code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case (lowerCamelCase ): def __init__( self: Any , A_: Optional[int] , A_: Optional[int]=13 , A_: Tuple=7 , A_: Optional[Any]=True , A_: Optional[int]=True , A_: str=True , A_: int=True , A_: List[str]=True , A_: Dict=False , A_: Optional[Any]=False , A_: int=False , A_: Any=2 , A_: int=99 , A_: str=0 , A_: Dict=32 , A_: str=5 , A_: str=4 , A_: str=0.1 , A_: str=0.1 , A_: List[str]=5_12 , A_: Optional[Any]=12 , A_: Union[str, Any]=2 , A_: Union[str, Any]=0.02 , A_: List[str]=3 , A_: int=4 , A_: Optional[int]="last" , A_: Tuple=None , A_: Union[str, Any]=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_lengths __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = gelu_activation __lowerCamelCase = sinusoidal_embeddings __lowerCamelCase = causal __lowerCamelCase = asm __lowerCamelCase = n_langs __lowerCamelCase = vocab_size __lowerCamelCase = n_special __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = summary_type __lowerCamelCase = use_proj __lowerCamelCase = scope def __a ( self: int ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_input_lengths: __lowerCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , 2 ).float() __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self: List[Any] ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def __a ( self: Union[str, Any] , A_: Union[str, Any] , A_: Optional[Any] , A_: Optional[int] , A_: Union[str, Any] , A_: Optional[int] , A_: Dict , A_: Union[str, Any] , A_: Optional[int] , A_: List[str] , ): __lowerCamelCase = FlaubertModel(config=A_ ) model.to(A_ ) model.eval() __lowerCamelCase = model(A_ , lengths=A_ , langs=A_ ) __lowerCamelCase = model(A_ , langs=A_ ) __lowerCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self: Union[str, Any] , A_: Any , A_: Optional[int] , A_: int , A_: List[Any] , A_: Union[str, Any] , A_: Tuple , A_: Any , A_: Dict , A_: Optional[Any] , ): __lowerCamelCase = FlaubertWithLMHeadModel(A_ ) model.to(A_ ) model.eval() __lowerCamelCase = model(A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self: Tuple , A_: Tuple , A_: Optional[int] , A_: Dict , A_: Tuple , A_: Tuple , A_: List[str] , A_: Optional[Any] , A_: Optional[int] , A_: Union[str, Any] , ): __lowerCamelCase = FlaubertForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() __lowerCamelCase = model(A_ ) __lowerCamelCase = model(A_ , start_positions=A_ , end_positions=A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self: Dict , A_: List[Any] , A_: Union[str, Any] , A_: Dict , A_: List[str] , A_: Dict , A_: Optional[int] , A_: int , A_: str , A_: List[str] , ): __lowerCamelCase = FlaubertForQuestionAnswering(A_ ) model.to(A_ ) model.eval() __lowerCamelCase = model(A_ ) __lowerCamelCase = model( A_ , start_positions=A_ , end_positions=A_ , cls_index=A_ , is_impossible=A_ , p_mask=A_ , ) __lowerCamelCase = model( A_ , start_positions=A_ , end_positions=A_ , cls_index=A_ , is_impossible=A_ , ) ((__lowerCamelCase) ,) = result_with_labels.to_tuple() __lowerCamelCase = model(A_ , start_positions=A_ , end_positions=A_ ) ((__lowerCamelCase) ,) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __a ( self: List[Any] , A_: List[str] , A_: str , A_: Optional[int] , A_: Any , A_: int , A_: Union[str, Any] , A_: Tuple , A_: int , A_: Dict , ): __lowerCamelCase = FlaubertForSequenceClassification(A_ ) model.to(A_ ) model.eval() __lowerCamelCase = model(A_ ) __lowerCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self: Dict , A_: List[Any] , A_: List[Any] , A_: Any , A_: Union[str, Any] , A_: Optional[int] , A_: int , A_: List[str] , A_: Tuple , A_: Union[str, Any] , ): __lowerCamelCase = self.num_labels __lowerCamelCase = FlaubertForTokenClassification(A_ ) model.to(A_ ) model.eval() __lowerCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self: Tuple , A_: Tuple , A_: Optional[int] , A_: List[Any] , A_: Optional[Any] , A_: int , A_: List[str] , A_: Any , A_: Union[str, Any] , A_: Optional[Any] , ): __lowerCamelCase = self.num_choices __lowerCamelCase = FlaubertForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() __lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self: Any ): __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __snake_case (lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __a = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def __a ( self: Optional[Any] , A_: Any , A_: List[Any] , A_: int , A_: List[str] , A_: Optional[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self: Tuple , A_: Tuple , A_: Optional[Any] , A_: str=False ): __lowerCamelCase = super()._prepare_for_class(A_ , A_ , return_labels=A_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) return inputs_dict def __a ( self: Tuple ): __lowerCamelCase = FlaubertModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=A_ , emb_dim=37 ) def __a ( self: Tuple ): self.config_tester.run_common_tests() def __a ( self: Tuple ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def __a ( self: str ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def __a ( self: Optional[Any] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*A_ ) def __a ( self: Any ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def __a ( self: Dict ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def __a ( self: str ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*A_ ) def __a ( self: Any ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*A_ ) @slow def __a ( self: Union[str, Any] ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = FlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @slow @require_torch_gpu def __a ( self: Optional[int] ): __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __lowerCamelCase = True __lowerCamelCase = model_class(config=A_ ) __lowerCamelCase = self._prepare_for_class(A_ , A_ ) __lowerCamelCase = torch.jit.trace( A_ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(A_ , os.path.join(A_ , """traced_model.pt""" ) ) __lowerCamelCase = torch.jit.load(os.path.join(A_ , """traced_model.pt""" ) , map_location=A_ ) loaded(inputs_dict["""input_ids"""].to(A_ ) , inputs_dict["""attention_mask"""].to(A_ ) ) @require_torch class __snake_case (unittest.TestCase ): @slow def __a ( self: Optional[Any] ): __lowerCamelCase = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) __lowerCamelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): __lowerCamelCase = model(A_ )[0] __lowerCamelCase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , A_ ) __lowerCamelCase = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1E-4 ) )
281
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model') __magic_name__ : int = get_tests_dir('fixtures/test_sentencepiece_bpe.model') __magic_name__ : Any = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class __snake_case (lowerCamelCase , unittest.TestCase ): __a = CamembertTokenizer __a = CamembertTokenizerFast __a = True __a = True def __a ( self: List[Any] ): super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = CamembertTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self: Union[str, Any] ): __lowerCamelCase = """<pad>""" __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def __a ( self: Any ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(A_ ) , 10_04 ) def __a ( self: Any ): self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def __a ( self: Optional[Any] ): __lowerCamelCase = CamembertTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) __lowerCamelCase = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __lowerCamelCase = """I was born in 92000, and this is falsé.""" __lowerCamelCase = tokenizer.encode(A_ ) __lowerCamelCase = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) __lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) __lowerCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __lowerCamelCase = tokenizer.convert_ids_to_tokens(A_ ) __lowerCamelCase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) def __a ( self: List[str] ): if not self.test_rust_tokenizer: return __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = """I was born in 92000, and this is falsé.""" __lowerCamelCase = tokenizer.tokenize(A_ ) __lowerCamelCase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) __lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) __lowerCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = tokenizer.encode(A_ ) __lowerCamelCase = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) @slow def __a ( self: Optional[Any] ): # fmt: off __lowerCamelCase = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __lowerCamelCase = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=A_ , )
281
1
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _lowerCamelCase = random.Random() def lowerCAmelCase_ ( lowercase_ : Tuple , lowercase_ : int=1.0 , lowercase_ : List[Any]=None , lowercase_ : Optional[Any]=None ): '''simple docstring''' if rng is None: __SCREAMING_SNAKE_CASE : int = global_rng __SCREAMING_SNAKE_CASE : List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowerCamelCase ( unittest.TestCase ): def __init__( self :Any , _lowerCamelCase :Optional[int] , _lowerCamelCase :Tuple=7 , _lowerCamelCase :str=4_0_0 , _lowerCamelCase :Dict=2_0_0_0 , _lowerCamelCase :str=2_0_4_8 , _lowerCamelCase :Optional[Any]=1_2_8 , _lowerCamelCase :Dict=1 , _lowerCamelCase :int=5_1_2 , _lowerCamelCase :Union[str, Any]=3_0 , _lowerCamelCase :str=4_4_1_0_0 , ): __SCREAMING_SNAKE_CASE : Dict = parent __SCREAMING_SNAKE_CASE : Tuple = batch_size __SCREAMING_SNAKE_CASE : int = min_seq_length __SCREAMING_SNAKE_CASE : Union[str, Any] = max_seq_length __SCREAMING_SNAKE_CASE : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __SCREAMING_SNAKE_CASE : str = spectrogram_length __SCREAMING_SNAKE_CASE : Optional[Any] = feature_size __SCREAMING_SNAKE_CASE : Any = num_audio_channels __SCREAMING_SNAKE_CASE : Tuple = hop_length __SCREAMING_SNAKE_CASE : Optional[Any] = chunk_length __SCREAMING_SNAKE_CASE : Union[str, Any] = sampling_rate def SCREAMING_SNAKE_CASE_ ( self :int ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def SCREAMING_SNAKE_CASE_ ( self :Dict , _lowerCamelCase :List[str]=False , _lowerCamelCase :str=False ): def _flatten(_lowerCamelCase :Union[str, Any] ): return list(itertools.chain(*snake_case__ ) ) if equal_length: __SCREAMING_SNAKE_CASE : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __SCREAMING_SNAKE_CASE : str = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __SCREAMING_SNAKE_CASE : List[str] = [np.asarray(snake_case__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowerCamelCase__ = TvltFeatureExtractor def SCREAMING_SNAKE_CASE_ ( self :Any ): __SCREAMING_SNAKE_CASE : List[Any] = TvltFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): __SCREAMING_SNAKE_CASE : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case__ , '''spectrogram_length''' ) ) self.assertTrue(hasattr(snake_case__ , '''feature_size''' ) ) self.assertTrue(hasattr(snake_case__ , '''num_audio_channels''' ) ) self.assertTrue(hasattr(snake_case__ , '''hop_length''' ) ) self.assertTrue(hasattr(snake_case__ , '''chunk_length''' ) ) self.assertTrue(hasattr(snake_case__ , '''sampling_rate''' ) ) def SCREAMING_SNAKE_CASE_ ( self :Any ): __SCREAMING_SNAKE_CASE : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : Tuple = feat_extract_first.save_pretrained(snake_case__ )[0] check_json_file_has_correct_format(snake_case__ ) __SCREAMING_SNAKE_CASE : List[Any] = self.feature_extraction_class.from_pretrained(snake_case__ ) __SCREAMING_SNAKE_CASE : int = feat_extract_first.to_dict() __SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract_second.to_dict() __SCREAMING_SNAKE_CASE : Optional[int] = dict_first.pop('''mel_filters''' ) __SCREAMING_SNAKE_CASE : List[str] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(snake_case__ , snake_case__ ) ) self.assertEqual(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): __SCREAMING_SNAKE_CASE : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : int = os.path.join(snake_case__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(snake_case__ ) __SCREAMING_SNAKE_CASE : List[Any] = self.feature_extraction_class.from_json_file(snake_case__ ) __SCREAMING_SNAKE_CASE : int = feat_extract_first.to_dict() __SCREAMING_SNAKE_CASE : List[Any] = feat_extract_second.to_dict() __SCREAMING_SNAKE_CASE : Optional[Any] = dict_first.pop('''mel_filters''' ) __SCREAMING_SNAKE_CASE : str = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(snake_case__ , snake_case__ ) ) self.assertEqual(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE_ ( self :Dict ): __SCREAMING_SNAKE_CASE : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __SCREAMING_SNAKE_CASE : List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __SCREAMING_SNAKE_CASE : List[Any] = [np.asarray(snake_case__ ) for speech_input in speech_inputs] # Test not batched input __SCREAMING_SNAKE_CASE : Optional[Any] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __SCREAMING_SNAKE_CASE : List[Any] = feature_extractor(snake_case__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor( snake_case__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=snake_case__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __SCREAMING_SNAKE_CASE : Union[str, Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] __SCREAMING_SNAKE_CASE : Optional[int] = np.asarray(snake_case__ ) __SCREAMING_SNAKE_CASE : Any = feature_extractor(snake_case__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def SCREAMING_SNAKE_CASE_ ( self :Tuple , _lowerCamelCase :Any ): __SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __SCREAMING_SNAKE_CASE : str = ds.sort('''id''' ).select(range(snake_case__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): __SCREAMING_SNAKE_CASE : Any = self._load_datasamples(1 ) __SCREAMING_SNAKE_CASE : List[str] = TvltFeatureExtractor() __SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor(snake_case__ , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) __SCREAMING_SNAKE_CASE : str = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case__ , atol=1e-4 ) )
719
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class snake_case ( __UpperCAmelCase , __UpperCAmelCase ): lowerCamelCase__ = '''nat''' lowerCamelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :Any , _lowerCamelCase :int=4 , _lowerCamelCase :List[str]=3 , _lowerCamelCase :Optional[int]=6_4 , _lowerCamelCase :Optional[Any]=[3, 4, 6, 5] , _lowerCamelCase :Optional[int]=[2, 4, 8, 1_6] , _lowerCamelCase :str=7 , _lowerCamelCase :int=3.0 , _lowerCamelCase :Optional[Any]=True , _lowerCamelCase :List[str]=0.0 , _lowerCamelCase :str=0.0 , _lowerCamelCase :int=0.1 , _lowerCamelCase :int="gelu" , _lowerCamelCase :Dict=0.0_2 , _lowerCamelCase :str=1e-5 , _lowerCamelCase :List[Any]=0.0 , _lowerCamelCase :Optional[Any]=None , _lowerCamelCase :Dict=None , **_lowerCamelCase :Union[str, Any] , ): super().__init__(**_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size __SCREAMING_SNAKE_CASE : int = num_channels __SCREAMING_SNAKE_CASE : List[str] = embed_dim __SCREAMING_SNAKE_CASE : List[str] = depths __SCREAMING_SNAKE_CASE : Union[str, Any] = len(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = num_heads __SCREAMING_SNAKE_CASE : Any = kernel_size __SCREAMING_SNAKE_CASE : Tuple = mlp_ratio __SCREAMING_SNAKE_CASE : Union[str, Any] = qkv_bias __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Any = drop_path_rate __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __SCREAMING_SNAKE_CASE : List[Any] = int(embed_dim * 2 ** (len(_lowerCamelCase ) - 1) ) __SCREAMING_SNAKE_CASE : Any = layer_scale_init_value __SCREAMING_SNAKE_CASE : Tuple = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(_lowerCamelCase ) + 1 )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
401
0
from __future__ import annotations from typing import Any class lowerCamelCase_ ( _lowercase ): pass class lowerCamelCase_ : def __init__( self : Optional[int] , __A : Any ): __A : Any = data __A : Node | None = None def __iter__( self : Dict ): __A : Optional[Any] = self __A : Optional[int] = [] while node: if node in visited: raise ContainsLoopError visited.append(__A ) yield node.data __A : Optional[Any] = node.next_node @property def lowerCAmelCase_ ( self : Tuple ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": UpperCAmelCase_ : List[str] = Node(1) UpperCAmelCase_ : List[Any] = Node(2) UpperCAmelCase_ : Optional[int] = Node(3) UpperCAmelCase_ : List[Any] = Node(4) print(root_node.has_loop) # False UpperCAmelCase_ : str = root_node.next_node print(root_node.has_loop) # True UpperCAmelCase_ : int = Node(5) UpperCAmelCase_ : Dict = Node(6) UpperCAmelCase_ : Any = Node(5) UpperCAmelCase_ : Union[str, Any] = Node(6) print(root_node.has_loop) # False UpperCAmelCase_ : Union[str, Any] = Node(1) print(root_node.has_loop) # False
17
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = tempfile.mkdtemp() # fmt: off _UpperCAmelCase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _UpperCAmelCase = dict(zip(snake_case , range(len(snake_case ) ) ) ) _UpperCAmelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _UpperCAmelCase = {'unk_token': '<unk>'} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case ) ) _UpperCAmelCase = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711], } _UpperCAmelCase = os.path.join(self.tmpdirname , snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(snake_case , snake_case ) def lowerCamelCase_ ( self , **snake_case ) -> Union[str, Any]: return CLIPTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self , **snake_case ) -> List[Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self , **snake_case ) -> Dict: return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCAmelCase = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = CLIPSegProcessor(tokenizer=snake_case , image_processor=snake_case ) processor_slow.save_pretrained(self.tmpdirname ) _UpperCAmelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case ) _UpperCAmelCase = CLIPSegProcessor(tokenizer=snake_case , image_processor=snake_case ) processor_fast.save_pretrained(self.tmpdirname ) _UpperCAmelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case ) self.assertIsInstance(processor_fast.tokenizer , snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case ) self.assertIsInstance(processor_fast.image_processor , snake_case ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _UpperCAmelCase = self.get_image_processor(do_normalize=snake_case , padding_value=1.0 ) _UpperCAmelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(snake_case , return_tensors='np' ) _UpperCAmelCase = processor(images=snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = processor(text=snake_case ) _UpperCAmelCase = tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(images=snake_case , visual_prompt=snake_case ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = CLIPSegProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase = processor.batch_decode(snake_case ) _UpperCAmelCase = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case )
573
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A__ : Optional[int]= logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") A__ : int= list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) A__ : List[str]= tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCamelCase : a : str =field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) a : Optional[int] =field( default=__A , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a : int =field( default=__A , metadata={"""help""": """The column name of the images in the files. If not set, will try to use \'image\' or \'img\'."""} , ) a : List[Any] =field(default=__A , metadata={"""help""": """A folder containing the training data."""} ) a : Any =field(default=__A , metadata={"""help""": """A folder containing the validation data."""} ) a : List[Any] =field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) a : str =field(default=3_2 , metadata={"""help""": """The size of the square patches to use for masking."""} ) a : Union[str, Any] =field( default=0.6 , metadata={"""help""": """Percentage of patches to mask."""} , ) a : int =field( default=__A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a : int =field( default=__A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = {} if self.train_dir is not None: UpperCamelCase__ = self.train_dir if self.validation_dir is not None: UpperCamelCase__ = self.validation_dir UpperCamelCase__ = data_files if data_files else None @dataclass class __lowerCamelCase : a : str =field( default=__A , metadata={ """help""": ( """The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a """ """checkpoint identifier on the hub. """ """Don\'t set if you want to train a model from scratch.""" ) } , ) a : Optional[Any] =field( default=__A , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(__A )} , ) a : str =field( default=__A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a : List[Any] =field( default=__A , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a : List[Any] =field( default=__A , metadata={"""help""": """Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"""} , ) a : int =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a : int =field(default=__A , metadata={"""help""": """Name or path of preprocessor config."""} ) a : Any =field( default=__A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) a : int =field( default=__A , metadata={ """help""": ( """The size (resolution) of each image. If not specified, will use `image_size` of the configuration.""" ) } , ) a : List[Any] =field( default=__A , metadata={ """help""": ( """The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.""" ) } , ) a : Tuple =field( default=__A , metadata={"""help""": """Stride to use for the encoder."""} , ) class __lowerCamelCase : def __init__( self , snake_case_=192 , snake_case_=32 , snake_case_=4 , snake_case_=0.6 ) -> List[Any]: UpperCamelCase__ = input_size UpperCamelCase__ = mask_patch_size UpperCamelCase__ = model_patch_size UpperCamelCase__ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('Input size must be divisible by mask patch size' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('Mask patch size must be divisible by model patch size' ) UpperCamelCase__ = self.input_size // self.mask_patch_size UpperCamelCase__ = self.mask_patch_size // self.model_patch_size UpperCamelCase__ = self.rand_size**2 UpperCamelCase__ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self ) -> str: UpperCamelCase__ = np.random.permutation(self.token_count )[: self.mask_count] UpperCamelCase__ = np.zeros(self.token_count , dtype=snake_case_ ) UpperCamelCase__ = 1 UpperCamelCase__ = mask.reshape((self.rand_size, self.rand_size) ) UpperCamelCase__ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = torch.stack([example['pixel_values'] for example in examples] ) UpperCamelCase__ = torch.stack([example['mask'] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def lowerCAmelCase_( ) -> Any: """simple docstring""" UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mim' , __lowercase , __lowercase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ = training_args.get_process_log_level() logger.setLevel(__lowercase ) transformers.utils.logging.set_verbosity(__lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. UpperCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase__ = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowercase ) and data_args.train_val_split > 0.0: UpperCamelCase__ = ds['train'].train_test_split(data_args.train_val_split ) UpperCamelCase__ = split['train'] UpperCamelCase__ = split['test'] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: UpperCamelCase__ = AutoConfig.from_pretrained(model_args.config_name_or_path , **__lowercase ) elif model_args.model_name_or_path: UpperCamelCase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: UpperCamelCase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(__lowercase , 'decoder_type' ): UpperCamelCase__ = 'simmim' # adapt config UpperCamelCase__ = model_args.image_size if model_args.image_size is not None else config.image_size UpperCamelCase__ = model_args.patch_size if model_args.patch_size is not None else config.patch_size UpperCamelCase__ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { 'image_size': model_args.image_size, 'patch_size': model_args.patch_size, 'encoder_stride': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: UpperCamelCase__ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **__lowercase ) elif model_args.model_name_or_path: UpperCamelCase__ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: UpperCamelCase__ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } UpperCamelCase__ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: UpperCamelCase__ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) UpperCamelCase__ = AutoModelForMaskedImageModeling.from_config(__lowercase ) if training_args.do_train: UpperCamelCase__ = ds['train'].column_names else: UpperCamelCase__ = ds['validation'].column_names if data_args.image_column_name is not None: UpperCamelCase__ = data_args.image_column_name elif "image" in column_names: UpperCamelCase__ = 'image' elif "img" in column_names: UpperCamelCase__ = 'img' else: UpperCamelCase__ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py UpperCamelCase__ = Compose( [ Lambda(lambda SCREAMING_SNAKE_CASE : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator UpperCamelCase__ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(SCREAMING_SNAKE_CASE ): UpperCamelCase__ = [transforms(__lowercase ) for image in examples[image_column_name]] UpperCamelCase__ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: UpperCamelCase__ = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__lowercase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: UpperCamelCase__ = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__lowercase ) # Initialize our trainer UpperCamelCase__ = Trainer( model=__lowercase , args=__lowercase , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: UpperCamelCase__ = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ = last_checkpoint UpperCamelCase__ = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ = trainer.evaluate() trainer.log_metrics('eval' , __lowercase ) trainer.save_metrics('eval' , __lowercase ) # Write model card and (optionally) push to hub UpperCamelCase__ = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'masked-image-modeling', 'dataset': data_args.dataset_name, 'tags': ['masked-image-modeling'], } if training_args.push_to_hub: trainer.push_to_hub(**__lowercase ) else: trainer.create_model_card(**__lowercase ) if __name__ == "__main__": main()
703
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): A__ : str= { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: A__ : str= { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase__ = numpy_to_pil(SCREAMING_SNAKE_CASE ) return images def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if images.ndim == 3: UpperCamelCase__ = images[None, ...] UpperCamelCase__ = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCamelCase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: UpperCamelCase__ = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images] return pil_images
20
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''PerceiverFeatureExtractor'''] lowerCamelCase__ = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
122
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCamelCase__ = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class __magic_name__ (unittest.TestCase ): def __a ( self , _a , _a = None , _a = None , _a = None , _a = True , ) -> int: lowerCAmelCase_ = [file for file in os.listdir(_a ) if os.path.isfile(os.path.join(_a , _a ) )] if identifier is not None: lowerCAmelCase_ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_a , _a ): for n_ in n_identifier: lowerCAmelCase_ = [file for file in files if n_ not in file] else: lowerCAmelCase_ = [file for file in files if n_identifier not in file] lowerCAmelCase_ = ignore_files or [] ignore_files.append("__init__.py" ) lowerCAmelCase_ = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , _a ) if only_modules: lowerCAmelCase_ = file.split("." )[0] try: lowerCAmelCase_ = getattr(_a , _a ) lowerCAmelCase_ = doctest.DocTestSuite(_a ) lowerCAmelCase_ = unittest.TextTestRunner().run(_a ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"{module_identifier} is not a module." ) else: lowerCAmelCase_ = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __a ( self ) -> int: lowerCAmelCase_ = Path("src/transformers" ) lowerCAmelCase_ = "modeling" lowerCAmelCase_ = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(_a , identifier=_a , ignore_files=_a ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = Path("src/transformers" ) lowerCAmelCase_ = "tokenization" self.analyze_directory(_a , identifier=_a ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = Path("src/transformers" ) lowerCAmelCase_ = "configuration" self.analyze_directory(_a , identifier=_a ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = Path("src/transformers" ) lowerCAmelCase_ = ["configuration", "modeling", "tokenization"] self.analyze_directory(_a , n_identifier=_a ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = Path("docs/source" ) lowerCAmelCase_ = ["favicon.ico"] self.analyze_directory(_a , ignore_files=_a , only_modules=_a )
122
1
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _UpperCAmelCase : Union[str, Any] = get_logger(__name__) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=0 ): '''simple docstring''' os.makedirs(_snake_case , exist_ok=_snake_case ) with FSDP.state_dict_type( _snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' snake_case_ = os.path.join(_snake_case , _snake_case ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_snake_case , _snake_case ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) snake_case_ = os.path.join(_snake_case , _snake_case ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_snake_case , _snake_case ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = os.path.join(_snake_case , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_snake_case , exist_ok=_snake_case ) logger.info(F'''Saving model to {ckpt_dir}''' ) snake_case_ = {'model': state_dict} dist_cp.save_state_dict( state_dict=_snake_case , storage_writer=dist_cp.FileSystemWriter(_snake_case ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_snake_case ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return snake_case_ = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' snake_case_ = os.path.join(_snake_case , _snake_case ) logger.info(F'''Loading model from {input_model_file}''' ) snake_case_ = torch.load(_snake_case ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) snake_case_ = os.path.join(_snake_case , _snake_case ) logger.info(F'''Loading model from {input_model_file}''' ) snake_case_ = torch.load(_snake_case ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = ( os.path.join(_snake_case , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) snake_case_ = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=_snake_case , storage_reader=dist_cp.FileSystemReader(_snake_case ) , planner=DefaultLoadPlanner() , ) snake_case_ = state_dict['model'] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_snake_case ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=0 ): '''simple docstring''' os.makedirs(_snake_case , exist_ok=_snake_case ) with FSDP.state_dict_type( _snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ = FSDP.optim_state_dict(_snake_case , _snake_case ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) snake_case_ = os.path.join(_snake_case , _snake_case ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_snake_case , _snake_case ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: snake_case_ = os.path.join(_snake_case , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_snake_case , exist_ok=_snake_case ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(_snake_case ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) snake_case_ = os.path.join(_snake_case , _snake_case ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) snake_case_ = torch.load(_snake_case ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: snake_case_ = ( os.path.join(_snake_case , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) snake_case_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(_snake_case ) , ) snake_case_ = optim_state['optimizer'] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) snake_case_ = FSDP.optim_state_dict_to_load(_snake_case , _snake_case , _snake_case ) optimizer.load_state_dict(_snake_case )
708
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
108
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Tuple = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowercase__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Optional[Any] = 1_6 A : str = 3_2 def UpperCamelCase ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> List[str]: """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : int ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( __magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) lowercase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Union[str, Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : List[Any] ) -> Dict: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__magic_name__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["""lr"""] lowercase__ = int(config["""num_epochs"""] ) lowercase__ = int(config["""seed"""] ) lowercase__ = int(config["""batch_size"""] ) lowercase__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__magic_name__ ) lowercase__ , lowercase__ = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=100 , num_training_steps=(len(__magic_name__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__magic_name__ ): lowercase__ = model(**__magic_name__ ) lowercase__ = output.loss accelerator.backward(__magic_name__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**__magic_name__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __magic_name__ ) def UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" lowercase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__magic_name__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase__ = parser.parse_args() lowercase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
15
0
'''simple docstring''' def A_( A : int = 10): if not isinstance(A , A) or n < 0: raise ValueError('Invalid input') UpperCamelCase = 10**n UpperCamelCase = 2_8433 * (pow(2 , 783_0457 , A)) + 1 return str(number % modulus) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
432
'''simple docstring''' import argparse import copy def A_( A : Optional[int]): UpperCamelCase = {} with open(A) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCamelCase = [] _list.append([line.split()[1], line.split()[2]]) UpperCamelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]]) if line.split()[1] not in dict_of_neighbours: UpperCamelCase = [] _list.append([line.split()[0], line.split()[2]]) UpperCamelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]]) return dict_of_neighbours def A_( A : Union[str, Any] , A : str): with open(A) as f: UpperCamelCase = f.read(1) UpperCamelCase = start_node UpperCamelCase = [] UpperCamelCase = start_node UpperCamelCase = 0 while visiting not in first_solution: UpperCamelCase = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1]) < int(A) and k[0] not in first_solution: UpperCamelCase = k[1] UpperCamelCase = k[0] first_solution.append(A) UpperCamelCase = distance_of_first_solution + int(A) UpperCamelCase = best_node first_solution.append(A) UpperCamelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCamelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1]) - 1_0000 ) return first_solution, distance_of_first_solution def A_( A : List[Any] , A : str): UpperCamelCase = [] for n in solution[1:-1]: UpperCamelCase = solution.index(A) for kn in solution[1:-1]: UpperCamelCase = solution.index(A) if n == kn: continue UpperCamelCase = copy.deepcopy(A) UpperCamelCase = kn UpperCamelCase = n UpperCamelCase = 0 for k in _tmp[:-1]: UpperCamelCase = _tmp[_tmp.index(A) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCamelCase = distance + int(i[1]) _tmp.append(A) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp) UpperCamelCase = len(neighborhood_of_solution[0]) - 1 neighborhood_of_solution.sort(key=lambda A: x[index_of_last_item_in_the_list]) return neighborhood_of_solution def A_( A : List[str] , A : Any , A : Any , A : List[Any] , A : Any): UpperCamelCase = 1 UpperCamelCase = first_solution UpperCamelCase = [] UpperCamelCase = distance_of_first_solution UpperCamelCase = solution while count <= iters: UpperCamelCase = find_neighborhood(A , A) UpperCamelCase = 0 UpperCamelCase = neighborhood[index_of_best_solution] UpperCamelCase = len(A) - 1 UpperCamelCase = False while not found: UpperCamelCase = 0 while i < len(A): if best_solution[i] != solution[i]: UpperCamelCase = best_solution[i] UpperCamelCase = solution[i] break UpperCamelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node]) UpperCamelCase = True UpperCamelCase = best_solution[:-1] UpperCamelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCamelCase = cost UpperCamelCase = solution else: UpperCamelCase = index_of_best_solution + 1 UpperCamelCase = neighborhood[index_of_best_solution] if len(A) >= size: tabu_list.pop(0) UpperCamelCase = count + 1 return best_solution_ever, best_cost def A_( A : Optional[Any]=None): UpperCamelCase = generate_neighbours(args.File) UpperCamelCase , UpperCamelCase = generate_first_solution( args.File , A) UpperCamelCase , UpperCamelCase = tabu_search( A , A , A , args.Iterations , args.Size , ) print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''') if __name__ == "__main__": lowerCAmelCase : Any = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
432
1
"""simple docstring""" class lowerCAmelCase : '''simple docstring''' def __init__( self :str ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = {} def lowerCamelCase__ ( self :Optional[int] ) -> None: """simple docstring""" print(self.vertex ) for i in self.vertex: print(lowerCamelCase_ , " -> " , " -> ".join([str(lowerCamelCase_ ) for j in self.vertex[i]] ) ) def lowerCamelCase__ ( self :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :int ) -> None: """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCamelCase_ ) else: # else make a new vertex UpperCamelCase__ = [to_vertex] def lowerCamelCase__ ( self :Optional[int] ) -> None: """simple docstring""" UpperCamelCase__ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase__ ( self :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :list ) -> None: """simple docstring""" UpperCamelCase__ = True print(lowerCamelCase_ , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": A : Optional[int] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
516
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": A : int = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') A : List[Any] = parser.parse_args() if args.model_type == "roberta": A : Optional[Any] = RobertaForMaskedLM.from_pretrained(args.model_name) A : Optional[int] = 'roberta' elif args.model_type == "gpt2": A : Union[str, Any] = GPTaLMHeadModel.from_pretrained(args.model_name) A : Optional[Any] = 'transformer' A : Optional[Any] = model.state_dict() A : str = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: A : List[str] = state_dict[F"{prefix}.{param_name}"] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: A : List[str] = F"{prefix}.embeddings.{w}.weight" A : Union[str, Any] = state_dict[param_name] for w in ["weight", "bias"]: A : Tuple = F"{prefix}.embeddings.LayerNorm.{w}" A : List[Any] = state_dict[param_name] # Transformer Blocks # A : Dict = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: A : Any = state_dict[ F"{prefix}.h.{teacher_idx}.{layer}.{w}" ] A : Optional[Any] = state_dict[F"{prefix}.h.{teacher_idx}.attn.bias"] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: A : Optional[Any] = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: A : str = state_dict[F"{layer}"] if args.vocab_transform: for w in ["weight", "bias"]: A : int = state_dict[F"lm_head.dense.{w}"] A : int = state_dict[F"lm_head.layer_norm.{w}"] elif args.model_type == "gpt2": for w in ["weight", "bias"]: A : List[Any] = state_dict[F"{prefix}.ln_f.{w}"] A : Any = state_dict['lm_head.weight'] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
516
1
'''simple docstring''' def __A ( UpperCAmelCase ,UpperCAmelCase ) -> list[int]: '''simple docstring''' _UpperCamelCase : str = int(UpperCAmelCase ) # Initialize Result _UpperCamelCase : Optional[int] = [] # Traverse through all denomination for denomination in reversed(UpperCAmelCase ): # Find denominations while int(UpperCAmelCase ) >= int(UpperCAmelCase ): total_value -= int(UpperCAmelCase ) answer.append(UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Union[str, Any] = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): lowerCAmelCase_ : Any = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(f"""Denomination {i}: """).strip())) lowerCAmelCase_ : int = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter lowerCAmelCase_ : Union[str, Any] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] lowerCAmelCase_ : Optional[int] = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(f"""Following is minimal change for {value}: """) lowerCAmelCase_ : Union[str, Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
204
'''simple docstring''' import requests from bsa import BeautifulSoup def __A ( UpperCAmelCase ,UpperCAmelCase ) -> str: '''simple docstring''' _UpperCamelCase : Dict = BeautifulSoup(requests.get(UpperCAmelCase ,params=UpperCAmelCase ).content ,"html.parser" ) _UpperCamelCase : Union[str, Any] = soup.find("div" ,attrs={"class": "gs_ri"} ) _UpperCamelCase : Optional[Any] = div.find("div" ,attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": lowerCAmelCase_ : Optional[int] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
204
1
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __a ( _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : Tuple = CpmAntTokenizer UpperCamelCase_ : Union[str, Any] = False def _SCREAMING_SNAKE_CASE ( self : str )-> Optional[Any]: """simple docstring""" super().setUp() UpperCamelCase = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def _SCREAMING_SNAKE_CASE ( self : List[str] )-> List[Any]: """simple docstring""" UpperCamelCase = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) UpperCamelCase = "今天天气真好!" UpperCamelCase = ["今天", "天气", "真", "好", "!"] UpperCamelCase = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = "今天天气真好!" UpperCamelCase = [tokenizer.bos_token] + tokens UpperCamelCase = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) UpperCamelCase = tokenizer.decode(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ )
554
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __a ( _lowerCAmelCase ): UpperCamelCase_ : torch.FloatTensor class __a ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self : int , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , UpperCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , UpperCAmelCase_ : Tuple[int] = (64,) , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "silu" , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : float = 0.18215 , UpperCAmelCase_ : str = "group" , )-> Optional[Any]: """simple docstring""" super().__init__() # pass init params to Encoder UpperCamelCase = Encoder( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , down_block_types=UpperCAmelCase_ , block_out_channels=UpperCAmelCase_ , layers_per_block=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , norm_num_groups=UpperCAmelCase_ , double_z=UpperCAmelCase_ , ) UpperCamelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCamelCase = nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , 1 ) UpperCamelCase = VectorQuantizer(UpperCAmelCase_ , UpperCAmelCase_ , beta=0.25 , remap=UpperCAmelCase_ , sane_index_shape=UpperCAmelCase_ ) UpperCamelCase = nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , 1 ) # pass init params to Decoder UpperCamelCase = Decoder( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , up_block_types=UpperCAmelCase_ , block_out_channels=UpperCAmelCase_ , layers_per_block=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , norm_num_groups=UpperCAmelCase_ , norm_type=UpperCAmelCase_ , ) @apply_forward_hook def _SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : bool = True )-> VQEncoderOutput: """simple docstring""" UpperCamelCase = self.encoder(UpperCAmelCase_ ) UpperCamelCase = self.quant_conv(UpperCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCAmelCase_ ) @apply_forward_hook def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True )-> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" # also go through quantization layer if not force_not_quantize: UpperCamelCase , UpperCamelCase , UpperCamelCase = self.quantize(UpperCAmelCase_ ) else: UpperCamelCase = h UpperCamelCase = self.post_quant_conv(UpperCAmelCase_ ) UpperCamelCase = self.decoder(UpperCAmelCase_ , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : bool = True )-> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" UpperCamelCase = sample UpperCamelCase = self.encode(UpperCAmelCase_ ).latents UpperCamelCase = self.decode(UpperCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase_ )
554
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _UpperCamelCase : '''simple docstring''' def __init__( self : int , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Dict=1_0 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : Tuple=3_2 * 8 , _lowerCamelCase : int=3_2 * 8 , _lowerCamelCase : str=4 , _lowerCamelCase : List[Any]=6_4 , ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = parent __lowerCamelCase : Optional[int] = batch_size __lowerCamelCase : List[str] = is_training __lowerCamelCase : Dict = use_auxiliary_loss __lowerCamelCase : Optional[int] = num_queries __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Dict = min_size __lowerCamelCase : Optional[Any] = max_size __lowerCamelCase : str = num_labels __lowerCamelCase : Optional[Any] = hidden_dim __lowerCamelCase : Optional[Any] = hidden_dim def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) __lowerCamelCase : Optional[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase ) __lowerCamelCase : int = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5 ).float() __lowerCamelCase : List[Any] = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long() __lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _snake_case ( self : Dict ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase : List[Any] = self.num_queries __lowerCamelCase : List[str] = self.num_labels __lowerCamelCase : List[str] = [1, 1, 1, 1] __lowerCamelCase : Optional[int] = self.num_channels __lowerCamelCase : Optional[int] = 6_4 __lowerCamelCase : int = 1_2_8 __lowerCamelCase : Any = self.hidden_dim __lowerCamelCase : List[str] = self.hidden_dim __lowerCamelCase : List[Any] = self.hidden_dim return config def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = self.prepare_config_and_inputs() __lowerCamelCase : Optional[int] = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def _snake_case ( self : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int] ): '''simple docstring''' __lowerCamelCase : Tuple = output.encoder_hidden_states __lowerCamelCase : Any = output.pixel_decoder_hidden_states __lowerCamelCase : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers ) def _snake_case ( self : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : List[str]=False ): '''simple docstring''' with torch.no_grad(): __lowerCamelCase : Any = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowerCamelCase : Dict = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) __lowerCamelCase : Optional[Any] = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase ) def _snake_case ( self : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ): '''simple docstring''' __lowerCamelCase : List[Any] = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(_lowerCamelCase : Optional[int] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase : Optional[int] = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) __lowerCamelCase : Tuple = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) __lowerCamelCase : str = model( pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _UpperCamelCase ( A,A,unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () a_ : Union[str, Any] = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} a_ : Optional[Any] = False a_ : int = False a_ : List[str] = False a_ : List[Any] = False def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowerCamelCase : Dict = MaskaFormerModelTester(self ) __lowerCamelCase : int = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def _snake_case ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def _snake_case ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def _snake_case ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def _snake_case ( self : str ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _snake_case ( self : int ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _snake_case ( self : Any ): '''simple docstring''' pass def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(_lowerCamelCase ) __lowerCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Any = [*signature.parameters.keys()] __lowerCamelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase : Dict = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowerCamelCase : List[Any] = (self.model_tester.min_size,) * 2 __lowerCamelCase : Optional[Any] = { """pixel_values""": torch.randn((2, 3, *size) , device=_lowerCamelCase ), """mask_labels""": torch.randn((2, 1_0, *size) , device=_lowerCamelCase ), """class_labels""": torch.zeros(2 , 1_0 , device=_lowerCamelCase ).long(), } __lowerCamelCase : Any = self.model_tester.get_config() __lowerCamelCase : Tuple = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(_lowerCamelCase ).to(_lowerCamelCase ) __lowerCamelCase : int = model(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def _snake_case ( self : Any ): '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase : str = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() __lowerCamelCase : List[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() __lowerCamelCase : Tuple = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss loss.backward() def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowerCamelCase : List[Any] = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() __lowerCamelCase : Optional[int] = True __lowerCamelCase : Any = True __lowerCamelCase : Any = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() __lowerCamelCase : Optional[Any] = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase : Any = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase : Optional[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase : List[str] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __UpperCamelCase : str = 1E-4 def _UpperCAmelCase ( ): """simple docstring""" __lowerCamelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def _snake_case ( self : Dict ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : int = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) __lowerCamelCase : str = self.default_image_processor __lowerCamelCase : Dict = prepare_img() __lowerCamelCase : List[Any] = image_processor(_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) __lowerCamelCase : Optional[int] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): __lowerCamelCase : str = model(**_lowerCamelCase ) __lowerCamelCase : Dict = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) __lowerCamelCase : Union[str, Any] = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) __lowerCamelCase : Tuple = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : int = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() __lowerCamelCase : Any = self.default_image_processor __lowerCamelCase : Union[str, Any] = prepare_img() __lowerCamelCase : int = image_processor(_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) __lowerCamelCase : int = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): __lowerCamelCase : Dict = model(**_lowerCamelCase ) # masks_queries_logits __lowerCamelCase : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase : Any = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] __lowerCamelCase : List[str] = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) # class_queries_logits __lowerCamelCase : Union[str, Any] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase : List[Any] = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowerCamelCase : Tuple = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() __lowerCamelCase : Dict = self.default_image_processor __lowerCamelCase : List[Any] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors="""pt""" , ) __lowerCamelCase : int = inputs["""pixel_values"""].to(_lowerCamelCase ) __lowerCamelCase : Optional[Any] = [el.to(_lowerCamelCase ) for el in inputs["""mask_labels"""]] __lowerCamelCase : Union[str, Any] = [el.to(_lowerCamelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): __lowerCamelCase : Dict = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
458
def _UpperCAmelCase ( UpperCAmelCase : str ): """simple docstring""" __lowerCamelCase : List[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) __lowerCamelCase : Dict = hex_num[0] == """-""" if is_negative: __lowerCamelCase : Optional[Any] = hex_num[1:] try: __lowerCamelCase : Any = int(UpperCAmelCase , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) __lowerCamelCase : List[str] = """""" while int_num > 0: __lowerCamelCase : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
458
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _lowerCamelCase = get_tests_dir() + '/test_data/fsmt/fsmt_val_data.json' with io.open(filename, 'r', encoding='utf-8') as f: _lowerCamelCase = json.load(f) @require_torch class __A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self , a__): """simple docstring""" return FSMTTokenizer.from_pretrained(a__) def __snake_case ( self , a__): """simple docstring""" _lowerCamelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(a__).to(a__) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 26.0], ['''ru-en''', 22.0], ['''en-de''', 22.0], ['''de-en''', 29.0], ]) @slow def __snake_case ( self , a__ , a__): """simple docstring""" _lowerCamelCase : Optional[int] = F"""facebook/wmt19-{pair}""" _lowerCamelCase : Any = self.get_tokenizer(a__) _lowerCamelCase : List[str] = self.get_model(a__) _lowerCamelCase : Optional[int] = bleu_data[pair]['''src'''] _lowerCamelCase : Optional[Any] = bleu_data[pair]['''tgt'''] _lowerCamelCase : Tuple = tokenizer(a__ , return_tensors='''pt''' , truncation=a__ , padding='''longest''').to(a__) _lowerCamelCase : int = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _lowerCamelCase : Optional[int] = tokenizer.batch_decode( a__ , skip_special_tokens=a__ , clean_up_tokenization_spaces=a__) _lowerCamelCase : Dict = calculate_bleu(a__ , a__) print(a__) self.assertGreaterEqual(scores['''bleu'''] , a__)
114
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Union[str, Any] ="xlm" lowerCamelCase__ : Any ={ "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self , lowerCamelCase=30145 , lowerCamelCase=2048 , lowerCamelCase=12 , lowerCamelCase=16 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=1 , lowerCamelCase=True , lowerCamelCase=512 , lowerCamelCase=2048**-0.5 , lowerCamelCase=1e-12 , lowerCamelCase=0.0_2 , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=5 , lowerCamelCase=True , lowerCamelCase="first" , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=5 , lowerCamelCase=5 , lowerCamelCase=0 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase=0 , **lowerCamelCase , ) -> Dict: """simple docstring""" __magic_name__ : List[Any] = vocab_size __magic_name__ : str = emb_dim __magic_name__ : Union[str, Any] = n_layers __magic_name__ : Optional[Any] = n_heads __magic_name__ : Dict = dropout __magic_name__ : List[str] = attention_dropout __magic_name__ : Optional[Any] = gelu_activation __magic_name__ : Any = sinusoidal_embeddings __magic_name__ : List[Any] = causal __magic_name__ : Optional[Any] = asm __magic_name__ : Tuple = n_langs __magic_name__ : Union[str, Any] = use_lang_emb __magic_name__ : str = layer_norm_eps __magic_name__ : int = bos_index __magic_name__ : int = eos_index __magic_name__ : Any = pad_index __magic_name__ : int = unk_index __magic_name__ : Tuple = mask_index __magic_name__ : int = is_encoder __magic_name__ : Any = max_position_embeddings __magic_name__ : List[Any] = embed_init_std __magic_name__ : int = init_std __magic_name__ : Optional[Any] = summary_type __magic_name__ : List[str] = summary_use_proj __magic_name__ : Optional[Any] = summary_activation __magic_name__ : Union[str, Any] = summary_proj_to_labels __magic_name__ : int = summary_first_dropout __magic_name__ : Dict = start_n_top __magic_name__ : int = end_n_top __magic_name__ : Optional[int] = mask_token_id __magic_name__ : Dict = lang_id if "n_words" in kwargs: __magic_name__ : str = kwargs['''n_words'''] super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , **lowerCamelCase ) class A__ ( __SCREAMING_SNAKE_CASE ): @property def lowercase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __magic_name__ : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __magic_name__ : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
154
0
import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __A : Optional[Any] = logging.getLogger(__name__) if __name__ == "__main__": __A : int = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=30_522, type=int) __A : Optional[Any] = parser.parse_args() logger.info(f"""Loading data from {args.data_file}""") with open(args.data_file, "rb") as fp: __A : Union[str, Any] = pickle.load(fp) logger.info("Counting occurrences for MLM.") __A : Optional[Any] = Counter() for tk_ids in data: counter.update(tk_ids) __A : int = [0] * args.vocab_size for k, v in counter.items(): __A : Optional[int] = v logger.info(f"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
334
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : str = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
1
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __A = logging.get_logger(__name__) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Tuple: """simple docstring""" return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" lowerCAmelCase__ :Dict = to_pil_image(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ :Tuple = pil_image.size lowerCAmelCase__ :Dict = pytesseract.image_to_data(_SCREAMING_SNAKE_CASE , lang=_SCREAMING_SNAKE_CASE , output_type='dict' , config=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Dict = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates lowerCAmelCase__ :List[str] = [idx for idx, word in enumerate(_SCREAMING_SNAKE_CASE ) if not word.strip()] lowerCAmelCase__ :Optional[Any] = [word for idx, word in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowerCAmelCase__ :List[str] = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowerCAmelCase__ :str = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowerCAmelCase__ :List[str] = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowerCAmelCase__ :int = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase__ :List[Any] = [] for x, y, w, h in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Any = [x, y, x + w, y + h] actual_boxes.append(_SCREAMING_SNAKE_CASE ) # finally, normalize the bounding boxes lowerCAmelCase__ :str = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Optional[int] = ["""pixel_values"""] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 2_5_5 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = "" , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = size if size is not None else {'height': 2_2_4, 'width': 2_2_4} lowerCAmelCase__ :Union[str, Any] = get_size_dict(__UpperCAmelCase ) lowerCAmelCase__ :int = do_resize lowerCAmelCase__ :Union[str, Any] = size lowerCAmelCase__ :List[str] = resample lowerCAmelCase__ :int = do_rescale lowerCAmelCase__ :int = rescale_value lowerCAmelCase__ :List[Any] = do_normalize lowerCAmelCase__ :Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ :List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCAmelCase__ :Tuple = apply_ocr lowerCAmelCase__ :List[str] = ocr_lang lowerCAmelCase__ :Any = tesseract_config def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :int = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) lowerCAmelCase__ :Tuple = (size['height'], size['width']) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :int = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ :Tuple = size if size is not None else self.size lowerCAmelCase__ :str = get_size_dict(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = resample if resample is not None else self.resample lowerCAmelCase__ :int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ :str = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ :str = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ :str = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ :List[Any] = image_std if image_std is not None else self.image_std lowerCAmelCase__ :List[str] = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase__ :Union[str, Any] = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase__ :Union[str, Any] = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase__ :str = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' ) # All transformations expect numpy arrays. lowerCAmelCase__ :Optional[Any] = [to_numpy_array(__UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , 'pytesseract' ) lowerCAmelCase__ :Union[str, Any] = [] lowerCAmelCase__ :Dict = [] for image in images: lowerCAmelCase__ , lowerCAmelCase__ :Dict = apply_tesseract(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) words_batch.append(__UpperCAmelCase ) boxes_batch.append(__UpperCAmelCase ) if do_resize: lowerCAmelCase__ :Optional[int] = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_rescale: lowerCAmelCase__ :List[Any] = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: lowerCAmelCase__ :List[Any] = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] lowerCAmelCase__ :Tuple = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] lowerCAmelCase__ :List[str] = BatchFeature(data={'pixel_values': images} , tensor_type=__UpperCAmelCase ) if apply_ocr: lowerCAmelCase__ :int = words_batch lowerCAmelCase__ :Tuple = boxes_batch return data
93
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _lowerCAmelCase: int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def _lowercase( __a : Optional[Any] ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) _lowerCAmelCase: str = parser.parse_args() _lowerCAmelCase: Tuple = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
20
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ : Union[str, Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _a = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PILImageResampling.BICUBIC , A = True , A = None , A = True , A = 1 / 2_55 , A = True , A = None , A = None , A = True , **A , ) -> None: '''simple docstring''' super().__init__(**A ) __magic_name__ = size if size is not None else {'''shortest_edge''': 2_24} __magic_name__ = get_size_dict(A , default_to_square=A ) __magic_name__ = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __magic_name__ = get_size_dict(A , default_to_square=A , param_name='''crop_size''' ) __magic_name__ = do_resize __magic_name__ = size __magic_name__ = resample __magic_name__ = do_center_crop __magic_name__ = crop_size __magic_name__ = do_rescale __magic_name__ = rescale_factor __magic_name__ = do_normalize __magic_name__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __magic_name__ = image_std if image_std is not None else OPENAI_CLIP_STD __magic_name__ = do_convert_rgb def __A ( self , A , A , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray: '''simple docstring''' __magic_name__ = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __magic_name__ = get_resize_output_image_size(A , size=size['''shortest_edge'''] , default_to_square=A ) return resize(A , size=A , resample=A , data_format=A , **A ) def __A ( self , A , A , A = None , **A , ) -> np.ndarray: '''simple docstring''' __magic_name__ = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(A , size=(size['''height'''], size['''width''']) , data_format=A , **A ) def __A ( self , A , A , A = None , **A , ) -> Any: '''simple docstring''' return rescale(A , scale=A , data_format=A , **A ) def __A ( self , A , A , A , A = None , **A , ) -> np.ndarray: '''simple docstring''' return normalize(A , mean=A , std=A , data_format=A , **A ) def __A ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: '''simple docstring''' __magic_name__ = do_resize if do_resize is not None else self.do_resize __magic_name__ = size if size is not None else self.size __magic_name__ = get_size_dict(A , param_name='''size''' , default_to_square=A ) __magic_name__ = resample if resample is not None else self.resample __magic_name__ = do_center_crop if do_center_crop is not None else self.do_center_crop __magic_name__ = crop_size if crop_size is not None else self.crop_size __magic_name__ = get_size_dict(A , param_name='''crop_size''' , default_to_square=A ) __magic_name__ = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ = image_mean if image_mean is not None else self.image_mean __magic_name__ = image_std if image_std is not None else self.image_std __magic_name__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __magic_name__ = make_list_of_images(A ) if not valid_images(A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __magic_name__ = [convert_to_rgb(A ) for image in images] # All transformations expect numpy arrays. __magic_name__ = [to_numpy_array(A ) for image in images] if do_resize: __magic_name__ = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: __magic_name__ = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: __magic_name__ = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: __magic_name__ = [self.normalize(image=A , mean=A , std=A ) for image in images] __magic_name__ = [to_channel_dimension_format(A , A ) for image in images] __magic_name__ = {'''pixel_values''': images} return BatchFeature(data=A , tensor_type=A )
701
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
678
0
"""simple docstring""" from __future__ import annotations from typing import Any class UpperCamelCase__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 0 ) -> None: A__ , A__ = row, column A__ = [[default_value for c in range(SCREAMING_SNAKE_CASE__ )] for r in range(SCREAMING_SNAKE_CASE__ )] def __str__( self ) -> str: A__ = f"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier A__ = 0 for row_vector in self.array: for obj in row_vector: A__ = max(SCREAMING_SNAKE_CASE__ , len(str(SCREAMING_SNAKE_CASE__ ) ) ) A__ = f"""%{max_element_length}s""" # Make string and return def single_line(SCREAMING_SNAKE_CASE__ ) -> str: nonlocal string_format_identifier A__ = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(SCREAMING_SNAKE_CASE__ ) for row_vector in self.array ) return s def __repr__( self ) -> str: return str(self ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> bool: if not (isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and len(SCREAMING_SNAKE_CASE__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , SCREAMING_SNAKE_CASE__ ) -> Any: assert self.validate_indicies(SCREAMING_SNAKE_CASE__ ) return self.array[loc[0]][loc[1]] def __setitem__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> None: assert self.validate_indicies(SCREAMING_SNAKE_CASE__ ) A__ = value def __add__( self , SCREAMING_SNAKE_CASE__ ) -> Matrix: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert self.row == another.row and self.column == another.column # Add A__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): A__ = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: A__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): A__ = -self[r, c] return result def __sub__( self , SCREAMING_SNAKE_CASE__ ) -> Matrix: return self + (-another) def __mul__( self , SCREAMING_SNAKE_CASE__ ) -> Matrix: if isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): # Scalar multiplication A__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): A__ = self[r, c] * another return result elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Matrix multiplication assert self.column == another.row A__ = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: A__ = f"""Unsupported type given for another ({type(SCREAMING_SNAKE_CASE__ )})""" raise TypeError(SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Matrix: A__ = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): A__ = self[r, c] return result def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate A__ = v.transpose() A__ = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _lowerCamelCase ( ) -> None: """simple docstring""" A__ = Matrix(3, 3, 0 ) for i in range(3 ): A__ = 1 print(F"""a^(-1) is {ainv}""" ) # u, v A__ = Matrix(3, 1, 0 ) A__ , A__ , A__ = 1, 2, -3 A__ = Matrix(3, 1, 0 ) A__ , A__ , A__ = 4, -2, 5 print(F"""u is {u}""" ) print(F"""v is {v}""" ) print(F"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(UpperCAmelCase_, UpperCAmelCase_ )}""" ) def _lowerCamelCase ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
104
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : int ) -> int: """simple docstring""" if not isinstance(UpperCAmelCase_, UpperCAmelCase_ ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
104
1
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self: Dict , __lowerCAmelCase: float , __lowerCAmelCase: Callable , __lowerCAmelCase: int , __lowerCAmelCase: float = 1.0 , __lowerCAmelCase: str = None , ) -> List[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase = initial_learning_rate __UpperCAmelCase = warmup_steps __UpperCAmelCase = power __UpperCAmelCase = decay_schedule_fn __UpperCAmelCase = name def __call__( self: List[str] , __lowerCAmelCase: Union[str, Any] ) -> str: '''simple docstring''' with tf.name_scope(self.name or "WarmUp" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __UpperCAmelCase = tf.cast(__lowerCAmelCase , tf.floataa ) __UpperCAmelCase = tf.cast(self.warmup_steps , tf.floataa ) __UpperCAmelCase = global_step_float / warmup_steps_float __UpperCAmelCase = self.initial_learning_rate * tf.math.pow(__lowerCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=__lowerCAmelCase , ) def _UpperCAmelCase ( self: Union[str, Any] ) -> str: '''simple docstring''' return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __lowerCAmelCase ( A_ : float , A_ : int , A_ : int , A_ : float = 0.0 , A_ : float = 0.9 , A_ : float = 0.9_99 , A_ : float = 1e-8 , A_ : Optional[float] = None , A_ : Optional[float] = None , A_ : float = 0.0 , A_ : float = 1.0 , A_ : Optional[List[str]] = None , ) -> Dict: __UpperCAmelCase = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=A_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=A_ , ) if num_warmup_steps: __UpperCAmelCase = WarmUp( initial_learning_rate=A_ , decay_schedule_fn=A_ , warmup_steps=A_ , ) if weight_decay_rate > 0.0: __UpperCAmelCase = AdamWeightDecay( learning_rate=A_ , weight_decay_rate=A_ , beta_a=A_ , beta_a=A_ , epsilon=A_ , clipnorm=A_ , global_clipnorm=A_ , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=A_ , ) else: __UpperCAmelCase = tf.keras.optimizers.Adam( learning_rate=A_ , beta_a=A_ , beta_a=A_ , epsilon=A_ , clipnorm=A_ , global_clipnorm=A_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase__ ( snake_case ): """simple docstring""" def __init__( self: Dict , __lowerCAmelCase: Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , __lowerCAmelCase: float = 0.9 , __lowerCAmelCase: float = 0.999 , __lowerCAmelCase: float = 1E-7 , __lowerCAmelCase: bool = False , __lowerCAmelCase: float = 0.0 , __lowerCAmelCase: Optional[List[str]] = None , __lowerCAmelCase: Optional[List[str]] = None , __lowerCAmelCase: str = "AdamWeightDecay" , **__lowerCAmelCase: List[str] , ) -> Optional[int]: '''simple docstring''' super().__init__(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) __UpperCAmelCase = weight_decay_rate __UpperCAmelCase = include_in_weight_decay __UpperCAmelCase = exclude_from_weight_decay @classmethod def _UpperCAmelCase ( cls: Union[str, Any] , __lowerCAmelCase: str ) -> int: '''simple docstring''' __UpperCAmelCase = {"WarmUp": WarmUp} return super(__lowerCAmelCase , cls ).from_config(__lowerCAmelCase , custom_objects=__lowerCAmelCase ) def _UpperCAmelCase ( self: int , __lowerCAmelCase: str , __lowerCAmelCase: Any , __lowerCAmelCase: Tuple ) -> Tuple: '''simple docstring''' super(__lowerCAmelCase , self )._prepare_local(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate" ) def _UpperCAmelCase ( self: Dict , __lowerCAmelCase: int , __lowerCAmelCase: Tuple , __lowerCAmelCase: List[Any] ) -> List[str]: '''simple docstring''' __UpperCAmelCase = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def _UpperCAmelCase ( self: Union[str, Any] , __lowerCAmelCase: Tuple , __lowerCAmelCase: List[str]=None , **__lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase = list(zip(*__lowerCAmelCase ) ) return super(__lowerCAmelCase , self ).apply_gradients(zip(__lowerCAmelCase , __lowerCAmelCase ) , name=__lowerCAmelCase , **__lowerCAmelCase ) def _UpperCAmelCase ( self: int , __lowerCAmelCase: Any , __lowerCAmelCase: Tuple , __lowerCAmelCase: List[str] ) -> int: '''simple docstring''' if apply_state is None: return self._decayed_lr_t[var_dtype], {} __UpperCAmelCase = apply_state or {} __UpperCAmelCase = apply_state.get((var_device, var_dtype) ) if coefficients is None: __UpperCAmelCase = self._fallback_apply_state(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _UpperCAmelCase ( self: List[Any] , __lowerCAmelCase: List[Any] , __lowerCAmelCase: Union[str, Any] , __lowerCAmelCase: str=None ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase = self._get_lr(var.device , var.dtype.base_dtype , __lowerCAmelCase ) __UpperCAmelCase = self._decay_weights_op(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with tf.control_dependencies([decay] ): return super(__lowerCAmelCase , self )._resource_apply_dense(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def _UpperCAmelCase ( self: Optional[Any] , __lowerCAmelCase: Optional[int] , __lowerCAmelCase: int , __lowerCAmelCase: Any , __lowerCAmelCase: Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase = self._get_lr(var.device , var.dtype.base_dtype , __lowerCAmelCase ) __UpperCAmelCase = self._decay_weights_op(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) with tf.control_dependencies([decay] ): return super(__lowerCAmelCase , self )._resource_apply_sparse(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def _UpperCAmelCase ( self: str ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate} ) return config def _UpperCAmelCase ( self: Dict , __lowerCAmelCase: str ) -> Tuple: '''simple docstring''' if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__lowerCAmelCase , __lowerCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__lowerCAmelCase , __lowerCAmelCase ) is not None: return False return True class UpperCAmelCase__ ( snake_case ): """simple docstring""" def __init__( self: int ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = None @property def _UpperCAmelCase ( self: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if self._accum_steps is None: __UpperCAmelCase = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=__lowerCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _UpperCAmelCase ( self: str ) -> Union[str, Any]: '''simple docstring''' if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self: str , __lowerCAmelCase: Dict ) -> int: '''simple docstring''' if not self._gradients: __UpperCAmelCase = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__lowerCAmelCase ) , trainable=__lowerCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(__lowerCAmelCase ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(__lowerCAmelCase )}''' ) for accum_gradient, gradient in zip(self._gradients , __lowerCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__lowerCAmelCase ) self._accum_steps.assign_add(1 ) def _UpperCAmelCase ( self: Any ) -> List[str]: '''simple docstring''' if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__lowerCAmelCase ) )
704
import inspect import unittest class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self: Union[str, Any] ) -> Dict: '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def _UpperCAmelCase ( self: Dict ) -> Dict: '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps __UpperCAmelCase = inspect.getmembers(__lowerCAmelCase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __UpperCAmelCase = "k-diffusion" elif backend == "invisible_watermark": __UpperCAmelCase = "invisible-watermark" assert backend in deps, F'''{backend} is not in the deps table!'''
286
0
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __SCREAMING_SNAKE_CASE ( __a , unittest.TestCase ): snake_case : List[Any] = RoFormerTokenizer snake_case : Optional[Any] = RoFormerTokenizerFast snake_case : List[str] = True snake_case : List[Any] = True def _lowerCamelCase ( self ): super().setUp() def _lowerCamelCase ( self , **__lowerCAmelCase ): return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **lowercase_ ) def _lowerCamelCase ( self , **__lowerCAmelCase ): return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **lowercase_ ) def _lowerCamelCase ( self ): UpperCamelCase__ = """永和服装饰品有限公司,今天天气非常好""" UpperCamelCase__ = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ , UpperCamelCase__ = self.get_chinese_input_output_texts() UpperCamelCase__ = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , output_text.split() ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ , UpperCamelCase__ = self.get_chinese_input_output_texts() UpperCamelCase__ = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , output_text.split() ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): pass
619
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def A_ ( SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) ->str: return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class _a : """simple docstring""" A_ = field( metadata={'''help''': '''The csv file to plot.'''} , ) A_ = field( default=__a , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) A_ = field( default=__a , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) A_ = field( default=__a , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) A_ = field( default=__a , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) A_ = field( default=__a , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) A_ = list_field( default=__a , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def A_ ( SCREAMING_SNAKE_CASE_ ) ->Dict: try: int(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False def A_ ( SCREAMING_SNAKE_CASE_ ) ->int: try: float(SCREAMING_SNAKE_CASE_ ) return True except ValueError: return False class _a : """simple docstring""" def __init__( self : str , lowercase_ : List[str] ): '''simple docstring''' lowercase_ = args lowercase_ = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: lowercase_ = csv.DictReader(lowercase_ ) for row in reader: lowercase_ = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None lowercase_ = int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None lowercase_ = float(row["""result"""] ) def lowerCamelCase__ ( self : str ): '''simple docstring''' lowercase_ , lowercase_ = plt.subplots() lowercase_ = """Time usage""" if self.args.is_time else """Memory usage""" lowercase_ = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowercase_ = sorted(set(self.result_dict[model_name]["""bsz"""] ) ) lowercase_ = sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) lowercase_ = self.result_dict[model_name]["""result"""] ((lowercase_) , (lowercase_)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowercase_ = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowercase_ = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowercase_ , ) else: lowercase_ = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((lowercase_) , (lowercase_)) = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) lowercase_ = np.asarray(lowercase_ , lowercase_ )[: len(lowercase_ )] plt.scatter( lowercase_ , lowercase_ , label=F"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(lowercase_ , lowercase_ , """--""" ) title_str += F""" {label_model_name} vs.""" lowercase_ = title_str[:-4] lowercase_ = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(lowercase_ ) plt.xlabel(lowercase_ ) plt.ylabel(lowercase_ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def A_ ( ) ->Tuple: lowercase_ = HfArgumentParser(SCREAMING_SNAKE_CASE_ ) lowercase_ = parser.parse_args_into_dataclasses()[0] lowercase_ = Plot(args=SCREAMING_SNAKE_CASE_ ) plot.plot() if __name__ == "__main__": main()
451
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class UpperCAmelCase ( tf.keras.layers.Layer ): def __init__( self: Optional[Any] , __UpperCamelCase: Dict[str, int] , __UpperCamelCase: List[str] , __UpperCamelCase: int = None , __UpperCamelCase: int = None ): super().__init__() _a = pad_token_id _a = max_length _a = vocab _a = merges _a = BytePairTokenizer(__UpperCamelCase , __UpperCamelCase , sequence_length=__UpperCamelCase ) @classmethod def _A ( cls: Any , __UpperCamelCase: GPTaTokenizer , *__UpperCamelCase: Dict , **__UpperCamelCase: Union[str, Any] ): _a = [''' '''.join(__UpperCamelCase ) for m in tokenizer.bpe_ranks.keys()] _a = tokenizer.get_vocab() return cls(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) @classmethod def _A ( cls: Any , __UpperCamelCase: Union[str, os.PathLike] , *__UpperCamelCase: List[Any] , **__UpperCamelCase: int ): _a = GPTaTokenizer.from_pretrained(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) return cls.from_tokenizer(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) @classmethod def _A ( cls: List[str] , __UpperCamelCase: List[str] ): return cls(**__UpperCamelCase ) def _A ( self: Dict ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _A ( self: int , __UpperCamelCase: Tuple , __UpperCamelCase: int = None ): _a = self.tf_tokenizer(__UpperCamelCase ) _a = tf.ones_like(__UpperCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length _a = max_length if max_length is not None else self.max_length if max_length is not None: _a , _a = pad_model_inputs( __UpperCamelCase , max_seq_length=__UpperCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
346
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowerCamelCase :Dict = random.Random() def __snake_case ( _UpperCamelCase , _UpperCamelCase=1.0 , _UpperCamelCase=None , _UpperCamelCase=None ) -> Optional[int]: if rng is None: _a = global_rng _a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase ( unittest.TestCase ): def __init__( self: Tuple , __UpperCamelCase: Dict , __UpperCamelCase: int=7 , __UpperCamelCase: Any=400 , __UpperCamelCase: List[str]=2000 , __UpperCamelCase: Union[str, Any]=2048 , __UpperCamelCase: int=128 , __UpperCamelCase: Optional[int]=1 , __UpperCamelCase: Tuple=512 , __UpperCamelCase: List[Any]=30 , __UpperCamelCase: Dict=4_4100 , ): _a = parent _a = batch_size _a = min_seq_length _a = max_seq_length _a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a = spectrogram_length _a = feature_size _a = num_audio_channels _a = hop_length _a = chunk_length _a = sampling_rate def _A ( self: int ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _A ( self: List[Any] , __UpperCamelCase: List[Any]=False , __UpperCamelCase: List[str]=False ): def _flatten(__UpperCamelCase: Tuple ): return list(itertools.chain(*__UpperCamelCase ) ) if equal_length: _a = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _a = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a = [np.asarray(__UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( __snake_case , unittest.TestCase ): a: Union[str, Any] = TvltFeatureExtractor def _A ( self: Optional[Any] ): _a = TvltFeatureExtractionTester(self ) def _A ( self: Optional[Any] ): _a = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__UpperCamelCase , '''spectrogram_length''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''feature_size''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''num_audio_channels''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''hop_length''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''chunk_length''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''sampling_rate''' ) ) def _A ( self: List[str] ): _a = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a = feat_extract_first.save_pretrained(__UpperCamelCase )[0] check_json_file_has_correct_format(__UpperCamelCase ) _a = self.feature_extraction_class.from_pretrained(__UpperCamelCase ) _a = feat_extract_first.to_dict() _a = feat_extract_second.to_dict() _a = dict_first.pop('''mel_filters''' ) _a = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def _A ( self: List[str] ): _a = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a = os.path.join(__UpperCamelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(__UpperCamelCase ) _a = self.feature_extraction_class.from_json_file(__UpperCamelCase ) _a = feat_extract_first.to_dict() _a = feat_extract_second.to_dict() _a = dict_first.pop('''mel_filters''' ) _a = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def _A ( self: List[str] ): # Initialize feature_extractor _a = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _a = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] # Test not batched input _a = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _a = feature_extractor(__UpperCamelCase , return_tensors='''np''' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _a = feature_extractor( __UpperCamelCase , return_tensors='''np''' , sampling_rate=4_4100 , mask_audio=__UpperCamelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _a = [floats_list((1, x) )[0] for x in (800, 800, 800)] _a = np.asarray(__UpperCamelCase ) _a = feature_extractor(__UpperCamelCase , return_tensors='''np''' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _A ( self: Optional[int] , __UpperCamelCase: Dict ): _a = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _a = ds.sort('''id''' ).select(range(__UpperCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _A ( self: Optional[Any] ): _a = self._load_datasamples(1 ) _a = TvltFeatureExtractor() _a = feature_extractor(__UpperCamelCase , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _a = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , __UpperCamelCase , atol=1E-4 ) )
346
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ : str = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys a_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
439
import re from filelock import FileLock try: import nltk a_ : Optional[Any] = True except (ImportError, ModuleNotFoundError): a_ : Union[str, Any] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def __lowerCAmelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' re.sub('<n>' , '' , _UpperCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_UpperCamelCase ) )
439
1
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __lowerCAmelCase : int = pd.read_csv('sample_data.csv', header=None) __lowerCAmelCase : str = df.shape[:1][0] # If you're using some other dataset input the target column __lowerCAmelCase : Tuple = df.iloc[:, 1:2] __lowerCAmelCase : List[Any] = actual_data.values.reshape(len_data, 1) __lowerCAmelCase : Union[str, Any] = MinMaxScaler().fit_transform(actual_data) __lowerCAmelCase : int = 10 __lowerCAmelCase : Dict = 5 __lowerCAmelCase : Tuple = 20 __lowerCAmelCase : int = len_data - periods * look_back __lowerCAmelCase : str = actual_data[:division] __lowerCAmelCase : int = actual_data[division - look_back :] __lowerCAmelCase : Optional[int] = [], [] __lowerCAmelCase : Dict = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __lowerCAmelCase : Any = np.array(train_x) __lowerCAmelCase : int = np.array(test_x) __lowerCAmelCase : Optional[int] = np.array([list(i.ravel()) for i in train_y]) __lowerCAmelCase : Dict = np.array([list(i.ravel()) for i in test_y]) __lowerCAmelCase : Optional[int] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') __lowerCAmelCase : str = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) __lowerCAmelCase : Optional[int] = model.predict(x_test)
705
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = ["""pixel_values"""] def __init__( self : str , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , **UpperCamelCase__ : List[Any] , ) -> None: """simple docstring""" super().__init__(**UpperCamelCase__ ) __magic_name__ = size if size is not None else {"""shortest_edge""": 256} __magic_name__ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) __magic_name__ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __magic_name__ = get_size_dict(UpperCamelCase__ ) __magic_name__ = do_resize __magic_name__ = size __magic_name__ = resample __magic_name__ = do_center_crop __magic_name__ = crop_size __magic_name__ = do_rescale __magic_name__ = rescale_factor __magic_name__ = do_normalize __magic_name__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __magic_name__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self : Any , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Tuple , ) -> np.ndarray: """simple docstring""" __magic_name__ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __magic_name__ = get_resize_output_image_size(UpperCamelCase__ , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase__ ) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ) -> np.ndarray: """simple docstring""" __magic_name__ = get_size_dict(UpperCamelCase__ ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : Tuple , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Any ) -> np.ndarray: """simple docstring""" return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ) -> np.ndarray: """simple docstring""" return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : Optional[Any] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : int , ) -> Dict: """simple docstring""" __magic_name__ = do_resize if do_resize is not None else self.do_resize __magic_name__ = size if size is not None else self.size __magic_name__ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) __magic_name__ = resample if resample is not None else self.resample __magic_name__ = do_center_crop if do_center_crop is not None else self.do_center_crop __magic_name__ = crop_size if crop_size is not None else self.crop_size __magic_name__ = get_size_dict(UpperCamelCase__ ) __magic_name__ = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ = image_mean if image_mean is not None else self.image_mean __magic_name__ = image_std if image_std is not None else self.image_std __magic_name__ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __magic_name__ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: __magic_name__ = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_center_crop: __magic_name__ = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] if do_rescale: __magic_name__ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: __magic_name__ = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] __magic_name__ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] __magic_name__ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
76
0
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class lowercase_ : """simple docstring""" def __init__( self : Tuple, UpperCamelCase__ : list[tuple[float, float]] ) -> Any: _A = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _A = len(UpperCamelCase__ ) - 1 def __UpperCAmelCase ( self : Optional[Any], UpperCamelCase__ : float ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." _A = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree, UpperCamelCase__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCamelCase__ ), 5 ) == 1 return output_values def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : float ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." _A = self.basis_function(UpperCamelCase__ ) _A = 0.0 _A = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : float = 0.01 ) -> List[Any]: from matplotlib import pyplot as plt # type: ignore _A = [] # x coordinates of points to plot _A = [] # y coordinates of points to plot _A = 0.0 while t <= 1: _A = self.bezier_curve_function(UpperCamelCase__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _A = [i[0] for i in self.list_of_points] _A = [i[1] for i in self.list_of_points] plt.plot( UpperCamelCase__, UpperCamelCase__, color='blue', label='Curve of Degree ' + str(self.degree ), ) plt.scatter(UpperCamelCase__, UpperCamelCase__, color='red', label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
107
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ : Tuple = logging.get_logger(__name__) __magic_name__ : Optional[Any] = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class UpperCamelCase__ ( lowerCamelCase__ ): """simple docstring""" UpperCAmelCase__ = 'xmod' def __init__( self : Any , __A : str=3_0_5_2_2 , __A : Dict=7_6_8 , __A : Dict=1_2 , __A : Union[str, Any]=1_2 , __A : int=3_0_7_2 , __A : Optional[Any]="gelu" , __A : Union[str, Any]=0.1 , __A : Optional[int]=0.1 , __A : Dict=5_1_2 , __A : List[Any]=2 , __A : Optional[int]=0.0_2 , __A : Union[str, Any]=1e-12 , __A : Optional[int]=1 , __A : Optional[int]=0 , __A : Dict=2 , __A : Union[str, Any]="absolute" , __A : Optional[Any]=True , __A : Dict=None , __A : List[str]=False , __A : Optional[int]=2 , __A : List[str]=False , __A : List[Any]=True , __A : Union[str, Any]=True , __A : str=("en_XX",) , __A : int=None , **__A : Optional[int] , ): """simple docstring""" super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = hidden_act _lowercase = intermediate_size _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = type_vocab_size _lowercase = initializer_range _lowercase = layer_norm_eps _lowercase = position_embedding_type _lowercase = use_cache _lowercase = classifier_dropout _lowercase = pre_norm _lowercase = adapter_reduction_factor _lowercase = adapter_layer_norm _lowercase = adapter_reuse_layer_norm _lowercase = ln_before_adapter _lowercase = list(__A ) _lowercase = default_language class UpperCamelCase__ ( lowerCamelCase__ ): """simple docstring""" @property def snake_case ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": _lowercase = {0: "batch", 1: "choice", 2: "sequence"} else: _lowercase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
497
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __lowerCamelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCamelCase : Optional[int] = 256 class SCREAMING_SNAKE_CASE__ ( __lowerCamelCase ): """simple docstring""" a_ = ['melgan'] def __init__( self : Tuple , __A : SpectrogramNotesEncoder , __A : SpectrogramContEncoder , __A : TaFilmDecoder , __A : DDPMScheduler , __A : OnnxRuntimeModel if is_onnx_available() else Any , ): super().__init__() # From MELGAN snake_case__ : List[Any] = math.log(1e-5 ) # Matches MelGAN training. snake_case__ : Any = 4.0 # Largest value for most examples snake_case__ : Optional[int] = 1_2_8 self.register_modules( notes_encoder=UpperCamelCase_ , continuous_encoder=UpperCamelCase_ , decoder=UpperCamelCase_ , scheduler=UpperCamelCase_ , melgan=UpperCamelCase_ , ) def _lowercase ( self : List[str] , __A : List[Any] , __A : Any=(-1.0, 1.0) , __A : Optional[int]=False ): snake_case__, snake_case__ : Optional[int] = output_range if clip: snake_case__ : Dict = torch.clip(UpperCamelCase_ , self.min_value , self.max_value ) # Scale to [0, 1]. snake_case__ : Union[str, Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _lowercase ( self : Tuple , __A : Any , __A : Any=(-1.0, 1.0) , __A : Optional[Any]=False ): snake_case__, snake_case__ : Tuple = input_range snake_case__ : Optional[int] = torch.clip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if clip else outputs # Scale to [0, 1]. snake_case__ : Dict = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _lowercase ( self : str , __A : Dict , __A : int , __A : Dict ): snake_case__ : Optional[int] = input_tokens > 0 snake_case__, snake_case__ : Optional[Any] = self.notes_encoder( encoder_input_tokens=UpperCamelCase_ , encoder_inputs_mask=UpperCamelCase_ ) snake_case__, snake_case__ : Tuple = self.continuous_encoder( encoder_inputs=UpperCamelCase_ , encoder_inputs_mask=UpperCamelCase_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _lowercase ( self : Optional[int] , __A : int , __A : str , __A : Union[str, Any] ): snake_case__ : Optional[int] = noise_time if not torch.is_tensor(UpperCamelCase_ ): snake_case__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(UpperCamelCase_ ) and len(timesteps.shape ) == 0: snake_case__ : Tuple = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case__ : List[str] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) snake_case__ : Any = self.decoder( encodings_and_masks=UpperCamelCase_ , decoder_input_tokens=UpperCamelCase_ , decoder_noise_time=UpperCamelCase_ ) return logits @torch.no_grad() def __call__( self : Optional[int] , __A : List[List[int]] , __A : Optional[torch.Generator] = None , __A : int = 1_0_0 , __A : bool = True , __A : str = "numpy" , __A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __A : int = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(UpperCamelCase_ )}.''' ) snake_case__ : Union[str, Any] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) snake_case__ : Union[str, Any] = np.zeros([1, 0, self.n_dims] , np.floataa ) snake_case__ : Optional[int] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase_ , device=self.device ) for i, encoder_input_tokens in enumerate(UpperCamelCase_ ): if i == 0: snake_case__ : Any = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. snake_case__ : Tuple = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase_ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. snake_case__ : Union[str, Any] = ones snake_case__ : Dict = self.scale_features( UpperCamelCase_ , output_range=[-1.0, 1.0] , clip=UpperCamelCase_ ) snake_case__ : Dict = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=UpperCamelCase_ , continuous_mask=UpperCamelCase_ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop snake_case__ : int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=UpperCamelCase_ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): snake_case__ : str = self.decode( encodings_and_masks=UpperCamelCase_ , input_tokens=UpperCamelCase_ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 snake_case__ : str = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample snake_case__ : List[str] = self.scale_to_features(UpperCamelCase_ , input_range=[-1.0, 1.0] ) snake_case__ : Optional[Any] = mel[:1] snake_case__ : Optional[Any] = mel.cpu().float().numpy() snake_case__ : Optional[Any] = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase_ , UpperCamelCase_ ) logger.info("Generated segment" , UpperCamelCase_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": snake_case__ : Union[str, Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: snake_case__ : List[Any] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=UpperCamelCase_ )
713
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: int = AlbertConfig.from_json_file(UpperCamelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) __SCREAMING_SNAKE_CASE: str = AlbertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
202
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : List[str] = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
202
1
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowerCAmelCase__ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __lowerCamelCase ( __a : int , __a : Optional[Any] , __a : int , __a : Union[str, Any] , __a : Any ): for attribute in key.split("." ): _lowercase =getattr(__a , __a ) if weight_type is not None: _lowercase =getattr(__a , __a ).shape else: _lowercase =hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowercase =value elif weight_type == "weight_g": _lowercase =value elif weight_type == "weight_v": _lowercase =value elif weight_type == "bias": _lowercase =value else: _lowercase =value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def __lowerCamelCase ( __a : int , __a : Optional[Any] ): _lowercase =[] _lowercase =fairseq_model.state_dict() _lowercase =hf_model.feature_extractor _lowercase =hf_model.adapter for name, value in fairseq_dict.items(): _lowercase =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) _lowercase =True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(__a , __a , __a , __a ) _lowercase =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _lowercase =True if "*" in mapped_key: _lowercase =name.split(__a )[0].split("." )[-2] _lowercase =mapped_key.replace("*" , __a ) if "weight_g" in name: _lowercase ="weight_g" elif "weight_v" in name: _lowercase ="weight_v" elif "bias" in name: _lowercase ="bias" elif "weight" in name: _lowercase ="weight" else: _lowercase =None set_recursively(__a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __a : Optional[Any] , __a : Optional[int] , __a : Tuple , __a : Union[str, Any] , __a : List[Any] ): _lowercase =full_name.split("conv_layers." )[-1] _lowercase =name.split("." ) _lowercase =int(items[0] ) _lowercase =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowercase =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowercase =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _lowercase =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowercase =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__a ) def __lowerCamelCase ( __a : List[str] , __a : int , __a : Any , __a : List[str] ): _lowercase =full_name.split("adaptor." )[-1] _lowercase =name.split("." ) if items[1].isdigit(): _lowercase =int(items[1] ) else: _lowercase =None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _lowercase =value logger.info(f'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _lowercase =value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _lowercase =value logger.info(f'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _lowercase =value logger.info(f'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__a , __a ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _lowercase =value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _lowercase =value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__a ) def __lowerCamelCase ( __a : Union[str, Any] ): _lowercase , _lowercase =emb.weight.shape _lowercase =nn.Linear(__a , __a , bias=__a ) _lowercase =emb.weight.data return lin_layer @torch.no_grad() def __lowerCamelCase ( __a : Union[str, Any] , __a : List[Any] , __a : Optional[Any] , __a : List[str] , __a : Optional[int] , __a : Dict , __a : List[str] , __a : Optional[int] , __a : str , __a : Union[str, Any] , __a : int , ): _lowercase =WavaVecaConfig.from_pretrained( __a , add_adapter=__a , adapter_stride=__a , adapter_kernel_size=__a , use_auth_token=__a , output_hidden_size=__a , ) _lowercase =MBartConfig.from_pretrained(__a ) # load model _lowercase , _lowercase , _lowercase =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) _lowercase =model[0].eval() # load feature extractor _lowercase =WavaVecaFeatureExtractor.from_pretrained(__a , use_auth_token=__a ) # set weights for wav2vec2 encoder _lowercase =WavaVecaModel(__a ) recursively_load_weights_wavaveca(model.encoder , __a ) # load decoder weights _lowercase =MBartForCausalLM(__a ) _lowercase , _lowercase =hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__a ) logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _lowercase =SpeechEncoderDecoderModel(encoder=__a , decoder=__a ) _lowercase =False _lowercase =MBartaaTokenizer(__a ) tokenizer.save_pretrained(__a ) _lowercase =hf_wavavec.config.to_dict() _lowercase =tokenizer.pad_token_id _lowercase =tokenizer.bos_token_id _lowercase =tokenizer.eos_token_id _lowercase ="mbart50" _lowercase ="wav2vec2" _lowercase =tokenizer.eos_token_id _lowercase =250_004 _lowercase =tokenizer.eos_token_id _lowercase =SpeechEncoderDecoderConfig.from_dict(__a ) hf_wavavec.save_pretrained(__a ) feature_extractor.save_pretrained(__a ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1_0_2_4, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=2_5_0_0_0_4, type=int, help="`decoder_start_token_id` of model config") lowerCAmelCase__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
701
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") lowerCAmelCase__ = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) lowerCAmelCase__ = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_0_0_0_0): out_file.write(data) lowerCAmelCase__ = BeautifulSoup(res.text, "html.parser") lowerCAmelCase__ = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(F'''https://google.com{link.get('href')}''')
594
0
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _lowercase( _lowerCamelCase ): """simple docstring""" def snake_case ( self: List[Any] ): __UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a ,'hidden_sizes' ) ) self.parent.assertTrue(hasattr(a ,'num_attention_heads' ) ) class _lowercase: """simple docstring""" def __init__( self: str ,a: Union[str, Any] ,a: Optional[Any]=13 ,a: Dict=64 ,a: int=3 ,a: str=3 ,a: Any=2 ,a: List[Any]=1 ,a: str=16 ,a: Union[str, Any]=[128, 256, 384] ,a: Optional[int]=[4, 6, 8] ,a: List[Any]=[2, 3, 4] ,a: Dict=[16, 16, 16] ,a: Dict=0 ,a: Optional[Any]=[2, 2, 2] ,a: List[str]=[2, 2, 2] ,a: int=0.02 ,a: Dict=True ,a: Optional[Any]=True ,a: List[Any]=2 ,): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = image_size __UpperCAmelCase = num_channels __UpperCAmelCase = kernel_size __UpperCAmelCase = stride __UpperCAmelCase = padding __UpperCAmelCase = hidden_sizes __UpperCAmelCase = num_attention_heads __UpperCAmelCase = depths __UpperCAmelCase = key_dim __UpperCAmelCase = drop_path_rate __UpperCAmelCase = patch_size __UpperCAmelCase = attention_ratio __UpperCAmelCase = mlp_ratio __UpperCAmelCase = initializer_range __UpperCAmelCase = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = num_labels __UpperCAmelCase = initializer_range def snake_case ( self: int ): __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] ,self.num_labels ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def snake_case ( self: Dict ): return LevitConfig( image_size=self.image_size ,num_channels=self.num_channels ,kernel_size=self.kernel_size ,stride=self.stride ,padding=self.padding ,patch_size=self.patch_size ,hidden_sizes=self.hidden_sizes ,num_attention_heads=self.num_attention_heads ,depths=self.depths ,key_dim=self.key_dim ,drop_path_rate=self.drop_path_rate ,mlp_ratio=self.mlp_ratio ,attention_ratio=self.attention_ratio ,initializer_range=self.initializer_range ,down_ops=self.down_ops ,) def snake_case ( self: Optional[int] ,a: Optional[int] ,a: Any ,a: List[str] ): __UpperCAmelCase = LevitModel(config=a ) model.to(a ) model.eval() __UpperCAmelCase = model(a ) __UpperCAmelCase = (self.image_size, self.image_size) __UpperCAmelCase , __UpperCAmelCase = image_size[0], image_size[1] for _ in range(4 ): __UpperCAmelCase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __UpperCAmelCase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) ,) def snake_case ( self: Any ,a: Optional[Any] ,a: str ,a: Dict ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = LevitForImageClassification(a ) model.to(a ) model.eval() __UpperCAmelCase = model(a ,labels=a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def snake_case ( self: Tuple ): __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowercase( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): """simple docstring""" __lowerCamelCase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __lowerCamelCase = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def snake_case ( self: Tuple ): __UpperCAmelCase = LevitModelTester(self ) __UpperCAmelCase = ConfigTester(self ,config_class=a ,has_text_modality=a ,hidden_size=37 ) def snake_case ( self: str ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self: int ): return @unittest.skip(reason='Levit does not use inputs_embeds' ) def snake_case ( self: Tuple ): pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def snake_case ( self: str ): pass @unittest.skip(reason='Levit does not output attentions' ) def snake_case ( self: Optional[int] ): pass def snake_case ( self: Optional[Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(a ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] ,a ) def snake_case ( self: str ): def check_hidden_states_output(a: Union[str, Any] ,a: Tuple ,a: Any ): __UpperCAmelCase = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(a ,a ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = len(self.model_tester.depths ) + 1 self.assertEqual(len(a ) ,a ) __UpperCAmelCase = (self.model_tester.image_size, self.model_tester.image_size) __UpperCAmelCase , __UpperCAmelCase = image_size[0], image_size[1] for _ in range(4 ): __UpperCAmelCase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __UpperCAmelCase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[ height * width, self.model_tester.hidden_sizes[0], ] ,) __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = True check_hidden_states_output(a ,a ,a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True check_hidden_states_output(a ,a ,a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case ( self: int ): pass def snake_case ( self: Union[str, Any] ,a: Dict ,a: Optional[Any] ,a: List[Any]=False ): __UpperCAmelCase = super()._prepare_for_class(a ,a ,return_labels=a ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def snake_case ( self: int ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def snake_case ( self: Tuple ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) def snake_case ( self: Dict ): if not self.model_tester.is_training: return __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(a ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __UpperCAmelCase = model_class(a ) model.to(a ) model.train() __UpperCAmelCase = self._prepare_for_class(a ,a ,return_labels=a ) __UpperCAmelCase = model(**a ).loss loss.backward() def snake_case ( self: Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCAmelCase = False __UpperCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(a ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __UpperCAmelCase = model_class(a ) model.gradient_checkpointing_enable() model.to(a ) model.train() __UpperCAmelCase = self._prepare_for_class(a ,a ,return_labels=a ) __UpperCAmelCase = model(**a ).loss loss.backward() def snake_case ( self: int ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(a ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type['title']}""" ): __UpperCAmelCase = problem_type['title'] __UpperCAmelCase = problem_type['num_labels'] __UpperCAmelCase = model_class(a ) model.to(a ) model.train() __UpperCAmelCase = self._prepare_for_class(a ,a ,return_labels=a ) if problem_type["num_labels"] > 1: __UpperCAmelCase = inputs['labels'].unsqueeze(1 ).repeat(1 ,problem_type['num_labels'] ) __UpperCAmelCase = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=a ) as warning_list: __UpperCAmelCase = model(**a ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def snake_case ( self: Dict ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = LevitModel.from_pretrained(a ) self.assertIsNotNone(a ) def __snake_case ( ): __UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowercase( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self: int ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def snake_case ( self: Union[str, Any] ): __UpperCAmelCase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( a ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(images=a ,return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): __UpperCAmelCase = model(**a ) # verify the logits __UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,a ) __UpperCAmelCase = torch.tensor([1.0448, -0.3745, -1.8317] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,a ,atol=1e-4 ) )
396
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCamelCase : List[str] = logging.get_logger(__name__) class _lowercase( enum.Enum ): """simple docstring""" __lowerCamelCase = 0 __lowerCamelCase = 1 @add_end_docstrings(_lowerCamelCase ) class _lowercase( _lowerCamelCase ): """simple docstring""" __lowerCamelCase = '''generated''' def __init__( self: int ,*a: Optional[Any] ,**a: Optional[Any] ): super().__init__(*a ,**a ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def snake_case ( self: Tuple ,a: Union[str, Any]=None ,a: Any=None ,a: Tuple=None ,a: Tuple=None ,a: Any=None ,a: List[Any]=None ,**a: Any ,): __UpperCAmelCase = {} if truncation is not None: __UpperCAmelCase = truncation __UpperCAmelCase = generate_kwargs __UpperCAmelCase = {} if return_tensors is not None and return_type is None: __UpperCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: __UpperCAmelCase = return_type if clean_up_tokenization_spaces is not None: __UpperCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: __UpperCAmelCase = self.tokenizer.encode(a ,add_special_tokens=a ) if len(a ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) __UpperCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def snake_case ( self: Optional[int] ,a: int ,a: int ,a: int ): return True def snake_case ( self: List[Any] ,*a: Tuple ,a: int ): __UpperCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] ,a ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) __UpperCAmelCase = ([prefix + arg for arg in args[0]],) __UpperCAmelCase = True elif isinstance(args[0] ,a ): __UpperCAmelCase = (prefix + args[0],) __UpperCAmelCase = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) __UpperCAmelCase = self.tokenizer(*a ,padding=a ,truncation=a ,return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self: Union[str, Any] ,*a: Optional[int] ,**a: Optional[Any] ): __UpperCAmelCase = super().__call__(*a ,**a ) if ( isinstance(args[0] ,a ) and all(isinstance(a ,a ) for el in args[0] ) and all(len(a ) == 1 for res in result ) ): return [res[0] for res in result] return result def snake_case ( self: Optional[int] ,a: Union[str, Any] ,a: List[str]=TruncationStrategy.DO_NOT_TRUNCATE ,**a: Any ): __UpperCAmelCase = self._parse_and_tokenize(a ,truncation=a ,**a ) return inputs def snake_case ( self: Union[str, Any] ,a: Optional[int] ,**a: Tuple ): if self.framework == "pt": __UpperCAmelCase , __UpperCAmelCase = model_inputs['input_ids'].shape elif self.framework == "tf": __UpperCAmelCase , __UpperCAmelCase = tf.shape(model_inputs['input_ids'] ).numpy() __UpperCAmelCase = generate_kwargs.get('min_length' ,self.model.config.min_length ) __UpperCAmelCase = generate_kwargs.get('max_length' ,self.model.config.max_length ) self.check_inputs(a ,generate_kwargs['min_length'] ,generate_kwargs['max_length'] ) __UpperCAmelCase = self.model.generate(**a ,**a ) __UpperCAmelCase = output_ids.shape[0] if self.framework == "pt": __UpperCAmelCase = output_ids.reshape(a ,out_b // in_b ,*output_ids.shape[1:] ) elif self.framework == "tf": __UpperCAmelCase = tf.reshape(a ,(in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def snake_case ( self: List[str] ,a: Tuple ,a: Optional[int]=ReturnType.TEXT ,a: Optional[Any]=False ): __UpperCAmelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: __UpperCAmelCase = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: __UpperCAmelCase = { f"""{self.return_name}_text""": self.tokenizer.decode( a ,skip_special_tokens=a ,clean_up_tokenization_spaces=a ,) } records.append(a ) return records @add_end_docstrings(_lowerCamelCase ) class _lowercase( _lowerCamelCase ): """simple docstring""" __lowerCamelCase = '''summary''' def __call__( self: Dict ,*a: Optional[Any] ,**a: int ): return super().__call__(*a ,**a ) def snake_case ( self: Optional[Any] ,a: int ,a: int ,a: int ): if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ 'a summarization task, where outputs shorter than the input are typically wanted, you might ' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_lowerCamelCase ) class _lowercase( _lowerCamelCase ): """simple docstring""" __lowerCamelCase = '''translation''' def snake_case ( self: Optional[Any] ,a: int ,a: int ,a: int ): if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def snake_case ( self: Dict ,*a: Dict ,a: Any=TruncationStrategy.DO_NOT_TRUNCATE ,a: Optional[int]=None ,a: Any=None ): if getattr(self.tokenizer ,'_build_translation_inputs' ,a ): return self.tokenizer._build_translation_inputs( *a ,return_tensors=self.framework ,truncation=a ,src_lang=a ,tgt_lang=a ) else: return super()._parse_and_tokenize(*a ,truncation=a ) def snake_case ( self: Union[str, Any] ,a: List[str]=None ,a: Union[str, Any]=None ,**a: Optional[int] ): __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = super()._sanitize_parameters(**a ) if src_lang is not None: __UpperCAmelCase = src_lang if tgt_lang is not None: __UpperCAmelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. __UpperCAmelCase = kwargs.get('task' ,self.task ) __UpperCAmelCase = task.split('_' ) if task and len(a ) == 4: # translation, XX, to YY __UpperCAmelCase = items[1] __UpperCAmelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self: Optional[Any] ,*a: Union[str, Any] ,**a: List[str] ): return super().__call__(*a ,**a )
396
1
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "owlvit_text_model" def __init__(self , _lowercase=49408 , _lowercase=512 , _lowercase=2048 , _lowercase=12 , _lowercase=8 , _lowercase=16 , _lowercase="quick_gelu" , _lowercase=1e-5 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1.0 , _lowercase=0 , _lowercase=49406 , _lowercase=49407 , **_lowercase , ): '''simple docstring''' super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __a : Tuple = vocab_size __a : Union[str, Any] = hidden_size __a : Tuple = intermediate_size __a : Union[str, Any] = num_hidden_layers __a : Optional[Any] = num_attention_heads __a : Union[str, Any] = max_position_embeddings __a : List[Any] = hidden_act __a : Tuple = layer_norm_eps __a : Tuple = attention_dropout __a : List[Any] = initializer_range __a : List[Any] = initializer_factor @classmethod def lowerCAmelCase__(cls , _lowercase , **_lowercase ): '''simple docstring''' cls._set_token_in_kwargs(_lowercase ) __a : List[Any] = cls.get_config_dict(_lowercase , **_lowercase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": __a : Dict = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowercase , **_lowercase ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "owlvit_vision_model" def __init__(self , _lowercase=768 , _lowercase=3072 , _lowercase=12 , _lowercase=12 , _lowercase=3 , _lowercase=768 , _lowercase=32 , _lowercase="quick_gelu" , _lowercase=1e-5 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1.0 , **_lowercase , ): '''simple docstring''' super().__init__(**_lowercase ) __a : Any = hidden_size __a : Tuple = intermediate_size __a : str = num_hidden_layers __a : int = num_attention_heads __a : int = num_channels __a : List[Any] = image_size __a : int = patch_size __a : Any = hidden_act __a : int = layer_norm_eps __a : Union[str, Any] = attention_dropout __a : str = initializer_range __a : Union[str, Any] = initializer_factor @classmethod def lowerCAmelCase__(cls , _lowercase , **_lowercase ): '''simple docstring''' cls._set_token_in_kwargs(_lowercase ) __a : List[str] = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": __a : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowercase , **_lowercase ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "owlvit" _lowerCAmelCase = True def __init__(self , _lowercase=None , _lowercase=None , _lowercase=512 , _lowercase=2.6592 , _lowercase=True , **_lowercase , ): '''simple docstring''' super().__init__(**_lowercase ) if text_config is None: __a : Union[str, Any] = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: __a : Tuple = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) __a : Tuple = OwlViTTextConfig(**_lowercase ) __a : Dict = OwlViTVisionConfig(**_lowercase ) __a : int = projection_dim __a : List[str] = logit_scale_init_value __a : List[str] = return_dict __a : Any = 1.0 @classmethod def lowerCAmelCase__(cls , _lowercase , **_lowercase ): '''simple docstring''' cls._set_token_in_kwargs(_lowercase ) __a : List[Any] = cls.get_config_dict(_lowercase , **_lowercase ) if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowercase , **_lowercase ) @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase , **_lowercase ): '''simple docstring''' __a : Any = {} __a : int = text_config __a : Any = vision_config return cls.from_dict(_lowercase , **_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a : List[Any] = copy.deepcopy(self.__dict__ ) __a : List[str] = self.text_config.to_dict() __a : Union[str, Any] = self.vision_config.to_dict() __a : List[str] = self.__class__.model_type return output class SCREAMING_SNAKE_CASE__ ( __snake_case ): @property def lowerCAmelCase__(self ): '''simple docstring''' return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def lowerCAmelCase__(self ): '''simple docstring''' return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def lowerCAmelCase__(self ): '''simple docstring''' return 1e-4 def lowerCAmelCase__(self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = None , ): '''simple docstring''' __a : Optional[int] = super().generate_dummy_inputs( processor.tokenizer , batch_size=_lowercase , seq_length=_lowercase , framework=_lowercase ) __a : Optional[int] = super().generate_dummy_inputs( processor.image_processor , batch_size=_lowercase , framework=_lowercase ) return {**text_input_dict, **image_input_dict} @property def lowerCAmelCase__(self ): '''simple docstring''' return 14
707
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : Optional[Any]=False ): __a : Dict = OmegaConf.load(_lowerCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCamelCase ) ) ) return config def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any]=None , _lowerCamelCase : int=None ): if conf_path is None: __a : str = """./model_checkpoints/vqgan_only.yaml""" __a : List[Any] = load_config(_lowerCamelCase , display=_lowerCamelCase ) __a : Dict = VQModel(**config.model.params ) if ckpt_path is None: __a : List[Any] = """./model_checkpoints/vqgan_only.pt""" __a : Tuple = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) if ".ckpt" in ckpt_path: __a : List[str] = sd["""state_dict"""] model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) model.to(_lowerCamelCase ) del sd return model def __magic_name__ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] ): __a , __a , __a : Tuple = model.encode(_lowerCamelCase ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) __a : Union[str, Any] = model.decode(_lowerCamelCase ) return xrec def __magic_name__ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any]=False ): __a , __a : Optional[Any] = string.rsplit(""".""" , 1 ) if reload: __a : Optional[Any] = importlib.import_module(_lowerCamelCase ) importlib.reload(_lowerCamelCase ) return getattr(importlib.import_module(_lowerCamelCase , package=_lowerCamelCase ) , cls ) def __magic_name__ ( _lowerCamelCase : Any ): if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def __magic_name__ ( _lowerCamelCase : Any , _lowerCamelCase : Dict , _lowerCamelCase : int=True , _lowerCamelCase : int=True ): __a : Union[str, Any] = instantiate_from_config(_lowerCamelCase ) if sd is not None: model.load_state_dict(_lowerCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __magic_name__ ( _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : int ): # load the specified checkpoint if ckpt: __a : List[str] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __a : Any = pl_sd["""global_step"""] print(F'''loaded model from global step {global_step}.''' ) else: __a : List[Any] = {"""state_dict""": None} __a : Any = None __a : Union[str, Any] = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=_lowerCamelCase , eval_mode=_lowerCamelCase )["""model"""] return model, global_step
63
0
import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class A_ ( lowerCAmelCase__ ): '''simple docstring''' a__ = """microsoft/speecht5_tts""" a__ = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) a__ = """text_reader""" a__ = SpeechTaProcessor a__ = SpeechTaForTextToSpeech a__ = SpeechTaHifiGan a__ = ["""text"""] a__ = ["""audio"""] def lowerCAmelCase_ (self ) -> Any: if self.post_processor is None: __UpperCAmelCase = '''microsoft/speecht5_hifigan''' super().setup() def lowerCAmelCase_ (self , lowercase__ , lowercase__=None ) -> Union[str, Any]: __UpperCAmelCase = self.pre_processor(text=lowercase_ , return_tensors='''pt''' , truncation=lowercase_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) __UpperCAmelCase = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) __UpperCAmelCase = torch.tensor(embeddings_dataset[7_305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def lowerCAmelCase_ (self , lowercase__ ) -> Dict: with torch.no_grad(): return self.model.generate_speech(**lowercase_ ) def lowerCAmelCase_ (self , lowercase__ ) -> Optional[int]: with torch.no_grad(): return self.post_processor(lowercase_ ).cpu().detach()
303
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : List[Any] = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Any = """gpt_bigcode""" _lowerCAmelCase : Union[str, Any] = ["""past_key_values"""] _lowerCAmelCase : List[str] = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , lowercase_ : int=50257 , lowercase_ : List[Any]=1024 , lowercase_ : Optional[int]=768 , lowercase_ : List[str]=12 , lowercase_ : Any=12 , lowercase_ : List[str]=None , lowercase_ : Dict="gelu_pytorch_tanh" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Tuple=1E-5 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Union[str, Any]=True , lowercase_ : Union[str, Any]=True , lowercase_ : Union[str, Any]=50256 , lowercase_ : Any=50256 , lowercase_ : int=True , lowercase_ : List[Any]=True , lowercase_ : Tuple=True , **lowercase_ : List[Any] , ): snake_case_ : int = vocab_size snake_case_ : List[Any] = n_positions snake_case_ : List[Any] = n_embd snake_case_ : Any = n_layer snake_case_ : List[Any] = n_head snake_case_ : Any = n_inner snake_case_ : Dict = activation_function snake_case_ : Tuple = resid_pdrop snake_case_ : Optional[int] = embd_pdrop snake_case_ : List[str] = attn_pdrop snake_case_ : str = layer_norm_epsilon snake_case_ : Tuple = initializer_range snake_case_ : Optional[int] = scale_attn_weights snake_case_ : str = use_cache snake_case_ : Tuple = attention_softmax_in_fpaa snake_case_ : Optional[int] = scale_attention_softmax_in_fpaa snake_case_ : Optional[int] = multi_query snake_case_ : str = bos_token_id snake_case_ : Union[str, Any] = eos_token_id super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
123
0
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=5_12, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) _snake_case = parser.parse_args() _snake_case = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
231
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() lowerCamelCase : Any = dict(zip(__A , range(len(__A ) ) ) ) lowerCamelCase : List[str] = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } lowerCamelCase : List[Any] = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 1_6000, "return_attention_mask": False, "do_normalize": True, } lowerCamelCase : Any = tempfile.mkdtemp() lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : Any = os.path.join(self.tmpdirname , __A ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) # load decoder from hub lowerCamelCase : Optional[int] = "hf-internal-testing/ngram-beam-search-decoder" def _snake_case ( self , **__A ): """simple docstring""" lowerCamelCase : Any = self.add_kwargs_tokens_map.copy() kwargs.update(__A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__A ) def _snake_case ( self , **__A ): """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__A ) def _snake_case ( self , **__A ): """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__A ) def _snake_case ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.get_tokenizer() lowerCamelCase : Any = self.get_feature_extractor() lowerCamelCase : Dict = self.get_decoder() lowerCamelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match lowerCamelCase : Tuple = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : int = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(__A , "include" ): WavaVecaProcessorWithLM( tokenizer=__A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.get_feature_extractor() lowerCamelCase : Any = self.get_tokenizer() lowerCamelCase : Optional[Any] = self.get_decoder() lowerCamelCase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) lowerCamelCase : List[str] = floats_list((3, 1000) ) lowerCamelCase : str = feature_extractor(__A , return_tensors="np" ) lowerCamelCase : Union[str, Any] = processor(__A , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : int = self.get_feature_extractor() lowerCamelCase : Dict = self.get_tokenizer() lowerCamelCase : Union[str, Any] = self.get_decoder() lowerCamelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) lowerCamelCase : List[str] = "This is a test string" lowerCamelCase : List[str] = processor(text=__A ) lowerCamelCase : Tuple = tokenizer(__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self , __A=(2, 10, 16) , __A=77 ): """simple docstring""" np.random.seed(__A ) return np.random.rand(*__A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = self.get_feature_extractor() lowerCamelCase : List[str] = self.get_tokenizer() lowerCamelCase : Any = self.get_decoder() lowerCamelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) lowerCamelCase : int = self._get_dummy_logits(shape=(10, 16) , seed=13 ) lowerCamelCase : Optional[int] = processor.decode(__A ) lowerCamelCase : List[str] = decoder.decode_beams(__A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : str = self.get_feature_extractor() lowerCamelCase : Dict = self.get_tokenizer() lowerCamelCase : str = self.get_decoder() lowerCamelCase : int = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) lowerCamelCase : List[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: lowerCamelCase : Optional[Any] = processor.batch_decode(__A ) else: with get_context(__A ).Pool() as pool: lowerCamelCase : List[str] = processor.batch_decode(__A , __A ) lowerCamelCase : Optional[int] = list(__A ) with get_context("fork" ).Pool() as p: lowerCamelCase : Optional[int] = decoder.decode_beams_batch(__A , __A ) lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__A , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(__A , decoded_processor.logit_score ) self.assertListEqual(__A , decoded_processor.lm_score ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.get_feature_extractor() lowerCamelCase : List[str] = self.get_tokenizer() lowerCamelCase : Optional[Any] = self.get_decoder() lowerCamelCase : Tuple = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) lowerCamelCase : Any = self._get_dummy_logits() lowerCamelCase : Union[str, Any] = 15 lowerCamelCase : List[Any] = -20.0 lowerCamelCase : Tuple = -4.0 lowerCamelCase : List[Any] = processor.batch_decode( __A , beam_width=__A , beam_prune_logp=__A , token_min_logp=__A , ) lowerCamelCase : Optional[Any] = decoded_processor_out.text lowerCamelCase : Dict = list(__A ) with get_context("fork" ).Pool() as pool: lowerCamelCase : Tuple = decoder.decode_beams_batch( __A , __A , beam_width=__A , beam_prune_logp=__A , token_min_logp=__A , ) lowerCamelCase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] lowerCamelCase : Tuple = [d[0][2] for d in decoded_decoder_out] lowerCamelCase : List[str] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__A , __A ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , __A ) self.assertTrue(np.array_equal(__A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __A , atol=1e-3 ) ) self.assertTrue(np.array_equal(__A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __A , atol=1e-3 ) ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = self.get_feature_extractor() lowerCamelCase : List[str] = self.get_tokenizer() lowerCamelCase : Union[str, Any] = self.get_decoder() lowerCamelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) lowerCamelCase : Optional[Any] = self._get_dummy_logits() lowerCamelCase : Union[str, Any] = 2.0 lowerCamelCase : Optional[int] = 5.0 lowerCamelCase : Tuple = -20.0 lowerCamelCase : int = True lowerCamelCase : Tuple = processor.batch_decode( __A , alpha=__A , beta=__A , unk_score_offset=__A , lm_score_boundary=__A , ) lowerCamelCase : Dict = decoded_processor_out.text lowerCamelCase : Dict = list(__A ) decoder.reset_params( alpha=__A , beta=__A , unk_score_offset=__A , lm_score_boundary=__A , ) with get_context("fork" ).Pool() as pool: lowerCamelCase : Dict = decoder.decode_beams_batch( __A , __A , ) lowerCamelCase : Union[str, Any] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__A , __A ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , __A ) lowerCamelCase : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) lowerCamelCase : Dict = processor.decoder.model_container[processor.decoder._model_key] lowerCamelCase : Tuple = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() lowerCamelCase : Tuple = os.listdir(__A ) lowerCamelCase : List[Any] = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__A , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[int] = snapshot_download("hf-internal-testing/processor_with_lm" ) lowerCamelCase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__A ) lowerCamelCase : List[str] = processor.decoder.model_container[processor.decoder._model_key] lowerCamelCase : Optional[Any] = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() lowerCamelCase : List[str] = os.listdir(__A ) lowerCamelCase : Tuple = os.listdir(__A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__A , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) lowerCamelCase : Union[str, Any] = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) lowerCamelCase : Dict = floats_list((3, 1000) ) lowerCamelCase : List[Any] = processor_wavaveca(__A , return_tensors="np" ) lowerCamelCase : Optional[Any] = processor_auto(__A , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) lowerCamelCase : Optional[Any] = self._get_dummy_logits() lowerCamelCase : Dict = processor_wavaveca.batch_decode(__A ) lowerCamelCase : int = processor_auto.batch_decode(__A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[int] = self.get_feature_extractor() lowerCamelCase : str = self.get_tokenizer() lowerCamelCase : List[Any] = self.get_decoder() lowerCamelCase : Any = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def _snake_case ( __A , __A ): """simple docstring""" lowerCamelCase : List[str] = [d[key] for d in offsets] return retrieved_list def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) lowerCamelCase : str = self._get_dummy_logits()[0] lowerCamelCase : List[Any] = processor.decode(__A , output_word_offsets=__A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(__A , __A ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Tuple = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) lowerCamelCase : Dict = self._get_dummy_logits() lowerCamelCase : int = processor.batch_decode(__A , output_word_offsets=__A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(__A , __A ) ) self.assertListEqual( [" ".join(self.get_from_offsets(__A , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def _snake_case ( self ): """simple docstring""" import torch lowerCamelCase : Union[str, Any] = load_dataset("common_voice" , "en" , split="train" , streaming=__A ) lowerCamelCase : Dict = ds.cast_column("audio" , datasets.Audio(sampling_rate=1_6000 ) ) lowerCamelCase : List[str] = iter(__A ) lowerCamelCase : Any = next(__A ) lowerCamelCase : List[str] = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) lowerCamelCase : List[str] = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train lowerCamelCase : List[Any] = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): lowerCamelCase : Optional[int] = model(__A ).logits.cpu().numpy() lowerCamelCase : str = processor.decode(logits[0] , output_word_offsets=__A ) lowerCamelCase : List[str] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate lowerCamelCase : Tuple = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] lowerCamelCase : int = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(__A , "word" ) ) , __A ) self.assertEqual(" ".join(self.get_from_offsets(__A , "word" ) ) , output.text ) # output times lowerCamelCase : Tuple = torch.tensor(self.get_from_offsets(__A , "start_time" ) ) lowerCamelCase : Union[str, Any] = torch.tensor(self.get_from_offsets(__A , "end_time" ) ) # fmt: off lowerCamelCase : str = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) lowerCamelCase : str = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__A , __A , atol=0.01 ) ) self.assertTrue(torch.allclose(__A , __A , atol=0.01 ) )
231
1
"""simple docstring""" from ... import PretrainedConfig lowerCAmelCase: str ={ "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase__ ( __UpperCamelCase ): __UpperCAmelCase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __UpperCAmelCase = """nezha""" def __init__( self , snake_case=2_1_1_2_8 , snake_case=7_6_8 , snake_case=1_2 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=6_4 , snake_case=2 , snake_case=0.02 , snake_case=1E-12 , snake_case=0.1 , snake_case=0 , snake_case=2 , snake_case=3 , snake_case=True , **snake_case , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) lowercase : int = vocab_size lowercase : Tuple = hidden_size lowercase : Any = num_hidden_layers lowercase : str = num_attention_heads lowercase : Optional[int] = hidden_act lowercase : int = intermediate_size lowercase : Union[str, Any] = hidden_dropout_prob lowercase : Optional[int] = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : List[str] = max_relative_position lowercase : List[str] = type_vocab_size lowercase : Dict = initializer_range lowercase : Any = layer_norm_eps lowercase : Optional[int] = classifier_dropout lowercase : Union[str, Any] = use_cache
607
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __snake_case ( __A ) -> Any: def wrapper(*__A ,**__A ): lowercase : Tuple = timeit.default_timer() lowercase : List[Any] = func(*__A ,**__A ) lowercase : str = timeit.default_timer() - starttime return delta lowercase : Optional[int] = func.__name__ return wrapper def __snake_case ( __A ,__A=100 ,__A=None ) -> Optional[int]: lowercase : List[Any] = [] lowercase : Tuple = seq_shapes or {} for i in range(__A ): lowercase : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__A ,_ArrayXD ): lowercase : Optional[Any] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__A ,datasets.Value ): if v.dtype == "string": lowercase : Tuple = """The small grey turtle was surprisingly fast when challenged.""" else: lowercase : Optional[Any] = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(__A ,datasets.Sequence ): while isinstance(__A ,datasets.Sequence ): lowercase : List[Any] = v.feature lowercase : Optional[int] = seq_shapes[k] lowercase : List[str] = np.random.rand(*__A ).astype(v.dtype ) lowercase : Any = data dummy_data.append((i, example) ) return dummy_data def __snake_case ( __A ,__A ,__A=100 ,__A=None ) -> Optional[Any]: lowercase : Tuple = generate_examples(__A ,num_examples=__A ,seq_shapes=__A ) with ArrowWriter(features=__A ,path=__A ) as writer: for key, record in dummy_data: lowercase : int = features.encode_example(__A ) writer.write(__A ) lowercase , lowercase : List[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) lowercase : Dict = datasets.Dataset.from_file(filename=__A ,info=datasets.DatasetInfo(features=__A ) ) return dataset
607
1
"""simple docstring""" import cmath import math def lowercase_ ( _lowercase : float , _lowercase : float , _lowercase : float , _lowercase : float ): '''simple docstring''' UpperCAmelCase : Optional[Any] = math.radians(_lowercase ) UpperCAmelCase : Tuple = math.radians(_lowercase ) # Convert voltage and current to rectangular form UpperCAmelCase : Any = cmath.rect(_lowercase , _lowercase ) UpperCAmelCase : List[str] = cmath.rect(_lowercase , _lowercase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
719
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = (UniPCMultistepScheduler,) SCREAMING_SNAKE_CASE__ = (('''num_inference_steps''', 25),) def __lowerCAmelCase ( self : Tuple , **lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : List[Any] = { "num_train_timesteps": 10_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**lowercase ) return config def __lowerCAmelCase ( self : int , lowercase : List[str]=0 , **lowercase : str ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = dict(self.forward_default_kwargs ) UpperCAmelCase : Dict = kwargs.pop("num_inference_steps" , lowercase ) UpperCAmelCase : str = self.dummy_sample UpperCAmelCase : Tuple = 0.1 * sample UpperCAmelCase : int = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase : Optional[Any] = self.get_scheduler_config(**lowercase ) UpperCAmelCase : Tuple = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals UpperCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) UpperCAmelCase : Any = scheduler_class.from_pretrained(lowercase ) new_scheduler.set_timesteps(lowercase ) # copy over dummy past residuals UpperCAmelCase : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase , UpperCAmelCase : List[Any] = sample, sample for t in range(lowercase , time_step + scheduler.config.solver_order + 1 ): UpperCAmelCase : List[str] = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase : List[Any] = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : int , lowercase : int=0 , **lowercase : Tuple ): '''simple docstring''' UpperCAmelCase : List[str] = dict(self.forward_default_kwargs ) UpperCAmelCase : Union[str, Any] = kwargs.pop("num_inference_steps" , lowercase ) UpperCAmelCase : Tuple = self.dummy_sample UpperCAmelCase : Any = 0.1 * sample UpperCAmelCase : int = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCAmelCase : Optional[int] = self.get_scheduler_config() UpperCAmelCase : List[Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) UpperCAmelCase : str = scheduler_class.from_pretrained(lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase : Dict = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase : Any = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : Union[str, Any] , lowercase : Optional[int]=None , **lowercase : int ): '''simple docstring''' if scheduler is None: UpperCAmelCase : Dict = self.scheduler_classes[0] UpperCAmelCase : int = self.get_scheduler_config(**lowercase ) UpperCAmelCase : str = scheduler_class(**lowercase ) UpperCAmelCase : Optional[int] = self.scheduler_classes[0] UpperCAmelCase : Dict = self.get_scheduler_config(**lowercase ) UpperCAmelCase : int = scheduler_class(**lowercase ) UpperCAmelCase : List[str] = 10 UpperCAmelCase : Optional[Any] = self.dummy_model() UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : List[str] = model(lowercase , lowercase ) UpperCAmelCase : Optional[Any] = scheduler.step(lowercase , lowercase , lowercase ).prev_sample return sample def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase : List[Any] = kwargs.pop("num_inference_steps" , lowercase ) for scheduler_class in self.scheduler_classes: UpperCAmelCase : str = self.get_scheduler_config() UpperCAmelCase : Dict = scheduler_class(**lowercase ) UpperCAmelCase : Any = self.dummy_sample UpperCAmelCase : Any = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase , "set_timesteps" ): scheduler.set_timesteps(lowercase ) elif num_inference_steps is not None and not hasattr(lowercase , "set_timesteps" ): UpperCAmelCase : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase : Union[str, Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] UpperCAmelCase : Dict = dummy_past_residuals[: scheduler.config.solver_order] UpperCAmelCase : str = scheduler.timesteps[5] UpperCAmelCase : List[Any] = scheduler.timesteps[6] UpperCAmelCase : Union[str, Any] = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase : int = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) UpperCAmelCase : Tuple = self.full_loop(scheduler=lowercase ) UpperCAmelCase : Any = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 UpperCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase : int = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase : Dict = self.full_loop(scheduler=lowercase ) UpperCAmelCase : Any = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCAmelCase ( self : Any ): '''simple docstring''' for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowercase ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.check_over_configs(thresholding=lowercase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase , prediction_type=lowercase , sample_max_value=lowercase , solver_order=lowercase , solver_type=lowercase , ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase ) def __lowerCAmelCase ( self : str ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , ) UpperCAmelCase : Union[str, Any] = self.full_loop( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , ) assert not torch.isnan(lowercase ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.check_over_configs(lower_order_final=lowercase ) self.check_over_configs(lower_order_final=lowercase ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowercase , time_step=0 ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : Tuple = self.full_loop() UpperCAmelCase : Any = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase : Tuple = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase : int = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCAmelCase ( self : Any ): '''simple docstring''' UpperCAmelCase : List[Any] = self.scheduler_classes[0] UpperCAmelCase : int = self.get_scheduler_config(thresholding=lowercase , dynamic_thresholding_ratio=0 ) UpperCAmelCase : Tuple = scheduler_class(**lowercase ) UpperCAmelCase : Any = 10 UpperCAmelCase : Dict = self.dummy_model() UpperCAmelCase : List[str] = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Any = model(lowercase , lowercase ) UpperCAmelCase : List[Any] = scheduler.step(lowercase , lowercase , lowercase ).prev_sample assert sample.dtype == torch.floataa def __lowerCAmelCase ( self : List[str] , **lowercase : Optional[int] ): '''simple docstring''' for scheduler_class in self.scheduler_classes: UpperCAmelCase : Union[str, Any] = self.get_scheduler_config(**lowercase ) UpperCAmelCase : Union[str, Any] = scheduler_class(**lowercase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
292
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class UpperCAmelCase_ (lowerCamelCase_ ): """simple docstring""" UpperCamelCase_ : Any = """instructblip_vision_model""" def __init__( self : Union[str, Any] , a_ : Any=14_08 , a_ : str=61_44 , a_ : Tuple=39 , a_ : List[Any]=16 , a_ : List[str]=2_24 , a_ : Optional[Any]=14 , a_ : Union[str, Any]="gelu" , a_ : List[Any]=1E-6 , a_ : Tuple=0.0 , a_ : Union[str, Any]=1E-10 , a_ : Dict=True , **a_ : Optional[int] , )-> List[str]: """simple docstring""" super().__init__(**a_ ) UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[Any] = patch_size UpperCAmelCase_ : List[str] = image_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = attention_dropout UpperCAmelCase_ : Tuple = layer_norm_eps UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : List[str] = qkv_bias @classmethod def a ( cls : Optional[Any] , a_ : Union[str, os.PathLike] , **a_ : Dict )-> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(a_ ) UpperCAmelCase_ ,UpperCAmelCase_ : Dict = cls.get_config_dict(a_ , **a_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": UpperCAmelCase_ : Dict = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a_ , **a_ ) class UpperCAmelCase_ (lowerCamelCase_ ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = """instructblip_qformer""" def __init__( self : Tuple , a_ : Dict=3_05_22 , a_ : Tuple=7_68 , a_ : Any=12 , a_ : int=12 , a_ : Optional[int]=30_72 , a_ : List[str]="gelu" , a_ : Optional[int]=0.1 , a_ : str=0.1 , a_ : Dict=5_12 , a_ : Dict=0.02 , a_ : Any=1E-12 , a_ : Any=0 , a_ : Dict="absolute" , a_ : List[str]=2 , a_ : List[Any]=14_08 , **a_ : Any , )-> List[str]: """simple docstring""" super().__init__(pad_token_id=a_ , **a_ ) UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Union[str, Any] = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = position_embedding_type UpperCAmelCase_ : Tuple = cross_attention_frequency UpperCAmelCase_ : List[Any] = encoder_hidden_size @classmethod def a ( cls : List[str] , a_ : Union[str, os.PathLike] , **a_ : List[str] )-> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(a_ ) UpperCAmelCase_ ,UpperCAmelCase_ : int = cls.get_config_dict(a_ , **a_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": UpperCAmelCase_ : Any = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a_ , **a_ ) class UpperCAmelCase_ (lowerCamelCase_ ): """simple docstring""" UpperCamelCase_ : Optional[int] = """instructblip""" UpperCamelCase_ : Optional[int] = True def __init__( self : Optional[int] , a_ : Optional[int]=None , a_ : str=None , a_ : List[str]=None , a_ : Any=32 , **a_ : List[str] )-> Any: """simple docstring""" super().__init__(**a_ ) if vision_config is None: UpperCAmelCase_ : Tuple = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: UpperCAmelCase_ : Tuple = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: UpperCAmelCase_ : Dict = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) UpperCAmelCase_ : Optional[int] = InstructBlipVisionConfig(**a_ ) UpperCAmelCase_ : List[str] = InstructBlipQFormerConfig(**a_ ) UpperCAmelCase_ : Tuple = text_config["""model_type"""] if """model_type""" in text_config else """opt""" UpperCAmelCase_ : str = CONFIG_MAPPING[text_model_type](**a_ ) UpperCAmelCase_ : Union[str, Any] = self.text_config.tie_word_embeddings UpperCAmelCase_ : Dict = self.text_config.is_encoder_decoder UpperCAmelCase_ : Optional[Any] = num_query_tokens UpperCAmelCase_ : Optional[int] = self.vision_config.hidden_size UpperCAmelCase_ : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase_ : Any = 1.0 UpperCAmelCase_ : int = 0.02 @classmethod def a ( cls : int , a_ : InstructBlipVisionConfig , a_ : InstructBlipQFormerConfig , a_ : PretrainedConfig , **a_ : Tuple , )-> List[Any]: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **a_ , ) def a ( self : Optional[int] )-> Dict: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : int = self.vision_config.to_dict() UpperCAmelCase_ : Union[str, Any] = self.qformer_config.to_dict() UpperCAmelCase_ : str = self.text_config.to_dict() UpperCAmelCase_ : int = self.__class__.model_type return output
470
"""simple docstring""" def A_ ( lowercase ) -> None: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = generate_pascal_triangle(lowercase ) for row_idx in range(lowercase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def A_ ( lowercase ) -> list[list[int]]: """simple docstring""" if not isinstance(lowercase , lowercase ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) UpperCAmelCase_ : list[list[int]] = [] for current_row_idx in range(lowercase ): UpperCAmelCase_ : Optional[Any] = populate_current_row(lowercase , lowercase ) triangle.append(lowercase ) return triangle def A_ ( lowercase , lowercase ) -> list[int]: """simple docstring""" UpperCAmelCase_ : List[Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCAmelCase_ ,UpperCAmelCase_ : List[Any] = 1, 1 for current_col_idx in range(1 , lowercase ): calculate_current_element( lowercase , lowercase , lowercase , lowercase ) return current_row def A_ ( lowercase , lowercase , lowercase , lowercase , ) -> None: """simple docstring""" UpperCAmelCase_ : str = triangle[current_row_idx - 1][current_col_idx - 1] UpperCAmelCase_ : int = triangle[current_row_idx - 1][current_col_idx] UpperCAmelCase_ : Any = above_to_left_elt + above_to_right_elt def A_ ( lowercase ) -> list[list[int]]: """simple docstring""" if not isinstance(lowercase , lowercase ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) UpperCAmelCase_ : list[list[int]] = [[1]] for row_index in range(1 , lowercase ): UpperCAmelCase_ : Any = [0] + result[-1] + [0] UpperCAmelCase_ : Union[str, Any] = row_index + 1 # Calculate the number of distinct elements in a row UpperCAmelCase_ : Dict = sum(divmod(lowercase , 2 ) ) UpperCAmelCase_ : List[str] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCAmelCase_ : Union[str, Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCAmelCase_ : int = row_first_half + row_second_half result.append(lowercase ) return result def A_ ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase , lowercase ) -> None: UpperCAmelCase_ : int = f'''{func.__name__}({value})''' UpperCAmelCase_ : int = timeit(f'''__main__.{call}''' , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowercase , lowercase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
470
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase ( __snake_case ): def __init__( self : Union[str, Any] , __magic_name__ : str ): """simple docstring""" UpperCamelCase = data def __iter__( self : Optional[Any] ): """simple docstring""" for element in self.data: yield element def _lowercase ( SCREAMING_SNAKE_CASE_ : List[Any]=True ): """simple docstring""" UpperCamelCase = Accelerator(even_batches=SCREAMING_SNAKE_CASE_ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _lowercase ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : bool = False ): """simple docstring""" if iterable: UpperCamelCase = DummyIterableDataset(torch.as_tensor(range(SCREAMING_SNAKE_CASE_ ) ) ) else: UpperCamelCase = TensorDataset(torch.as_tensor(range(SCREAMING_SNAKE_CASE_ ) ) ) UpperCamelCase = DataLoader(SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) return dl def _lowercase ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : List[int] , ): """simple docstring""" UpperCamelCase = create_dataloader(accelerator=SCREAMING_SNAKE_CASE_ , dataset_size=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _lowercase ( ): """simple docstring""" UpperCamelCase = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE_ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE_ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _lowercase ( ): """simple docstring""" UpperCamelCase = create_accelerator(even_batches=SCREAMING_SNAKE_CASE_ ) verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE_ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( SCREAMING_SNAKE_CASE_ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _lowercase ( ): """simple docstring""" UpperCamelCase = create_accelerator(even_batches=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = torch.nn.Linear(1 , 1 ) UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = create_dataloader(SCREAMING_SNAKE_CASE_ , dataset_size=3 , batch_size=1 ) UpperCamelCase = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase = ddp_model(batch[0].float() ) UpperCamelCase = output.sum() loss.backward() batch_idxs.append(SCREAMING_SNAKE_CASE_ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE_ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , SCREAMING_SNAKE_CASE_ ) assert "only supported for multi-GPU" in str(w[-1].message ) def _lowercase ( ): """simple docstring""" UpperCamelCase = True UpperCamelCase = False UpperCamelCase = create_accelerator(even_batches=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = torch.nn.Linear(1 , 1 ) UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = create_dataloader(SCREAMING_SNAKE_CASE_ , dataset_size=3 , batch_size=1 ) UpperCamelCase = create_dataloader(SCREAMING_SNAKE_CASE_ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE_ ): UpperCamelCase = train_dl.batch_sampler.even_batches UpperCamelCase = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _lowercase ( ): """simple docstring""" UpperCamelCase = True UpperCamelCase = False UpperCamelCase = create_accelerator(even_batches=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = torch.nn.Linear(1 , 1 ) UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) create_dataloader(SCREAMING_SNAKE_CASE_ , dataset_size=3 , batch_size=1 , iterable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = create_dataloader(SCREAMING_SNAKE_CASE_ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE_ ): UpperCamelCase = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _lowercase ( ): """simple docstring""" UpperCamelCase = create_accelerator() UpperCamelCase = torch.nn.Linear(1 , 1 ) UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) create_dataloader(SCREAMING_SNAKE_CASE_ , dataset_size=3 , batch_size=1 , iterable=SCREAMING_SNAKE_CASE_ ) with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE_ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=SCREAMING_SNAKE_CASE_ ): pass assert issubclass(w[-1].category , SCREAMING_SNAKE_CASE_ ) assert "only supported for map-style datasets" in str(w[-1].message ) def _lowercase ( ): """simple docstring""" UpperCamelCase = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) UpperCamelCase = accelerator.state.distributed_type UpperCamelCase = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = original_state if __name__ == "__main__": main()
710
def _lowercase ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(SCREAMING_SNAKE_CASE_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
181
0
import heapq def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] ): """simple docstring""" UpperCAmelCase_: str = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCAmelCase__ , [-1 * len(lowerCAmelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase_: Union[str, Any] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase_: Any = heapq.heappop(lowerCAmelCase__ )[1][0] chosen_vertices.add(lowerCAmelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase_: List[str] = elem[1][1].index(lowerCAmelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCAmelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() a : Any = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
556
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _A ( __lowercase ): __a = """Salesforce/blip-image-captioning-base""" __a = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) __a = """image_captioner""" __a = AutoModelForVisionaSeq __a = ["""image"""] __a = ["""text"""] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): requires_backends(self , ["""vision"""] ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): return self.pre_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): return self.model.generate(**_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): return self.pre_processor.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE )[0].strip()
518
0
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = OmegaConf.load(_UpperCAmelCase ) __lowerCAmelCase : Optional[Any] = torch.load(_UpperCAmelCase ,map_location='cpu' )['model'] __lowerCAmelCase : Union[str, Any] = list(state_dict.keys() ) # extract state_dict for VQVAE __lowerCAmelCase : Tuple = {} __lowerCAmelCase : str = 'first_stage_model.' for key in keys: if key.startswith(_UpperCAmelCase ): __lowerCAmelCase : Dict = state_dict[key] # extract state_dict for UNetLDM __lowerCAmelCase : Any = {} __lowerCAmelCase : Dict = 'model.diffusion_model.' for key in keys: if key.startswith(_UpperCAmelCase ): __lowerCAmelCase : Optional[Any] = state_dict[key] __lowerCAmelCase : Dict = config.model.params.first_stage_config.params __lowerCAmelCase : str = config.model.params.unet_config.params __lowerCAmelCase : Dict = VQModel(**_UpperCAmelCase ).eval() vqvae.load_state_dict(_UpperCAmelCase ) __lowerCAmelCase : Union[str, Any] = UNetLDMModel(**_UpperCAmelCase ).eval() unet.load_state_dict(_UpperCAmelCase ) __lowerCAmelCase : str = DDIMScheduler( timesteps=config.model.params.timesteps ,beta_schedule='scaled_linear' ,beta_start=config.model.params.linear_start ,beta_end=config.model.params.linear_end ,clip_sample=_UpperCAmelCase ,) __lowerCAmelCase : Union[str, Any] = LDMPipeline(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) pipeline.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) A_ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
718
'''simple docstring''' def A ( _UpperCAmelCase : int = 1_0 ,_UpperCAmelCase : int = 1_0_0_0 ,_UpperCAmelCase : bool = True ) -> int: '''simple docstring''' assert ( isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and isinstance(_UpperCAmelCase ,_UpperCAmelCase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def A ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def A ( _UpperCAmelCase : int ,_UpperCAmelCase : int ,_UpperCAmelCase : int ) -> None: '''simple docstring''' assert ( isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and isinstance(_UpperCAmelCase ,_UpperCAmelCase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(_UpperCAmelCase : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) __lowerCAmelCase : Union[str, Any] = lower __lowerCAmelCase : List[Any] = higher __lowerCAmelCase : List[str] = [] while True: __lowerCAmelCase : Union[str, Any] = get_avg(_UpperCAmelCase ,_UpperCAmelCase ) last_numbers.append(_UpperCAmelCase ) if answer(_UpperCAmelCase ) == "low": __lowerCAmelCase : List[Any] = number elif answer(_UpperCAmelCase ) == "high": __lowerCAmelCase : Optional[Any] = number else: break print(F"""guess the number : {last_numbers[-1]}""" ) print(F"""details : {last_numbers!s}""" ) def A ( ) -> None: '''simple docstring''' __lowerCAmelCase : int = int(input('Enter lower value : ' ).strip() ) __lowerCAmelCase : Optional[Any] = int(input('Enter high value : ' ).strip() ) __lowerCAmelCase : int = int(input('Enter value to guess : ' ).strip() ) guess_the_number(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) if __name__ == "__main__": main()
123
0
# Algorithm for the pigeonhole sorting def UpperCamelCase_( _A :List[Any] )-> int: UpperCamelCase__ = min(_A ) # min() finds the minimum value UpperCamelCase__ = max(_A ) # max() finds the maximum value UpperCamelCase__ = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size UpperCamelCase__ = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_A , _A ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. UpperCamelCase__ = 0 for count in range(_A ): while holes[count] > 0: holes[count] -= 1 UpperCamelCase__ = count + min_val i += 1 def UpperCamelCase_( )-> Dict: UpperCamelCase__ = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_A ) print("Sorted order is:" , " ".join(_A ) ) if __name__ == "__main__": main()
551
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __UpperCamelCase = logging.getLogger() __UpperCamelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" def snake_case__ ( self , snake_case ): '''simple docstring''' os.makedirs(snake_case , exist_ok=snake_case ) UpperCamelCase__ = {"source": "What is love ?", "target": "life"} UpperCamelCase__ = {"train": 12, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCamelCase__ = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(snake_case , F'''{split}.{field}''' ) , "w" ) as f: f.write(snake_case ) def snake_case__ ( self , snake_case , snake_case = "pytorch" ): '''simple docstring''' UpperCamelCase__ = self.get_auto_remove_tmp_dir() UpperCamelCase__ = os.path.join(snake_case , "output" ) UpperCamelCase__ = os.path.join(snake_case , "data" ) self._create_dummy_data(data_dir=snake_case ) UpperCamelCase__ = F''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(F'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) UpperCamelCase__ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(snake_case , env=self.get_env() ) UpperCamelCase__ = os.path.join(snake_case , "metrics.json" ) with open(snake_case ) as f: UpperCamelCase__ = json.load(snake_case ) return result @require_torch_gpu def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
551
1
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __A : Optional[int] = "src/diffusers" __A : Union[str, Any] = "." # This is to make sure the diffusers module imported is the one in the repo. __A : Union[str, Any] = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) __A : List[Any] = spec.loader.load_module() def lowercase ( UpperCamelCase : Any , UpperCamelCase : Dict ): """simple docstring""" return line.startswith(UpperCamelCase ) or len(UpperCamelCase ) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , UpperCamelCase ) is not None def lowercase ( UpperCamelCase : Optional[int] ): """simple docstring""" A__ : List[str] =object_name.split("." ) A__ : Dict =0 # First let's find the module where our object lives. A__ : List[Any] =parts[i] while i < len(UpperCamelCase ) and not os.path.isfile(os.path.join(UpperCamelCase , F'''{module}.py''' ) ): i += 1 if i < len(UpperCamelCase ): A__ : Union[str, Any] =os.path.join(UpperCamelCase , parts[i] ) if i >= len(UpperCamelCase ): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(UpperCamelCase , F'''{module}.py''' ) , "r" , encoding="utf-8" , newline="\n" ) as f: A__ : int =f.readlines() # Now let's find the class / func in the code! A__ : int ="" A__ : Union[str, Any] =0 for name in parts[i + 1 :]: while ( line_index < len(UpperCamelCase ) and re.search(RF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCamelCase ): raise ValueError(F''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A__ : str =line_index while line_index < len(UpperCamelCase ) and _should_continue(lines[line_index] , UpperCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : Tuple =lines[start_index:line_index] return "".join(UpperCamelCase ) __A : int = re.compile(R"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") __A : Optional[Any] = re.compile(R"^\s*(\S+)->(\S+)(\s+.*|$)") __A : List[Any] = re.compile(R"<FILL\s+[^>]*>") def lowercase ( UpperCamelCase : Optional[int] ): """simple docstring""" A__ : str =code.split("\n" ) A__ : Optional[int] =0 while idx < len(UpperCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCamelCase ): return re.search(R"^(\s*)\S" , lines[idx] ).groups()[0] return "" def lowercase ( UpperCamelCase : Dict ): """simple docstring""" A__ : Union[str, Any] =len(get_indent(UpperCamelCase ) ) > 0 if has_indent: A__ : Optional[int] =F'''class Bla:\n{code}''' A__ : Optional[Any] =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=UpperCamelCase ) A__ : Any =black.format_str(UpperCamelCase , mode=UpperCamelCase ) A__ , A__ : int =style_docstrings_in_code(UpperCamelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def lowercase ( UpperCamelCase : Union[str, Any] , UpperCamelCase : Any=False ): """simple docstring""" with open(UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: A__ : Any =f.readlines() A__ : Optional[Any] =[] A__ : Dict =0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCamelCase ): A__ : str =_re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A__ , A__ , A__ : List[Any] =search.groups() A__ : Optional[Any] =find_code_in_diffusers(UpperCamelCase ) A__ : List[str] =get_indent(UpperCamelCase ) A__ : str =line_index + 1 if indent == theoretical_indent else line_index + 2 A__ : Tuple =theoretical_indent A__ : Dict =start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A__ : Any =True while line_index < len(UpperCamelCase ) and should_continue: line_index += 1 if line_index >= len(UpperCamelCase ): break A__ : Any =lines[line_index] A__ : Optional[Any] =_should_continue(UpperCamelCase , UpperCamelCase ) and re.search(F'''^{indent}# End copy''' , UpperCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : Union[str, Any] =lines[start_index:line_index] A__ : Dict ="".join(UpperCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies A__ : Tuple =[line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(UpperCamelCase ) is None] A__ : Any ="\n".join(UpperCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCamelCase ) > 0: A__ : List[str] =replace_pattern.replace("with" , "" ).split("," ) A__ : Tuple =[_re_replace_pattern.search(UpperCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue A__ , A__ , A__ : List[Any] =pattern.groups() A__ : Tuple =re.sub(UpperCamelCase , UpperCamelCase , UpperCamelCase ) if option.strip() == "all-casing": A__ : Tuple =re.sub(obja.lower() , obja.lower() , UpperCamelCase ) A__ : Any =re.sub(obja.upper() , obja.upper() , UpperCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A__ : Optional[int] =blackify(lines[start_index - 1] + theoretical_code ) A__ : List[str] =theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A__ : Any =lines[:start_index] + [theoretical_code] + lines[line_index:] A__ : str =start_index + 1 if overwrite and len(UpperCamelCase ) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''' ) with open(UpperCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(UpperCamelCase ) return diffs def lowercase ( UpperCamelCase : bool = False ): """simple docstring""" A__ : Optional[int] =glob.glob(os.path.join(UpperCamelCase , "**/*.py" ) , recursive=UpperCamelCase ) A__ : Optional[Any] =[] for filename in all_files: A__ : int =is_copy_consistent(UpperCamelCase , UpperCamelCase ) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(UpperCamelCase ) > 0: A__ : Optional[int] ="\n".join(UpperCamelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __A : Optional[int] = parser.parse_args() check_copies(args.fix_and_overwrite)
595
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : '''simple docstring''' def __init__( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : Optional[Any]=10 , UpperCamelCase__ : int=3 , UpperCamelCase__ : int=2 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Union[str, Any]=32 , UpperCamelCase__ : Dict=5 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : Any=37 , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=10 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : int="divided_space_time" , UpperCamelCase__ : Tuple=None , ): A__ : str =parent A__ : str =batch_size A__ : Any =image_size A__ : Union[str, Any] =num_channels A__ : str =patch_size A__ : Union[str, Any] =num_frames A__ : Any =is_training A__ : Optional[int] =use_labels A__ : Optional[int] =hidden_size A__ : Union[str, Any] =num_hidden_layers A__ : List[str] =num_attention_heads A__ : Tuple =intermediate_size A__ : List[Any] =hidden_act A__ : str =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : Dict =attention_type A__ : str =initializer_range A__ : str =scope A__ : int =num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token A__ : Optional[Any] =(image_size // patch_size) ** 2 A__ : List[Any] =(num_frames) * self.num_patches_per_frame + 1 def _UpperCAmelCase ( self : str ): A__ : Dict =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) A__ : List[Any] =None if self.use_labels: A__ : List[str] =ids_tensor([self.batch_size] , self.num_labels ) A__ : List[Any] =self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : Tuple ): A__ : Tuple =TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) A__ : Tuple =self.num_labels return config def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ): A__ : Union[str, Any] =TimesformerModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] =model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ): A__ : Union[str, Any] =TimesformerForVideoClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : int =model(UpperCamelCase__ ) # verify the logits shape A__ : Optional[int] =torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , UpperCamelCase__ ) def _UpperCAmelCase ( self : Optional[int] ): A__ : int =self.prepare_config_and_inputs() A__ , A__ , A__ : Tuple =config_and_inputs A__ : int ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase): '''simple docstring''' __magic_name__ : Any = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __magic_name__ : Optional[Any] = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) __magic_name__ : int = False __magic_name__ : Optional[Any] = False __magic_name__ : int = False __magic_name__ : Tuple = False def _UpperCAmelCase ( self : List[str] ): A__ : Optional[Any] =TimesformerModelTester(self ) A__ : int =ConfigTester( self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def _UpperCAmelCase ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=False ): A__ : str =copy.deepcopy(UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): A__ : List[str] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def _UpperCAmelCase ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def _UpperCAmelCase ( self : Union[str, Any] ): pass def _UpperCAmelCase ( self : Tuple ): A__ , A__ : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Dict =model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : Any =model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def _UpperCAmelCase ( self : Union[str, Any] ): A__ , A__ : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Optional[int] =model_class(UpperCamelCase__ ) A__ : Dict =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Any =[*signature.parameters.keys()] A__ : Union[str, Any] =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _UpperCAmelCase ( self : Optional[Any] ): A__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _UpperCAmelCase ( self : List[Any] ): A__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*UpperCamelCase__ ) @slow def _UpperCAmelCase ( self : Any ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Dict =TimesformerModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def _UpperCAmelCase ( self : Dict ): if not self.has_attentions: pass else: A__ , A__ : Any =self.model_tester.prepare_config_and_inputs_for_common() A__ : Optional[Any] =True for model_class in self.all_model_classes: A__ : Tuple =self.model_tester.seq_length A__ : Optional[int] =self.model_tester.num_frames A__ : List[Any] =True A__ : Optional[Any] =False A__ : List[Any] =True A__ : Optional[Any] =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Optional[Any] =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple =outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Any =True A__ : int =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Optional[Any] =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : str =outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) A__ : int =len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[Any] =True A__ : Optional[Any] =True A__ : Optional[Any] =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Any =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase__ ) ) A__ : Optional[int] =outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _UpperCAmelCase ( self : Any ): def check_hidden_states_output(UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): A__ : Any =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] =outputs.hidden_states A__ : Optional[int] =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) A__ : List[Any] =self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any =True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] =True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowercase ( ): """simple docstring""" A__ : Any =hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) A__ : Union[str, Any] =np.load(UpperCamelCase ) return list(UpperCamelCase ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase): '''simple docstring''' @cached_property def _UpperCAmelCase ( self : List[Any] ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self : List[Any] ): A__ : Any =TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( UpperCamelCase__ ) A__ : Dict =self.default_image_processor A__ : Tuple =prepare_video() A__ : Dict =image_processor(video[:8] , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Optional[int] =model(**UpperCamelCase__ ) # verify the logits A__ : Optional[Any] =torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Dict =torch.tensor([-0.3016, -0.7713, -0.4205] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) )
595
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''data2vec-text''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
5
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch snake_case_ : str = logging.get_logger(__name__) class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = ['''pixel_values'''] def __init__( self : Any , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Union[int, float] = 1 / 2_55 , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , **lowercase : Tuple , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase : Optional[int] = size if size is not None else {"shortest_edge": 2_24} UpperCAmelCase : Any = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"height": 2_56, "width": 2_56} UpperCAmelCase : List[Any] = get_size_dict(lowercase , param_name="crop_size" ) UpperCAmelCase : str = do_resize UpperCAmelCase : Union[str, Any] = size UpperCAmelCase : Any = resample UpperCAmelCase : str = do_rescale UpperCAmelCase : List[str] = rescale_factor UpperCAmelCase : List[str] = do_center_crop UpperCAmelCase : Any = crop_size UpperCAmelCase : str = do_flip_channel_order def __lowerCAmelCase ( self : Optional[int] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PIL.Image.BILINEAR , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[Any] , ): '''simple docstring''' UpperCAmelCase : Dict = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase : Dict = get_resize_output_image_size(lowercase , size=size["shortest_edge"] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def __lowerCAmelCase ( self : List[str] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[Any] , ): '''simple docstring''' UpperCAmelCase : int = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowercase , size=(size["height"], size["width"]) , data_format=lowercase , **lowercase ) def __lowerCAmelCase ( self : Any , lowercase : np.ndarray , lowercase : Union[int, float] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[Any] , ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def __lowerCAmelCase ( self : Optional[int] , lowercase : np.ndarray , lowercase : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' return flip_channel_order(lowercase , data_format=lowercase ) def __lowerCAmelCase ( self : Optional[Any] , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : str , ): '''simple docstring''' UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : List[str] = resample if resample is not None else self.resample UpperCAmelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Dict = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCAmelCase : Optional[int] = size if size is not None else self.size UpperCAmelCase : Any = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : int = get_size_dict(lowercase , param_name="crop_size" ) UpperCAmelCase : List[str] = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. UpperCAmelCase : List[str] = [to_numpy_array(lowercase ) for image in images] if do_resize: UpperCAmelCase : Dict = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: UpperCAmelCase : Optional[Any] = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: UpperCAmelCase : Optional[Any] = [self.rescale(image=lowercase , scale=lowercase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCAmelCase : Tuple = [self.flip_channel_order(image=lowercase ) for image in images] UpperCAmelCase : Tuple = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCAmelCase : Tuple = {"pixel_values": images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def __lowerCAmelCase ( self : Dict , lowercase : Union[str, Any] , lowercase : List[Tuple] = None ): '''simple docstring''' UpperCAmelCase : int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowercase ): UpperCAmelCase : Optional[Any] = target_sizes.numpy() UpperCAmelCase : Tuple = [] for idx in range(len(lowercase ) ): UpperCAmelCase : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowercase ) UpperCAmelCase : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: UpperCAmelCase : Dict = logits.argmax(dim=1 ) UpperCAmelCase : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
595
0
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] , a_ : List[str] , a_ : Optional[int] , a_ : List[str]=None , a_ : Any=None ): """simple docstring""" __snake_case = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , a_ : int ): """simple docstring""" super().__init__(a_ ) __snake_case = BertEncoderWithPabee(a_ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def A ( self : Optional[int] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = threshold def A ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = patience def A ( self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def A ( self : Dict , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Optional[int]=None , a_ : int=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Any=None , a_ : Optional[Any]=None , a_ : Any=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) if token_type_ids is None: __snake_case = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) __snake_case = self.invert_attention_mask(a_ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a_ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](a_ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Tuple ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def A ( self : int , a_ : str=None , a_ : Tuple=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : Tuple=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
680
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
1
import requests def a ( snake_case__: str , snake_case__: str ): '''simple docstring''' lowercase_ = {'''Content-Type''': '''application/json'''} lowercase_ = requests.post(snake_case__ , json={'''text''': message_body} , headers=snake_case__ ) if response.status_code != 200: lowercase_ = ( '''Request to slack returned an error ''' F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(snake_case__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
97
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __a = None __a = logging.get_logger(__name__) __a = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __a = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } __a = { 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } __a = '▁' class lowercase__( UpperCAmelCase ): """simple docstring""" a :int = VOCAB_FILES_NAMES a :Any = PRETRAINED_VOCAB_FILES_MAP a :Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a :Dict = ['input_ids', 'attention_mask'] a :Optional[Any] = BarthezTokenizer def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : Dict="<s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : Optional[int]="<s>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE_ : List[str]="<pad>" , SCREAMING_SNAKE_CASE_ : Any="<mask>" , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ) -> Any: # Mask token behave like a normal word, i.e. include the space before it lowercase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ = [self.cls_token_id] lowercase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
97
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Any = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = "funnel" UpperCAmelCase_ = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self : List[str], _UpperCAmelCase : Optional[Any]=3_0_5_2_2, _UpperCAmelCase : Union[str, Any]=[4, 4, 4], _UpperCAmelCase : Optional[Any]=None, _UpperCAmelCase : List[str]=2, _UpperCAmelCase : Optional[Any]=7_6_8, _UpperCAmelCase : Dict=1_2, _UpperCAmelCase : Tuple=6_4, _UpperCAmelCase : str=3_0_7_2, _UpperCAmelCase : List[Any]="gelu_new", _UpperCAmelCase : str=0.1, _UpperCAmelCase : Optional[int]=0.1, _UpperCAmelCase : Union[str, Any]=0.0, _UpperCAmelCase : Union[str, Any]=0.1, _UpperCAmelCase : Union[str, Any]=None, _UpperCAmelCase : int=1E-9, _UpperCAmelCase : Optional[Any]="mean", _UpperCAmelCase : Tuple="relative_shift", _UpperCAmelCase : Any=True, _UpperCAmelCase : List[Any]=True, _UpperCAmelCase : List[Any]=True, **_UpperCAmelCase : Dict, ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = vocab_size SCREAMING_SNAKE_CASE__ : List[str] = block_sizes SCREAMING_SNAKE_CASE__ : int = [1] * len(_UpperCAmelCase ) if block_repeats is None else block_repeats assert len(_UpperCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE__ : Optional[int] = num_decoder_layers SCREAMING_SNAKE_CASE__ : List[str] = d_model SCREAMING_SNAKE_CASE__ : int = n_head SCREAMING_SNAKE_CASE__ : int = d_head SCREAMING_SNAKE_CASE__ : Tuple = d_inner SCREAMING_SNAKE_CASE__ : Tuple = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout SCREAMING_SNAKE_CASE__ : List[str] = attention_dropout SCREAMING_SNAKE_CASE__ : int = activation_dropout SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Union[str, Any] = initializer_std SCREAMING_SNAKE_CASE__ : str = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' SCREAMING_SNAKE_CASE__ : List[str] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' SCREAMING_SNAKE_CASE__ : List[Any] = attention_type SCREAMING_SNAKE_CASE__ : List[Any] = separate_cls SCREAMING_SNAKE_CASE__ : int = truncate_seq SCREAMING_SNAKE_CASE__ : Optional[int] = pool_q_only super().__init__(**_UpperCAmelCase ) @property def A_ ( self : List[str] ) -> str: """simple docstring""" return sum(self.block_sizes ) @num_hidden_layers.setter def A_ ( self : int, _UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def A_ ( self : Any ) -> Optional[Any]: """simple docstring""" return len(self.block_sizes ) @num_blocks.setter def A_ ( self : Any, _UpperCAmelCase : Tuple ) -> int: """simple docstring""" raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
157
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = ["image_processor", "tokenizer"] UpperCAmelCase_ = "AutoImageProcessor" UpperCAmelCase_ = "AutoTokenizer" def __init__( self : List[Any], _UpperCAmelCase : Any=None, _UpperCAmelCase : int=None, **_UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", _UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : int = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor SCREAMING_SNAKE_CASE__ : List[Any] = False def __call__( self : Optional[Any], *_UpperCAmelCase : Any, **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_UpperCAmelCase, **_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = kwargs.pop("images", _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = kwargs.pop("text", _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: SCREAMING_SNAKE_CASE__ : str = args[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = args[1:] if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: SCREAMING_SNAKE_CASE__ : Any = self.image_processor(_UpperCAmelCase, *_UpperCAmelCase, **_UpperCAmelCase ) if text is not None: SCREAMING_SNAKE_CASE__ : int = self.tokenizer(_UpperCAmelCase, **_UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE__ : int = encodings["input_ids"] return inputs def A_ ( self : Tuple, *_UpperCAmelCase : List[Any], **_UpperCAmelCase : Dict ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase, **_UpperCAmelCase ) def A_ ( self : List[Any], *_UpperCAmelCase : int, **_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase, **_UpperCAmelCase ) @contextmanager def A_ ( self : Tuple ) -> List[str]: """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your images inputs, or in a separate call." ) SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer yield SCREAMING_SNAKE_CASE__ : List[str] = self.image_processor SCREAMING_SNAKE_CASE__ : List[Any] = False def A_ ( self : str, _UpperCAmelCase : Tuple, _UpperCAmelCase : Any=False, _UpperCAmelCase : Union[str, Any]=None ) -> Any: """simple docstring""" if added_vocab is None: SCREAMING_SNAKE_CASE__ : int = self.tokenizer.get_added_vocab() SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} while tokens: SCREAMING_SNAKE_CASE__ : Dict = re.search(r"<s_(.*?)>", _UpperCAmelCase, re.IGNORECASE ) if start_token is None: break SCREAMING_SNAKE_CASE__ : List[Any] = start_token.group(1 ) SCREAMING_SNAKE_CASE__ : str = re.search(rF'''</s_{key}>''', _UpperCAmelCase, re.IGNORECASE ) SCREAMING_SNAKE_CASE__ : List[str] = start_token.group() if end_token is None: SCREAMING_SNAKE_CASE__ : Optional[int] = tokens.replace(_UpperCAmelCase, "" ) else: SCREAMING_SNAKE_CASE__ : int = end_token.group() SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.escape(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = re.escape(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = re.search(F'''{start_token_escaped}(.*?){end_token_escaped}''', _UpperCAmelCase, re.IGNORECASE ) if content is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node SCREAMING_SNAKE_CASE__ : Optional[int] = self.tokenajson(_UpperCAmelCase, is_inner_value=_UpperCAmelCase, added_vocab=_UpperCAmelCase ) if value: if len(_UpperCAmelCase ) == 1: SCREAMING_SNAKE_CASE__ : List[str] = value[0] SCREAMING_SNAKE_CASE__ : Optional[int] = value else: # leaf nodes SCREAMING_SNAKE_CASE__ : Tuple = [] for leaf in content.split(r"<sep/>" ): SCREAMING_SNAKE_CASE__ : str = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": SCREAMING_SNAKE_CASE__ : List[Any] = leaf[1:-2] # for categorical special tokens output[key].append(_UpperCAmelCase ) if len(output[key] ) == 1: SCREAMING_SNAKE_CASE__ : int = output[key][0] SCREAMING_SNAKE_CASE__ : int = tokens[tokens.find(_UpperCAmelCase ) + len(_UpperCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=_UpperCAmelCase, added_vocab=_UpperCAmelCase ) if len(_UpperCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def A_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", _UpperCAmelCase, ) return self.image_processor_class @property def A_ ( self : Any ) -> int: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", _UpperCAmelCase, ) return self.image_processor
157
1
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Any = ["""image_processor""", """tokenizer"""] __magic_name__ :Optional[Any] = """BlipImageProcessor""" __magic_name__ :Optional[int] = """AutoTokenizer""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) # add QFormer tokenizer lowerCAmelCase__ :Union[str, Any] = qformer_tokenizer def __call__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) lowerCAmelCase__ :str = BatchFeature() if text is not None: lowerCAmelCase__ :Dict = self.tokenizer( text=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) encoding.update(__UpperCAmelCase ) lowerCAmelCase__ :Any = self.qformer_tokenizer( text=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ :Optional[int] = qformer_text_encoding.pop('input_ids' ) lowerCAmelCase__ :Optional[Any] = qformer_text_encoding.pop('attention_mask' ) if images is not None: lowerCAmelCase__ :Optional[int] = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) encoding.update(__UpperCAmelCase ) return encoding def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = self.tokenizer.model_input_names lowerCAmelCase__ :Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def snake_case ( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' if os.path.isfile(__UpperCAmelCase ): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) lowerCAmelCase__ :str = os.path.join(__UpperCAmelCase , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(__UpperCAmelCase ) return super().save_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) @classmethod def snake_case ( cls , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = AutoTokenizer.from_pretrained(__UpperCAmelCase , subfolder='qformer_tokenizer' ) lowerCAmelCase__ :List[str] = cls._get_arguments_from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) args.append(__UpperCAmelCase ) return cls(*__UpperCAmelCase )
93
def UpperCamelCase ( snake_case__ : float ,snake_case__ : int ): '''simple docstring''' if digit_amount > 0: return round(number - int(snake_case__ ) ,snake_case__ ) return number - int(snake_case__ ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
455
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase :int = logging.get_logger(__name__) __lowerCamelCase :str = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class A__ ( __lowercase): """simple docstring""" snake_case__ : Any ='''deit''' def __init__( self: Dict , __a: Tuple=768 , __a: str=12 , __a: Union[str, Any]=12 , __a: Optional[int]=3_072 , __a: Dict="gelu" , __a: List[Any]=0.0 , __a: Dict=0.0 , __a: List[Any]=0.02 , __a: Optional[Any]=1e-1_2 , __a: Union[str, Any]=224 , __a: Dict=16 , __a: Optional[Any]=3 , __a: List[Any]=True , __a: Optional[Any]=16 , **__a: List[Any] , )-> Tuple: super().__init__(**__a ) lowerCamelCase : str = hidden_size lowerCamelCase : List[Any] = num_hidden_layers lowerCamelCase : List[str] = num_attention_heads lowerCamelCase : Tuple = intermediate_size lowerCamelCase : Union[str, Any] = hidden_act lowerCamelCase : Dict = hidden_dropout_prob lowerCamelCase : Tuple = attention_probs_dropout_prob lowerCamelCase : Any = initializer_range lowerCamelCase : List[Any] = layer_norm_eps lowerCamelCase : Tuple = image_size lowerCamelCase : List[Any] = patch_size lowerCamelCase : Optional[int] = num_channels lowerCamelCase : str = qkv_bias lowerCamelCase : str = encoder_stride class A__ ( __lowercase): """simple docstring""" snake_case__ : Union[str, Any] =version.parse('''1.11''') @property def a__ ( self: Dict )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a__ ( self: int )-> float: return 1e-4
42
"""simple docstring""" import os def snake_case ( ) -> Optional[Any]: with open(os.path.dirname(UpperCamelCase__ ) + """/grid.txt""" ) as f: lowerCamelCase : int = [] # noqa: E741 for _ in range(20 ): l.append([int(UpperCamelCase__ ) for x in f.readline().split()] ) lowerCamelCase : Union[str, Any] = 0 # right for i in range(20 ): for j in range(17 ): lowerCamelCase : Dict = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCamelCase : Tuple = temp # down for i in range(17 ): for j in range(20 ): lowerCamelCase : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCamelCase : Optional[Any] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowerCamelCase : List[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCamelCase : List[str] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowerCamelCase : List[str] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCamelCase : List[Any] = temp return maximum if __name__ == "__main__": print(solution())
42
1
"""simple docstring""" def lowerCAmelCase_( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] __SCREAMING_SNAKE_CASE : Union[str, Any] = generate_large_matrix() __SCREAMING_SNAKE_CASE : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCAmelCase_( lowercase_ : list[list[int]] ) -> None: assert all(row == sorted(lowercase_ , reverse=lowercase_ ) for row in grid ) assert all(list(lowercase_ ) == sorted(lowercase_ , reverse=lowercase_ ) for col in zip(*lowercase_ ) ) def lowerCAmelCase_( lowercase_ : list[int] ) -> int: _lowerCamelCase = 0 _lowerCamelCase = len(lowercase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _lowerCamelCase = (left + right) // 2 _lowerCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _lowerCamelCase = mid + 1 else: _lowerCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase_ ) def lowerCAmelCase_( lowercase_ : list[list[int]] ) -> int: _lowerCamelCase = 0 _lowerCamelCase = len(grid[0] ) for i in range(len(lowercase_ ) ): _lowerCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase_ ) * len(grid[0] )) - total def lowerCAmelCase_( lowercase_ : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def lowerCAmelCase_( lowercase_ : list[list[int]] ) -> int: _lowerCamelCase = 0 for row in grid: for i, number in enumerate(lowercase_ ): if number < 0: total += len(lowercase_ ) - i break return total def lowerCAmelCase_( ) -> None: from timeit import timeit print('''Running benchmarks''' ) _lowerCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _lowerCamelCase = timeit(F"""{func}(grid=grid)""" , setup=lowercase_ , number=5_00 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
661
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __SCREAMING_SNAKE_CASE : List[Any] = True except (ImportError, AttributeError): __SCREAMING_SNAKE_CASE : List[Any] = object def lowerCAmelCase_( *lowercase_ : Dict , **lowercase_ : str ) -> str: pass __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Any = logging.get_logger('''transformers-cli/serving''') def lowerCAmelCase_( lowercase_ : Namespace ) -> List[Any]: _lowerCamelCase = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(lowercase_ , args.host , args.port , args.workers ) class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : dict class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : List[str] lowercase__ : Optional[List[int]] class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : str class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : Any class lowerCamelCase_( A__ ): '''simple docstring''' @staticmethod def snake_case__ ( lowerCamelCase__ ): _lowerCamelCase = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=lowerCamelCase__ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=lowerCamelCase__ , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=lowerCamelCase__ , default=8_8_8_8 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=lowerCamelCase__ , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=lowerCamelCase__ , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=lowerCamelCase__ , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=lowerCamelCase__ , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=lowerCamelCase__ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = pipeline _lowerCamelCase = host _lowerCamelCase = port _lowerCamelCase = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F"""Serving model over {host}:{port}""" ) _lowerCamelCase = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=lowerCamelCase__ , response_class=lowerCamelCase__ , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=lowerCamelCase__ , response_class=lowerCamelCase__ , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=lowerCamelCase__ , response_class=lowerCamelCase__ , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=lowerCamelCase__ , response_class=lowerCamelCase__ , methods=['''POST'''] , ), ] , timeout=6_0_0 , ) def snake_case__ ( self ): run(self._app , host=self.host , port=self.port , workers=self.workers ) def snake_case__ ( self ): return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def snake_case__ ( self , lowerCamelCase__ = Body(lowerCamelCase__ , embed=lowerCamelCase__ ) , lowerCamelCase__ = Body(lowerCamelCase__ , embed=lowerCamelCase__ ) ): try: _lowerCamelCase = self._pipeline.tokenizer.tokenize(lowerCamelCase__ ) if return_ids: _lowerCamelCase = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) return ServeTokenizeResult(tokens=lowerCamelCase__ , tokens_ids=lowerCamelCase__ ) else: return ServeTokenizeResult(tokens=lowerCamelCase__ ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={'''model''': '''''', '''error''': str(lowerCamelCase__ )} ) def snake_case__ ( self , lowerCamelCase__ = Body(lowerCamelCase__ , embed=lowerCamelCase__ ) , lowerCamelCase__ = Body(lowerCamelCase__ , embed=lowerCamelCase__ ) , lowerCamelCase__ = Body(lowerCamelCase__ , embed=lowerCamelCase__ ) , ): try: _lowerCamelCase = self._pipeline.tokenizer.decode(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return ServeDeTokenizeResult(model='''''' , text=lowerCamelCase__ ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={'''model''': '''''', '''error''': str(lowerCamelCase__ )} ) async def snake_case__ ( self , lowerCamelCase__=Body(lowerCamelCase__ , embed=lowerCamelCase__ ) ): # Check we don't have empty string if len(lowerCamelCase__ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model _lowerCamelCase = self._pipeline(lowerCamelCase__ ) return ServeForwardResult(output=lowerCamelCase__ ) except Exception as e: raise HTTPException(5_0_0 , {'''error''': str(lowerCamelCase__ )} )
661
1
"""simple docstring""" import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCAmelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __lowercase = flax_key_tuple[:-1] + ("""weight""",) __lowercase = torch.permute(UpperCamelCase__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(UpperCamelCase__ ): # linear layer __lowercase = flax_key_tuple[:-1] + ("""weight""",) __lowercase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __lowercase = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def lowerCAmelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple ): """simple docstring""" if "metadata" in layer: __lowercase = layer.split("""metadata""" ) __lowercase = """""".join(split_layer[0] )[:-1] __lowercase = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: __lowercase = layer.split("""kvstore""" ) __lowercase = """""".join(split_layer[0] )[:-1] __lowercase = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: __lowercase = layer.split("""/""" ) __lowercase = """/""".join(split_layer[:-1] ) __lowercase = (split_layer[-1],) if "kvstore/path" in layer: __lowercase = f'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: __lowercase = """file""" else: __lowercase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCAmelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] ): """simple docstring""" __lowercase = rename_keys(UpperCamelCase__ ) __lowercase = {} for k, v in current_block.items(): __lowercase = v __lowercase = new_current_block torch.save(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str = WEIGHTS_NAME ): """simple docstring""" __lowercase = convert_file_size_to_int(UpperCamelCase__ ) __lowercase = [] __lowercase = {} __lowercase = 0 __lowercase = 0 os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: __lowercase = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] __lowercase = flatten_dict(UpperCamelCase__ , sep="""/""" ) __lowercase = {} for layer in checkpoint_info.keys(): __lowercase , __lowercase , __lowercase = get_key_and_tensorstore_dict( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if curr_real_layer_name in all_layers: __lowercase = content else: __lowercase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __lowercase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __lowercase = torch.tensor(UpperCamelCase__ ) __lowercase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __lowercase , __lowercase = rename_base_flax_keys(tuple(key.split("""/""" ) ) , UpperCamelCase__ ) __lowercase = """/""".join(UpperCamelCase__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __lowercase = os.path.join( UpperCamelCase__ , weights_name.replace(""".bin""" , f'''-{len(UpperCamelCase__ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(UpperCamelCase__ , UpperCamelCase__ ) sharded_state_dicts.append(current_block.keys() ) del current_block __lowercase = {} __lowercase = 0 __lowercase = raw_weights.to(getattr(UpperCamelCase__ , UpperCamelCase__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block __lowercase = os.path.join(UpperCamelCase__ , weights_name.replace(""".bin""" , f'''-{len(UpperCamelCase__ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(UpperCamelCase__ , UpperCamelCase__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(UpperCamelCase__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __lowercase = {} __lowercase = {} for idx, shard in enumerate(UpperCamelCase__ ): __lowercase = weights_name.replace( """.bin""" , f'''-{idx+1:05d}-of-{len(UpperCamelCase__ ):05d}.bin''' ) # len(sharded_state_dicts):05d} __lowercase = os.path.join(UpperCamelCase__ , weights_name.replace(""".bin""" , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) __lowercase = shard for key in shard: __lowercase = shard_file # Add the metadata __lowercase = {"""total_size""": total_size} __lowercase = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , """w""" , encoding="""utf-8""" ) as f: __lowercase = json.dumps(UpperCamelCase__ , indent=2 , sort_keys=UpperCamelCase__ ) + """\n""" f.write(UpperCamelCase__ ) return metadata, index if __name__ == "__main__": UpperCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) UpperCAmelCase__ =parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCAmelCase_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __lowercase = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) __lowercase = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) __lowercase = TaTokenizer.from_pretrained("""t5-small""" ) __lowercase = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" __lowercase = tokenizer(UpperCamelCase__ , return_tensors="""pt""" ).input_ids __lowercase = model.generate(UpperCamelCase__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
442
"""simple docstring""" import os import numpy import onnx def lowerCAmelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] ): """simple docstring""" __lowercase = a.name __lowercase = b.name __lowercase = """""" __lowercase = """""" __lowercase = a == b __lowercase = name_a __lowercase = name_b return res def lowerCAmelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Dict ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCamelCase__ , UpperCamelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCamelCase__ , UpperCamelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Any ): """simple docstring""" __lowercase = list(model.graph.initializer ) __lowercase = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __lowercase = inits[i].name __lowercase = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase_ ( UpperCamelCase__ : List[Any] ): """simple docstring""" __lowercase = os.path.dirname(UpperCamelCase__ ) __lowercase = os.path.basename(UpperCamelCase__ ) __lowercase = onnx.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) __lowercase = list(model.graph.initializer ) __lowercase = set() __lowercase = {} __lowercase = [] __lowercase = 0 for i in range(len(UpperCamelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCamelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCamelCase__ ) dup_set.add(UpperCamelCase__ ) __lowercase = inits[j].data_type __lowercase = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , UpperCamelCase__ ) total_reduced_size += mem_size __lowercase = inits[i].name __lowercase = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCamelCase__ ) else: __lowercase = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) __lowercase = sorted(UpperCamelCase__ ) _remove_dup_initializers_from_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowercase = """optimized_""" + model_file_name __lowercase = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) onnx.save(UpperCamelCase__ , UpperCamelCase__ ) return new_model
442
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow _lowercase = False class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : int , __a : List[str]=32 ): '''simple docstring''' set_seed(0 ) lowerCamelCase__: List[str] = UNetaDModel(sample_size=__a , in_channels=3 , out_channels=3 ) lowerCamelCase__: List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: Union[str, Any] = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCamelCase__: Tuple = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=__a , ) lowerCamelCase__: Dict = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=__a , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCamelCase__: Tuple = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(__a ) for _ in range(4 )] lowerCamelCase__: Optional[Any] = [torch.randn((4, 3, 32, 32) ).to(__a ) for _ in range(4 )] lowerCamelCase__: int = [torch.randint(0 , 1000 , (4,) ).long().to(__a ) for _ in range(4 )] # train with a DDPM scheduler lowerCamelCase__ , lowerCamelCase__: Any = self.get_model_optimizer(resolution=32 ) model.train().to(__a ) for i in range(4 ): optimizer.zero_grad() lowerCamelCase__: Any = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCamelCase__: Optional[int] = model(__a , timesteps[i] ).sample lowerCamelCase__: List[Any] = torch.nn.functional.mse_loss(__a , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCamelCase__ , lowerCamelCase__: Dict = self.get_model_optimizer(resolution=32 ) model.train().to(__a ) for i in range(4 ): optimizer.zero_grad() lowerCamelCase__: Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCamelCase__: Tuple = model(__a , timesteps[i] ).sample lowerCamelCase__: Optional[Any] = torch.nn.functional.mse_loss(__a , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__a , __a , atol=1e-5 ) ) self.assertTrue(torch.allclose(__a , __a , atol=1e-5 ) )
306
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: Optional[Any] = 1 lowerCamelCase__: Union[str, Any] = 3 lowerCamelCase__: str = (32, 32) lowerCamelCase__: str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__: Dict = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__a , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__: Dict = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowerCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__: str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) return CLIPTextModel(__a ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowerCamelCase__: str = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__: List[str] = self.dummy_cond_unet_upscale lowerCamelCase__: Optional[Any] = DDPMScheduler() lowerCamelCase__: Union[str, Any] = DDIMScheduler(prediction_type="""v_prediction""" ) lowerCamelCase__: Tuple = self.dummy_vae lowerCamelCase__: Optional[int] = self.dummy_text_encoder lowerCamelCase__: Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase__: Dict = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__: Optional[Any] = Image.fromarray(np.uinta(__a ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCamelCase__: List[str] = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) lowerCamelCase__: Any = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase__: List[str] = """A painting of a squirrel eating a burger""" lowerCamelCase__: Dict = torch.Generator(device=__a ).manual_seed(0 ) lowerCamelCase__: Any = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) lowerCamelCase__: List[str] = output.images lowerCamelCase__: Union[str, Any] = torch.Generator(device=__a ).manual_seed(0 ) lowerCamelCase__: List[str] = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__a , )[0] lowerCamelCase__: Tuple = image[0, -3:, -3:, -1] lowerCamelCase__: int = image_from_tuple[0, -3:, -3:, -1] lowerCamelCase__: int = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowerCamelCase__: List[str] = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowerCamelCase__: Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__: List[str] = self.dummy_cond_unet_upscale lowerCamelCase__: Optional[int] = DDPMScheduler() lowerCamelCase__: Any = DDIMScheduler(prediction_type="""v_prediction""" ) lowerCamelCase__: List[str] = self.dummy_vae lowerCamelCase__: Optional[Any] = self.dummy_text_encoder lowerCamelCase__: Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase__: str = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__: List[str] = Image.fromarray(np.uinta(__a ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCamelCase__: Tuple = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) lowerCamelCase__: List[str] = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase__: Any = """A painting of a squirrel eating a burger""" lowerCamelCase__: str = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) lowerCamelCase__: Any = output.images assert image.shape[0] == 2 lowerCamelCase__: Optional[Any] = torch.Generator(device=__a ).manual_seed(0 ) lowerCamelCase__: Dict = sd_pipe( [prompt] , image=__a , generator=__a , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) lowerCamelCase__: Tuple = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: int = self.dummy_cond_unet_upscale lowerCamelCase__: Dict = DDPMScheduler() lowerCamelCase__: Union[str, Any] = DDIMScheduler(prediction_type="""v_prediction""" ) lowerCamelCase__: List[str] = self.dummy_vae lowerCamelCase__: Tuple = self.dummy_text_encoder lowerCamelCase__: int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase__: Optional[int] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__: Union[str, Any] = Image.fromarray(np.uinta(__a ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowerCamelCase__: Optional[int] = unet.half() lowerCamelCase__: Optional[Any] = text_encoder.half() # make sure here that pndm scheduler skips prk lowerCamelCase__: List[str] = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) lowerCamelCase__: List[Any] = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase__: Tuple = """A painting of a squirrel eating a burger""" lowerCamelCase__: Optional[int] = torch.manual_seed(0 ) lowerCamelCase__: Optional[Any] = sd_pipe( [prompt] , image=__a , generator=__a , num_inference_steps=2 , output_type="""np""" , ).images lowerCamelCase__: Optional[int] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowerCamelCase__: Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) lowerCamelCase__: List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) lowerCamelCase__: Dict = """stabilityai/stable-diffusion-x4-upscaler""" lowerCamelCase__: Optional[int] = StableDiffusionUpscalePipeline.from_pretrained(__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() lowerCamelCase__: List[Any] = """a cat sitting on a park bench""" lowerCamelCase__: Dict = torch.manual_seed(0 ) lowerCamelCase__: Any = pipe( prompt=__a , image=__a , generator=__a , output_type="""np""" , ) lowerCamelCase__: Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowerCamelCase__: Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) lowerCamelCase__: int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) lowerCamelCase__: int = """stabilityai/stable-diffusion-x4-upscaler""" lowerCamelCase__: List[str] = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() lowerCamelCase__: Any = """a cat sitting on a park bench""" lowerCamelCase__: Tuple = torch.manual_seed(0 ) lowerCamelCase__: Optional[int] = pipe( prompt=__a , image=__a , generator=__a , output_type="""np""" , ) lowerCamelCase__: int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase__: Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) lowerCamelCase__: Tuple = """stabilityai/stable-diffusion-x4-upscaler""" lowerCamelCase__: Optional[int] = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase__: str = """a cat sitting on a park bench""" lowerCamelCase__: int = torch.manual_seed(0 ) lowerCamelCase__: Optional[Any] = pipe( prompt=__a , image=__a , generator=__a , num_inference_steps=5 , output_type="""np""" , ) lowerCamelCase__: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
306
1
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE_ = Lock() def lowercase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowerCAmelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase = min(lowerCAmelCase , lowerCAmelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowerCAmelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase = max(lowerCAmelCase , lowerCAmelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowerCAmelCase ) def lowercase__ ( lowerCAmelCase ) -> List[str]: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase = Pipe() UpperCAmelCase = Pipe() process_array_.append( Process( target=lowerCAmelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase = temp_rs UpperCAmelCase = temp_rr for i in range(1 , len(lowerCAmelCase ) - 1 ): UpperCAmelCase = Pipe() UpperCAmelCase = Pipe() process_array_.append( Process( target=lowerCAmelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase = temp_rs UpperCAmelCase = temp_rr process_array_.append( Process( target=lowerCAmelCase , args=( len(lowerCAmelCase ) - 1, arr[len(lowerCAmelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowerCAmelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowerCAmelCase ) ): UpperCAmelCase = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*lowerCAmelCase ) UpperCAmelCase = odd_even_transposition(lowerCAmelCase ) print('Sorted List\n' ) print(*lowerCAmelCase ) if __name__ == "__main__": main()
713
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = "encoder-decoder" __SCREAMING_SNAKE_CASE : Any = True def __init__( self , **lowercase_ ) -> str: super().__init__(**lowercase_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase = kwargs.pop('encoder' ) UpperCAmelCase = encoder_config.pop('model_type' ) UpperCAmelCase = kwargs.pop('decoder' ) UpperCAmelCase = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase = AutoConfig.for_model(lowercase_ , **lowercase_ ) UpperCAmelCase = AutoConfig.for_model(lowercase_ , **lowercase_ ) UpperCAmelCase = True @classmethod def a_ ( cls , lowercase_ , lowercase_ , **lowercase_ ) -> PretrainedConfig: logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) UpperCAmelCase = True UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowercase_ ) def a_ ( self ) -> Optional[int]: UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.encoder.to_dict() UpperCAmelCase = self.decoder.to_dict() UpperCAmelCase = self.__class__.model_type return output
183
0
"""simple docstring""" import torch from diffusers import DiffusionPipeline class _a ( _lowercase ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ): super().__init__() self.register_modules(unet=__A , scheduler=__A ) def __call__( self : List[Any] ): lowerCamelCase__ = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCamelCase__ = 1 lowerCamelCase__ = self.unet(__A , __A ).sample lowerCamelCase__ = self.scheduler.step(__A , __A , __A ).prev_sample lowerCamelCase__ = scheduler_output - scheduler_output + torch.ones_like(__A ) return result
510
import math class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : List[str]=0 ): # a graph with Node 0,1,...,N-1 __A : List[str] = n __A : List[str] = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # adjacency matrix for weight __A : str = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Any , __A : Optional[int] ): __A : List[Any] = w def lowerCAmelCase_ ( self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __A : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[str] ): return self.dp[u][v] if __name__ == "__main__": UpperCAmelCase_ : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
17
0
__UpperCamelCase : Dict = [0, 2, 4, 6, 8] __UpperCamelCase : Optional[Any] = [1, 3, 5, 7, 9] def _UpperCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : list[int] , UpperCAmelCase : int ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __lowerCamelCase : Dict = 0 for digit in range(10 ): __lowerCamelCase : Optional[Any] = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , UpperCAmelCase , UpperCAmelCase ) return result __lowerCamelCase : int = 0 for digita in range(10 ): __lowerCamelCase : Union[str, Any] = digita if (remainder + digita) % 2 == 0: __lowerCamelCase : Dict = ODD_DIGITS else: __lowerCamelCase : Any = EVEN_DIGITS for digita in other_parity_digits: __lowerCamelCase : int = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , UpperCAmelCase , UpperCAmelCase , ) return result def _UpperCAmelCase ( UpperCAmelCase : int = 9 ): """simple docstring""" __lowerCamelCase : Optional[Any] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(UpperCAmelCase , 0 , [0] * length , UpperCAmelCase ) return result if __name__ == "__main__": print(F'''{solution() = }''')
705
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _UpperCamelCase ( A ): '''simple docstring''' a_ : List[Any] = ["image_processor", "tokenizer"] a_ : Tuple = "AutoImageProcessor" a_ : Tuple = "AutoTokenizer" def __init__( self : Union[str, Any] , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Any=None , **_lowerCamelCase : List[str] ): '''simple docstring''' __lowerCamelCase : Tuple = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _lowerCamelCase , ) __lowerCamelCase : List[Any] = kwargs.pop("""feature_extractor""" ) __lowerCamelCase : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : List[Any] = self.image_processor __lowerCamelCase : Any = False def __call__( self : Union[str, Any] , *_lowerCamelCase : str , **_lowerCamelCase : Dict ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase , **_lowerCamelCase ) __lowerCamelCase : List[str] = kwargs.pop("""images""" , _lowerCamelCase ) __lowerCamelCase : List[str] = kwargs.pop("""text""" , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: __lowerCamelCase : Tuple = args[0] __lowerCamelCase : List[Any] = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: __lowerCamelCase : Tuple = self.image_processor(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if text is not None: __lowerCamelCase : int = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) if text is None: return inputs elif images is None: return encodings else: __lowerCamelCase : Optional[int] = encodings["""input_ids"""] return inputs def _snake_case ( self : List[Any] , *_lowerCamelCase : Tuple , **_lowerCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def _snake_case ( self : List[str] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : int ): '''simple docstring''' return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @contextmanager def _snake_case ( self : Optional[Any] ): '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) __lowerCamelCase : Any = True __lowerCamelCase : int = self.tokenizer yield __lowerCamelCase : Dict = self.image_processor __lowerCamelCase : List[Any] = False def _snake_case ( self : List[str] , _lowerCamelCase : str , _lowerCamelCase : List[str]=False , _lowerCamelCase : List[Any]=None ): '''simple docstring''' if added_vocab is None: __lowerCamelCase : List[str] = self.tokenizer.get_added_vocab() __lowerCamelCase : List[Any] = {} while tokens: __lowerCamelCase : Dict = re.search(R"""<s_(.*?)>""" , _lowerCamelCase , re.IGNORECASE ) if start_token is None: break __lowerCamelCase : Dict = start_token.group(1 ) __lowerCamelCase : List[str] = re.search(RF"""</s_{key}>""" , _lowerCamelCase , re.IGNORECASE ) __lowerCamelCase : Optional[int] = start_token.group() if end_token is None: __lowerCamelCase : int = tokens.replace(_lowerCamelCase , """""" ) else: __lowerCamelCase : Dict = end_token.group() __lowerCamelCase : Optional[Any] = re.escape(_lowerCamelCase ) __lowerCamelCase : List[str] = re.escape(_lowerCamelCase ) __lowerCamelCase : Any = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _lowerCamelCase , re.IGNORECASE ) if content is not None: __lowerCamelCase : Union[str, Any] = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __lowerCamelCase : Union[str, Any] = self.tokenajson(_lowerCamelCase , is_inner_value=_lowerCamelCase , added_vocab=_lowerCamelCase ) if value: if len(_lowerCamelCase ) == 1: __lowerCamelCase : Optional[int] = value[0] __lowerCamelCase : Union[str, Any] = value else: # leaf nodes __lowerCamelCase : List[Any] = [] for leaf in content.split(R"""<sep/>""" ): __lowerCamelCase : Optional[Any] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __lowerCamelCase : str = leaf[1:-2] # for categorical special tokens output[key].append(_lowerCamelCase ) if len(output[key] ) == 1: __lowerCamelCase : Tuple = output[key][0] __lowerCamelCase : Tuple = tokens[tokens.find(_lowerCamelCase ) + len(_lowerCamelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_lowerCamelCase , added_vocab=_lowerCamelCase ) if len(_lowerCamelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def _snake_case ( self : Tuple ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _lowerCamelCase , ) return self.image_processor_class @property def _snake_case ( self : List[Any] ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _lowerCamelCase , ) return self.image_processor
458
0
'''simple docstring''' def lowercase_ ( __A : int ) -> int: """simple docstring""" assert ( isinstance(__A , __A ) and number_of_steps > 0 ), F'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 lowercase , lowercase : int =1, 1 for _ in range(number_of_steps - 1 ): lowercase , lowercase : Optional[int] =current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
94
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase: Tuple = get_logger(__name__) _lowerCAmelCase: List[str] = Path(__file__).parent / 'model_card_template.md' _lowerCAmelCase: Any = uuida().hex _lowerCAmelCase: List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: int = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def _lowercase( __a : Union[Dict, str, None] = None ): a__ =f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__a , __a ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__a , __a ): ua += "; " + user_agent return ua def _lowercase( __a : str , __a : Optional[str] = None , __a : Optional[str] = None ): if token is None: a__ =HfFolder.get_token() if organization is None: a__ =whoami(__a )['name'] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def _lowercase( __a : Union[str, Any] , __a : Dict ): if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(__a , 'local_rank' ) and args.local_rank not in [-1, 0]: return a__ =args.hub_token if hasattr(__a , 'hub_token' ) else None a__ =get_full_repo_name(__a , token=__a ) a__ =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__a , model_name=__a , repo_name=__a , dataset_name=args.dataset_name if hasattr(__a , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__a , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__a , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__a , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__a , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__a , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__a , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(__a , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__a , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) a__ =os.path.join(args.output_dir , 'README.md' ) model_card.save(__a ) def _lowercase( __a : Optional[str] , __a : Optional[str] = None ): if resolved_file is None or commit_hash is not None: return commit_hash a__ =str(Path(__a ).as_posix() ) a__ =re.search(r'snapshots/([^/]+)/' , __a ) if search is None: return None a__ =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase: List[str] = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) _lowerCAmelCase: List[str] = os.path.join(hf_cache_home, 'diffusers') def _lowercase( __a : Optional[str] = None , __a : Optional[str] = None ): if new_cache_dir is None: a__ =DIFFUSERS_CACHE if old_cache_dir is None: a__ =old_diffusers_cache a__ =Path(__a ).expanduser() a__ =Path(__a ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a__ =new_cache_dir / old_blob_path.relative_to(__a ) new_blob_path.parent.mkdir(parents=__a , exist_ok=__a ) os.replace(__a , __a ) try: os.symlink(__a , __a ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase: Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): _lowerCAmelCase: int = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase: List[Any] = int(f.read()) except ValueError: _lowerCAmelCase: Any = 0 if cache_version < 1: _lowerCAmelCase: str = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: _lowerCAmelCase: Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ 'the directory exists and can be written to.' ) def _lowercase( __a : str , __a : Optional[str] = None ): if variant is not None: a__ =weights_name.split('.' ) a__ =splits[:-1] + [variant] + splits[-1:] a__ ='.'.join(__a ) return weights_name def _lowercase( __a : Union[str, Any] , *, __a : Optional[Any] , __a : Optional[Any] , __a : List[Any] , __a : Tuple , __a : Optional[Any] , __a : Dict , __a : str , __a : int , __a : Tuple , __a : Union[str, Any] , __a : int=None , ): a__ =str(__a ) if os.path.isfile(__a ): return pretrained_model_name_or_path elif os.path.isdir(__a ): if os.path.isfile(os.path.join(__a , __a ) ): # Load from a PyTorch checkpoint a__ =os.path.join(__a , __a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__a , __a , __a ) ): a__ =os.path.join(__a , __a , __a ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__a ).base_version ) >= version.parse('0.20.0' ) ): try: a__ =hf_hub_download( __a , filename=_add_variant(__a , __a ) , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __a , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__a , __a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__a , __a )}' so that the correct variant file can be added.""" , __a , ) try: # 2. Load model file as usual a__ =hf_hub_download( __a , filename=__a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ 'this model name. Check the model page at ' f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
20
0
def _lowercase ( lowercase__ , lowercase__ ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __lowerCAmelCase : Tuple = str(bin(lowercase__ ) )[2:] # remove the leading "0b" __lowerCAmelCase : List[Any] = str(bin(lowercase__ ) )[2:] __lowerCAmelCase : Optional[int] = max(len(lowercase__ ) , len(lowercase__ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase__ ) , b_binary.zfill(lowercase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
583
from __future__ import annotations def _lowercase ( lowercase__ ): if len(lowercase__ ) == 0: return array __lowerCAmelCase, __lowerCAmelCase : List[str] = min(lowercase__ ), max(lowercase__ ) # Compute the variables __lowerCAmelCase : int = _max - _min + 1 __lowerCAmelCase, __lowerCAmelCase : Union[str, Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: __lowerCAmelCase : Optional[int] = i - _min __lowerCAmelCase : Optional[int] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. __lowerCAmelCase : int = 0 for i in range(lowercase__ ): while holes_repeat[i] > 0: __lowerCAmelCase : List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input("Enter numbers separated by comma:\n") _UpperCamelCase = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
583
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel UpperCamelCase__ = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 48_000, 'sample_size': 131_072, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, } def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ) -> Any: '''simple docstring''' return torch.atana(UpperCAmelCase_ , UpperCAmelCase_ ) / math.pi * 2 def UpperCamelCase__ ( UpperCAmelCase_ ) -> Optional[int]: '''simple docstring''' _lowercase : List[str] = torch.sin(t * math.pi / 2 ) ** 2 _lowercase : int = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(UpperCAmelCase_ , UpperCAmelCase_ ) class UpperCAmelCase__ ( A_ ): '''simple docstring''' pass class UpperCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Union[str, Any] ): """simple docstring""" super().__init__() _lowercase : str = DiffusionAttnUnetaD(UpperCamelCase , n_attn_layers=4 ) _lowercase : str = deepcopy(self.diffusion ) _lowercase : List[str] = torch.quasirandom.SobolEngine(1 , scramble=UpperCamelCase ) def UpperCamelCase__ ( UpperCAmelCase_ ) -> Optional[Any]: '''simple docstring''' _lowercase : str = MODELS_MAP[model_name]['''url'''] os.system(F'wget {url} ./' ) return F'./{model_name}.ckpt' UpperCamelCase__ = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } UpperCamelCase__ = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } UpperCamelCase__ = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } UpperCamelCase__ = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } UpperCamelCase__ = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } UpperCamelCase__ = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def UpperCamelCase__ ( UpperCAmelCase_ ) -> Tuple: '''simple docstring''' if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def UpperCamelCase__ ( UpperCAmelCase_ ) -> Optional[int]: '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(UpperCAmelCase_ ) and not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return name.replace(UpperCAmelCase_ , UpperCAmelCase_ ) elif name.startswith(UpperCAmelCase_ ): return [name.replace(UpperCAmelCase_ , UpperCAmelCase_ ) for v in value] raise ValueError(F'Attn error with {name}' ) def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_=13 ) -> Any: '''simple docstring''' _lowercase : List[Any] = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) _lowercase : List[Any] = 0 if string.startswith('''net.3.''' ): depth += 1 _lowercase : Optional[int] = string[6:] elif string.startswith('''net.''' ): _lowercase : List[str] = string[4:] while string.startswith('''main.7.''' ): depth += 1 _lowercase : int = string[7:] if string.startswith('''main.''' ): _lowercase : List[str] = string[5:] # mid block if string[:2].isdigit(): _lowercase : int = string[:2] _lowercase : Tuple = string[2:] else: _lowercase : Optional[Any] = string[0] _lowercase : Any = string[1:] if depth == max_depth: _lowercase : Union[str, Any] = MID_NUM_TO_LAYER[layer_num] _lowercase : Dict = '''mid_block''' elif depth > 0 and int(UpperCAmelCase_ ) < 7: _lowercase : int = DOWN_NUM_TO_LAYER[layer_num] _lowercase : int = F'down_blocks.{depth}' elif depth > 0 and int(UpperCAmelCase_ ) > 7: _lowercase : int = UP_NUM_TO_LAYER[layer_num] _lowercase : int = F'up_blocks.{max_depth - depth - 1}' elif depth == 0: _lowercase : List[str] = DEPTH_0_TO_LAYER[layer_num] _lowercase : Tuple = F'up_blocks.{max_depth - 1}' if int(UpperCAmelCase_ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'Naming error with {input_string} and string_left: {string_left}.' ) _lowercase : List[Any] = string_left[1:] if "resnets" in new_layer: _lowercase : Optional[int] = convert_resconv_naming(UpperCAmelCase_ ) elif "attentions" in new_layer: _lowercase : str = convert_attn_naming(UpperCAmelCase_ ) _lowercase : int = new_string_left if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _lowercase : str = prefix + '''.''' + new_layer + '''.''' + string_left else: _lowercase : Union[str, Any] = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def UpperCamelCase__ ( UpperCAmelCase_ ) -> Optional[int]: '''simple docstring''' _lowercase : str = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue _lowercase : str = rename(UpperCAmelCase_ ) # check if we need to transform from Conv => Linear for attention if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _lowercase : int = transform_conv_attns(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: _lowercase : Tuple = v return new_state_dict def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> List[Any]: '''simple docstring''' if len(UpperCAmelCase_ ) == 1: if len(v.shape ) == 3: # weight _lowercase : Optional[Any] = v[:, :, 0] else: # bias _lowercase : str = v else: # qkv matrices _lowercase : int = v.shape[0] _lowercase : List[str] = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: _lowercase : int = v[i * single_shape : (i + 1) * single_shape, :, 0] else: _lowercase : Optional[Any] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def UpperCamelCase__ ( UpperCAmelCase_ ) -> Tuple: '''simple docstring''' _lowercase : Optional[int] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) _lowercase : int = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'Make sure to provide one of the official model names {MODELS_MAP.keys()}' _lowercase : List[str] = download(UpperCAmelCase_ ) _lowercase : List[str] = MODELS_MAP[model_name]['''sample_rate'''] _lowercase : Union[str, Any] = MODELS_MAP[model_name]['''sample_size'''] _lowercase : str = Object() _lowercase : Any = sample_size _lowercase : int = sample_rate _lowercase : Dict = 0 _lowercase : Optional[int] = UNetaDModel(sample_size=UpperCAmelCase_ , sample_rate=UpperCAmelCase_ ) _lowercase : str = diffusers_model.state_dict() _lowercase : Tuple = DiffusionUncond(UpperCAmelCase_ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=UpperCAmelCase_ )['''state_dict'''] ) _lowercase : Any = orig_model.diffusion_ema.eval() _lowercase : List[Any] = orig_model.state_dict() _lowercase : int = rename_orig_weights(UpperCAmelCase_ ) _lowercase : Union[str, Any] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) _lowercase : Optional[int] = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(UpperCAmelCase_ ) == 0, F'Problem with {renamed_minus_diffusers}' assert all(k.endswith('''kernel''' ) for k in list(UpperCAmelCase_ ) ), F'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": _lowercase : Tuple = value.squeeze() _lowercase : int = value diffusers_model.load_state_dict(UpperCAmelCase_ ) _lowercase : int = 100 _lowercase : Optional[int] = 33 _lowercase : List[Any] = IPNDMScheduler(num_train_timesteps=UpperCAmelCase_ ) _lowercase : List[Any] = torch.manual_seed(UpperCAmelCase_ ) _lowercase : Any = torch.randn([1, 2, config.sample_size] , generator=UpperCAmelCase_ ).to(UpperCAmelCase_ ) _lowercase : Union[str, Any] = torch.linspace(1 , 0 , steps + 1 , device=UpperCAmelCase_ )[:-1] _lowercase : Any = get_crash_schedule(UpperCAmelCase_ ) _lowercase : List[str] = DanceDiffusionPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ ) _lowercase : Union[str, Any] = torch.manual_seed(33 ) _lowercase : Dict = pipe(num_inference_steps=UpperCAmelCase_ , generator=UpperCAmelCase_ ).audios _lowercase : Optional[int] = sampling.iplms_sample(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , {} ) _lowercase : str = generated.clamp(-1 , 1 ) _lowercase : Any = (generated - audio).abs().sum() _lowercase : List[str] = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , UpperCAmelCase_ ) print('''Diff max''' , UpperCAmelCase_ ) assert diff_max < 1E-3, F'Diff max: {diff_max} is too much :-/' print(F'Conversion for {model_name} successful!' ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') UpperCamelCase__ = parser.parse_args() main(args)
322
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCamelCase__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCAmelCase__ ( datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase_ = None def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , ) -> List[str]: '''simple docstring''' import pyspark def generate_fn(): _lowercase : Any = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: _lowercase : int = df_with_partition_id.select('''*''' ).where(F'part_id = {partition_id}' ).drop('''part_id''' ) _lowercase : Union[str, Any] = partition_df.collect() _lowercase : int = 0 for row in rows: yield F'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class UpperCAmelCase__ ( _BaseExamplesIterable ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase : "pyspark.sql.DataFrame" , UpperCamelCase : List[str]=None , ): """simple docstring""" _lowercase : List[Any] = df _lowercase : List[str] = partition_order or range(self.df.rdd.getNumPartitions() ) _lowercase : Optional[Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : List[Any] ): """simple docstring""" yield from self.generate_examples_fn() def lowerCAmelCase_ ( self : Tuple , UpperCamelCase : np.random.Generator ): """simple docstring""" _lowercase : Dict = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCamelCase ) return SparkExamplesIterable(self.df , partition_order=UpperCamelCase ) def lowerCAmelCase_ ( self : List[Any] , UpperCamelCase : int , UpperCamelCase : int ): """simple docstring""" _lowercase : List[Any] = self.split_shard_indices_by_worker(UpperCamelCase , UpperCamelCase ) return SparkExamplesIterable(self.df , partition_order=UpperCamelCase ) @property def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" return len(self.partition_order ) class UpperCAmelCase__ ( datasets.DatasetBuilder ): '''simple docstring''' UpperCAmelCase_ = SparkConfig def __init__( self : Optional[int] , UpperCamelCase : "pyspark.sql.DataFrame" , UpperCamelCase : str = None , UpperCamelCase : str = None , **UpperCamelCase : Union[str, Any] , ): """simple docstring""" import pyspark _lowercase : List[str] = pyspark.sql.SparkSession.builder.getOrCreate() _lowercase : Any = df _lowercase : Dict = working_dir super().__init__( cache_dir=UpperCamelCase , config_name=str(self.df.semanticHash() ) , **UpperCamelCase , ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" def create_cache_and_write_probe(UpperCamelCase : Tuple ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=UpperCamelCase ) _lowercase : Tuple = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCamelCase , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowercase : Any = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(UpperCamelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def lowerCAmelCase_ ( self : str ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase_ ( self : str , UpperCamelCase : datasets.download.download_manager.DownloadManager ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCAmelCase_ ( self : str , UpperCamelCase : Union[str, Any] ): """simple docstring""" import pyspark def get_arrow_batch_size(UpperCamelCase : int ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) _lowercase : int = self.df.count() _lowercase : Optional[Any] = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowercase : List[Any] = ( self.df.limit(UpperCamelCase ) .repartition(1 ) .mapInArrow(UpperCamelCase , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowercase : int = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowercase : List[Any] = min(UpperCamelCase , int(approx_total_size / max_shard_size ) ) _lowercase : Optional[int] = self.df.repartition(UpperCamelCase ) def lowerCAmelCase_ ( self : str , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : int , ): """simple docstring""" import pyspark _lowercase : Optional[Any] = ParquetWriter if file_format == '''parquet''' else ArrowWriter _lowercase : List[str] = os.path.join(self._working_dir , os.path.basename(UpperCamelCase ) ) if self._working_dir else fpath _lowercase : str = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowercase : Tuple = self.config.features _lowercase : Tuple = self._writer_batch_size _lowercase : Optional[Any] = self._fs.storage_options def write_arrow(UpperCamelCase : Dict ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowercase : str = pyspark.TaskContext().taskAttemptId() _lowercase : List[Any] = next(UpperCamelCase , UpperCamelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) _lowercase : Dict = 0 _lowercase : Optional[int] = writer_class( features=UpperCamelCase , path=working_fpath.replace('''SSSSS''' , F'{shard_id:05d}' ).replace('''TTTTT''' , F'{task_id:05d}' ) , writer_batch_size=UpperCamelCase , storage_options=UpperCamelCase , embed_local_files=UpperCamelCase , ) _lowercase : int = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCamelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowercase , _lowercase : int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 _lowercase : List[str] = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , F'{shard_id:05d}' ).replace('''TTTTT''' , F'{task_id:05d}' ) , writer_batch_size=UpperCamelCase , storage_options=UpperCamelCase , embed_local_files=UpperCamelCase , ) _lowercase : List[str] = pa.Table.from_batches([batch] ) writer.write_table(UpperCamelCase ) if writer._num_bytes > 0: _lowercase , _lowercase : List[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCamelCase ) ): _lowercase : List[str] = os.path.join(os.path.dirname(UpperCamelCase ) , os.path.basename(UpperCamelCase ) ) shutil.move(UpperCamelCase , UpperCamelCase ) _lowercase : int = ( self.df.mapInArrow(UpperCamelCase , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCAmelCase_ ( self : Dict , UpperCamelCase : "datasets.SplitGenerator" , UpperCamelCase : str = "arrow" , UpperCamelCase : Optional[Union[str, int]] = None , UpperCamelCase : Optional[int] = None , **UpperCamelCase : Union[str, Any] , ): """simple docstring""" self._validate_cache_dir() _lowercase : List[str] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCamelCase ) _lowercase : Optional[Any] = not is_remote_filesystem(self._fs ) _lowercase : List[Any] = os.path.join if is_local else posixpath.join _lowercase : Optional[int] = '''-TTTTT-SSSSS-of-NNNNN''' _lowercase : str = F'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' _lowercase : List[str] = path_join(self._output_dir , UpperCamelCase ) _lowercase : Optional[Any] = 0 _lowercase : Any = 0 _lowercase : Tuple = 0 _lowercase : int = [] _lowercase : Union[str, Any] = [] for task_id, content in self._prepare_split_single(UpperCamelCase , UpperCamelCase , UpperCamelCase ): ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Union[str, Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCamelCase ) _lowercase : Optional[Any] = total_num_examples _lowercase : int = total_num_bytes # should rename everything at the end logger.debug(F'Renaming {total_shards} shards.' ) if total_shards > 1: _lowercase : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowercase : Any = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int , ): rename( UpperCamelCase , fpath.replace('''SSSSS''' , F'{shard_id:05d}' ).replace('''TTTTT''' , F'{task_id:05d}' ) , fpath.replace('''TTTTT-SSSSS''' , F'{global_shard_id:05d}' ).replace('''NNNNN''' , F'{total_shards:05d}' ) , ) _lowercase : List[Any] = [] _lowercase : int = 0 for i in range(len(UpperCamelCase ) ): _lowercase , _lowercase : Optional[Any] = task_id_and_num_shards[i] for shard_id in range(UpperCamelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCamelCase , len(UpperCamelCase ) ).map(lambda UpperCamelCase : _rename_shard(*UpperCamelCase ) ).collect() else: # don't use any pattern _lowercase : Optional[int] = 0 _lowercase : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , F'{shard_id:05d}' ).replace('''TTTTT''' , F'{task_id:05d}' ) , fpath.replace(UpperCamelCase , '''''' ) , ) def lowerCAmelCase_ ( self : Optional[int] , UpperCamelCase : "datasets.SplitGenerator" , ): """simple docstring""" return SparkExamplesIterable(self.df )
322
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class A__( __magic_name__ ): lowerCAmelCase = '''realm''' def __init__( self : str , __SCREAMING_SNAKE_CASE : Optional[int]=3_05_22 , __SCREAMING_SNAKE_CASE : Optional[int]=7_68 , __SCREAMING_SNAKE_CASE : Tuple=1_28 , __SCREAMING_SNAKE_CASE : str=12 , __SCREAMING_SNAKE_CASE : Any=12 , __SCREAMING_SNAKE_CASE : Any=8 , __SCREAMING_SNAKE_CASE : Any=30_72 , __SCREAMING_SNAKE_CASE : List[Any]="gelu_new" , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=5_12 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : str=0.02 , __SCREAMING_SNAKE_CASE : str=1E-1_2 , __SCREAMING_SNAKE_CASE : Optional[int]=2_56 , __SCREAMING_SNAKE_CASE : Optional[int]=10 , __SCREAMING_SNAKE_CASE : Any=1E-3 , __SCREAMING_SNAKE_CASE : Optional[Any]=5 , __SCREAMING_SNAKE_CASE : int=3_20 , __SCREAMING_SNAKE_CASE : Union[str, Any]=13_35_37_18 , __SCREAMING_SNAKE_CASE : List[str]=50_00 , __SCREAMING_SNAKE_CASE : Optional[Any]=1 , __SCREAMING_SNAKE_CASE : str=0 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , **__SCREAMING_SNAKE_CASE : Tuple , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # Common config __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = retriever_proj_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = num_candidates __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = layer_norm_eps # Reader config __SCREAMING_SNAKE_CASE = span_hidden_size __SCREAMING_SNAKE_CASE = max_span_width __SCREAMING_SNAKE_CASE = reader_layer_norm_eps __SCREAMING_SNAKE_CASE = reader_beam_size __SCREAMING_SNAKE_CASE = reader_seq_len # Retrieval config __SCREAMING_SNAKE_CASE = num_block_records __SCREAMING_SNAKE_CASE = searcher_beam_size
720
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _a ( UpperCAmelCase__ = "isbn/0140328726" ) -> dict: __SCREAMING_SNAKE_CASE = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: __SCREAMING_SNAKE_CASE = f"""{olid} is not a valid Open Library olid""" raise ValueError(UpperCAmelCase__ ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def _a ( UpperCAmelCase__ ) -> dict: __SCREAMING_SNAKE_CASE = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } __SCREAMING_SNAKE_CASE = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __SCREAMING_SNAKE_CASE = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] __SCREAMING_SNAKE_CASE = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = ''', '''.join(UpperCAmelCase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCAmelCase__ =input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: lowerCAmelCase__ =summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print("\n".join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
690
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[str] = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """rwkv""" UpperCamelCase_ = {"""max_position_embeddings""": """context_length"""} def __init__( self : Optional[Any] , UpperCamelCase__ : List[str]=5_0277 , UpperCamelCase__ : str=1024 , UpperCamelCase__ : Tuple=4096 , UpperCamelCase__ : int=32 , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[str]=1E-5 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Dict=6 , UpperCamelCase__ : str=False , UpperCamelCase__ : List[str]=True , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : str = context_length SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = attention_hidden_size if attention_hidden_size is not None else hidden_size SCREAMING_SNAKE_CASE : Any = intermediate_size if intermediate_size is not None else 4 * hidden_size SCREAMING_SNAKE_CASE : Any = layer_norm_epsilon SCREAMING_SNAKE_CASE : str = rescale_every SCREAMING_SNAKE_CASE : Optional[int] = use_cache SCREAMING_SNAKE_CASE : List[Any] = bos_token_id SCREAMING_SNAKE_CASE : List[Any] = eos_token_id super().__init__( tie_word_embeddings=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
248
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : List[Any] = OmegaConf.load(_lowercase ) SCREAMING_SNAKE_CASE : int = torch.load(_lowercase , map_location='''cpu''' )['''model'''] SCREAMING_SNAKE_CASE : int = list(state_dict.keys() ) # extract state_dict for VQVAE SCREAMING_SNAKE_CASE : Union[str, Any] = {} SCREAMING_SNAKE_CASE : List[str] = '''first_stage_model.''' for key in keys: if key.startswith(_lowercase ): SCREAMING_SNAKE_CASE : List[Any] = state_dict[key] # extract state_dict for UNetLDM SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : Any = '''model.diffusion_model.''' for key in keys: if key.startswith(_lowercase ): SCREAMING_SNAKE_CASE : List[Any] = state_dict[key] SCREAMING_SNAKE_CASE : int = config.model.params.first_stage_config.params SCREAMING_SNAKE_CASE : Tuple = config.model.params.unet_config.params SCREAMING_SNAKE_CASE : Union[str, Any] = VQModel(**_lowercase ).eval() vqvae.load_state_dict(_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = UNetLDMModel(**_lowercase ).eval() unet.load_state_dict(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=_lowercase , ) SCREAMING_SNAKE_CASE : Optional[Any] = LDMPipeline(_lowercase , _lowercase , _lowercase ) pipeline.save_pretrained(_lowercase ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) __UpperCamelCase : List[str] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
248
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def A_ ( _lowerCAmelCase : int ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : def __init__( self : List[str],__A : Iterable[torch.nn.Parameter],__A : float = 0.9999,__A : float = 0.0,__A : int = 0,__A : bool = False,__A : Union[float, int] = 1.0,__A : Union[float, int] = 2 / 3,__A : Optional[Any] = None,__A : Dict[str, Any] = None,**__A : Optional[Any],): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Any = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _lowerCamelCase : Optional[Any] = True if kwargs.get("max_value",__A ) is not None: _lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Optional[Any] = kwargs["max_value"] if kwargs.get("min_value",__A ) is not None: _lowerCamelCase : Tuple = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value","1.0.0",__A,standard_warn=__A ) _lowerCamelCase : Any = kwargs["min_value"] _lowerCamelCase : Optional[int] = list(__A ) _lowerCamelCase : List[Any] = [p.clone().detach() for p in parameters] if kwargs.get("device",__A ) is not None: _lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device","1.0.0",__A,standard_warn=__A ) self.to(device=kwargs["device"] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Dict = decay _lowerCamelCase : List[Any] = min_decay _lowerCamelCase : Optional[Any] = update_after_step _lowerCamelCase : Any = use_ema_warmup _lowerCamelCase : Union[str, Any] = inv_gamma _lowerCamelCase : str = power _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Union[str, Any] = None # set in `step()` _lowerCamelCase : List[str] = model_cls _lowerCamelCase : Dict = model_config @classmethod def lowerCamelCase_ ( cls : Union[str, Any],__A : List[str],__A : Optional[int] ): _lowerCamelCase : Optional[int] = model_cls.load_config(__A,return_unused_kwargs=__A ) _lowerCamelCase : Optional[Any] = model_cls.from_pretrained(__A ) _lowerCamelCase : Union[str, Any] = cls(model.parameters(),model_cls=__A,model_config=model.config ) ema_model.load_state_dict(__A ) return ema_model def lowerCamelCase_ ( self : str,__A : int ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) _lowerCamelCase : Tuple = self.model_cls.from_config(self.model_config ) _lowerCamelCase : List[str] = self.state_dict() state_dict.pop("shadow_params",__A ) model.register_to_config(**__A ) self.copy_to(model.parameters() ) model.save_pretrained(__A ) def lowerCamelCase_ ( self : Optional[int],__A : int ): _lowerCamelCase : str = max(0,optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _lowerCamelCase : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: _lowerCamelCase : List[str] = (1 + step) / (1_0 + step) _lowerCamelCase : Union[str, Any] = min(__A,self.decay ) # make sure decay is not smaller than min_decay _lowerCamelCase : Union[str, Any] = max(__A,self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase_ ( self : Any,__A : Iterable[torch.nn.Parameter] ): if isinstance(__A,torch.nn.Module ): _lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`","1.0.0",__A,standard_warn=__A,) _lowerCamelCase : Any = parameters.parameters() _lowerCamelCase : str = list(__A ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _lowerCamelCase : Dict = self.get_decay(self.optimization_step ) _lowerCamelCase : Optional[Any] = decay _lowerCamelCase : List[Any] = 1 - decay _lowerCamelCase : List[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params,__A ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _lowerCamelCase : List[Any] = deepspeed.zero.GatheredParameters(__A,modifier_rank=__A ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__A ) def lowerCamelCase_ ( self : Dict,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = list(__A ) for s_param, param in zip(self.shadow_params,__A ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase_ ( self : List[str],__A : Dict=None,__A : Any=None ): _lowerCamelCase : int = [ p.to(device=__A,dtype=__A ) if p.is_floating_point() else p.to(device=__A ) for p in self.shadow_params ] def lowerCamelCase_ ( self : List[Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase_ ( self : Tuple,__A : Iterable[torch.nn.Parameter] ): _lowerCamelCase : Tuple = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase_ ( self : int,__A : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params,__A ): param.data.copy_(c_param.data ) # Better memory-wise. _lowerCamelCase : List[str] = None def lowerCamelCase_ ( self : Dict,__A : dict ): _lowerCamelCase : List[str] = copy.deepcopy(__A ) _lowerCamelCase : Optional[Any] = state_dict.get("decay",self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) _lowerCamelCase : Dict = state_dict.get("min_decay",self.min_decay ) if not isinstance(self.min_decay,__A ): raise ValueError("Invalid min_decay" ) _lowerCamelCase : Tuple = state_dict.get("optimization_step",self.optimization_step ) if not isinstance(self.optimization_step,__A ): raise ValueError("Invalid optimization_step" ) _lowerCamelCase : Any = state_dict.get("update_after_step",self.update_after_step ) if not isinstance(self.update_after_step,__A ): raise ValueError("Invalid update_after_step" ) _lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup",self.use_ema_warmup ) if not isinstance(self.use_ema_warmup,__A ): raise ValueError("Invalid use_ema_warmup" ) _lowerCamelCase : Tuple = state_dict.get("inv_gamma",self.inv_gamma ) if not isinstance(self.inv_gamma,(float, int) ): raise ValueError("Invalid inv_gamma" ) _lowerCamelCase : Union[str, Any] = state_dict.get("power",self.power ) if not isinstance(self.power,(float, int) ): raise ValueError("Invalid power" ) _lowerCamelCase : Optional[Any] = state_dict.get("shadow_params",__A ) if shadow_params is not None: _lowerCamelCase : str = shadow_params if not isinstance(self.shadow_params,__A ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(__A,torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
721
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer _lowerCamelCase : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) _lowerCamelCase : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Any ): """simple docstring""" if "metadata" in layer: _lowerCamelCase : Optional[int] = layer.split("metadata" ) _lowerCamelCase : Union[str, Any] = "".join(split_layer[0] )[:-1] _lowerCamelCase : Dict = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: _lowerCamelCase : List[str] = layer.split("kvstore" ) _lowerCamelCase : Optional[int] = "".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: _lowerCamelCase : Tuple = layer.split("/" ) _lowerCamelCase : int = "/".join(split_layer[:-1] ) _lowerCamelCase : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = "file" else: _lowerCamelCase : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = rename_keys(_lowerCAmelCase ) _lowerCamelCase : Dict = {} for k, v in current_block.items(): _lowerCamelCase : Union[str, Any] = v _lowerCamelCase : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str = WEIGHTS_NAME ): """simple docstring""" _lowerCamelCase : Dict = convert_file_size_to_int(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: _lowerCamelCase : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] _lowerCamelCase : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep="/" ) _lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: _lowerCamelCase : Optional[int] = content else: _lowerCamelCase : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : int = torch.tensor(_lowerCAmelCase ) _lowerCamelCase : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): _lowerCamelCase : Dict = weights_name.replace( ".bin" , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} _lowerCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) _lowerCamelCase : Tuple = shard for key in shard: _lowerCamelCase : str = shard_file # Add the metadata _lowerCamelCase : Optional[Any] = {"total_size": total_size} _lowerCamelCase : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , "w" , encoding="utf-8" ) as f: _lowerCamelCase : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) UpperCAmelCase_ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A_ ( ): """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) _lowerCamelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("t5-small" ) _lowerCamelCase : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." _lowerCamelCase : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors="pt" ).input_ids _lowerCamelCase : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
11
0
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowercase ( _lowercase , unittest.TestCase ): _a = ConsistencyModelPipeline _a = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _a = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt _a = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def UpperCamelCase__ ( self ) -> List[Any]: __a = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def UpperCamelCase__ ( self ) -> Optional[Any]: __a = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def UpperCamelCase__ ( self , UpperCamelCase=False ) -> Tuple: if class_cond: __a = self.dummy_cond_unet else: __a = self.dummy_uncond_unet # Default to CM multistep sampler __a = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __a = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase=0 ) -> int: if str(A_ ).startswith('mps' ): __a = torch.manual_seed(A_ ) else: __a = torch.Generator(device=A_ ).manual_seed(A_ ) __a = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def UpperCamelCase__ ( self ) -> Dict: __a = 'cpu' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = ConsistencyModelPipeline(**A_ ) __a = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __a = self.get_dummy_inputs(A_ ) __a = pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self ) -> Dict: __a = 'cpu' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components(class_cond=A_ ) __a = ConsistencyModelPipeline(**A_ ) __a = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __a = self.get_dummy_inputs(A_ ) __a = 0 __a = pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self ) -> Optional[Any]: __a = 'cpu' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = ConsistencyModelPipeline(**A_ ) __a = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __a = self.get_dummy_inputs(A_ ) __a = 1 __a = None __a = pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self ) -> Any: __a = 'cpu' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components(class_cond=A_ ) __a = ConsistencyModelPipeline(**A_ ) __a = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __a = self.get_dummy_inputs(A_ ) __a = 1 __a = None __a = 0 __a = pipe(**A_ ).images assert image.shape == (1, 32, 32, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCamelCase__ ( self ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self , UpperCamelCase=0 , UpperCamelCase=False , UpperCamelCase="cpu" , UpperCamelCase=torch.floataa , UpperCamelCase=(1, 3, 64, 64) ) -> Tuple: __a = torch.manual_seed(A_ ) __a = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: __a = self.get_fixed_latents(seed=A_ , device=A_ , dtype=A_ , shape=A_ ) __a = latents return inputs def UpperCamelCase__ ( self , UpperCamelCase=0 , UpperCamelCase="cpu" , UpperCamelCase=torch.floataa , UpperCamelCase=(1, 3, 64, 64) ) -> List[Any]: if type(A_ ) == str: __a = torch.device(A_ ) __a = torch.Generator(device=A_ ).manual_seed(A_ ) __a = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) return latents def UpperCamelCase__ ( self ) -> List[str]: __a = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __a = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __a = ConsistencyModelPipeline(unet=A_ , scheduler=A_ ) pipe.to(torch_device=A_ ) pipe.set_progress_bar_config(disable=A_ ) __a = self.get_inputs() __a = pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCamelCase__ ( self ) -> List[str]: __a = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __a = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __a = ConsistencyModelPipeline(unet=A_ , scheduler=A_ ) pipe.to(torch_device=A_ ) pipe.set_progress_bar_config(disable=A_ ) __a = self.get_inputs() __a = 1 __a = None __a = pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def UpperCamelCase__ ( self ) -> List[str]: __a = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __a = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __a = ConsistencyModelPipeline(unet=A_ , scheduler=A_ ) pipe.to(torch_device=A_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=A_ ) __a = self.get_inputs(get_fixed_latents=A_ , device=A_ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=A_ , enable_math=A_ , enable_mem_efficient=A_ ): __a = pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def UpperCamelCase__ ( self ) -> List[Any]: __a = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __a = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __a = ConsistencyModelPipeline(unet=A_ , scheduler=A_ ) pipe.to(torch_device=A_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=A_ ) __a = self.get_inputs(get_fixed_latents=A_ , device=A_ ) __a = 1 __a = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=A_ , enable_math=A_ , enable_mem_efficient=A_ ): __a = pipe(**A_ ).images assert image.shape == (1, 64, 64, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
539
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers _lowercase = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def _snake_case ( ): A = os.path.dirname(os.path.realpath(snake_case__ ) ) A = os.path.join(snake_case__ , 'words.txt' ) A = '' with open(snake_case__ ) as f: A = f.readline() A = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] A = [ word for word in [sum(ord(snake_case__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(snake_case__ ) if __name__ == "__main__": print(solution())
91
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : Optional[int] = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = """trajectory_transformer""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : str , A : List[str]=100 , A : Dict=5 , A : int=1 , A : Optional[Any]=1 , A : str=249 , A : Optional[Any]=6 , A : Optional[int]=17 , A : Dict=25 , A : Any=4 , A : Tuple=4 , A : Optional[int]=128 , A : List[Any]=0.1 , A : List[str]=0.1 , A : List[Any]=0.1 , A : Dict=0.0006 , A : List[Any]=512 , A : Dict=0.02 , A : Dict=1E-12 , A : Any=1 , A : Tuple=True , A : List[Any]=1 , A : int=50_256 , A : List[Any]=50_256 , **A : Optional[int] , ): __snake_case: str = vocab_size __snake_case: Union[str, Any] = action_weight __snake_case: List[Any] = reward_weight __snake_case: Optional[int] = value_weight __snake_case: Optional[Any] = max_position_embeddings __snake_case: Any = block_size __snake_case: Any = action_dim __snake_case: Tuple = observation_dim __snake_case: str = transition_dim __snake_case: Optional[Any] = learning_rate __snake_case: Tuple = n_layer __snake_case: List[Any] = n_head __snake_case: Any = n_embd __snake_case: int = embd_pdrop __snake_case: Union[str, Any] = attn_pdrop __snake_case: Dict = resid_pdrop __snake_case: List[str] = initializer_range __snake_case: Dict = layer_norm_eps __snake_case: Optional[Any] = kaiming_initializer_range __snake_case: Optional[int] = use_cache super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A )
705
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType __UpperCAmelCase : List[Any] = logging.get_logger(__name__) __UpperCAmelCase : Any = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = """layoutlmv3""" def __init__( self : Any , A : List[Any]=50_265 , A : Any=768 , A : List[Any]=12 , A : Optional[Any]=12 , A : str=3_072 , A : List[str]="gelu" , A : Tuple=0.1 , A : Optional[Any]=0.1 , A : Optional[Any]=512 , A : str=2 , A : int=0.02 , A : Any=1E-5 , A : List[str]=1 , A : int=0 , A : str=2 , A : Optional[int]=1_024 , A : Optional[int]=128 , A : List[str]=128 , A : str=True , A : Union[str, Any]=32 , A : List[Any]=128 , A : Union[str, Any]=64 , A : List[str]=256 , A : Tuple=True , A : Optional[int]=True , A : Dict=True , A : Dict=224 , A : Dict=3 , A : List[Any]=16 , A : Tuple=None , **A : int , ): super().__init__( vocab_size=A , hidden_size=A , num_hidden_layers=A , num_attention_heads=A , intermediate_size=A , hidden_act=A , hidden_dropout_prob=A , attention_probs_dropout_prob=A , max_position_embeddings=A , type_vocab_size=A , initializer_range=A , layer_norm_eps=A , pad_token_id=A , bos_token_id=A , eos_token_id=A , **A , ) __snake_case: int = max_ad_position_embeddings __snake_case: List[Any] = coordinate_size __snake_case: List[Any] = shape_size __snake_case: Any = has_relative_attention_bias __snake_case: Any = rel_pos_bins __snake_case: Optional[Any] = max_rel_pos __snake_case: Union[str, Any] = has_spatial_attention_bias __snake_case: str = rel_ad_pos_bins __snake_case: Tuple = max_rel_ad_pos __snake_case: Optional[int] = text_embed __snake_case: List[Any] = visual_embed __snake_case: int = input_size __snake_case: List[Any] = num_channels __snake_case: Union[str, Any] = patch_size __snake_case: str = classifier_dropout class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = version.parse("""1.12""" ) @property def UpperCAmelCase__ ( self : Optional[int] ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def UpperCAmelCase__ ( self : Dict ): return 1E-5 @property def UpperCAmelCase__ ( self : str ): return 12 def UpperCAmelCase__ ( self : str , A : "ProcessorMixin" , A : int = -1 , A : int = -1 , A : bool = False , A : Optional["TensorType"] = None , A : int = 3 , A : int = 40 , A : int = 40 , ): setattr(processor.image_processor , """apply_ocr""" , A ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __snake_case: Optional[int] = compute_effective_axis_dimension( A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __snake_case: Tuple = processor.tokenizer.num_special_tokens_to_add(A ) __snake_case: Optional[int] = compute_effective_axis_dimension( A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A ) # Generate dummy inputs according to compute batch and sequence __snake_case: Optional[Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __snake_case: Optional[int] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __snake_case: List[str] = self._generate_dummy_images(A , A , A , A ) __snake_case: int = dict( processor( A , text=A , boxes=A , return_tensors=A , ) ) return inputs
155
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __A ( UpperCamelCase__ ): @slow @require_torch def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) __magic_name__ : int =BertTokenizer.from_pretrained("""bert-base-uncased""" ) __magic_name__ : str =bertabert.config.encoder.vocab_size __magic_name__ : Union[str, Any] =tokenizer.sep_token_id __magic_name__ : Optional[Any] =tokenizer.cls_token_id __magic_name__ : str =1_28 __magic_name__ : List[str] =datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) __magic_name__ : Union[str, Any] =datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) __magic_name__ : Union[str, Any] =train_dataset.select(range(32 ) ) __magic_name__ : str =val_dataset.select(range(16 ) ) __magic_name__ : int =4 def _map_to_encoder_decoder_inputs(__snake_case :Optional[int] ): # Tokenizer will automatically set [BOS] <text> [EOS] __magic_name__ : Dict =tokenizer(batch["""article"""] , padding="""max_length""" , truncation=__snake_case , max_length=5_12 ) __magic_name__ : Dict =tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=__snake_case , max_length=1_28 ) __magic_name__ : Optional[int] =inputs.input_ids __magic_name__ : Tuple =inputs.attention_mask __magic_name__ : Any =outputs.input_ids __magic_name__ : Tuple =outputs.input_ids.copy() __magic_name__ : Union[str, Any] =[ [-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] __magic_name__ : List[str] =outputs.attention_mask assert all(len(__snake_case ) == 5_12 for x in inputs.input_ids ) assert all(len(__snake_case ) == 1_28 for x in outputs.input_ids ) return batch def _compute_metrics(__snake_case :Tuple ): __magic_name__ : Tuple =pred.label_ids __magic_name__ : Any =pred.predictions # all unnecessary tokens are removed __magic_name__ : Optional[int] =tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) __magic_name__ : List[Any] =tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) __magic_name__ : Optional[Any] =sum([int(pred_str[i] == label_str[i] ) for i in range(len(__snake_case ) )] ) / len(__snake_case ) return {"accuracy": accuracy} # map train dataset __magic_name__ : Dict =train_dataset.map( _map_to_encoder_decoder_inputs , batched=__snake_case , batch_size=__snake_case , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset __magic_name__ : List[str] =val_dataset.map( _map_to_encoder_decoder_inputs , batched=__snake_case , batch_size=__snake_case , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) __magic_name__ : Tuple =self.get_auto_remove_tmp_dir() __magic_name__ : Optional[int] =SeqaSeqTrainingArguments( output_dir=__snake_case , per_device_train_batch_size=__snake_case , per_device_eval_batch_size=__snake_case , predict_with_generate=__snake_case , evaluation_strategy="""steps""" , do_train=__snake_case , do_eval=__snake_case , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __magic_name__ : List[str] =SeqaSeqTrainer( model=__snake_case , args=__snake_case , compute_metrics=_compute_metrics , train_dataset=__snake_case , eval_dataset=__snake_case , tokenizer=__snake_case , ) # start training trainer.train()
21
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
0
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class SCREAMING_SNAKE_CASE__ : """simple docstring""" @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return self.get_dummy_input() @property def lowerCamelCase_ ( self : int ): """simple docstring""" if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[str]=False , ): """simple docstring""" __UpperCAmelCase : int = 4 __UpperCAmelCase : Dict = 32 __UpperCAmelCase : List[Any] = (32, 32) __UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = torch.device(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = (batch_size, num_channels) + sizes __UpperCAmelCase : List[str] = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ ) __UpperCAmelCase : Any = {"hidden_states": hidden_states} if include_temb: __UpperCAmelCase : List[str] = 128 __UpperCAmelCase : int = randn_tensor((batch_size, temb_channels) , generator=UpperCAmelCase_ , device=UpperCAmelCase_ ) if include_res_hidden_states_tuple: __UpperCAmelCase : Tuple = torch.manual_seed(1 ) __UpperCAmelCase : Dict = (randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ ),) if include_encoder_hidden_states: __UpperCAmelCase : Dict = floats_tensor((batch_size, 32, 32) ).to(UpperCAmelCase_ ) if include_skip_sample: __UpperCAmelCase : Any = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCAmelCase_ , device=UpperCAmelCase_ ) return dummy_input def lowerCamelCase_ ( self : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": __UpperCAmelCase : Union[str, Any] = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) __UpperCAmelCase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.prepare_init_args_and_inputs_for_common() __UpperCAmelCase : List[str] = self.block_class(**UpperCAmelCase_ ) unet_block.to(UpperCAmelCase_ ) unet_block.eval() with torch.no_grad(): __UpperCAmelCase : Any = unet_block(**UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : Optional[int] = output[0] self.assertEqual(output.shape , self.output_shape ) __UpperCAmelCase : Optional[int] = output[0, -1, -3:, -3:] __UpperCAmelCase : int = torch.tensor(UpperCAmelCase_ ).to(UpperCAmelCase_ ) assert torch_all_close(output_slice.flatten() , UpperCAmelCase_ , atol=5e-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : Dict = self.prepare_init_args_and_inputs_for_common() __UpperCAmelCase : Union[str, Any] = self.block_class(**UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() __UpperCAmelCase : int = model(**UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : Tuple = output[0] __UpperCAmelCase : Any = torch.device(UpperCAmelCase_ ) __UpperCAmelCase : str = randn_tensor(output.shape , device=UpperCAmelCase_ ) __UpperCAmelCase : Any = torch.nn.functional.mse_loss(UpperCAmelCase_ , UpperCAmelCase_ ) loss.backward()
714
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase__ : int = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''pix2struct_text_model''' SCREAMING_SNAKE_CASE = ['''past_key_values'''] SCREAMING_SNAKE_CASE = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict , UpperCAmelCase_ : str=50_244 , UpperCAmelCase_ : int=768 , UpperCAmelCase_ : Dict=64 , UpperCAmelCase_ : Tuple=2_048 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : str=1.0 , UpperCAmelCase_ : int="gelu_new" , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : str=False , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Optional[int]=True , **UpperCAmelCase_ : List[Any] , ): """simple docstring""" __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : List[str] = d_kv __UpperCAmelCase : Tuple = d_ff __UpperCAmelCase : Optional[int] = num_layers __UpperCAmelCase : Union[str, Any] = num_heads __UpperCAmelCase : List[str] = relative_attention_num_buckets __UpperCAmelCase : Optional[Any] = relative_attention_max_distance __UpperCAmelCase : str = dropout_rate __UpperCAmelCase : str = layer_norm_epsilon __UpperCAmelCase : int = initializer_factor __UpperCAmelCase : str = use_cache __UpperCAmelCase : Tuple = eos_token_id __UpperCAmelCase : Dict = decoder_start_token_id # for backwards compatibility __UpperCAmelCase : List[str] = dense_act_fn super().__init__( pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , tie_word_embeddings=UpperCAmelCase_ , is_decoder=UpperCAmelCase_ , **UpperCAmelCase_ , ) @classmethod def lowerCamelCase_ ( cls : Optional[int] , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : List[Any] ): """simple docstring""" cls._set_token_in_kwargs(UpperCAmelCase_ ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": __UpperCAmelCase : Optional[Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''pix2struct_vision_model''' def __init__( self : str , UpperCAmelCase_ : Optional[int]=768 , UpperCAmelCase_ : Tuple=768 , UpperCAmelCase_ : str=2_048 , UpperCAmelCase_ : List[Any]=64 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Tuple="gelu_new" , UpperCAmelCase_ : List[str]=1e-6 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : List[str]=1e-10 , UpperCAmelCase_ : Tuple=1.0 , UpperCAmelCase_ : List[str]=4_096 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : str=128 , **UpperCAmelCase_ : Dict , ): """simple docstring""" super().__init__(**UpperCAmelCase_ ) __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : Tuple = patch_embed_hidden_size __UpperCAmelCase : int = d_ff __UpperCAmelCase : List[str] = dropout_rate __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : str = initializer_range __UpperCAmelCase : Tuple = initializer_factor __UpperCAmelCase : Tuple = attention_dropout __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Any = dense_act_fn __UpperCAmelCase : int = seq_len __UpperCAmelCase : Optional[Any] = relative_attention_num_buckets __UpperCAmelCase : str = relative_attention_max_distance __UpperCAmelCase : Dict = d_kv @classmethod def lowerCamelCase_ ( cls : str , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : Optional[int] ): """simple docstring""" cls._set_token_in_kwargs(UpperCAmelCase_ ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("model_type" ) == "pix2struct": __UpperCAmelCase : Any = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_ ) class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''pix2struct''' SCREAMING_SNAKE_CASE = True def __init__( self : Dict , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Any=1.0 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : int=True , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(tie_word_embeddings=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , **UpperCAmelCase_ ) if text_config is None: __UpperCAmelCase : Union[str, Any] = {} logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values." ) if vision_config is None: __UpperCAmelCase : Union[str, Any] = {} logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values." ) __UpperCAmelCase : str = PixaStructTextConfig(**UpperCAmelCase_ ) __UpperCAmelCase : Dict = PixaStructVisionConfig(**UpperCAmelCase_ ) __UpperCAmelCase : Any = self.text_config.decoder_start_token_id __UpperCAmelCase : Dict = self.text_config.pad_token_id __UpperCAmelCase : Tuple = self.text_config.eos_token_id __UpperCAmelCase : int = initializer_factor __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : str = self.initializer_range __UpperCAmelCase : Tuple = self.initializer_range __UpperCAmelCase : Optional[Any] = is_vqa @classmethod def lowerCamelCase_ ( cls : Union[str, Any] , UpperCAmelCase_ : PixaStructTextConfig , UpperCAmelCase_ : PixaStructVisionConfig , **UpperCAmelCase_ : int ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" __UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Dict = self.text_config.to_dict() __UpperCAmelCase : Dict = self.vision_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output
329
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu a = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : Any=None , _snake_case : List[str]=None ) -> Optional[int]: '''simple docstring''' _A = True while ask_again: _A = input(_snake_case ) try: if default is not None and len(_snake_case ) == 0: return default return convert_value(_snake_case ) if convert_value is not None else result except Exception: if error_message is not None: print(_snake_case ) def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any]=[] , _snake_case : str=None , _snake_case : Tuple=0 ) -> Union[str, Any]: '''simple docstring''' _A = BulletMenu(_snake_case , _snake_case ) _A = menu.run(default_choice=_snake_case ) return convert_value(_snake_case ) if convert_value is not None else result def _snake_case ( _snake_case : str ) -> Optional[Any]: '''simple docstring''' _A = int(_snake_case ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def _snake_case ( _snake_case : Any ) -> Tuple: '''simple docstring''' _A = int(_snake_case ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def _snake_case ( _snake_case : List[Any] ) -> Optional[int]: '''simple docstring''' _A = int(_snake_case ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _snake_case ( _snake_case : Tuple ) -> Union[str, Any]: '''simple docstring''' _A = int(_snake_case ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def _snake_case ( _snake_case : Optional[int] ) -> List[str]: '''simple docstring''' _A = int(_snake_case ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def _snake_case ( _snake_case : int ) -> List[Any]: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class lowercase_ ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ): _A = super()._format_usage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = usage.replace('<command> [<args>] ' , '' ) return usage
7
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks if the entire collection has been sorted if len(snake_case_ ) <= 1 or n <= 1: return insert_next(snake_case_ , n - 1 ) rec_insertion_sort(snake_case_ , n - 1 ) def lowercase__ ( snake_case_ :list , snake_case_ :int ): # Checks order between adjacent elements if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __UpperCAmelCase , __UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(snake_case_ , index + 1 ) if __name__ == "__main__": _lowercase : Any = input('Enter integers separated by spaces: ') _lowercase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
49
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _snake_case = logging.get_logger(__name__) def lowerCamelCase_ ( A : np.ndarray , A : Union[int, Iterable[int]] , A : bool , A : int ): """simple docstring""" def constraint_to_multiple_of(A : Tuple , A : Optional[Any] , A : Tuple=0 , A : str=None ): lowerCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase_ = math.ceil(val / multiple ) * multiple return x lowerCAmelCase_ = (output_size, output_size) if isinstance(A , A ) else output_size lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(A ) lowerCAmelCase_ , lowerCAmelCase_ = output_size # determine new height and width lowerCAmelCase_ = output_height / input_height lowerCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase_ = scale_width else: # fit height lowerCAmelCase_ = scale_height lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=A ) lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=A ) return (new_height, new_width) class UpperCamelCase_ ( A ): '''simple docstring''' a :Optional[Any] = ['pixel_values'] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = False , _UpperCAmelCase = 1 , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase) lowerCAmelCase_ = size if size is not None else {'''height''': 384, '''width''': 384} lowerCAmelCase_ = get_size_dict(_UpperCAmelCase) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = 1 , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = None , **_UpperCAmelCase , ): lowerCAmelCase_ = get_size_dict(_UpperCAmelCase) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}') lowerCAmelCase_ = get_resize_output_image_size( _UpperCAmelCase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=_UpperCAmelCase , multiple=_UpperCAmelCase , ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(_UpperCAmelCase) lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = make_list_of_images(_UpperCAmelCase) if not valid_images(_UpperCAmelCase): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(_UpperCAmelCase) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase) for image in images] lowerCAmelCase_ = {'''pixel_values''': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None): lowerCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_UpperCAmelCase) != len(_UpperCAmelCase): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''') if is_torch_tensor(_UpperCAmelCase): lowerCAmelCase_ = target_sizes.numpy() lowerCAmelCase_ = [] for idx in range(len(_UpperCAmelCase)): lowerCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_UpperCAmelCase) lowerCAmelCase_ = resized_logits[0].argmax(dim=0) semantic_segmentation.append(_UpperCAmelCase) else: lowerCAmelCase_ = logits.argmax(dim=1) lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
413
def lowerCamelCase_ ( A : int = 1_00 ): """simple docstring""" lowerCAmelCase_ = (n * (n + 1) // 2) ** 2 lowerCAmelCase_ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'''{solution() = }''')
413
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
484
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) # TODO Update this __A = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "esm" def __init__( self: Optional[int] , __A: str=None , __A: str=None , __A: Dict=None , __A: List[Any]=7_68 , __A: Union[str, Any]=12 , __A: Any=12 , __A: Optional[int]=30_72 , __A: Optional[Any]=0.1 , __A: str=0.1 , __A: str=10_26 , __A: List[str]=0.02 , __A: Any=1e-12 , __A: List[Any]="absolute" , __A: Optional[Any]=True , __A: int=None , __A: List[str]=False , __A: List[Any]=False , __A: List[Any]=None , __A: Dict=None , **__A: Optional[Any] , ) -> List[Any]: super().__init__(pad_token_id=__A , mask_token_id=__A , **__A ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = emb_layer_norm_before _A = token_dropout _A = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _A = EsmFoldConfig() elif isinstance(__A , __A ): _A = EsmFoldConfig(**__A ) _A = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _A = get_default_vocab_list() else: _A = vocab_list else: _A = None _A = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , __A ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A ( self: Dict ) -> Optional[Any]: _A = super().to_dict() if isinstance(self.esmfold_config , __A ): _A = self.esmfold_config.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" A_ = None A_ = True A_ = False A_ = False A_ = False A_ = 0 A_ = True A_ = False A_ = 128 A_ = None def __A ( self: Optional[Any] ) -> List[Any]: if self.trunk is None: _A = TrunkConfig() elif isinstance(self.trunk , __A ): _A = TrunkConfig(**self.trunk ) def __A ( self: Dict ) -> Dict: _A = asdict(self ) _A = self.trunk.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" A_ = 48 A_ = 1_024 A_ = 128 A_ = 32 A_ = 32 A_ = 32 A_ = 0 A_ = 0 A_ = False A_ = 4 A_ = 128 A_ = None def __A ( self: Tuple ) -> Any: if self.structure_module is None: _A = StructureModuleConfig() elif isinstance(self.structure_module , __A ): _A = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _A = self.sequence_state_dim // self.sequence_head_width _A = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def __A ( self: List[str] ) -> Optional[int]: _A = asdict(self ) _A = self.structure_module.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" A_ = 384 A_ = 128 A_ = 16 A_ = 128 A_ = 12 A_ = 4 A_ = 8 A_ = 0.1 A_ = 8 A_ = 1 A_ = 2 A_ = 7 A_ = 10 A_ = 1e-8 A_ = 1e5 def __A ( self: Optional[Any] ) -> str: return asdict(self ) def __A ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
484
1
"""simple docstring""" import fcntl import os import socket import torch import torch.distributed as dist def __magic_name__ ( *__snake_case : int ) -> int: with open(__snake_case , "r" ) as fh: fcntl.flock(__snake_case , fcntl.LOCK_EX ) try: print(*__snake_case ) finally: fcntl.flock(__snake_case , fcntl.LOCK_UN ) _A : Union[str, Any] = int(os.environ["""LOCAL_RANK"""]) torch.cuda.set_device(local_rank) _A : List[str] = torch.device("""cuda""", local_rank) _A : Tuple = socket.gethostname() _A : Tuple = F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("""nccl""") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank _A : Union[str, Any] = dist.get_rank() _A : Any = dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
708
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __magic_name__ ( ) -> int: lowercase : Any = argparse.ArgumentParser() parser.add_argument("--model_ckpt" , type=__snake_case , default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs" , type=__snake_case , default=5 ) parser.add_argument("--batch_size" , type=__snake_case , default=6 ) parser.add_argument("--gradient_accumulation_steps" , type=__snake_case , default=1 ) parser.add_argument("--freeze" , type=__snake_case , default=__snake_case ) parser.add_argument("--learning_rate" , type=__snake_case , default=5E-4 ) parser.add_argument("--seed" , type=__snake_case , default=0 ) parser.add_argument("--lr_scheduler_type" , type=__snake_case , default="cosine" ) parser.add_argument("--num_warmup_steps" , type=__snake_case , default=10 ) parser.add_argument("--weight_decay" , type=__snake_case , default=0.01 ) parser.add_argument("--output_dir" , type=__snake_case , default="./results" ) return parser.parse_args() _A : Tuple = load("""accuracy""") def __magic_name__ ( __snake_case : List[str] ) -> Tuple: lowercase , lowercase : int = eval_pred lowercase : Optional[int] = np.argmax(__snake_case , axis=1 ) return metric.compute(predictions=__snake_case , references=__snake_case ) class a__ ( a_ ): def __init__( self , _a ): super().__init__() lowercase : List[Any] = trainer def __magic_name__ ( self , _a , _a , _a , **_a ): if control.should_evaluate: lowercase : List[str] = deepcopy(_a ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def __magic_name__ ( ) -> List[Any]: lowercase : List[str] = get_args() set_seed(args.seed ) lowercase : Union[str, Any] = load_dataset("codeparrot/codecomplex" , split="train" ) lowercase : str = dataset.train_test_split(test_size=0.2 ) lowercase : Union[str, Any] = train_test["test"].train_test_split(test_size=0.5 ) lowercase : Tuple = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) lowercase : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) lowercase : List[Any] = tokenizer.eos_token lowercase : Any = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) lowercase : Optional[Any] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): lowercase : Any = False lowercase : Optional[int] = ClassLabel(num_classes=7 , names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(__snake_case : str ): lowercase : int = tokenizer(example["src"] , truncation=__snake_case , max_length=1024 ) lowercase : Any = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } lowercase : Dict = train_test_validation.map( __snake_case , batched=__snake_case , remove_columns=train_test_validation["train"].column_names , ) lowercase : List[Any] = DataCollatorWithPadding(tokenizer=__snake_case ) lowercase : Optional[Any] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="epoch" , save_strategy="epoch" , logging_strategy="epoch" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="accuracy" , run_name="complexity-java" , report_to="wandb" , ) lowercase : int = Trainer( model=__snake_case , args=__snake_case , train_dataset=tokenized_datasets["train"] , eval_dataset=tokenized_datasets["valid"] , tokenizer=__snake_case , data_collator=__snake_case , compute_metrics=__snake_case , ) print("Training..." ) trainer.add_callback(CustomCallback(__snake_case ) ) trainer.train() if __name__ == "__main__": main()
518
0
'''simple docstring''' from PIL import Image def __lowerCamelCase ( A__ , A__ ) -> int: """simple docstring""" UpperCamelCase = (259 * (level + 255)) / (255 * (259 - level)) def contrast(A__ ) -> int: return int(128 + factor * (c - 128) ) return img.point(__a ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change contrast to 170 _lowerCamelCase : Optional[int] = change_contrast(img, 170) cont_img.save("image_data/lena_high_contrast.png", format="png")
430
def _lowercase( __a : list[int] ): a__ =len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: a__ , a__ =numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCAmelCase: Tuple = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase: int = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
20
0
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _lowerCamelCase ( __A : Optional[Any] , __A : str , __A : List[str] ) -> int: if gpta_config_file == "": _UpperCAmelCase : Optional[Any] = GPTaConfig() else: _UpperCAmelCase : Dict = GPTaConfig.from_json_file(_lowerCamelCase ) _UpperCAmelCase : Optional[Any] = GPTaModel(_lowerCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model _UpperCAmelCase : List[str] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _UpperCAmelCase : int = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _lowerCamelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
704
def _lowerCamelCase ( __A : int ) -> bool: if not isinstance(__A , __A ): _UpperCAmelCase : Tuple = f'''Input value of [number={number}] must be an integer''' raise TypeError(__A ) if number < 0: return False _UpperCAmelCase : List[str] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
186
0
def __lowerCAmelCase ( UpperCAmelCase__ : Any ) -> Union[str, Any]: lowerCamelCase_ = 1 lowerCamelCase_ = 2 while i * i <= n: lowerCamelCase_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __lowerCAmelCase ( ) -> Tuple: lowerCamelCase_ = 1 lowerCamelCase_ = 1 while True: i += 1 t_num += i if count_divisors(snake_case__ ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
272
import numpy as np def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ = 1E-12 , snake_case__ = 100 , ) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[1] # Ensure proper dimensionality. assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(snake_case__ ) == np.iscomplexobj(snake_case__ ) lowerCAmelCase__ = np.iscomplexobj(snake_case__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(snake_case__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowerCAmelCase__ = False lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 1E12 while not convergence: # Multiple matrix by the vector. lowerCAmelCase__ = np.dot(snake_case__ , snake_case__ ) # Normalize the resulting output vector. lowerCAmelCase__ = w / np.linalg.norm(snake_case__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowerCAmelCase__ = vector.conj().T if is_complex else vector.T lowerCAmelCase__ = np.dot(snake_case__ , np.dot(snake_case__ , snake_case__ ) ) # Check convergence. lowerCAmelCase__ = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowerCAmelCase__ = True lowerCAmelCase__ = lambda_ if is_complex: lowerCAmelCase__ = np.real(lambda_ ) return lambda_, vector def UpperCAmelCase_ ( ) -> None: """simple docstring""" lowerCAmelCase__ = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) lowerCAmelCase__ = np.array([41, 4, 20] ) lowerCAmelCase__ = real_input_matrix.astype(np.complexaaa ) lowerCAmelCase__ = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowerCAmelCase__ = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": lowerCAmelCase__ = real_input_matrix lowerCAmelCase__ = real_vector elif problem_type == "complex": lowerCAmelCase__ = complex_input_matrix lowerCAmelCase__ = complex_vector # Our implementation. lowerCAmelCase__ , lowerCAmelCase__ = power_iteration(snake_case__ , snake_case__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowerCAmelCase__ , lowerCAmelCase__ = np.linalg.eigh(snake_case__ ) # Last eigenvalue is the maximum one. lowerCAmelCase__ = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowerCAmelCase__ = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(snake_case__ ) - np.abs(snake_case__ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
193
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 4_2 SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : List[Any] = None def _A ( ): """simple docstring""" __lowercase = Node(1 ) __lowercase = Node(2 ) __lowercase = Node(3 ) __lowercase = Node(4 ) __lowercase = Node(5 ) return tree def _A ( A__ ): """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _A ( A__ ): """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _A ( A__ ): """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _A ( A__ ): """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _A ( A__ ): """simple docstring""" __lowercase = [] if root is None: return output __lowercase = deque([root] ) while process_queue: __lowercase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] def populate_output(A__ , A__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(snake_case__ , snake_case__ ) return output def _A ( A__ , A__ ): """simple docstring""" __lowercase = [] def populate_output(A__ , A__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(snake_case__ , snake_case__ ) return output def _A ( A__ ): """simple docstring""" if root is None: return [] __lowercase = [] __lowercase = 0 __lowercase = height(snake_case__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case__ , snake_case__ ) ) __lowercase = 1 else: output.append(get_nodes_from_right_to_left(snake_case__ , snake_case__ ) ) __lowercase = 0 return output def _A ( ): # Main function for testing. """simple docstring""" __lowercase = make_tree() print(F"In-order Traversal: {inorder(snake_case__ )}" ) print(F"Pre-order Traversal: {preorder(snake_case__ )}" ) print(F"Post-order Traversal: {postorder(snake_case__ )}" , '''\n''' ) print(F"Height of Tree: {height(snake_case__ )}" , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(snake_case__ ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(snake_case__ ) + 1 ): print(F"Level {level}:" , get_nodes_from_left_to_right(snake_case__ , level=snake_case__ ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
706
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def _A ( A__ ): """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : ArgumentParser ): __lowercase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' ,type=lowercase__ ,default=lowercase__ ,help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' ,action='''store_true''' ,help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' ,action='''store_true''' ,help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' ,) download_parser.add_argument('''model''' ,type=lowercase__ ,help='''Name of the model to download''' ) download_parser.set_defaults(func=lowercase__ ) def __init__( self : str ,lowercase__ : str ,lowercase__ : str ,lowercase__ : bool ,lowercase__ : bool ): __lowercase = model __lowercase = cache __lowercase = force __lowercase = trust_remote_code def SCREAMING_SNAKE_CASE ( self : Any ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
624
0
"""simple docstring""" def _snake_case ( ): for n in range(1 , 100_0000 ): yield n * (n + 1) // 2 def _snake_case ( snake_case__ : List[Any] ): A = 1 A = 2 while i * i <= n: A = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _snake_case ( ): return next(i for i in triangle_number_generator() if count_divisors(snake_case__ ) > 500 ) if __name__ == "__main__": print(solution())
91
def UpperCamelCase__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase__ ) if number < 1: lowercase = f"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase__ ) lowercase = 1 for i in range(1 ,lowerCAmelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
428
0
"""simple docstring""" import datasets from .evaluate import evaluate A = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' A = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' A = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): def A_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': {'id': datasets.Value('string' ), 'prediction_text': datasets.Value('string' )}, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , ) def A_ ( self : List[str] , snake_case : List[Any] , snake_case : Dict ) -> int: '''simple docstring''' A = {prediction['id']: prediction['prediction_text'] for prediction in predictions} A = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] A = evaluate(dataset=snake_case , predictions=snake_case ) return score
109
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( UpperCamelCase ,unittest.TestCase ): lowerCAmelCase_ : Tuple = LayoutLMTokenizer lowerCAmelCase_ : Any = LayoutLMTokenizerFast lowerCAmelCase_ : Optional[int] = True lowerCAmelCase_ : List[Any] = True def A_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() A = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self : str , **snake_case : Tuple ) -> Union[str, Any]: '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def A_ ( self : List[str] , snake_case : int ) -> List[Any]: '''simple docstring''' A = 'UNwant\u00E9d,running' A = 'unwanted, running' return input_text, output_text def A_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' A = self.tokenizer_class(self.vocab_file ) A = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(snake_case , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , [7, 4, 5, 10, 8, 9] ) def A_ ( self : Any ) -> List[Any]: '''simple docstring''' pass
109
1
'''simple docstring''' def a__ ( UpperCamelCase_ : int ): assert column_title.isupper() UpperCAmelCase__ :Union[str, Any] = 0 UpperCAmelCase__ :Optional[Any] = len(__UpperCamelCase ) - 1 UpperCAmelCase__ :Any = 0 while index >= 0: UpperCAmelCase__ :List[Any] = (ord(column_title[index] ) - 64) * pow(26, __UpperCamelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
467
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} A_ = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } A_ = { "allenai/longformer-base-4096": 4_096, "allenai/longformer-large-4096": 4_096, "allenai/longformer-large-4096-finetuned-triviaqa": 4_096, "allenai/longformer-base-4096-extra.pos.embd.only": 4_096, "allenai/longformer-large-4096-extra.pos.embd.only": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Any: lowerCamelCase_ = ( list(range(ord('!' ) ,ord('~' ) + 1 ) ) + list(range(ord('¡' ) ,ord('¬' ) + 1 ) ) + list(range(ord('®' ) ,ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase ,__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ) -> List[str]: lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: lowerCamelCase_ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ ,lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: lowerCamelCase_ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: lowerCamelCase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = ' '.join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = word return word def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' lowerCamelCase_ = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(' ' ) ) return bpe_tokens def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = ''.join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '\n' ) lowerCamelCase_ = 0 with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(SCREAMING_SNAKE_CASE_ ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs)
42
0
# Function to print upper half of diamond (pyramid) def _UpperCAmelCase ( UpperCAmelCase : Optional[int] ): """simple docstring""" for i in range(0 , UpperCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def _UpperCAmelCase ( UpperCAmelCase : Optional[Any] ): """simple docstring""" for i in range(UpperCAmelCase , 0 , -1 ): for _ in range(UpperCAmelCase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def _UpperCAmelCase ( UpperCAmelCase : Union[str, Any] ): """simple docstring""" if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(UpperCAmelCase ) # upper half reverse_floyd(UpperCAmelCase ) # lower half if __name__ == "__main__": print(R'| /\ | |- | |- |--| |\ /| |-') print(R'|/ \| |- |_ |_ |__| | \/ | |_') __UpperCamelCase : Any = 1 while K: __UpperCamelCase : Optional[int] = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) __UpperCamelCase : Union[str, Any] = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
458
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Any = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
458
1
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 50 ): """simple docstring""" lowercase_ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"""{solution() = }""")
620
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
620
1
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int=7 , SCREAMING_SNAKE_CASE__ : Any=3 , SCREAMING_SNAKE_CASE__ : Dict=1_8 , SCREAMING_SNAKE_CASE__ : int=3_0 , SCREAMING_SNAKE_CASE__ : str=4_0_0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Dict=True , ) -> Optional[int]: a_ : int = size if size is not None else {'height': 1_8, 'width': 1_8} a_ : Dict = parent a_ : Tuple = batch_size a_ : List[str] = num_channels a_ : Optional[int] = image_size a_ : int = min_resolution a_ : Optional[Any] = max_resolution a_ : int = do_resize a_ : Any = size a_ : Tuple = do_normalize def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): snake_case__ : List[str] = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: a_ : List[str] = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: a_ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'clusters' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: a_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) a_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: a_ : Dict = self.image_processing_class(**self.image_processor_dict ) a_ : Optional[int] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE__ , obj[key] ) ) else: self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: a_ : Dict = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a_ : str = os.path.join(SCREAMING_SNAKE_CASE__ , 'image_processor.json' ) image_processor_first.to_json_file(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = self.image_processing_class.from_json_file(SCREAMING_SNAKE_CASE__ ).to_dict() a_ : Union[str, Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: a_ : int = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = self.image_processing_class.from_pretrained(SCREAMING_SNAKE_CASE__ ).to_dict() a_ : Union[str, Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE__ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: """simple docstring""" a_ : List[str] = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) a_ : Dict = Image.open(dataset[4]['file'] ) a_ : Optional[Any] = Image.open(dataset[5]['file'] ) a_ : List[Any] = [imagea, imagea] return images @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: a_ : Optional[int] = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) a_ : Union[str, Any] = prepare_images() # test non-batched a_ : Any = image_processing(images[0] , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) a_ : str = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , SCREAMING_SNAKE_CASE__ ) # test batched a_ : str = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) a_ : Optional[int] = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , SCREAMING_SNAKE_CASE__ )
443
from argparse import ArgumentParser from .env import EnvironmentCommand def SCREAMING_SNAKE_CASE_ ( ) -> str: """simple docstring""" a_ : str = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) a_ : Any = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(__A ) # Let's go a_ : int = parser.parse_args() if not hasattr(__A , 'func' ): parser.print_help() exit(1 ) # Run a_ : Union[str, Any] = args.func(__A ) service.run() if __name__ == "__main__": main()
443
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = 42 __lowerCAmelCase = None def lowercase( UpperCamelCase_ , UpperCamelCase_=0.9_9_9 , UpperCamelCase_="cosine" , ) -> Tuple: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase_ ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase_ ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCamelCase = [] for i in range(UpperCamelCase_ ): UpperCamelCase = i / num_diffusion_timesteps UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase_ ) / alpha_bar_fn(UpperCamelCase_ ) , UpperCamelCase_ ) ) return torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase ): @register_to_config def __init__( self : str , lowerCamelCase_ : int = 1000 , lowerCamelCase_ : str = "fixed_small_log" , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[float] = 1.0 , lowerCamelCase_ : str = "epsilon" , lowerCamelCase_ : str = "squaredcos_cap_v2" , ): """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) UpperCamelCase = betas_for_alpha_bar(lowerCamelCase_ ) UpperCamelCase = 1.0 - self.betas UpperCamelCase = torch.cumprod(self.alphas , dim=0 ) UpperCamelCase = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCamelCase = 1.0 # setable values UpperCamelCase = None UpperCamelCase = torch.from_numpy(np.arange(0 , lowerCamelCase_ )[::-1].copy() ) UpperCamelCase = variance_type def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : Optional[int] = None ): """simple docstring""" return sample def lowerCamelCase_ ( self : Any , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, torch.device] = None ): """simple docstring""" UpperCamelCase = num_inference_steps UpperCamelCase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCamelCase = (np.arange(0 , lowerCamelCase_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCamelCase = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : int=None ): """simple docstring""" if prev_timestep is None: UpperCamelCase = t - 1 UpperCamelCase = self.alphas_cumprod[t] UpperCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCamelCase = 1 - alpha_prod_t UpperCamelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCamelCase = self.betas[t] else: UpperCamelCase = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCamelCase = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCamelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCamelCase = torch.log(torch.clamp(lowerCamelCase_ , min=1E-20 ) ) UpperCamelCase = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCamelCase = variance.log() UpperCamelCase = beta.log() UpperCamelCase = (predicted_variance + 1) / 2 UpperCamelCase = frac * max_log + (1 - frac) * min_log return variance def lowerCamelCase_ ( self : str , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : int , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Any=None , lowerCamelCase_ : bool = True , ): """simple docstring""" UpperCamelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCamelCase , UpperCamelCase = torch.split(lowerCamelCase_ , sample.shape[1] , dim=1 ) else: UpperCamelCase = None # 1. compute alphas, betas if prev_timestep is None: UpperCamelCase = t - 1 UpperCamelCase = self.alphas_cumprod[t] UpperCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCamelCase = 1 - alpha_prod_t UpperCamelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCamelCase = self.betas[t] UpperCamelCase = self.alphas[t] else: UpperCamelCase = 1 - alpha_prod_t / alpha_prod_t_prev UpperCamelCase = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCamelCase = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCamelCase = torch.clamp( lowerCamelCase_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCamelCase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCamelCase = 0 if t > 0: UpperCamelCase = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowerCamelCase_ , device=model_output.device ) UpperCamelCase = self._get_variance( lowerCamelCase_ , predicted_variance=lowerCamelCase_ , prev_timestep=lowerCamelCase_ , ) if self.variance_type == "fixed_small_log": UpperCamelCase = variance elif self.variance_type == "learned_range": UpperCamelCase = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" """ for the UnCLIPScheduler.""" ) UpperCamelCase = variance * variance_noise UpperCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowerCamelCase_ , pred_original_sample=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : torch.FloatTensor , lowerCamelCase_ : torch.IntTensor , ): """simple docstring""" UpperCamelCase = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCamelCase = timesteps.to(original_samples.device ) UpperCamelCase = alphas_cumprod[timesteps] ** 0.5 UpperCamelCase = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCamelCase = sqrt_alpha_prod.unsqueeze(-1 ) UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCamelCase = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCamelCase = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
537
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _SCREAMING_SNAKE_CASE = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ _SCREAMING_SNAKE_CASE = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ _SCREAMING_SNAKE_CASE = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def lowerCamelCase_ ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : List[Any]=False ): """simple docstring""" UpperCamelCase = compute_bleu( reference_corpus=lowerCamelCase_ , translation_corpus=lowerCamelCase_ , max_order=lowerCamelCase_ , smooth=lowerCamelCase_ ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
537
1
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def UpperCAmelCase_ ( *_A , _A = None , _A=True , _A=2 ): '''simple docstring''' from .. import __version__ SCREAMING_SNAKE_CASE__ = take_from SCREAMING_SNAKE_CASE__ = () if not isinstance(args[0] , _A ): SCREAMING_SNAKE_CASE__ = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_A ).base_version ) >= version.parse(_A ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) SCREAMING_SNAKE_CASE__ = None if isinstance(_A , _A ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_A ),) SCREAMING_SNAKE_CASE__ = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(_A , _A ): values += (getattr(_A , _A ),) SCREAMING_SNAKE_CASE__ = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: SCREAMING_SNAKE_CASE__ = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: SCREAMING_SNAKE_CASE__ = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , _A , stacklevel=_A ) if isinstance(_A , _A ) and len(_A ) > 0: SCREAMING_SNAKE_CASE__ = inspect.getouterframes(inspect.currentframe() )[1] SCREAMING_SNAKE_CASE__ = call_frame.filename SCREAMING_SNAKE_CASE__ = call_frame.lineno SCREAMING_SNAKE_CASE__ = call_frame.function SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(_A ) == 0: return elif len(_A ) == 1: return values[0] return values
707
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" a = AltDiffusionPipeline a = TEXT_TO_IMAGE_PARAMS a = TEXT_TO_IMAGE_BATCH_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self : Tuple ) -> Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) SCREAMING_SNAKE_CASE__ = CLIPTextModel(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) SCREAMING_SNAKE_CASE__ = 77 SCREAMING_SNAKE_CASE__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase_ ( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int]=0 ) -> Union[str, Any]: if str(__lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : List[Any] ) -> str: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowercase_ ( self : List[Any] ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase_ ( self : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE__ = RobertaSeriesModelWithTransformation(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = text_encoder SCREAMING_SNAKE_CASE__ = AltDiffusionPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''A photo of an astronaut''' SCREAMING_SNAKE_CASE__ = alt_pipe(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE__ = RobertaSeriesModelWithTransformation(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = text_encoder SCREAMING_SNAKE_CASE__ = AltDiffusionPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = alt_pipe(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Tuple ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : str ) -> Any: # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = alt_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE__ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = alt_pipe([prompt] , generator=__lowerCamelCase , num_inference_steps=2 , output_type='''numpy''' ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
472
0
"""simple docstring""" import qiskit def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> Tuple: """simple docstring""" __UpperCAmelCase : Union[str, Any] = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register __UpperCAmelCase : Union[str, Any] = qiskit.QuantumCircuit(_lowerCamelCase , _lowerCamelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __UpperCAmelCase : List[str] = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_lowerCamelCase ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
77
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class _UpperCamelCase : '''simple docstring''' _A : Optional[int] = None _A : Optional[jnp.ndarray] = None _A : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def UpperCamelCase__ ( cls : List[Any] ): """simple docstring""" return cls() @dataclass class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : jnp.ndarray _A : jnp.ndarray _A : KarrasVeSchedulerState class _UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' @property def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" return True @register_to_config def __init__( self : Tuple , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : float = 1_0_0 , lowerCAmelCase__ : float = 1.0_07 , lowerCAmelCase__ : float = 8_0 , lowerCAmelCase__ : float = 0.05 , lowerCAmelCase__ : float = 5_0 , ): """simple docstring""" pass def UpperCamelCase__ ( self : Any ): """simple docstring""" return KarrasVeSchedulerState.create() def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : KarrasVeSchedulerState , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple = () ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = jnp.arange(0 , lowerCAmelCase__ )[::-1].copy() __SCREAMING_SNAKE_CASE : int = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowerCAmelCase__ , schedule=jnp.array(lowerCAmelCase__ , dtype=jnp.floataa ) , timesteps=lowerCAmelCase__ , ) def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : KarrasVeSchedulerState , lowerCAmelCase__ : jnp.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : random.KeyArray , ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: __SCREAMING_SNAKE_CASE : Dict = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: __SCREAMING_SNAKE_CASE : Dict = 0 # sample eps ~ N(0, S_noise^2 * I) __SCREAMING_SNAKE_CASE : Any = random.split(lowerCAmelCase__ , num=1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.config.s_noise * random.normal(key=lowerCAmelCase__ , shape=sample.shape ) __SCREAMING_SNAKE_CASE : Union[str, Any] = sigma + gamma * sigma __SCREAMING_SNAKE_CASE : Tuple = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : KarrasVeSchedulerState , lowerCAmelCase__ : jnp.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : jnp.ndarray , lowerCAmelCase__ : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = sample_hat + sigma_hat * model_output __SCREAMING_SNAKE_CASE : List[Any] = (sample_hat - pred_original_sample) / sigma_hat __SCREAMING_SNAKE_CASE : Any = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase__ , derivative=lowerCAmelCase__ , state=lowerCAmelCase__ ) def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : KarrasVeSchedulerState , lowerCAmelCase__ : jnp.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : jnp.ndarray , lowerCAmelCase__ : jnp.ndarray , lowerCAmelCase__ : jnp.ndarray , lowerCAmelCase__ : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = sample_prev + sigma_prev * model_output __SCREAMING_SNAKE_CASE : Dict = (sample_prev - pred_original_sample) / sigma_prev __SCREAMING_SNAKE_CASE : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase__ , derivative=lowerCAmelCase__ , state=lowerCAmelCase__ ) def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : KarrasVeSchedulerState , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" raise NotImplementedError()
578
0
"""simple docstring""" def _lowerCamelCase ( __a ): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1, len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] SCREAMING_SNAKE_CASE_ = grid[0] for row_n in range(1, len(a__ ) ): SCREAMING_SNAKE_CASE_ = grid[row_n] SCREAMING_SNAKE_CASE_ = fill_row(a__, a__ ) SCREAMING_SNAKE_CASE_ = grid[row_n] return grid[-1][-1] def _lowerCamelCase ( __a, __a ): current_row[0] += row_above[0] for cell_n in range(1, len(a__ ) ): current_row[cell_n] += min(current_row[cell_n - 1], row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" from __future__ import annotations import typing from collections import Counter def _lowerCamelCase ( __a ): SCREAMING_SNAKE_CASE_ = Counter() for base in range(1, max_perimeter + 1 ): for perpendicular in range(__a, max_perimeter + 1 ): SCREAMING_SNAKE_CASE_ = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(__a ): SCREAMING_SNAKE_CASE_ = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _lowerCamelCase ( __a = 1_000 ): SCREAMING_SNAKE_CASE_ = pythagorean_triple(__a ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
628
0
'''simple docstring''' from __future__ import annotations from collections import deque class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ )-> List[str]: '''simple docstring''' UpperCamelCase = [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []} ) for keyword in keywords: self.add_keyword(A_ ) self.set_fail_transitions() def UpperCAmelCase_ ( self , A_ , A_ )-> int | None: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCAmelCase_ ( self , A_ )-> None: '''simple docstring''' UpperCamelCase = 0 for character in keyword: UpperCamelCase = self.find_next_state(A_ , A_ ) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCamelCase = len(self.adlist ) - 1 else: UpperCamelCase = next_state self.adlist[current_state]["output"].append(A_ ) def UpperCAmelCase_ ( self )-> None: '''simple docstring''' UpperCamelCase = deque() for node in self.adlist[0]["next_states"]: q.append(A_ ) UpperCamelCase = 0 while q: UpperCamelCase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(A_ ) UpperCamelCase = self.adlist[r]['fail_state'] while ( self.find_next_state(A_ , self.adlist[child]['value'] ) is None and state != 0 ): UpperCamelCase = self.adlist[state]['fail_state'] UpperCamelCase = self.find_next_state( A_ , self.adlist[child]['value'] ) if self.adlist[child]["fail_state"] is None: UpperCamelCase = 0 UpperCamelCase = ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def UpperCAmelCase_ ( self , A_ )-> dict[str, list[int]]: '''simple docstring''' UpperCamelCase = {} # returns a dict with keywords and list of its occurrences UpperCamelCase = 0 for i in range(len(A_ ) ): while ( self.find_next_state(A_ , string[i] ) is None and current_state != 0 ): UpperCamelCase = self.adlist[current_state]['fail_state'] UpperCamelCase = self.find_next_state(A_ , string[i] ) if next_state is None: UpperCamelCase = 0 else: UpperCamelCase = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCamelCase = [] result[key].append(i - len(A_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' from __future__ import annotations def A_ ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> list: __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __SCREAMING_SNAKE_CASE : Optional[int] = result + left + right return input_list def A_ ( __SCREAMING_SNAKE_CASE : list ) -> list: if len(__SCREAMING_SNAKE_CASE ) <= 1: return input_list __SCREAMING_SNAKE_CASE : Optional[Any] = list(__SCREAMING_SNAKE_CASE ) # iteration for two-way merging __SCREAMING_SNAKE_CASE : Dict = 2 while p <= len(__SCREAMING_SNAKE_CASE ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE : Union[str, Any] = i __SCREAMING_SNAKE_CASE : Optional[int] = i + p - 1 __SCREAMING_SNAKE_CASE : int = (low + high + 1) // 2 __SCREAMING_SNAKE_CASE : Tuple = merge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # final merge of last two parts if p * 2 >= len(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE : Optional[int] = i __SCREAMING_SNAKE_CASE : List[str] = merge(__SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _A = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": _A = [] else: _A = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
158
0
'''simple docstring''' import unittest from transformers import DonutProcessor __lowerCAmelCase : str = "naver-clova-ix/donut-base" class A ( unittest.TestCase ): def snake_case__ ( self : Tuple ) -> List[Any]: __UpperCAmelCase = DonutProcessor.from_pretrained(__a ) def snake_case__ ( self : int ) -> int: __UpperCAmelCase = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } __UpperCAmelCase = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) __UpperCAmelCase = self.processor.tokenajson(__a ) self.assertDictEqual(__a , __a )
654
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = '''realm''' def __init__( self : Tuple ,__A : List[str]=3_0522 ,__A : Any=768 ,__A : Dict=128 ,__A : List[Any]=12 ,__A : Dict=12 ,__A : Union[str, Any]=8 ,__A : Optional[Any]=3072 ,__A : Optional[Any]="gelu_new" ,__A : str=0.1 ,__A : Dict=0.1 ,__A : Optional[int]=512 ,__A : Any=2 ,__A : List[Any]=0.02 ,__A : Any=1e-12 ,__A : List[str]=256 ,__A : Any=10 ,__A : int=1e-3 ,__A : Union[str, Any]=5 ,__A : List[Any]=320 ,__A : List[Any]=1335_3718 ,__A : Tuple=5000 ,__A : str=1 ,__A : Dict=0 ,__A : int=2 ,**__A : Dict ,) -> Optional[int]: super().__init__(pad_token_id=__A ,bos_token_id=__A ,eos_token_id=__A ,**__A ) # Common config _lowercase = vocab_size _lowercase = max_position_embeddings _lowercase = hidden_size _lowercase = retriever_proj_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = num_candidates _lowercase = intermediate_size _lowercase = hidden_act _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = initializer_range _lowercase = type_vocab_size _lowercase = layer_norm_eps # Reader config _lowercase = span_hidden_size _lowercase = max_span_width _lowercase = reader_layer_norm_eps _lowercase = reader_beam_size _lowercase = reader_seq_len # Retrieval config _lowercase = num_block_records _lowercase = searcher_beam_size
67
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
67
1
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right _A = 5_0_0_0_3 _A = 5_0_0_0_2 @require_sentencepiece @require_tokenizers class lowerCamelCase (_SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a = PLBartTokenizer a = None a = False def lowerCAmelCase_ ( self : int ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ = PLBartTokenizer(_snake_case , language_codes="base" , keep_accents=_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : str ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = PLBartTokenizer(_snake_case , language_codes="base" , keep_accents=_snake_case ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_snake_case , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual( _snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.vocab_size SCREAMING_SNAKE_CASE__ = [tokenizer.convert_ids_to_tokens(_snake_case ) for x in range(end - 4 , _snake_case )] self.assertListEqual(_snake_case , ["__java__", "__python__", "__en_XX__", "<mask>"] ) SCREAMING_SNAKE_CASE__ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" SCREAMING_SNAKE_CASE__ = tokenizer(_snake_case ).input_ids self.assertEqual( tokenizer.decode(_snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) , _snake_case , ) def lowerCAmelCase_ ( self : str ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = PLBartTokenizer(_snake_case , language_codes="multi" , keep_accents=_snake_case ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_snake_case , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual( _snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.vocab_size SCREAMING_SNAKE_CASE__ = [tokenizer.convert_ids_to_tokens(_snake_case ) for x in range(end - 7 , _snake_case )] self.assertListEqual( _snake_case , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) SCREAMING_SNAKE_CASE__ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" SCREAMING_SNAKE_CASE__ = tokenizer(_snake_case ).input_ids self.assertEqual( tokenizer.decode(_snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) , _snake_case , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase (unittest.TestCase ): '''simple docstring''' a = "uclanlp/plbart-python-en_XX" a = [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] a = [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] a = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def lowerCAmelCase_ ( cls : int ) -> Dict: SCREAMING_SNAKE_CASE__ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) SCREAMING_SNAKE_CASE__ = 1 return cls def lowerCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 ) def lowerCAmelCase_ ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case ) def lowerCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: self.assertIn(_snake_case , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE__ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] SCREAMING_SNAKE_CASE__ = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case ) SCREAMING_SNAKE_CASE__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case ) self.assertEqual(_snake_case , _snake_case ) self.assertNotIn(self.tokenizer.eos_token , _snake_case ) def lowerCAmelCase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , _snake_case ) SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = self.tokenizer(_snake_case , max_length=_snake_case , truncation=_snake_case ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _snake_case ) self.assertEqual(len(_snake_case ) , _snake_case ) def lowerCAmelCase_ ( self : Optional[int] ) -> List[Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] ) def lowerCAmelCase_ ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_snake_case ) SCREAMING_SNAKE_CASE__ = PLBartTokenizer.from_pretrained(_snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _snake_case ) @require_torch def lowerCAmelCase_ ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors="pt" ) SCREAMING_SNAKE_CASE__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _snake_case ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowerCAmelCase_ ( self : Dict ) -> str: SCREAMING_SNAKE_CASE__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_snake_case , truncation=_snake_case , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) SCREAMING_SNAKE_CASE__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_snake_case , _snake_case ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _snake_case ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCAmelCase_ ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.tokenizer(self.src_text , padding=_snake_case , truncation=_snake_case , max_length=3 , return_tensors="pt" ) SCREAMING_SNAKE_CASE__ = self.tokenizer( text_target=self.tgt_text , padding=_snake_case , truncation=_snake_case , max_length=10 , return_tensors="pt" ) SCREAMING_SNAKE_CASE__ = targets["input_ids"] SCREAMING_SNAKE_CASE__ = shift_tokens_right(_snake_case , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowerCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(_snake_case ) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 50003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 50001, } , )
538
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure)
538
1
from math import factorial def _UpperCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : float ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __lowerCamelCase : str = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __lowerCamelCase : Optional[Any] = float(factorial(UpperCAmelCase ) ) coefficient /= factorial(UpperCAmelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
519
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _UpperCAmelCase ( ): """simple docstring""" __lowerCamelCase : Any = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 20, """a """ * 30, """b """ * 7], } __lowerCamelCase : List[str] = Dataset.from_dict(UpperCAmelCase ) return dataset class _UpperCamelCase ( A ): '''simple docstring''' def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase : Optional[int] = get_dataset() __lowerCamelCase : Dict = make_duplicate_clusters(_lowerCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase : Optional[Any] = get_dataset() __lowerCamelCase , __lowerCamelCase : List[Any] = deduplicate_dataset(_lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) , 2 ) print(_lowerCamelCase ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , _lowerCamelCase )
519
1
from math import isqrt def snake_case_ ( __lowercase ): return all(number % divisor != 0 for divisor in range(2 , isqrt(_lowerCamelCase ) + 1 ) ) def snake_case_ ( __lowercase = 1_0**6 ): UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : Union[str, Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(_lowerCamelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'{solution() = }')
716
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
0
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __lowercase = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ __lowercase = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ __lowercase = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return float((preds == labels).mean() ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="binary" ): '''simple docstring''' A_ = simple_accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ = float(fa_score(y_true=SCREAMING_SNAKE_CASE , y_pred=SCREAMING_SNAKE_CASE , average=SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = {} for id_pred, label in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ = f"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" A_ = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: A_ = [(pred, label)] A_ ,A_ = [], [] for question, preds_labels in question_map.items(): A_ ,A_ = zip(*SCREAMING_SNAKE_CASE ) A_ = fa_score(y_true=SCREAMING_SNAKE_CASE , y_pred=SCREAMING_SNAKE_CASE , average='''macro''' ) fas.append(SCREAMING_SNAKE_CASE ) A_ = int(sum(pred == label for pred, label in preds_labels ) == len(SCREAMING_SNAKE_CASE ) ) ems.append(SCREAMING_SNAKE_CASE ) A_ = float(sum(SCREAMING_SNAKE_CASE ) / len(SCREAMING_SNAKE_CASE ) ) A_ = sum(SCREAMING_SNAKE_CASE ) / len(SCREAMING_SNAKE_CASE ) A_ = float(fa_score(y_true=SCREAMING_SNAKE_CASE , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(lowerCamelCase__ , lowerCamelCase__ )} elif self.config_name == "cb": return acc_and_fa(lowerCamelCase__ , lowerCamelCase__ , fa_avg='''macro''' ) elif self.config_name == "record": A_ = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] A_ = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(lowerCamelCase__ , lowerCamelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(lowerCamelCase__ , lowerCamelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(lowerCamelCase__ , lowerCamelCase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
203
import random class _lowercase : @staticmethod def UpperCamelCase ( lowerCamelCase__ : str ) -> tuple[list[int], list[int]]: """simple docstring""" A_ = [ord(lowerCamelCase__ ) for i in text] A_ = [] A_ = [] for i in plain: A_ = random.randint(1 , 3_0_0 ) A_ = (i + k) * k cipher.append(lowerCamelCase__ ) key.append(lowerCamelCase__ ) return cipher, key @staticmethod def UpperCamelCase ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] ) -> str: """simple docstring""" A_ = [] for i in range(len(lowerCamelCase__ ) ): A_ = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowerCamelCase__ ) ) return "".join(lowerCamelCase__ ) if __name__ == "__main__": __lowercase , __lowercase = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
203
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a : Optional[int] = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Union[str, Any] = ["""PoolFormerFeatureExtractor"""] __a : Dict = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[str] = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys __a : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
522
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(lowercase , lowercase , bias=lowercase ) __lowercase = emb.weight.data return lin_layer def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = torch.load(lowercase , map_location='''cpu''' ) __lowercase = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] __lowercase = mam_aaa['''model'''] remove_ignore_keys_(lowercase ) __lowercase = state_dict['''encoder.embed_tokens.weight'''].shape[0] __lowercase = MaMaaaConfig( vocab_size=lowercase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , ) __lowercase = state_dict['''decoder.embed_tokens.weight'''] __lowercase = MaMaaaForConditionalGeneration(lowercase ) model.model.load_state_dict(lowercase , strict=lowercase ) __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") __a : Union[str, Any] = parser.parse_args() __a : List[str] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
522
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ : Optional[Any] = { "configuration_table_transformer": [ "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TableTransformerConfig", "TableTransformerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : str = [ "TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TableTransformerForObjectDetection", "TableTransformerModel", "TableTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __magic_name__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE__ : Optional[Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class a_ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=14 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=19 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=[1, 2, 3, 4, 5] , SCREAMING_SNAKE_CASE=25 , SCREAMING_SNAKE_CASE=5 , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = prediction_length SCREAMING_SNAKE_CASE_ = context_length SCREAMING_SNAKE_CASE_ = cardinality SCREAMING_SNAKE_CASE_ = num_time_features SCREAMING_SNAKE_CASE_ = lags_sequence SCREAMING_SNAKE_CASE_ = embedding_dimension SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = context_length SCREAMING_SNAKE_CASE_ = prediction_length + label_length SCREAMING_SNAKE_CASE_ = label_length SCREAMING_SNAKE_CASE_ = moving_average SCREAMING_SNAKE_CASE_ = autocorrelation_factor def A_( self ) -> List[str]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A_( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = config.context_length + max(config.lags_sequence ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, _past_length] ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, config.prediction_length] ) SCREAMING_SNAKE_CASE_ = { 'past_values': past_values, 'static_categorical_features': static_categorical_features, 'past_time_features': past_time_features, 'past_observed_mask': past_observed_mask, 'future_time_features': future_time_features, 'future_values': future_values, } return inputs_dict def A_( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_config() SCREAMING_SNAKE_CASE_ = self.prepare_autoformer_inputs_dict(SCREAMING_SNAKE_CASE ) return config, inputs_dict def A_( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() return config, inputs_dict def A_( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoformerModel(config=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ).eval() SCREAMING_SNAKE_CASE_ = model(**SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = outputs.encoder_last_hidden_state SCREAMING_SNAKE_CASE_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = model.get_encoder() encoder.save_pretrained(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = AutoformerEncoder.from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model.create_network_inputs(**SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) SCREAMING_SNAKE_CASE_ = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) SCREAMING_SNAKE_CASE_ = encoder(inputs_embeds=SCREAMING_SNAKE_CASE )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) SCREAMING_SNAKE_CASE_ = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) SCREAMING_SNAKE_CASE_ = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) SCREAMING_SNAKE_CASE_ = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) SCREAMING_SNAKE_CASE_ = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = model.get_decoder() decoder.save_pretrained(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = AutoformerDecoder.from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = decoder( trend=SCREAMING_SNAKE_CASE , inputs_embeds=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class a_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): A = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () A = (AutoformerForPrediction,) if is_torch_available() else () A = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} A = False A = False A = False A = False A = False A = False def A_( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoformerModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE ) def A_( self ) -> int: """simple docstring""" self.config_tester.run_common_tests() def A_( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_class.from_pretrained(SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) self.assertEqual(info['missing_keys'] , [] ) def A_( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*SCREAMING_SNAKE_CASE ) @unittest.skip(reason='Model has no tokens embeddings' ) def A_( self ) -> Union[str, Any]: """simple docstring""" pass def A_( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = inspect.signature(getattr(SCREAMING_SNAKE_CASE , 'forward' ) ) # The main input is the name of the argument after `self` SCREAMING_SNAKE_CASE_ = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , SCREAMING_SNAKE_CASE ) def A_( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = [ 'past_values', 'past_time_features', 'past_observed_mask', 'static_categorical_features', 'static_real_features', 'future_values', 'future_time_features', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('future_observed_mask' ) expected_arg_names.extend( [ 'decoder_attention_mask', 'head_mask', 'decoder_head_mask', 'cross_attn_head_mask', 'encoder_outputs', 'past_key_values', 'output_hidden_states', 'output_attentions', 'use_cache', 'return_dict', ] ) self.assertListEqual(arg_names[: len(SCREAMING_SNAKE_CASE )] , SCREAMING_SNAKE_CASE ) def A_( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'seq_length' , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'decoder_seq_length' , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'encoder_seq_length' , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'd_model' , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = getattr(self.model_tester , 'num_attention_heads' , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = d_model // num_attention_heads for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) SCREAMING_SNAKE_CASE_ = len(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # decoder attentions SCREAMING_SNAKE_CASE_ = outputs.decoder_attentions self.assertIsInstance(SCREAMING_SNAKE_CASE , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions SCREAMING_SNAKE_CASE_ = outputs.cross_attentions self.assertIsInstance(SCREAMING_SNAKE_CASE , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + 2 , len(SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A_( self ) -> Any: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowercase ( SCREAMING_SNAKE_CASE="train-batch.pt" ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_ = hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=SCREAMING_SNAKE_CASE , repo_type='dataset' ) SCREAMING_SNAKE_CASE_ = torch.load(SCREAMING_SNAKE_CASE , map_location=SCREAMING_SNAKE_CASE ) return batch @require_torch @slow class a_ ( unittest.TestCase ): def A_( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = prepare_batch() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , future_values=batch['future_values'] , future_time_features=batch['future_time_features'] , )[0] SCREAMING_SNAKE_CASE_ = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(output[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) ) def A_( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = prepare_batch('val-batch.pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , ).encoder_last_hidden_state SCREAMING_SNAKE_CASE_ = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(output[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE ) ) def A_( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = prepare_batch('val-batch.pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model.generate( static_categorical_features=batch['static_categorical_features'] , past_time_features=batch['past_time_features'] , past_values=batch['past_values'] , future_time_features=batch['future_time_features'] , past_observed_mask=batch['past_observed_mask'] , ) SCREAMING_SNAKE_CASE_ = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , SCREAMING_SNAKE_CASE , rtol=1e-1 ) )
205
0
'''simple docstring''' from __future__ import annotations from typing import TypedDict class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' if not isinstance(__A , __A ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__A ) )] def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' if not isinstance(__A , __A ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) snake_case: int = all_rotations(__A ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation snake_case: Tuple = { 'bwt_string': ''.join([word[-1] for word in rotations] ), 'idx_original_string': rotations.index(__A ), } return response def lowerCAmelCase_ ( __A : List[Any] , __A : Dict ): '''simple docstring''' if not isinstance(__A , __A ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: snake_case: List[str] = int(__A ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__A ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) snake_case: str = [''] * len(__A ) for _ in range(len(__A ) ): for i in range(len(__A ) ): snake_case: Optional[int] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __UpperCAmelCase = "Provide a string that I will generate its BWT transform: " __UpperCAmelCase = input(entry_msg).strip() __UpperCAmelCase = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) __UpperCAmelCase = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
703
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = "layer_norm" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: List[str] = only_cross_attention snake_case: Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' snake_case: Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case: List[str] = AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case: str = AdaLayerNormZero(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = Attention( query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case: Tuple = ( AdaLayerNorm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = Attention( query_dim=SCREAMING_SNAKE_CASE__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , upcast_attention=SCREAMING_SNAKE_CASE__ , ) # is self-attn if encoder_hidden_states is none else: snake_case: int = None snake_case: Tuple = None # 3. Feed-forward snake_case: Union[str, Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = FeedForward(SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , final_dropout=SCREAMING_SNAKE_CASE__ ) # let chunk size default to None snake_case: Any = None snake_case: Any = 0 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = chunk_size snake_case: str = dim def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , ): '''simple docstring''' if self.use_ada_layer_norm: snake_case: Optional[int] = self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.use_ada_layer_norm_zero: snake_case , snake_case , snake_case , snake_case , snake_case: int = self.norma( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=hidden_states.dtype ) else: snake_case: List[str] = self.norma(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case: List[str] = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if self.use_ada_layer_norm_zero: snake_case: Tuple = gate_msa.unsqueeze(1 ) * attn_output snake_case: List[str] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case: Dict = ( self.norma(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm else self.norma(SCREAMING_SNAKE_CASE__ ) ) snake_case: Any = self.attna( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) snake_case: List[str] = attn_output + hidden_states # 3. Feed-forward snake_case: str = self.norma(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) snake_case: List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case: Optional[Any] = torch.cat( [self.ff(SCREAMING_SNAKE_CASE__ ) for hid_slice in norm_hidden_states.chunk(SCREAMING_SNAKE_CASE__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: snake_case: int = self.ff(SCREAMING_SNAKE_CASE__ ) if self.use_ada_layer_norm_zero: snake_case: Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case: Tuple = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 4 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = "geglu" , SCREAMING_SNAKE_CASE__ = False , ): '''simple docstring''' super().__init__() snake_case: int = int(dim * mult ) snake_case: Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case: int = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if activation_fn == "gelu-approximate": snake_case: Optional[Any] = GELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , approximate='tanh' ) elif activation_fn == "geglu": snake_case: List[Any] = GEGLU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif activation_fn == "geglu-approximate": snake_case: Optional[int] = ApproximateGELU(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.ModuleList([] ) # project in self.net.append(SCREAMING_SNAKE_CASE__ ) # project dropout self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) # project out self.net.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for module in self.net: snake_case: Optional[int] = module(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = "none" ): '''simple docstring''' super().__init__() snake_case: Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = approximate def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.proj(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = self.gelu(SCREAMING_SNAKE_CASE__ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Tuple = nn.Linear(SCREAMING_SNAKE_CASE__ , dim_out * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: int = self.proj(SCREAMING_SNAKE_CASE__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[int] = self.proj(SCREAMING_SNAKE_CASE__ ) return x * torch.sigmoid(1.7_02 * x ) class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: Optional[Any] = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = nn.SiLU() snake_case: Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , embedding_dim * 2 ) snake_case: int = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Dict = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case: Dict = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 ) snake_case: str = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' super().__init__() snake_case: str = CombinedTimestepLabelEmbeddings(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: int = nn.SiLU() snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , 6 * embedding_dim , bias=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE__ , elementwise_affine=SCREAMING_SNAKE_CASE__ , eps=1E-6 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): '''simple docstring''' snake_case: int = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hidden_dtype=SCREAMING_SNAKE_CASE__ ) ) ) snake_case , snake_case , snake_case , snake_case , snake_case , snake_case: str = emb.chunk(6 , dim=1 ) snake_case: Dict = self.norm(SCREAMING_SNAKE_CASE__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1E-5 ): '''simple docstring''' super().__init__() snake_case: str = num_groups snake_case: str = eps if act_fn is None: snake_case: Dict = None else: snake_case: List[str] = get_activation(SCREAMING_SNAKE_CASE__ ) snake_case: Any = nn.Linear(SCREAMING_SNAKE_CASE__ , out_dim * 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.act: snake_case: Optional[Any] = self.act(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = self.linear(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = emb[:, :, None, None] snake_case , snake_case: List[Any] = emb.chunk(2 , dim=1 ) snake_case: Any = F.group_norm(SCREAMING_SNAKE_CASE__ , self.num_groups , eps=self.eps ) snake_case: Optional[int] = x * (1 + scale) + shift return x
692
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowercase_ : Optional[Any] = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowercase_ : Optional[Any] = [ord(letter) for letter in string.ascii_lowercase] lowercase_ : Optional[int] = {ord(char) for char in VALID_CHARS} lowercase_ : Optional[int] = ['''the''', '''be''', '''to''', '''of''', '''and''', '''in''', '''that''', '''have'''] def _lowerCAmelCase ( lowerCamelCase__ : int, lowerCamelCase__ : Optional[int] ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : str = "" _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : int for keychar, cipherchar in zip(cycle(lowerCamelCase__ ), lowerCamelCase__ ): _SCREAMING_SNAKE_CASE : str = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowerCamelCase__ ) return decoded def _lowerCAmelCase ( lowerCamelCase__ : int ) -> Dict: _SCREAMING_SNAKE_CASE : list[str] = [] for key in product(lowerCamelCase__, repeat=3 ): _SCREAMING_SNAKE_CASE : Union[str, Any] = try_key(lowerCamelCase__, lowerCamelCase__ ) if encoded is not None: possibles.append(lowerCamelCase__ ) return possibles def _lowerCAmelCase ( lowerCamelCase__ : str, lowerCamelCase__ : Dict ) -> Dict: return [possible for possible in possibles if common_word in possible.lower()] def _lowerCAmelCase ( lowerCamelCase__ : str = "p059_cipher.txt" ) -> Tuple: _SCREAMING_SNAKE_CASE : list[int] _SCREAMING_SNAKE_CASE : list[str] _SCREAMING_SNAKE_CASE : str _SCREAMING_SNAKE_CASE : str _SCREAMING_SNAKE_CASE : str = Path(lowerCamelCase__ ).parent.joinpath(lowerCamelCase__ ).read_text(encoding="utf-8" ) _SCREAMING_SNAKE_CASE : int = [int(lowerCamelCase__ ) for number in data.strip().split("," )] _SCREAMING_SNAKE_CASE : Any = filter_valid_chars(lowerCamelCase__ ) for common_word in COMMON_WORDS: _SCREAMING_SNAKE_CASE : Tuple = filter_common_word(lowerCamelCase__, lowerCamelCase__ ) if len(lowerCamelCase__ ) == 1: break _SCREAMING_SNAKE_CASE : Optional[int] = possibles[0] return sum(ord(lowerCamelCase__ ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
572
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = KandinskyVaaImgaImgPipeline snake_case = ["image_embeds", "negative_image_embeds", "image"] snake_case = [ "image_embeds", "negative_image_embeds", "image", ] snake_case = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case = False @property def _snake_case ( self )->Optional[int]: '''simple docstring''' return 32 @property def _snake_case ( self )->Optional[Any]: '''simple docstring''' return 32 @property def _snake_case ( self )->List[Any]: '''simple docstring''' return self.time_input_dim @property def _snake_case ( self )->str: '''simple docstring''' return self.time_input_dim * 4 @property def _snake_case ( self )->Union[str, Any]: '''simple docstring''' return 100 @property def _snake_case ( self )->Optional[int]: '''simple docstring''' torch.manual_seed(0 ) A_ : Optional[int] = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } A_ : Tuple = UNetaDConditionModel(**_SCREAMING_SNAKE_CASE ) return model @property def _snake_case ( self )->int: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _snake_case ( self )->Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ : int = VQModel(**self.dummy_movq_kwargs ) return model def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Dict = self.dummy_unet A_ : Optional[int] = self.dummy_movq A_ : Dict = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } A_ : List[Any] = DDIMScheduler(**_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 )->List[str]: '''simple docstring''' A_ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) A_ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _SCREAMING_SNAKE_CASE ) # create init_image A_ : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) A_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ : Optional[int] = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert('''RGB''' ).resize((256, 256) ) if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ : Optional[int] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ : Tuple = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ : Dict = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Any = '''cpu''' A_ : List[str] = self.get_dummy_components() A_ : Any = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) A_ : int = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : List[str] = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) A_ : Optional[Any] = output.images A_ : Union[str, Any] = pipe( **self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) , return_dict=_SCREAMING_SNAKE_CASE , )[0] A_ : Any = image[0, -3:, -3:, -1] A_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : Any = np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self )->Dict: '''simple docstring''' A_ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) A_ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) A_ : Dict = '''A red cartoon frog, 4k''' A_ : List[str] = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_SCREAMING_SNAKE_CASE ) A_ : int = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) A_ : int = pipeline.to(_SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) A_ , A_ : Optional[Any] = pipe_prior( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() A_ : List[Any] = pipeline( image=_SCREAMING_SNAKE_CASE , image_embeds=_SCREAMING_SNAKE_CASE , negative_image_embeds=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) A_ : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
590
0
import copy import random from transformers import CLIPTokenizer class lowerCAmelCase_ ( _UpperCAmelCase ): def __init__( self ,*snake_case__ ,**snake_case__ ): super().__init__(*A_ ,**A_ ) SCREAMING_SNAKE_CASE_ : Dict = {} def snake_case ( self ,snake_case__ ,*snake_case__ ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = super().add_tokens(A_ ,*A_ ,**A_ ) if num_added_tokens == 0: raise ValueError( F'The tokenizer already contains the token {placeholder_token}. Please pass a different' ' `placeholder_token` that is not already in the tokenizer.' ) def snake_case ( self ,snake_case__ ,*snake_case__ ,snake_case__=1 ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = [] if num_vec_per_token == 1: self.try_adding_tokens(A_ ,*A_ ,**A_ ) output.append(A_ ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for i in range(A_ ): SCREAMING_SNAKE_CASE_ : List[str] = placeholder_token + F'_{i}' self.try_adding_tokens(A_ ,*A_ ,**A_ ) output.append(A_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'The tokenizer already has placeholder token {token} that can get confused with' F' {placeholder_token}keep placeholder tokens independent' ) SCREAMING_SNAKE_CASE_ : Any = output def snake_case ( self ,snake_case__ ,snake_case__=False ,snake_case__=1.0 ): if isinstance(A_ ,A_ ): SCREAMING_SNAKE_CASE_ : Tuple = [] for i in range(len(A_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] ,vector_shuffle=A_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: SCREAMING_SNAKE_CASE_ : Tuple = self.token_map[placeholder_token] SCREAMING_SNAKE_CASE_ : Optional[int] = tokens[: 1 + int(len(A_ ) * prop_tokens_to_load )] if vector_shuffle: SCREAMING_SNAKE_CASE_ : Tuple = copy.copy(A_ ) random.shuffle(A_ ) SCREAMING_SNAKE_CASE_ : int = text.replace(A_ ,' '.join(A_ ) ) return text def __call__( self ,snake_case__ ,*snake_case__ ,snake_case__=False ,snake_case__=1.0 ,**snake_case__ ): return super().__call__( self.replace_placeholder_tokens_in_text( A_ ,vector_shuffle=A_ ,prop_tokens_to_load=A_ ) ,*A_ ,**A_ ,) def snake_case ( self ,snake_case__ ,*snake_case__ ,snake_case__=False ,snake_case__=1.0 ,**snake_case__ ): return super().encode( self.replace_placeholder_tokens_in_text( A_ ,vector_shuffle=A_ ,prop_tokens_to_load=A_ ) ,*A_ ,**A_ ,)
705
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ) -> int: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE_ : str = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = is_small_dataset(lowerCamelCase_ ) assert result == expected
685
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
517
'''simple docstring''' import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline SCREAMING_SNAKE_CASE_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def lowerCamelCase__ ( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__=False , ) -> Optional[Any]: """simple docstring""" output_path.parent.mkdir(parents=a__ , exist_ok=a__) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( a__ , a__ , f=output_path.as_posix() , input_names=a__ , output_names=a__ , dynamic_axes=a__ , do_constant_folding=a__ , use_external_data_format=a__ , enable_onnx_checker=a__ , opset_version=a__ , ) else: export( a__ , a__ , f=output_path.as_posix() , input_names=a__ , output_names=a__ , dynamic_axes=a__ , do_constant_folding=a__ , opset_version=a__ , ) @torch.no_grad() def lowerCamelCase__ ( a__ , a__ , a__ , a__ = False) -> List[str]: """simple docstring""" _snake_case : Dict = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _snake_case : Optional[Any] = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA') else: _snake_case : List[str] = 'cpu' _snake_case : Optional[Any] = StableDiffusionPipeline.from_pretrained(a__ , torch_dtype=a__).to(a__) _snake_case : Tuple = Path(a__) # TEXT ENCODER _snake_case : List[str] = pipeline.text_encoder.config.max_position_embeddings _snake_case : Any = pipeline.text_encoder.config.hidden_size _snake_case : Union[str, Any] = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=a__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=a__ , dtype=torch.intaa)) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=a__ , ) del pipeline.text_encoder # UNET _snake_case : List[Any] = pipeline.unet.config.in_channels _snake_case : List[Any] = pipeline.unet.config.sample_size _snake_case : Dict = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , a__ , a__ , a__).to(device=a__ , dtype=a__), torch.randn(2).to(device=a__ , dtype=a__), torch.randn(2 , a__ , a__).to(device=a__ , dtype=a__), False, ) , output_path=a__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=a__ , use_external_data_format=a__ , ) _snake_case : Optional[Any] = str(unet_path.absolute().as_posix()) _snake_case : int = os.path.dirname(a__) _snake_case : int = onnx.load(a__) # clean up existing tensor files shutil.rmtree(a__) os.mkdir(a__) # collate external tensor files into one onnx.save_model( a__ , a__ , save_as_external_data=a__ , all_tensors_to_one_file=a__ , location='weights.pb' , convert_attribute=a__ , ) del pipeline.unet # VAE ENCODER _snake_case : Optional[int] = pipeline.vae _snake_case : List[str] = vae_encoder.config.in_channels _snake_case : str = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder _snake_case : str = lambda a__ , a__: vae_encoder.encode(a__ , a__)[0].sample() onnx_export( a__ , model_args=( torch.randn(1 , a__ , a__ , a__).to(device=a__ , dtype=a__), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=a__ , ) # VAE DECODER _snake_case : str = pipeline.vae _snake_case : Tuple = vae_decoder.config.latent_channels _snake_case : List[Any] = vae_decoder.config.out_channels # forward only through the decoder part _snake_case : Optional[Any] = vae_encoder.decode onnx_export( a__ , model_args=( torch.randn(1 , a__ , a__ , a__).to(device=a__ , dtype=a__), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=a__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: _snake_case : Optional[Any] = pipeline.safety_checker _snake_case : List[str] = safety_checker.config.vision_config.num_channels _snake_case : Tuple = safety_checker.config.vision_config.image_size _snake_case : int = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , a__ , a__ , a__ , ).to(device=a__ , dtype=a__), torch.randn(1 , a__ , a__ , a__).to(device=a__ , dtype=a__), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=a__ , ) del pipeline.safety_checker _snake_case : Any = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker') _snake_case : Dict = pipeline.feature_extractor else: _snake_case : List[Any] = None _snake_case : int = None _snake_case : Dict = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder') , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder') , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder') , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet') , scheduler=pipeline.scheduler , safety_checker=a__ , feature_extractor=a__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(a__) print('ONNX pipeline saved to' , a__) del pipeline del onnx_pipeline _snake_case : str = OnnxStableDiffusionPipeline.from_pretrained(a__ , provider='CPUExecutionProvider') print('ONNX pipeline is loadable') if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
517
1
import re def __UpperCAmelCase ( __A ) -> List[Any]: '''simple docstring''' return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def __UpperCAmelCase ( __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def __UpperCAmelCase ( __A , __A , __A ) -> str: '''simple docstring''' try: UpperCAmelCase__ = split_input(__snake_case ) if upper: UpperCAmelCase__ = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: UpperCAmelCase__ = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def __UpperCAmelCase ( __A ) -> int: '''simple docstring''' return to_simple_case(__snake_case ) def __UpperCAmelCase ( __A ) -> Optional[int]: '''simple docstring''' try: UpperCAmelCase__ = to_simple_case(__snake_case ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def __UpperCAmelCase ( __A , __A ) -> Optional[int]: '''simple docstring''' return to_complex_case(__snake_case , __snake_case , "_" ) def __UpperCAmelCase ( __A , __A ) -> str: '''simple docstring''' return to_complex_case(__snake_case , __snake_case , "-" ) if __name__ == "__main__": __import__("doctest").testmod()
705
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A = logging.getLogger(__name__) @dataclass class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) A__= field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to SortishSamler or not.'} ) A__= field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) A__= field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'whether to use adafactor'} ) A__= field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) A__= field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) A__= field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Dropout probability. Goes into model.config.'} ) A__= field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) A__= field( default='linear' , metadata={'help': f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
277
0
"""simple docstring""" from pathlib import Path import fire def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :Any = Path(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[str] = Path(_SCREAMING_SNAKE_CASE ) dest_dir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) for path in src_dir.iterdir(): lowerCAmelCase__ :Tuple = [x.rstrip() for x in list(path.open().readlines() )][:n] lowerCAmelCase__ :Optional[Any] = dest_dir.joinpath(path.name ) print(_SCREAMING_SNAKE_CASE ) dest_path.open('w' ).write('\n'.join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": fire.Fire(minify)
93
__lowerCamelCase : Optional[Any] = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on __lowerCamelCase : int = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( _a : str ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( _a : str ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ): '''simple docstring''' snake_case__ : List[Any] ="""Morse code here!""" print(_a ) snake_case__ : Union[str, Any] =encrypt(_a ) print(_a ) snake_case__ : Optional[int] =decrypt(_a ) print(_a ) if __name__ == "__main__": main()
385
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class snake_case ( unittest.TestCase ): '''simple docstring''' def A_ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Optional[int] = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __UpperCAmelCase : List[str] = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __UpperCAmelCase : Any = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __UpperCAmelCase : Dict = {'''unk_token''': '''<unk>'''} __UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __UpperCAmelCase : List[str] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __UpperCAmelCase : Any = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def A_ ( self : Optional[Any] , **__lowercase : Tuple ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def A_ ( self : Any , **__lowercase : Optional[Any] ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def A_ ( self : Dict , **__lowercase : str ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def A_ ( self : List[str] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A_ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCAmelCase : int = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.get_tokenizer() __UpperCAmelCase : Dict = self.get_rust_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Any = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __UpperCAmelCase : List[Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __UpperCAmelCase : Tuple = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __UpperCAmelCase : str = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def A_ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Any = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __UpperCAmelCase : Tuple = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __UpperCAmelCase : List[str] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def A_ ( self : int ): '''simple docstring''' __UpperCAmelCase : int = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __UpperCAmelCase : List[Any] = self.prepare_image_inputs() __UpperCAmelCase : Dict = image_processor(__lowercase , return_tensors='''np''' ) __UpperCAmelCase : Optional[int] = processor(images=__lowercase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : Any = self.get_tokenizer() __UpperCAmelCase : Any = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __UpperCAmelCase : int = '''lower newer''' __UpperCAmelCase : int = processor(text=__lowercase ) __UpperCAmelCase : Any = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A_ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : Union[str, Any] = self.get_tokenizer() __UpperCAmelCase : List[Any] = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __UpperCAmelCase : str = '''lower newer''' __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : str = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def A_ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Any = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __UpperCAmelCase : Union[str, Any] = self.prepare_image_inputs() __UpperCAmelCase : Optional[Any] = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(images=__lowercase , visual_prompt=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def A_ ( self : str ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.get_image_processor() __UpperCAmelCase : Any = self.get_tokenizer() __UpperCAmelCase : Any = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __UpperCAmelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : int = processor.batch_decode(__lowercase ) __UpperCAmelCase : int = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase )
374
"""simple docstring""" def lowerCamelCase_ ( ) ->str: """simple docstring""" for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def lowerCamelCase_ ( UpperCAmelCase_ ) ->Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Any = 2 while i * i <= n: __UpperCAmelCase : Tuple = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCamelCase_ ( ) ->Optional[int]: """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(UpperCAmelCase_ ) > 5_00 ) if __name__ == "__main__": print(solution())
374
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger() @dataclass class snake_case : '''simple docstring''' UpperCAmelCase : nn.Module UpperCAmelCase : List[nn.Module] = field(default_factory=lowerCAmelCase__ ) UpperCAmelCase : list = field(default_factory=lowerCAmelCase__ ) def _lowercase ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tensor , lowerCAmelCase_ : Tensor ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase_ , nn.Convad ) or isinstance(lowerCAmelCase_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCAmelCase_ ) def __call__( self : Union[str, Any] , lowerCAmelCase_ : Tensor ) -> Any: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCAmelCase_ ) [x.remove() for x in self.handles] return self @property def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return list(filter(lambda lowerCAmelCase_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class snake_case : '''simple docstring''' UpperCAmelCase : nn.Module UpperCAmelCase : nn.Module UpperCAmelCase : int = 0 UpperCAmelCase : List = field(default_factory=lowerCAmelCase__ ) UpperCAmelCase : List = field(default_factory=lowerCAmelCase__ ) def __call__( self : int , lowerCAmelCase_ : Tensor ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = Tracker(self.dest )(lowerCAmelCase_ ).parametrized SCREAMING_SNAKE_CASE_ = Tracker(self.src )(lowerCAmelCase_ ).parametrized SCREAMING_SNAKE_CASE_ = list(filter(lambda lowerCAmelCase_ : type(lowerCAmelCase_ ) not in self.src_skip , lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda lowerCAmelCase_ : type(lowerCAmelCase_ ) not in self.dest_skip , lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCAmelCase_ )} operations while''' F''' destination module has {len(lowerCAmelCase_ )}.''' ) for dest_m, src_m in zip(lowerCAmelCase_ , lowerCAmelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase = True )-> Any: '''simple docstring''' print(f'''Converting {name}...''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = timm.create_model(UpperCAmelCase ,pretrained=UpperCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = ResNetForImageClassification(UpperCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = ModuleTransfer(src=UpperCAmelCase ,dest=UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.randn((1, 3, 224, 224) ) module_transfer(UpperCAmelCase ) assert torch.allclose(from_model(UpperCAmelCase ) ,our_model(UpperCAmelCase ).logits ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE_ = f'''resnet{'-'.join(name.split('resnet' ) )}''' print(UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name ,commit_message='''Add model''' ,use_temp_dir=UpperCAmelCase ,) # we can use the convnext one SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name ,commit_message='''Add image processor''' ,use_temp_dir=UpperCAmelCase ,) print(f'''Pushed {checkpoint_name}''' ) def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase = None ,UpperCAmelCase = True )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_ = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE_ = 1000 SCREAMING_SNAKE_CASE_ = (1, num_labels) SCREAMING_SNAKE_CASE_ = '''huggingface/label-files''' SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(UpperCAmelCase ,UpperCAmelCase ,repo_type='''dataset''' ) ,'''r''' ) ) SCREAMING_SNAKE_CASE_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = partial(UpperCAmelCase ,num_labels=UpperCAmelCase ,idalabel=UpperCAmelCase ,labelaid=UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] ,hidden_sizes=[64, 128, 256, 512] ,layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] ,hidden_sizes=[64, 128, 256, 512] ,layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(UpperCAmelCase ,names_to_config[model_name] ,UpperCAmelCase ,UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) A_ = parser.parse_args() A_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
393
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class snake_case ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def _lowercase ( self : int , lowerCAmelCase_ : str=0 ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE_ = np.random.RandomState(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.75, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowercase ( self : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ = pipe(**lowerCAmelCase_ ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_ = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowercase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) SCREAMING_SNAKE_CASE_ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ = pipe(**lowerCAmelCase_ ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_ = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) SCREAMING_SNAKE_CASE_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) # warmup pass to apply optimizations SCREAMING_SNAKE_CASE_ = pipe(**self.get_dummy_inputs() ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ = pipe(**lowerCAmelCase_ ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_ = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) SCREAMING_SNAKE_CASE_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ = pipe(**lowerCAmelCase_ ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_ = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) SCREAMING_SNAKE_CASE_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ = pipe(**lowerCAmelCase_ ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_ = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) SCREAMING_SNAKE_CASE_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ = pipe(**lowerCAmelCase_ ).images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_ = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class snake_case ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self : Any ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = ort.SessionOptions() SCREAMING_SNAKE_CASE_ = False return options def _lowercase ( self : Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) SCREAMING_SNAKE_CASE_ = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowercase ( self : Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) SCREAMING_SNAKE_CASE_ = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE_ = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) SCREAMING_SNAKE_CASE_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCAmelCase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) SCREAMING_SNAKE_CASE_ = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
393
1
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class __A ( UpperCamelCase__ ): UpperCamelCase = """efficientnet""" def __init__( self :int , __snake_case :int = 3 , __snake_case :int = 6_00 , __snake_case :float = 2.0 , __snake_case :float = 3.1 , __snake_case :int = 8 , __snake_case :List[int] = [3, 3, 5, 3, 5, 5, 3] , __snake_case :List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , __snake_case :List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , __snake_case :List[int] = [] , __snake_case :List[int] = [1, 2, 2, 2, 1, 2, 1] , __snake_case :List[int] = [1, 2, 2, 3, 3, 4, 1] , __snake_case :List[int] = [1, 6, 6, 6, 6, 6, 6] , __snake_case :float = 0.25 , __snake_case :str = "swish" , __snake_case :int = 25_60 , __snake_case :str = "mean" , __snake_case :float = 0.02 , __snake_case :float = 0.001 , __snake_case :float = 0.99 , __snake_case :float = 0.5 , __snake_case :float = 0.2 , **__snake_case :List[Any] , ): '''simple docstring''' super().__init__(**__snake_case ) __magic_name__ : Optional[Any] =num_channels __magic_name__ : Tuple =image_size __magic_name__ : Union[str, Any] =width_coefficient __magic_name__ : Dict =depth_coefficient __magic_name__ : Union[str, Any] =depth_divisor __magic_name__ : int =kernel_sizes __magic_name__ : Any =in_channels __magic_name__ : Optional[Any] =out_channels __magic_name__ : Optional[int] =depthwise_padding __magic_name__ : Optional[int] =strides __magic_name__ : Dict =num_block_repeats __magic_name__ : Union[str, Any] =expand_ratios __magic_name__ : List[Any] =squeeze_expansion_ratio __magic_name__ : Union[str, Any] =hidden_act __magic_name__ : Dict =hidden_dim __magic_name__ : int =pooling_type __magic_name__ : List[str] =initializer_range __magic_name__ : Tuple =batch_norm_eps __magic_name__ : Optional[Any] =batch_norm_momentum __magic_name__ : Optional[int] =dropout_rate __magic_name__ : Optional[int] =drop_connect_rate __magic_name__ : int =sum(__snake_case ) * 4 class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :str ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Dict ): '''simple docstring''' return 1E-5
367
from math import pow, sqrt def lowerCAmelCase_ ( *lowerCamelCase ): __magic_name__ : Tuple =len(lowerCamelCase ) > 0 and all(value > 0.0 for value in values ) return result def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCamelCase , lowerCamelCase ) else ValueError("""Input Error: Molar mass values must greater than 0.""" ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) )
367
1
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase__ = TypeVar('KEY') UpperCamelCase__ = TypeVar('VAL') @dataclass(frozen=_UpperCAmelCase , slots=_UpperCAmelCase ) class a ( Generic[KEY, VAL] ): UpperCamelCase : KEY UpperCamelCase : VAL class a ( _Item ): def __init__( self ): super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __bool__( self ): return False UpperCamelCase__ = _DeletedItem() class a ( MutableMapping[KEY, VAL] ): def __init__( self , UpperCamelCase_ = 8 , UpperCamelCase_ = 0.75 ): UpperCAmelCase__ : Optional[Any] = initial_block_size UpperCAmelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 UpperCAmelCase__ : List[Any] = capacity_factor UpperCAmelCase__ : Union[str, Any] = 0 def __snake_case ( self , UpperCamelCase_ ): return hash(_UpperCAmelCase ) % len(self._buckets ) def __snake_case ( self , UpperCamelCase_ ): return (ind + 1) % len(self._buckets ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : Optional[int] = self._buckets[ind] if not stored: UpperCAmelCase__ : int = _Item(_UpperCAmelCase , _UpperCAmelCase ) self._len += 1 return True elif stored.key == key: UpperCAmelCase__ : List[str] = _Item(_UpperCAmelCase , _UpperCAmelCase ) return True else: return False def __snake_case ( self ): UpperCAmelCase__ : Union[str, Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_UpperCAmelCase ) def __snake_case ( self ): if len(self._buckets ) <= self._initial_block_size: return False UpperCAmelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __snake_case ( self , UpperCamelCase_ ): UpperCAmelCase__ : Optional[Any] = self._buckets UpperCAmelCase__ : Optional[int] = [None] * new_size UpperCAmelCase__ : Any = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __snake_case ( self ): self._resize(len(self._buckets ) * 2 ) def __snake_case ( self ): self._resize(len(self._buckets ) // 2 ) def __snake_case ( self , UpperCamelCase_ ): UpperCAmelCase__ : int = self._get_bucket_index(_UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind UpperCAmelCase__ : Union[str, Any] = self._get_next_ind(_UpperCAmelCase ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): for ind in self._iterate_buckets(_UpperCAmelCase ): if self._try_set(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): break def __setitem__( self , UpperCamelCase_ , UpperCamelCase_ ): if self._is_full(): self._size_up() self._add_item(_UpperCAmelCase , _UpperCAmelCase ) def __delitem__( self , UpperCamelCase_ ): for ind in self._iterate_buckets(_UpperCAmelCase ): UpperCAmelCase__ : Optional[Any] = self._buckets[ind] if item is None: raise KeyError(_UpperCAmelCase ) if item is _deleted: continue if item.key == key: UpperCAmelCase__ : Tuple = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , UpperCamelCase_ ): for ind in self._iterate_buckets(_UpperCAmelCase ): UpperCAmelCase__ : str = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_UpperCAmelCase ) def __len__( self ): return self._len def __iter__( self ): yield from (item.key for item in self._buckets if item) def __repr__( self ): UpperCAmelCase__ : List[Any] = ''' ,'''.join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
110
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Tuple = "canine" def __init__( self , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=16384 , _UpperCAmelCase=16 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=0XE000 , _UpperCAmelCase=0XE001 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=8 , _UpperCAmelCase=16384 , _UpperCAmelCase=128 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: Union[str, Any] = max_position_embeddings lowercase__: Tuple = hidden_size lowercase__: Optional[Any] = num_hidden_layers lowercase__: Union[str, Any] = num_attention_heads lowercase__: Optional[Any] = intermediate_size lowercase__: List[str] = hidden_act lowercase__: str = hidden_dropout_prob lowercase__: Tuple = attention_probs_dropout_prob lowercase__: Union[str, Any] = initializer_range lowercase__: Tuple = type_vocab_size lowercase__: Any = layer_norm_eps # Character config: lowercase__: List[str] = downsampling_rate lowercase__: Union[str, Any] = upsampling_kernel_size lowercase__: Union[str, Any] = num_hash_functions lowercase__: Optional[Any] = num_hash_buckets lowercase__: Tuple = local_transformer_stride
586
0
A_ : int = tuple[float, float, float] A_ : Optional[int] = tuple[float, float, float] def UpperCamelCase (lowercase_: Dict , lowercase_: Optional[int] ) -> Vectorad: A__ : List[Any] = end_pointa[0] - end_pointa[0] A__ : Optional[int] = end_pointa[1] - end_pointa[1] A__ : List[str] = end_pointa[2] - end_pointa[2] return (x, y, z) def UpperCamelCase (lowercase_: Tuple , lowercase_: Any ) -> Vectorad: A__ : List[Any] = ab[1] * ac[2] - ab[2] * ac[1] # *i A__ : int = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j A__ : List[str] = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def UpperCamelCase (lowercase_: Dict , lowercase_: Any ) -> bool: return tuple(round(_A , _A ) for x in vector ) == (0, 0, 0) def UpperCamelCase (lowercase_: Tuple , lowercase_: Tuple , lowercase_: List[Any] , lowercase_: int = 10 ) -> bool: A__ : Dict = create_vector(_A , _A ) A__ : List[Any] = create_vector(_A , _A ) return is_zero_vector(get_ad_vectors_cross(_A , _A ) , _A )
719
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin A_ : Dict = random.Random() if is_torch_available(): import torch def UpperCamelCase (lowercase_: Tuple , lowercase_: Tuple=1.0 , lowercase_: Dict=None , lowercase_: int=None ) -> str: if rng is None: A__ : Optional[Any] = global_rng A__ : List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _a (unittest.TestCase ): '''simple docstring''' def __init__( self , A__ , A__=7 , A__=400 , A__=2000 , A__=1 , A__=0.0 , A__=1_6000 , A__=True , A__=True , ): A__ : Any = parent A__ : Optional[int] = batch_size A__ : Union[str, Any] = min_seq_length A__ : Dict = max_seq_length A__ : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ : str = feature_size A__ : Optional[int] = padding_value A__ : List[str] = sampling_rate A__ : List[str] = return_attention_mask A__ : int = do_normalize def __A ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __A ( self , A__=False , A__=False ): def _flatten(A__ ): return list(itertools.chain(*A__ ) ) if equal_length: A__ : Dict = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size A__ : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ : Optional[int] = [np.asarray(A__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: int = ASTFeatureExtractor def __A ( self ): A__ : Optional[Any] = ASTFeatureExtractionTester(self ) def __A ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus A__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ : Optional[Any] = [np.asarray(A__ ) for speech_input in speech_inputs] # Test not batched input A__ : Tuple = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values A__ : Tuple = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(A__ , A__ , atol=1e-3 ) ) # Test batched A__ : Tuple = feat_extract(A__ , padding=A__ , return_tensors="""np""" ).input_values A__ : Tuple = feat_extract(A__ , padding=A__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A__ , A__ ): self.assertTrue(np.allclose(A__ , A__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A__ : int = [floats_list((1, x) )[0] for x in (800, 800, 800)] A__ : List[str] = np.asarray(A__ ) A__ : Union[str, Any] = feat_extract(A__ , return_tensors="""np""" ).input_values A__ : Optional[Any] = feat_extract(A__ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A__ , A__ ): self.assertTrue(np.allclose(A__ , A__ , atol=1e-3 ) ) @require_torch def __A ( self ): import torch A__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : Tuple = np.random.rand(100 ).astype(np.floataa ) A__ : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A__ : List[str] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) A__ : Any = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __A ( self , A__ ): from datasets import load_dataset A__ : str = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech A__ : str = ds.sort("""id""" ).select(range(A__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] @require_torch def __A ( self ): # fmt: off A__ : Optional[Any] = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on A__ : Any = self._load_datasamples(1 ) A__ : Tuple = ASTFeatureExtractor() A__ : Dict = feature_extractor(A__ , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , A__ , atol=1e-4 ) )
64
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): # Initialise PyTorch model UpperCamelCase_ = AlbertConfig.from_json_file(__lowercase) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = AlbertForPreTraining(__lowercase) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , __lowercase) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
23
"""simple docstring""" from typing import Any class a : def __init__( self , UpperCamelCase_ ): UpperCAmelCase__ : Optional[Any] = data UpperCAmelCase__ : List[str] = None def __repr__( self ): return F'''Node({self.data})''' class a : def __init__( self ): UpperCAmelCase__ : Any = None def __iter__( self ): UpperCAmelCase__ : List[str] = self.head while node: yield node.data UpperCAmelCase__ : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(UpperCamelCase_ ) for item in self] ) def __getitem__( self , UpperCamelCase_ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , UpperCamelCase_ , UpperCamelCase_ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) UpperCAmelCase__ : List[str] = self.head for _ in range(UpperCamelCase_ ): UpperCAmelCase__ : Optional[Any] = current.next UpperCAmelCase__ : List[str] = data def __snake_case ( self , UpperCamelCase_ ): self.insert_nth(len(self ) , UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ ): self.insert_nth(0 , UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) UpperCAmelCase__ : str = Node(UpperCamelCase_ ) if self.head is None: UpperCAmelCase__ : Tuple = new_node elif index == 0: UpperCAmelCase__ : Optional[int] = self.head # link new_node to head UpperCAmelCase__ : Any = new_node else: UpperCAmelCase__ : Dict = self.head for _ in range(index - 1 ): UpperCAmelCase__ : Tuple = temp.next UpperCAmelCase__ : int = temp.next UpperCAmelCase__ : Tuple = new_node def __snake_case ( self ): # print every node data print(self ) def __snake_case ( self ): return self.delete_nth(0 ) def __snake_case ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def __snake_case ( self , UpperCamelCase_ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) UpperCAmelCase__ : Union[str, Any] = self.head # default first node if index == 0: UpperCAmelCase__ : Dict = self.head.next else: UpperCAmelCase__ : List[Any] = self.head for _ in range(index - 1 ): UpperCAmelCase__ : Any = temp.next UpperCAmelCase__ : Dict = temp.next UpperCAmelCase__ : Tuple = temp.next.next return delete_node.data def __snake_case ( self ): return self.head is None def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : str = self.head while current: # Store the current node's next node. UpperCAmelCase__ : Any = current.next # Make the current node's next point backwards UpperCAmelCase__ : Optional[int] = prev # Make the previous node be the current node UpperCAmelCase__ : List[Any] = current # Make the current node the next node (to progress iteration) UpperCAmelCase__ : int = next_node # Return prev in order to put the head at the end UpperCAmelCase__ : str = prev def lowerCamelCase ( ): UpperCAmelCase__ : Dict = LinkedList() assert linked_list.is_empty() is True assert str(_snake_case ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_snake_case ) == i linked_list.insert_nth(_snake_case ,i + 1 ) assert str(_snake_case ) == "->".join(str(_snake_case ) for i in range(1 ,11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_snake_case ) == "->".join(str(_snake_case ) for i in range(0 ,12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_snake_case ) == 9 assert str(_snake_case ) == "->".join(str(_snake_case ) for i in range(1 ,10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): UpperCAmelCase__ : Any = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(_snake_case ) == "->".join(str(_snake_case ) for i in range(-8 ,1 ) ) def lowerCamelCase ( ): UpperCAmelCase__ : int = [ -9, 100, Node(77345112 ), 'dlrow olleH', 7, 5555, 0, -192.55555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] UpperCAmelCase__ : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_snake_case ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head UpperCAmelCase__ : Any = linked_list.delete_head() assert result == -9 assert ( str(_snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail UpperCAmelCase__ : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(_snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list UpperCAmelCase__ : Dict = linked_list.delete_nth(10 ) assert result is None assert ( str(_snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_snake_case ) assert ( str(_snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_snake_case ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowerCamelCase ( ): from doctest import testmod testmod() UpperCAmelCase__ : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_snake_case ) print('\nReading/changing Node data using indexing:' ) print(F'''Element at Position 1: {linked_list[1]}''' ) UpperCAmelCase__ : List[Any] = input('Enter New Value: ' ).strip() print('New list:' ) print(_snake_case ) print(F'''length of linked_list is : {len(_snake_case )}''' ) if __name__ == "__main__": main()
110
0
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCamelCase ( unittest.TestCase ): def __init__( self , __lowerCamelCase , __lowerCamelCase=2 , __lowerCamelCase=56 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=99 , __lowerCamelCase=32 , __lowerCamelCase=2 , __lowerCamelCase=2 , __lowerCamelCase=7 , __lowerCamelCase="gelu_new" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_12 , __lowerCamelCase=16 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=4 , __lowerCamelCase="block_sparse" , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=2 , __lowerCamelCase=3 , ) -> int: '''simple docstring''' snake_case: str = parent snake_case: Any = batch_size snake_case: List[str] = seq_length snake_case: str = is_training snake_case: List[str] = use_attention_mask snake_case: Optional[Any] = use_token_type_ids snake_case: Union[str, Any] = use_labels snake_case: Dict = vocab_size snake_case: Dict = hidden_size snake_case: Optional[Any] = num_hidden_layers snake_case: int = num_attention_heads snake_case: List[Any] = intermediate_size snake_case: Optional[Any] = hidden_act snake_case: List[str] = hidden_dropout_prob snake_case: Dict = attention_probs_dropout_prob snake_case: Optional[Any] = max_position_embeddings snake_case: str = type_vocab_size snake_case: Dict = type_sequence_label_size snake_case: List[Any] = initializer_range snake_case: str = num_choices snake_case: Any = rescale_embeddings snake_case: int = attention_type snake_case: int = use_bias snake_case: List[str] = block_size snake_case: Any = num_random_blocks def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' snake_case: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case: Tuple = None if self.use_attention_mask: snake_case: Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case: Tuple = None if self.use_token_type_ids: snake_case: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case: Any = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' snake_case: Union[str, Any] = self.prepare_config_and_inputs() snake_case: List[Any] = config_and_inputs snake_case: Any = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class lowerCamelCase ( __snake_case , unittest.TestCase ): __lowerCamelCase = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __lowerCamelCase = False __lowerCamelCase = False def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' snake_case: List[Any] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' super().test_hidden_states_output() @slow def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case: Optional[Any] = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(__lowerCamelCase ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case: Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) snake_case: Tuple = model_class(__lowerCamelCase ) @jax.jit def model_jitted(__lowerCamelCase , __lowerCamelCase=None , **__lowerCamelCase ): return model(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , **__lowerCamelCase ) with self.subTest("""JIT Enabled""" ): snake_case: Union[str, Any] = model_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): snake_case: List[str] = model_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=1e-5 , __lowerCamelCase="outputs" , __lowerCamelCase=None ) -> List[str]: '''simple docstring''' if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
706
import re def a_ (_lowerCAmelCase : str )-> list: return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" , str_ )] def a_ (_lowerCAmelCase : str )-> str: snake_case: Tuple = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def a_ (_lowerCAmelCase : str , _lowerCAmelCase : bool , _lowerCAmelCase : str )-> str: try: snake_case: int = split_input(_lowerCAmelCase ) if upper: snake_case: List[Any] = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: snake_case: Dict = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def a_ (_lowerCAmelCase : str )-> str: return to_simple_case(_lowerCAmelCase ) def a_ (_lowerCAmelCase : str )-> str: try: snake_case: Tuple = to_simple_case(_lowerCAmelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def a_ (_lowerCAmelCase : str , _lowerCAmelCase : bool )-> str: return to_complex_case(_lowerCAmelCase , _lowerCAmelCase , """_""" ) def a_ (_lowerCAmelCase : str , _lowerCAmelCase : bool )-> str: return to_complex_case(_lowerCAmelCase , _lowerCAmelCase , """-""" ) if __name__ == "__main__": __import__('doctest').testmod()
164
0