ( self ) -> Optional[int]: for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[Any] = DecisionTransformerModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def lowercase_ ( self ) -> str: __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Dict = model_class(_snake_case ) __lowerCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Tuple = [*signature.parameters.keys()] __lowerCamelCase : Tuple = [ 'states', 'actions', 'rewards', 'returns_to_go', 'timesteps', 'attention_mask', ] self.assertListEqual(arg_names[: len(_snake_case )] , _snake_case ) @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform __lowerCamelCase : Tuple = 10 # defined by the RL environment, may be normalized __lowerCamelCase : Optional[Any] = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' ) __lowerCamelCase : str = model.to(_snake_case ) __lowerCamelCase : List[Any] = model.config torch.manual_seed(0 ) __lowerCamelCase : Any = torch.randn(1 , 1 , config.state_dim ).to(device=_snake_case , dtype=torch.floataa ) # env.reset() __lowerCamelCase : Optional[Any] = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=_snake_case ) __lowerCamelCase : Optional[Any] = torch.tensor(_snake_case , device=_snake_case , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __lowerCamelCase : Dict = state __lowerCamelCase : Dict = torch.zeros(1 , 0 , config.act_dim , device=_snake_case , dtype=torch.floataa ) __lowerCamelCase : Optional[Any] = torch.zeros(1 , 0 , device=_snake_case , dtype=torch.floataa ) __lowerCamelCase : int = torch.tensor(0 , device=_snake_case , dtype=torch.long ).reshape(1 , 1 ) for step in range(_snake_case ): __lowerCamelCase : Any = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_snake_case )] , dim=1 ) __lowerCamelCase : Optional[Any] = torch.cat([rewards, torch.zeros(1 , 1 , device=_snake_case )] , dim=1 ) __lowerCamelCase : Optional[Any] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = model( states=_snake_case , actions=_snake_case , rewards=_snake_case , returns_to_go=_snake_case , timesteps=_snake_case , attention_mask=_snake_case , return_dict=_snake_case , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_snake_case , dtype=torch.floataa ), 1.0, False, {}, ) __lowerCamelCase : Union[str, Any] = action_pred[0, -1] __lowerCamelCase : List[Any] = torch.cat([states, state] , dim=1 ) __lowerCamelCase : List[str] = returns_to_go[0, -1] - reward __lowerCamelCase : int = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __lowerCamelCase : List[Any] = torch.cat( [timesteps, torch.ones((1, 1) , device=_snake_case , dtype=torch.long ) * (step + 1)] , dim=1 )
13
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase_ : Any = logging.get_logger(__name__) # TODO: upload to AWS UpperCamelCase_ : List[str] = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __lowerCAmelCase ( _lowercase ): """simple docstring""" snake_case = "retribert" def __init__( self : str , _snake_case : List[str]=30_522 , _snake_case : List[Any]=768 , _snake_case : List[Any]=8 , _snake_case : Union[str, Any]=12 , _snake_case : Optional[Any]=3_072 , _snake_case : List[Any]="gelu" , _snake_case : Union[str, Any]=0.1 , _snake_case : Dict=0.1 , _snake_case : str=512 , _snake_case : Tuple=2 , _snake_case : Dict=0.0_2 , _snake_case : Optional[Any]=1e-12 , _snake_case : Tuple=True , _snake_case : Union[str, Any]=128 , _snake_case : Union[str, Any]=0 , **_snake_case : Any , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = hidden_act A_ = intermediate_size A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = initializer_range A_ = layer_norm_eps A_ = share_encoders A_ = projection_dim
115
0
'''simple docstring''' from math import sqrt def _SCREAMING_SNAKE_CASE ( snake_case_ = 1000000 ): '''simple docstring''' _lowercase = 0 _lowercase = 0 _lowercase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(snake_case_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
714
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } _lowerCamelCase = { 'distilbert-base-uncased': 5_1_2, 'distilbert-base-uncased-distilled-squad': 5_1_2, 'distilbert-base-cased': 5_1_2, 'distilbert-base-cased-distilled-squad': 5_1_2, 'distilbert-base-german-cased': 5_1_2, 'distilbert-base-multilingual-cased': 5_1_2, } _lowerCamelCase = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class __a ( _snake_case ): __SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Tuple = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = DistilBertTokenizer def __init__( self : Tuple , lowercase__ : Tuple=None , lowercase__ : Dict=None , lowercase__ : Dict=True , lowercase__ : Tuple="[UNK]" , lowercase__ : Optional[int]="[SEP]" , lowercase__ : Union[str, Any]="[PAD]" , lowercase__ : Optional[Any]="[CLS]" , lowercase__ : Dict="[MASK]" , lowercase__ : int=True , lowercase__ : List[Any]=None , **lowercase__ : Tuple , ) ->Optional[int]: """simple docstring""" super().__init__( lowercase__ , tokenizer_file=lowercase__ , do_lower_case=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , tokenize_chinese_chars=lowercase__ , strip_accents=lowercase__ , **lowercase__ , ) _lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("""lowercase""" , lowercase__) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase__) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase__) != tokenize_chinese_chars ): _lowercase = getattr(lowercase__ , normalizer_state.pop("""type""")) _lowercase = do_lower_case _lowercase = strip_accents _lowercase = tokenize_chinese_chars _lowercase = normalizer_class(**lowercase__) _lowercase = do_lower_case def _UpperCAmelCase ( self : Dict , lowercase__ : Optional[int] , lowercase__ : List[str]=None) ->Union[str, Any]: """simple docstring""" _lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self : Tuple , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None) ->List[int]: """simple docstring""" _lowercase = [self.sep_token_id] _lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _UpperCAmelCase ( self : Dict , lowercase__ : str , lowercase__ : Optional[str] = None) ->Tuple[str]: """simple docstring""" _lowercase = self._tokenizer.model.save(lowercase__ , name=lowercase__) return tuple(lowercase__)
572
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = args.log_outputs SCREAMING_SNAKE_CASE_: Optional[int] = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric SCREAMING_SNAKE_CASE_: str = load_metric("wer" ) SCREAMING_SNAKE_CASE_: str = load_metric("cer" ) # compute metrics SCREAMING_SNAKE_CASE_: Optional[Any] = wer.compute(references=result["target"] , predictions=result["prediction"] ) SCREAMING_SNAKE_CASE_: List[Any] = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results SCREAMING_SNAKE_CASE_: Any = f"WER: {wer_result}\nCER: {cer_result}" print(_UpperCAmelCase ) with open(f"{dataset_id}_eval_results.txt" , "w" ) as f: f.write(_UpperCAmelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: SCREAMING_SNAKE_CASE_: Optional[Any] = f"log_{dataset_id}_predictions.txt" SCREAMING_SNAKE_CASE_: List[str] = f"log_{dataset_id}_targets.txt" with open(_UpperCAmelCase , "w" ) as p, open(_UpperCAmelCase , "w" ) as t: # mapping function to write output def write_to_file(_UpperCAmelCase , _UpperCAmelCase ): p.write(f"{i}" + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f"{i}" + "\n" ) t.write(batch["target"] + "\n" ) result.map(_UpperCAmelCase , with_indices=_UpperCAmelCase ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training SCREAMING_SNAKE_CASE_: List[Any] = re.sub(_UpperCAmelCase , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! SCREAMING_SNAKE_CASE_: Optional[Any] = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: SCREAMING_SNAKE_CASE_: str = " ".join(text.split(_UpperCAmelCase ) ) return text def A_ ( _UpperCAmelCase ): # load dataset SCREAMING_SNAKE_CASE_: str = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_UpperCAmelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor SCREAMING_SNAKE_CASE_: Dict = AutoFeatureExtractor.from_pretrained(args.model_id ) SCREAMING_SNAKE_CASE_: Optional[int] = feature_extractor.sampling_rate # resample audio SCREAMING_SNAKE_CASE_: Dict = dataset.cast_column("audio" , Audio(sampling_rate=_UpperCAmelCase ) ) # load eval pipeline if args.device is None: SCREAMING_SNAKE_CASE_: Tuple = 0 if torch.cuda.is_available() else -1 SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) SCREAMING_SNAKE_CASE_: int = prediction["text"] SCREAMING_SNAKE_CASE_: Optional[Any] = normalize_text(batch["sentence"] ) return batch # run inference on all examples SCREAMING_SNAKE_CASE_: Optional[Any] = dataset.map(_UpperCAmelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) lowerCAmelCase : Optional[int] = parser.parse_args() main(args)
671
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Dict = logging.get_logger(__name__) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = b.T SCREAMING_SNAKE_CASE_: Dict = np.sum(np.square(_UpperCAmelCase ) , axis=1 ) SCREAMING_SNAKE_CASE_: Tuple = np.sum(np.square(_UpperCAmelCase ) , axis=0 ) SCREAMING_SNAKE_CASE_: List[Any] = np.matmul(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = aa[:, None] - 2 * ab + ba[None, :] return d def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = x.reshape(-1 , 3 ) SCREAMING_SNAKE_CASE_: Tuple = squared_euclidean_distance(_UpperCAmelCase , _UpperCAmelCase ) return np.argmin(_UpperCAmelCase , axis=1 ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : int = ['''pixel_values'''] def __init__( self : Tuple , lowerCAmelCase__ : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ): super().__init__(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = size if size is not None else {"height": 256, "width": 256} SCREAMING_SNAKE_CASE_: Tuple = get_size_dict(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = np.array(lowerCAmelCase__) if clusters is not None else None SCREAMING_SNAKE_CASE_: Dict = do_resize SCREAMING_SNAKE_CASE_: str = size SCREAMING_SNAKE_CASE_: List[Any] = resample SCREAMING_SNAKE_CASE_: Optional[int] = do_normalize SCREAMING_SNAKE_CASE_: Dict = do_color_quantize def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ): SCREAMING_SNAKE_CASE_: List[str] = get_size_dict(lowerCAmelCase__) if "height" not in size or "width" not in size: raise ValueError(F"Size dictionary must contain both height and width keys. Got {size.keys()}") return resize( lowerCAmelCase__ , size=(size["height"], size["width"]) , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , ): SCREAMING_SNAKE_CASE_: str = rescale(image=lowerCAmelCase__ , scale=1 / 127.5 , data_format=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = image - 1 return image def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[List[List[int]], np.ndarray]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **lowerCAmelCase__ : Union[str, Any] , ): SCREAMING_SNAKE_CASE_: Tuple = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_: Optional[int] = size if size is not None else self.size SCREAMING_SNAKE_CASE_: Dict = get_size_dict(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_: int = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_: List[str] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize SCREAMING_SNAKE_CASE_: Tuple = clusters if clusters is not None else self.clusters SCREAMING_SNAKE_CASE_: Optional[int] = np.array(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True.") # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_: Union[str, Any] = [to_numpy_array(lowerCAmelCase__) for image in images] if do_resize: SCREAMING_SNAKE_CASE_: Optional[Any] = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_: str = [self.normalize(image=lowerCAmelCase__) for image in images] if do_color_quantize: SCREAMING_SNAKE_CASE_: Any = [to_channel_dimension_format(lowerCAmelCase__ , ChannelDimension.LAST) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) SCREAMING_SNAKE_CASE_: List[Any] = np.array(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = color_quantize(lowerCAmelCase__ , lowerCAmelCase__).reshape(images.shape[:-1]) # flatten to (batch_size, height*width) SCREAMING_SNAKE_CASE_: str = images.shape[0] SCREAMING_SNAKE_CASE_: Tuple = images.reshape(lowerCAmelCase__ , -1) # We need to convert back to a list of images to keep consistent behaviour across processors. SCREAMING_SNAKE_CASE_: str = list(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Dict = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__) for image in images] SCREAMING_SNAKE_CASE_: Optional[Any] = {"input_ids": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__)
671
1
'''simple docstring''' from __future__ import annotations def A_ ( snake_case ): SCREAMING_SNAKE_CASE:List[Any] = str(_lowercase ) return n == n[::-1] def A_ ( snake_case = 1000000 ): SCREAMING_SNAKE_CASE:int = 0 for i in range(1 , _lowercase ): if is_palindrome(_lowercase ) and is_palindrome(bin(_lowercase ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
712
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=_a ): _A : Any = ['''torch''', '''torchsde'''] def __init__( self : Any ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Tuple ): requires_backends(self ,["torch", "torchsde"] ) @classmethod def __UpperCamelCase ( cls : Dict ,*SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ): requires_backends(cls ,["torch", "torchsde"] ) @classmethod def __UpperCamelCase ( cls : List[str] ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Optional[Any] ): requires_backends(cls ,["torch", "torchsde"] )
465
0
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _UpperCamelCase = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) _UpperCamelCase = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} _UpperCamelCase = """zero2""" _UpperCamelCase = """zero3""" _UpperCamelCase = [ZEROa, ZEROa] def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ) -> Dict: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param lowerCAmelCase__ : Dict = parameterized.to_safe_name("_".join(str(lowercase__ ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test _UpperCamelCase = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __a ( __magic_name__ ): """simple docstring""" @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case ): """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case ): """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case ): """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case ): """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case , snake_case = 10 , snake_case = True , snake_case = True , snake_case = True , ): """simple docstring""" lowerCAmelCase__ : Dict = models[model] lowerCAmelCase__ : Dict = self.run_trainer( stage=snake_case , model_name=snake_case , eval_steps=snake_case , num_train_epochs=1 , distributed=snake_case , fpaa=snake_case , ) self.do_checks(snake_case ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case , snake_case = 10 , snake_case = 1 , snake_case = True , snake_case = True , ): """simple docstring""" lowerCAmelCase__ : Any = self.get_auto_remove_tmp_dir("./xxx" , after=snake_case ) lowerCAmelCase__ : List[str] = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files lowerCAmelCase__ : Dict = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() lowerCAmelCase__ : str = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] lowerCAmelCase__ : Optional[Any] = self.get_launcher(snake_case ) lowerCAmelCase__ : Union[str, Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE_ ( self , snake_case=False ): """simple docstring""" lowerCAmelCase__ : Tuple = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
453
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _UpperCamelCase = random.Random() def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__=1.0 , lowercase__=None , lowercase__=None ) -> Optional[Any]: if rng is None: lowerCAmelCase__ : Union[str, Any] = global_rng lowerCAmelCase__ : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __a ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case , snake_case=7 , snake_case=400 , snake_case=2_000 , snake_case=2_048 , snake_case=128 , snake_case=1 , snake_case=512 , snake_case=30 , snake_case=44_100 , ): """simple docstring""" lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Optional[Any] = min_seq_length lowerCAmelCase__ : Optional[int] = max_seq_length lowerCAmelCase__ : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase__ : Dict = spectrogram_length lowerCAmelCase__ : Any = feature_size lowerCAmelCase__ : int = num_audio_channels lowerCAmelCase__ : Optional[int] = hop_length lowerCAmelCase__ : List[str] = chunk_length lowerCAmelCase__ : Optional[Any] = sampling_rate def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def SCREAMING_SNAKE_CASE_ ( self , snake_case=False , snake_case=False ): """simple docstring""" def _flatten(snake_case ): return list(itertools.chain(*snake_case ) ) if equal_length: lowerCAmelCase__ : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase__ : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase__ : Dict = [np.asarray(snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __a ( __magic_name__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = TvltFeatureExtractor def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = TvltFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case , "spectrogram_length" ) ) self.assertTrue(hasattr(snake_case , "feature_size" ) ) self.assertTrue(hasattr(snake_case , "num_audio_channels" ) ) self.assertTrue(hasattr(snake_case , "hop_length" ) ) self.assertTrue(hasattr(snake_case , "chunk_length" ) ) self.assertTrue(hasattr(snake_case , "sampling_rate" ) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Union[str, Any] = feat_extract_first.save_pretrained(snake_case )[0] check_json_file_has_correct_format(snake_case ) lowerCAmelCase__ : Tuple = self.feature_extraction_class.from_pretrained(snake_case ) lowerCAmelCase__ : Union[str, Any] = feat_extract_first.to_dict() lowerCAmelCase__ : int = feat_extract_second.to_dict() lowerCAmelCase__ : Union[str, Any] = dict_first.pop("mel_filters" ) lowerCAmelCase__ : List[Any] = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : List[Any] = os.path.join(snake_case , "feat_extract.json" ) feat_extract_first.to_json_file(snake_case ) lowerCAmelCase__ : List[Any] = self.feature_extraction_class.from_json_file(snake_case ) lowerCAmelCase__ : Optional[Any] = feat_extract_first.to_dict() lowerCAmelCase__ : Dict = feat_extract_second.to_dict() lowerCAmelCase__ : Tuple = dict_first.pop("mel_filters" ) lowerCAmelCase__ : Dict = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase__ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase__ : Optional[int] = [np.asarray(snake_case ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase__ : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched lowerCAmelCase__ : Optional[int] = feature_extractor(snake_case , return_tensors="np" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking lowerCAmelCase__ : List[str] = feature_extractor( snake_case , return_tensors="np" , sampling_rate=44_100 , mask_audio=snake_case ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. lowerCAmelCase__ : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCAmelCase__ : Tuple = np.asarray(snake_case ) lowerCAmelCase__ : List[Any] = feature_extractor(snake_case , return_tensors="np" , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" lowerCAmelCase__ : str = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowerCAmelCase__ : int = ds.sort("id" ).select(range(snake_case ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : str = self._load_datasamples(1 ) lowerCAmelCase__ : Optional[Any] = TvltFeatureExtractor() lowerCAmelCase__ : Dict = feature_extractor(snake_case , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) lowerCAmelCase__ : Dict = torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case , atol=1e-4 ) )
453
1
"""simple docstring""" import numpy as np class UpperCAmelCase__ : def __init__( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A = (0, 0) A = None A = 0 A = 0 A = 0 def __eq__( self : Any , snake_case : Dict ) -> str: '''simple docstring''' return self.position == cell.position def A_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' print(self.position ) class UpperCAmelCase__ : def __init__( self : Any , snake_case : Any=(5, 5) ) -> Optional[Any]: '''simple docstring''' A = np.zeros(snake_case ) A = world_size[0] A = world_size[1] def A_ ( self : Any ) -> Any: '''simple docstring''' print(self.w ) def A_ ( self : List[Any] , snake_case : Any ) -> Optional[Any]: '''simple docstring''' A = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] A = cell.position[0] A = cell.position[1] A = [] for n in neughbour_cord: A = current_x + n[0] A = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: A = Cell() A = (x, y) A = cell neighbours.append(snake_case ) return neighbours def lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: A = [] A = [] _open.append(lowerCamelCase__ ) while _open: A = np.argmin([n.f for n in _open] ) A = _open[min_f] _closed.append(_open.pop(lowerCamelCase__ ) ) if current == goal: break for n in world.get_neigbours(lowerCamelCase__ ): for c in _closed: if c == n: continue A = current.g + 1 A , A = n.position A , A = goal.position A = (ya - ya) ** 2 + (xa - xa) ** 2 A = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowerCamelCase__ ) A = [] while current.parent is not None: path.append(current.position ) A = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": A = Gridworld() # Start position and goal A = Cell() A = (0, 0) A = Cell() A = (4, 4) print(F'path from {start.position} to {goal.position}') A = astar(world, start, goal) # Just for visual reasons. for i in s: A = 1 print(world.w)
109
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( UpperCamelCase ,unittest.TestCase ): lowerCAmelCase_ : Tuple = LayoutLMTokenizer lowerCAmelCase_ : Any = LayoutLMTokenizerFast lowerCAmelCase_ : Optional[int] = True lowerCAmelCase_ : List[Any] = True def A_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() A = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self : str , **snake_case : Tuple ) -> Union[str, Any]: '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def A_ ( self : List[str] , snake_case : int ) -> List[Any]: '''simple docstring''' A = 'UNwant\u00E9d,running' A = 'unwanted, running' return input_text, output_text def A_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' A = self.tokenizer_class(self.vocab_file ) A = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(snake_case , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , [7, 4, 5, 10, 8, 9] ) def A_ ( self : Any ) -> List[Any]: '''simple docstring''' pass
109
1
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase: Optional[Any] ="https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def __snake_case ( __A = "mumbai" ) -> Generator[tuple[str, str], None, None]: lowercase : Union[str, Any] = BeautifulSoup(requests.get(url + location ).content ,"""html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" ,attrs={"""data-tn-component""": """organicJob"""} ): lowercase : List[Any] = job.find("""a""" ,attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() lowercase : Union[str, Any] = job.find("""span""" ,{"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
607
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase: str ={ "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Tuple =["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Dict =[ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Dict =[ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase: Union[str, Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
607
1
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __lowerCAmelCase = None __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 __lowerCAmelCase = { "t5-small": 5_1_2, "t5-base": 5_1_2, "t5-large": 5_1_2, "t5-3b": 5_1_2, "t5-11b": 5_1_2, } class __SCREAMING_SNAKE_CASE ( __UpperCAmelCase): __SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[Any] = ["input_ids", "attention_mask"] __SCREAMING_SNAKE_CASE : Any = TaTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : Dict , __UpperCamelCase : Dict=None , __UpperCamelCase : Dict=None , __UpperCamelCase : Optional[int]="</s>" , __UpperCamelCase : Any="<unk>" , __UpperCamelCase : Optional[Any]="<pad>" , __UpperCamelCase : Tuple=100 , __UpperCamelCase : Tuple=None , **__UpperCamelCase : str , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _UpperCAmelCase = [F'''<extra_id_{i}>''' for i in range(_lowerCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens _UpperCAmelCase = len(set(filter(lambda __UpperCamelCase : bool("extra_id_" in str(_lowerCamelCase ) ) , _lowerCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , extra_ids=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True _UpperCAmelCase = extra_ids @staticmethod def UpperCAmelCase__ ( __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : int ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: _UpperCAmelCase = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , _lowerCamelCase , ) return max_model_length def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): _UpperCAmelCase = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: _UpperCAmelCase = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCAmelCase__ ( self : str , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase__ ( self : Union[str, Any] ): return list( set(filter(lambda __UpperCamelCase : bool(re.search(r"<extra_id_\d+>" , _lowerCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase__ ( self : Any ): return [self.convert_tokens_to_ids(_lowerCamelCase ) for token in self.get_sentinel_tokens()]
701
def __lowerCamelCase ( _lowerCAmelCase ) -> Dict: _UpperCAmelCase = [0] * len(_lowerCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowerCAmelCase ) ): if indegree[i] == 0: queue.append(_lowerCAmelCase ) while queue: _UpperCAmelCase = queue.pop(0 ) cnt += 1 topo.append(_lowerCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_lowerCAmelCase ) if cnt != len(_lowerCAmelCase ): print("Cycle exists" ) else: print(_lowerCAmelCase ) # Adjacency List of Graph __lowerCAmelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
129
0
class __A : def __init__( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[Any] = name lowerCAmelCase : int = val def __str__( self : str ): return f"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : Union[str, Any] , UpperCAmelCase_ : Dict ): return self.val < other.val class __A : def __init__( self : Union[str, Any] , UpperCAmelCase_ : str ): lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = {} lowerCAmelCase : Optional[Any] = self.build_heap(UpperCAmelCase_ ) def __getitem__( self : Union[str, Any] , UpperCAmelCase_ : str ): return self.get_value(UpperCAmelCase_ ) def lowercase__ ( self : int , UpperCAmelCase_ : Any ): return (idx - 1) // 2 def lowercase__ ( self : int , UpperCAmelCase_ : str ): return idx * 2 + 1 def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Any ): return idx * 2 + 2 def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[Any] ): return self.heap_dict[key] def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = len(UpperCAmelCase_ ) - 1 lowerCAmelCase : Union[str, Any] = self.get_parent_idx(UpperCAmelCase_ ) for idx, i in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Any = idx lowerCAmelCase : Union[str, Any] = i.val for i in range(UpperCAmelCase_ , -1 , -1 ): self.sift_down(UpperCAmelCase_ , UpperCAmelCase_ ) return array def lowercase__ ( self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): while True: lowerCAmelCase : Optional[int] = self.get_left_child_idx(UpperCAmelCase_ ) # noqa: E741 lowerCAmelCase : Union[str, Any] = self.get_right_child_idx(UpperCAmelCase_ ) lowerCAmelCase : Any = idx if l < len(UpperCAmelCase_ ) and array[l] < array[idx]: lowerCAmelCase : Tuple = l if r < len(UpperCAmelCase_ ) and array[r] < array[smallest]: lowerCAmelCase : Any = r if smallest != idx: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = array[smallest], array[idx] ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : List[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCAmelCase : List[str] = smallest else: break def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = self.get_parent_idx(UpperCAmelCase_ ) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCAmelCase , lowerCAmelCase : Optional[int] = self.heap[idx], self.heap[p] lowerCAmelCase , lowerCAmelCase : Union[str, Any] = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCAmelCase : Dict = p lowerCAmelCase : Optional[Any] = self.get_parent_idx(UpperCAmelCase_ ) def lowercase__ ( self : str ): return self.heap[0] def lowercase__ ( self : int ): lowerCAmelCase , lowerCAmelCase : str = self.heap[-1], self.heap[0] lowerCAmelCase , lowerCAmelCase : Dict = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCAmelCase : Any = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def lowercase__ ( self : Any , UpperCAmelCase_ : Any ): self.heap.append(UpperCAmelCase_ ) lowerCAmelCase : str = len(self.heap ) - 1 lowerCAmelCase : List[Any] = node.val self.sift_up(len(self.heap ) - 1 ) def lowercase__ ( self : Optional[int] ): return len(self.heap ) == 0 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCAmelCase : Optional[int] = new_value lowerCAmelCase : str = new_value self.sift_up(self.idx_of_element[node] ) __A : Tuple = Node('''R''', -1) __A : int = Node('''B''', 6) __A : int = Node('''A''', 3) __A : Optional[Any] = Node('''X''', 1) __A : List[str] = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __A : Optional[int] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
343
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] lowerCAmelCase : int = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCAmelCase : Optional[Any] = len(_UpperCAmelCase ) if (len(_UpperCAmelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ), 'Stack'.center(_UpperCAmelCase ), 'Postfix'.center(_UpperCAmelCase ), sep=' | ', ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_UpperCAmelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_UpperCAmelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_UpperCAmelCase ) == 0: stack.append(_UpperCAmelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_UpperCAmelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_UpperCAmelCase ) # push x to stack print( x.center(8 ), (''.join(_UpperCAmelCase )).ljust(_UpperCAmelCase ), (''.join(_UpperCAmelCase )).ljust(_UpperCAmelCase ), sep=' | ', ) # Output in tabular format while len(_UpperCAmelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ), (''.join(_UpperCAmelCase )).ljust(_UpperCAmelCase ), (''.join(_UpperCAmelCase )).ljust(_UpperCAmelCase ), sep=' | ', ) # Output in tabular format return "".join(_UpperCAmelCase ) # return Postfix as str def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Tuple = list(infix[::-1] ) # reverse the infix equation for i in range(len(_UpperCAmelCase ) ): if infix[i] == "(": lowerCAmelCase : int = ')' # change "(" to ")" elif infix[i] == ")": lowerCAmelCase : List[Any] = '(' # change ")" to "(" return (infix_2_postfix(''.join(_UpperCAmelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __A : Optional[Any] = input('''\nEnter an Infix Equation = ''') # Input an Infix equation __A : str = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
343
1
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case_ : int = logging.getLogger() def __snake_case ( _UpperCAmelCase : Path, _UpperCAmelCase : list): UpperCamelCase = '''\n'''.join(_UpperCAmelCase) Path(_UpperCAmelCase).open('''w''').writelines(_UpperCAmelCase) snake_case_ : Any = 'patrickvonplaten/t5-tiny-random' snake_case_ : Tuple = 'sshleifer/bart-tiny-random' snake_case_ : str = 'sshleifer/tiny-mbart' snake_case_ : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase__ ( snake_case_ ): '''simple docstring''' def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' UpperCamelCase = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() UpperCamelCase = [''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) UpperCamelCase = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' UpperCamelCase = f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(lowerCamelCase__ , '''argv''' , lowerCamelCase__ ): run_generate() assert Path(lowerCamelCase__ ).exists() # os.remove(Path(output_file_name)) def UpperCAmelCase ( self ): '''simple docstring''' self.run_eval_tester(lowerCamelCase__ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' self.run_eval_tester(lowerCamelCase__ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' UpperCamelCase = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() UpperCamelCase = { '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } UpperCamelCase = Path(self.get_auto_remove_tmp_dir() ) UpperCamelCase = str(tmp_dir / '''scores.json''' ) UpperCamelCase = str(tmp_dir / '''val.target''' ) _dump_articles(lowerCamelCase__ , text['''en'''] ) _dump_articles(lowerCamelCase__ , text['''de'''] ) UpperCamelCase = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' UpperCamelCase = f'\n run_eval_search.py\n {model}\n {str(lowerCamelCase__ )}\n {str(lowerCamelCase__ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(lowerCamelCase__ , '''argv''' , lowerCamelCase__ ): with CaptureStdout() as cs: run_search() UpperCamelCase = [''' num_beams | length_penalty''', model, '''Best score args'''] UpperCamelCase = ['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(lowerCamelCase__ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase__ ).exists() os.remove(Path(lowerCamelCase__ ) )
350
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Union[str, Any] = {'vocab_file': 'spiece.model'} snake_case_ : Any = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } snake_case_ : Dict = { 'AI-Sweden/gpt-sw3-126m': 2_048, 'AI-Sweden/gpt-sw3-350m': 2_048, 'AI-Sweden/gpt-sw3-1.6b': 2_048, 'AI-Sweden/gpt-sw3-6.7b': 2_048, 'AI-Sweden/gpt-sw3-20b': 2_048, } class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__ = None , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) UpperCamelCase = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing UpperCamelCase = '''<|endoftext|>''' if eos_token is None else eos_token UpperCamelCase = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: UpperCamelCase = unk_token if pad_token is None else pad_token UpperCamelCase = eos_token if bos_token is None else bos_token else: UpperCamelCase = '''<pad>''' if pad_token is None else pad_token UpperCamelCase = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) # Used for whitespace normalization in input texts # fmt : off UpperCamelCase = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing UpperCamelCase = re.compile( f'[{"".join(map(lowerCamelCase__ , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self ): '''simple docstring''' UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase ( self ): '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = self.non_printing_characters_re.sub('''''' , lowerCamelCase__ ) # Normalize whitespaces UpperCamelCase = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization UpperCamelCase = unicodedata.normalize('''NFC''' , lowerCamelCase__ ) return text def UpperCAmelCase ( self , lowerCamelCase__ , **lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = self.preprocess_text(lowerCamelCase__ ) return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase__ ) @staticmethod def UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' return out_string def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = [] UpperCamelCase = '''''' UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase__ ) + token UpperCamelCase = True UpperCamelCase = [] else: current_sub_tokens.append(lowerCamelCase__ ) UpperCamelCase = False out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , '''wb''' ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = False ): '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase = self.preprocess_text(lowerCamelCase__ ) UpperCamelCase = self.sp_model.encode(lowerCamelCase__ ) else: UpperCamelCase = [self.preprocess_text(lowerCamelCase__ ) for t in text] UpperCamelCase = self.sp_model.encode(lowerCamelCase__ ) if return_tensors is True or return_tensors == "pt": UpperCamelCase = torch.tensor(lowerCamelCase__ ) return token_ids def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.sp_model.decode(lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()] UpperCamelCase = ( f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(lowerCamelCase__ ) + f'{self.bos_token}Bot:' ) return self.encode(text=lowerCamelCase__ )
350
1
"""simple docstring""" from functools import lru_cache def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> set: _SCREAMING_SNAKE_CASE : Union[str, Any] = 2 _SCREAMING_SNAKE_CASE : Dict = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__SCREAMING_SNAKE_CASE ) if n > 1: factors.add(__SCREAMING_SNAKE_CASE ) return factors @lru_cache def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> int: return len(unique_prime_factors(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> bool: return len(set(__SCREAMING_SNAKE_CASE ) ) in (0, 1) def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> list: _SCREAMING_SNAKE_CASE : Tuple = 2 while True: # Increment each value of a generated range _SCREAMING_SNAKE_CASE : int = [base + i for i in range(__SCREAMING_SNAKE_CASE )] # Run elements through out unique_prime_factors function # Append our target number to the end. _SCREAMING_SNAKE_CASE : Optional[int] = [upf_len(__SCREAMING_SNAKE_CASE ) for x in group] checker.append(__SCREAMING_SNAKE_CASE ) # If all numbers in the list are equal, return the group variable. if equality(__SCREAMING_SNAKE_CASE ): return group # Increment our base variable by 1 base += 1 def lowerCamelCase_(__SCREAMING_SNAKE_CASE = 4 )-> int: _SCREAMING_SNAKE_CASE : Tuple = run(__SCREAMING_SNAKE_CASE ) return results[0] if len(__SCREAMING_SNAKE_CASE ) else None if __name__ == "__main__": print(solution())
338
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser( description=( '''Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''roberta''', choices=['''roberta''', '''gpt2''']) parser.add_argument('''--model_name''', default='''roberta-large''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_roberta_048131723.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') lowerCAmelCase_ = parser.parse_args() if args.model_type == "roberta": lowerCAmelCase_ = RobertaForMaskedLM.from_pretrained(args.model_name) lowerCAmelCase_ = '''roberta''' elif args.model_type == "gpt2": lowerCAmelCase_ = GPTaLMHeadModel.from_pretrained(args.model_name) lowerCAmelCase_ = '''transformer''' lowerCAmelCase_ = model.state_dict() lowerCAmelCase_ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowerCAmelCase_ = state_dict[F"{prefix}.{param_name}"] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowerCAmelCase_ = F"{prefix}.embeddings.{w}.weight" lowerCAmelCase_ = state_dict[param_name] for w in ["weight", "bias"]: lowerCAmelCase_ = F"{prefix}.embeddings.LayerNorm.{w}" lowerCAmelCase_ = state_dict[param_name] # Transformer Blocks # lowerCAmelCase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowerCAmelCase_ = state_dict[ F"{prefix}.h.{teacher_idx}.{layer}.{w}" ] lowerCAmelCase_ = state_dict[F"{prefix}.h.{teacher_idx}.attn.bias"] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowerCAmelCase_ = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowerCAmelCase_ = state_dict[F"{layer}"] if args.vocab_transform: for w in ["weight", "bias"]: lowerCAmelCase_ = state_dict[F"lm_head.dense.{w}"] lowerCAmelCase_ = state_dict[F"lm_head.layer_norm.{w}"] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowerCAmelCase_ = state_dict[F"{prefix}.ln_f.{w}"] lowerCAmelCase_ = state_dict['''lm_head.weight'''] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
338
1
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __lowercase ( _UpperCAmelCase , unittest.TestCase): """simple docstring""" _A : int = CpmAntTokenizer _A : List[Any] = False def __UpperCamelCase (self ): super().setUp() snake_case_ : Optional[int] = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] snake_case_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __UpperCamelCase (self ): snake_case_ : Optional[int] = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) snake_case_ : str = """今天天气真好!""" snake_case_ : Dict = ["""今天""", """天气""", """真""", """好""", """!"""] snake_case_ : Any = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) snake_case_ : Dict = """今天天气真好!""" snake_case_ : Union[str, Any] = [tokenizer.bos_token] + tokens snake_case_ : Union[str, Any] = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) snake_case_ : int = tokenizer.decode(lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
713
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
0
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __magic_name__ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def _lowerCAmelCase ( UpperCamelCase_ = "mumbai" ): __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): __SCREAMING_SNAKE_CASE = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() __SCREAMING_SNAKE_CASE = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F"""Job {i:>2} is {job[0]} at {job[1]}""")
155
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[int] = '''speech_to_text''' __lowercase : List[str] = ['''past_key_values'''] __lowercase : str = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCAmelCase__=1_0_0_0_0 , lowerCAmelCase__=1_2 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=4 , lowerCAmelCase__=6 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=4 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=2_5_6 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=6_0_0_0 , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=2 , lowerCAmelCase__=(5, 5) , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=8_0 , lowerCAmelCase__=1 , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True __SCREAMING_SNAKE_CASE = max_source_positions __SCREAMING_SNAKE_CASE = max_target_positions __SCREAMING_SNAKE_CASE = num_conv_layers __SCREAMING_SNAKE_CASE = list(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = conv_channels __SCREAMING_SNAKE_CASE = input_feat_per_channel __SCREAMING_SNAKE_CASE = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ f"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, " f"`config.num_conv_layers = {self.num_conv_layers}`.") super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
155
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _lowerCAmelCase : """simple docstring""" lowerCAmelCase = 42 lowerCAmelCase = 42 class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" lowerCAmelCase = [[] for _ in range(_UpperCAmelCase )] lowerCAmelCase = size def __getitem__( self : str , SCREAMING_SNAKE_CASE : Tuple ) -> Dict: """simple docstring""" return iter(self._graph[vertex] ) @property def __A ( self : Optional[int] ) -> Dict: """simple docstring""" return self._size def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(_UpperCAmelCase , _UpperCAmelCase ) ) def __A ( self : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCAmelCase = deque([start_vertex] ) lowerCAmelCase = [None] * self.size lowerCAmelCase = 0 while queue: lowerCAmelCase = queue.popleft() lowerCAmelCase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCAmelCase = current_distance + edge.weight lowerCAmelCase = distances[edge.destination_vertex] if ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and new_distance >= dest_vertex_distance ): continue lowerCAmelCase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets lowercase : Union[str, Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' lowercase : Optional[int] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' lowercase : int = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def __a ( A__ , A__ , A__ , A__ , A__ = None , A__ = False , ) -> List[str]: if label_map is not None: for old_id, new_id in label_map.items(): lowerCAmelCase = new_id # turn into Numpy arrays lowerCAmelCase = np.array(A__ ) lowerCAmelCase = np.array(A__ ) if reduce_labels: lowerCAmelCase = 255 lowerCAmelCase = label - 1 lowerCAmelCase = 255 lowerCAmelCase = label != ignore_index lowerCAmelCase = np.not_equal(A__ , A__ ) lowerCAmelCase = pred_label[mask] lowerCAmelCase = np.array(A__ )[mask] lowerCAmelCase = pred_label[pred_label == label] lowerCAmelCase = np.histogram(A__ , bins=A__ , range=(0, num_labels - 1) )[0] lowerCAmelCase = np.histogram(A__ , bins=A__ , range=(0, num_labels - 1) )[0] lowerCAmelCase = np.histogram(A__ , bins=A__ , range=(0, num_labels - 1) )[0] lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __a ( A__ , A__ , A__ , A__ , A__ = None , A__ = False , ) -> Optional[int]: lowerCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(A__ , A__ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = intersect_and_union( A__ , A__ , A__ , A__ , A__ , A__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __a ( A__ , A__ , A__ , A__ , A__ = None , A__ = None , A__ = False , ) -> Dict: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = total_intersect_and_union( A__ , A__ , A__ , A__ , A__ , A__ ) # compute metrics lowerCAmelCase = {} lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() lowerCAmelCase = total_area_intersect / total_area_union lowerCAmelCase = total_area_intersect / total_area_label lowerCAmelCase = np.nanmean(A__ ) lowerCAmelCase = np.nanmean(A__ ) lowerCAmelCase = all_acc lowerCAmelCase = iou lowerCAmelCase = acc if nan_to_num is not None: lowerCAmelCase = {metric: np.nan_to_num(A__ , nan=A__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def __A ( self : Tuple ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ) , reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] , ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[Dict[int, int]] = None , SCREAMING_SNAKE_CASE : bool = False , ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = mean_iou( results=SCREAMING_SNAKE_CASE , gt_seg_maps=SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , ignore_index=SCREAMING_SNAKE_CASE , nan_to_num=SCREAMING_SNAKE_CASE , label_map=SCREAMING_SNAKE_CASE , reduce_labels=SCREAMING_SNAKE_CASE , ) return iou_result
159
0