code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> Union[str, Any]: # ===== initialization ===== SCREAMING_SNAKE_CASE_ = Mock() SCREAMING_SNAKE_CASE_ = conn, Mock() SCREAMING_SNAKE_CASE_ = iter([1, None] ) SCREAMING_SNAKE_CASE_ = lambda __UpperCAmelCase : next(__UpperCAmelCase ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=__UpperCAmelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
31
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) UpperCamelCase_ = input_file.read() UpperCamelCase_ = regexp.search(_UpperCAmelCase ) return match def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) UpperCamelCase_ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase_ = regexp.finditer(_UpperCAmelCase ) UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCAmelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
23
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __magic_name__ = threading.Lock() __magic_name__ = None __magic_name__ = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } __magic_name__ = logging.WARNING __magic_name__ = True def SCREAMING_SNAKE_CASE__ ( ): snake_case__ = os.getenv("TRANSFORMERS_VERBOSITY" , __lowerCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def SCREAMING_SNAKE_CASE__ ( ): return __name__.split("." )[0] def SCREAMING_SNAKE_CASE__ ( ): return logging.getLogger(_get_library_name() ) def SCREAMING_SNAKE_CASE__ ( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return snake_case__ = logging.StreamHandler() # Set sys.stderr as stream. snake_case__ = sys.stderr.flush # Apply our default configuration to the library root logger. snake_case__ = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) snake_case__ = False def SCREAMING_SNAKE_CASE__ ( ): global _default_handler with _lock: if not _default_handler: return snake_case__ = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) snake_case__ = None def SCREAMING_SNAKE_CASE__ ( ): return log_levels def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase = None ): if name is None: snake_case__ = _get_library_name() _configure_library_root_logger() return logging.getLogger(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): _configure_library_root_logger() _get_library_root_logger().setLevel(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ): return set_verbosity(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ): return set_verbosity(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ): return set_verbosity(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ): return set_verbosity(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def SCREAMING_SNAKE_CASE__ ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ): _configure_library_root_logger() snake_case__ = False def SCREAMING_SNAKE_CASE__ ( ): _configure_library_root_logger() snake_case__ = True def SCREAMING_SNAKE_CASE__ ( ): snake_case__ = _get_library_root_logger().handlers for handler in handlers: snake_case__ = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ): snake_case__ = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): snake_case__ = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , __lowerCAmelCase ) if no_advisory_warnings: return self.warning(*__lowerCAmelCase , **__lowerCAmelCase ) __magic_name__ = warning_advice @functools.lru_cache(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): self.warning(*__lowerCAmelCase , **__lowerCAmelCase ) __magic_name__ = warning_once class _SCREAMING_SNAKE_CASE : def __init__( self , *lowerCamelCase , **lowerCamelCase ): # pylint: disable=unused-argument snake_case__ = args[0] if args else None def __iter__( self ): return iter(self._iterator ) def __getattr__( self , lowerCamelCase ): def empty_fn(*lowerCamelCase , **lowerCamelCase ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): return self def __exit__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): return class _SCREAMING_SNAKE_CASE : def __call__( self , *lowerCamelCase , **lowerCamelCase ): if _tqdm_active: return tqdm_lib.tqdm(*lowerCamelCase , **lowerCamelCase ) else: return EmptyTqdm(*lowerCamelCase , **lowerCamelCase ) def A_ ( self , *lowerCamelCase , **lowerCamelCase ): snake_case__ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCamelCase , **lowerCamelCase ) def A_ ( self ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() __magic_name__ = _tqdm_cls() def SCREAMING_SNAKE_CASE__ ( ): global _tqdm_active return bool(_tqdm_active ) def SCREAMING_SNAKE_CASE__ ( ): global _tqdm_active snake_case__ = True hf_hub_utils.enable_progress_bars() def SCREAMING_SNAKE_CASE__ ( ): global _tqdm_active snake_case__ = False hf_hub_utils.disable_progress_bars()
719
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Any = (KDPMaDiscreteScheduler,) _A : Dict = 10 def A_ ( self , **lowerCamelCase ): snake_case__ = { "num_train_timesteps": 11_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", } config.update(**lowerCamelCase ) return config def A_ ( self ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def A_ ( self ): for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def A_ ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def A_ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def A_ ( self ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config(prediction_type="v_prediction" ) snake_case__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ = model(lowerCamelCase , lowerCamelCase ) snake_case__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) snake_case__ = output.prev_sample snake_case__ = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ = torch.mean(torch.abs(lowerCamelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2 assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1e-3 def A_ ( self ): if torch_device == "mps": return snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case__ = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case__ = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ = model(lowerCamelCase , lowerCamelCase ) snake_case__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) snake_case__ = output.prev_sample snake_case__ = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ = torch.mean(torch.abs(lowerCamelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 def A_ ( self ): if torch_device == "mps": return snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter.to(lowerCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: snake_case__ = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) snake_case__ = model(lowerCamelCase , lowerCamelCase ) snake_case__ = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ) snake_case__ = output.prev_sample snake_case__ = torch.sum(torch.abs(lowerCamelCase ) ) snake_case__ = torch.mean(torch.abs(lowerCamelCase ) ) if str(lowerCamelCase ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3
530
0
'''simple docstring''' __UpperCAmelCase = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __UpperCAmelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __UpperCAmelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
90
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''xlm-roberta''' def __init__( self , lowercase=3_0_5_2_2 , lowercase=7_6_8 , lowercase=1_2 , lowercase=1_2 , lowercase=3_0_7_2 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=5_1_2 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase="absolute" , lowercase=True , lowercase=None , **lowercase , ): """simple docstring""" super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) A_ : Union[str, Any] = vocab_size A_ : int = hidden_size A_ : Dict = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Tuple = hidden_act A_ : Optional[int] = intermediate_size A_ : Any = hidden_dropout_prob A_ : Tuple = attention_probs_dropout_prob A_ : int = max_position_embeddings A_ : Union[str, Any] = type_vocab_size A_ : List[str] = initializer_range A_ : Tuple = layer_norm_eps A_ : str = position_embedding_type A_ : Any = use_cache A_ : str = classifier_dropout class UpperCAmelCase ( __A ): '''simple docstring''' @property def lowerCAmelCase_ ( self ): """simple docstring""" if self.task == "multiple-choice": A_ : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A_ : str = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
558
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor''' SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowerCAmelCase = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowerCAmelCase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __lowerCAmelCase ( self ): _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
664
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 _lowerCAmelCase = [0] * n _lowerCAmelCase = [False] * n _lowerCAmelCase = [False] * n def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): if parent == root: out_edge_count += 1 _lowerCAmelCase = True _lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase = True # AP found via cycle if at == low[to]: _lowerCAmelCase = True else: _lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: _lowerCAmelCase = 0 _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph UpperCAmelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
664
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def lowercase ( _a=None ,_a=None ) -> List[Any]: return field(default_factory=lambda: default ,metadata=_a ) @dataclass class UpperCAmelCase__ : snake_case_ = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) snake_case_ = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) snake_case_ = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Benchmark training of model'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Verbose memory tracing'''} ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) snake_case_ = field( default=snake_case__ , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Trace memory line by line'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Save result to a CSV file'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Save all print statements in a log file'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Whether to print environment information'''} ) snake_case_ = field( default=snake_case__ , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) snake_case_ = field( default=F'inference_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) snake_case_ = field( default=F'inference_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) snake_case_ = field( default=F'train_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) snake_case_ = field( default=F'train_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) snake_case_ = field( default=F'env_info_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) snake_case_ = field( default=F'log_{round(time() )}.csv' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) snake_case_ = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) snake_case_ = field( default=snake_case__ , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def snake_case_ ( self ): """simple docstring""" warnings.warn( F"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , A__ , ) def snake_case_ ( self ): """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def snake_case_ ( self ): """simple docstring""" if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased']." ) return self.models @property def snake_case_ ( self ): """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
137
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class UpperCAmelCase__ ( snake_case__ , snake_case__ ): snake_case_ = '''bit''' snake_case_ = ['''preactivation''', '''bottleneck'''] snake_case_ = ['''SAME''', '''VALID'''] def __init__( self , A__=3 , A__=64 , A__=[256, 512, 1024, 2048] , A__=[3, 4, 6, 3] , A__="preactivation" , A__="relu" , A__=None , A__=32 , A__=0.0 , A__=False , A__=32 , A__=1 , A__=None , A__=None , **A__ , ): """simple docstring""" super().__init__(**A__ ) if layer_type not in self.layer_types: raise ValueError(F"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: UpperCAmelCase_: str = global_padding.upper() else: raise ValueError(F"Padding strategy {global_padding} not supported" ) UpperCAmelCase_: List[Any] = num_channels UpperCAmelCase_: List[Any] = embedding_size UpperCAmelCase_: Union[str, Any] = hidden_sizes UpperCAmelCase_: int = depths UpperCAmelCase_: Tuple = layer_type UpperCAmelCase_: str = hidden_act UpperCAmelCase_: str = global_padding UpperCAmelCase_: Dict = num_groups UpperCAmelCase_: Dict = drop_path_rate UpperCAmelCase_: Tuple = embedding_dynamic_padding UpperCAmelCase_: Tuple = output_stride UpperCAmelCase_: Dict = width_factor UpperCAmelCase_: str = ["stem"] + [F"stage{idx}" for idx in range(1 , len(A__ ) + 1 )] UpperCAmelCase_ , UpperCAmelCase_: Tuple = get_aligned_output_features_output_indices( out_features=A__ , out_indices=A__ , stage_names=self.stage_names )
137
1
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case ) -> Tuple: _UpperCAmelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> Union[str, Any]: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> int: _UpperCAmelCase = {} _UpperCAmelCase = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: _UpperCAmelCase = key.replace(f"{group_key}." , f"{group_key}.group." ) if "res_path" in key: _UpperCAmelCase = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): _UpperCAmelCase = rreplace(snake_case , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): _UpperCAmelCase = rreplace(snake_case , """.b""" , """.bias""" , 1 ) _UpperCAmelCase = value.float() return upgrade @torch.no_grad() def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case=None , snake_case=True ) -> str: from dall_e import Encoder _UpperCAmelCase = Encoder() if os.path.exists(snake_case ): _UpperCAmelCase = torch.load(snake_case ) else: _UpperCAmelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): _UpperCAmelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: _UpperCAmelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: _UpperCAmelCase = FlavaImageCodebookConfig() _UpperCAmelCase = FlavaImageCodebook(snake_case ).eval() _UpperCAmelCase = encoder.state_dict() _UpperCAmelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) _UpperCAmelCase = hf_model.state_dict() _UpperCAmelCase = count_parameters(snake_case ) _UpperCAmelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") a = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
175
import itertools import string from collections.abc import Generator, Iterable def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Generator[tuple[str, ...], None, None]: _UpperCAmelCase = iter(snake_case ) while True: _UpperCAmelCase = tuple(itertools.islice(snake_case , snake_case ) ) if not chunk: return yield chunk def _SCREAMING_SNAKE_CASE ( snake_case ) -> str: _UpperCAmelCase = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) _UpperCAmelCase = """""" if len(snake_case ) < 2: return dirty for i in range(len(snake_case ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(snake_case ) & 1: clean += "X" return clean def _SCREAMING_SNAKE_CASE ( snake_case ) -> list[str]: # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) _UpperCAmelCase = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _UpperCAmelCase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(snake_case ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(snake_case ) return table def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> str: _UpperCAmelCase = generate_table(snake_case ) _UpperCAmelCase = prepare_input(snake_case ) _UpperCAmelCase = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(snake_case , 2 ): _UpperCAmelCase , _UpperCAmelCase = divmod(table.index(snake_case ) , 5 ) _UpperCAmelCase , _UpperCAmelCase = divmod(table.index(snake_case ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> str: _UpperCAmelCase = generate_table(snake_case ) _UpperCAmelCase = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(snake_case , 2 ): _UpperCAmelCase , _UpperCAmelCase = divmod(table.index(snake_case ) , 5 ) _UpperCAmelCase , _UpperCAmelCase = divmod(table.index(snake_case ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
175
1
from ...processing_utils import ProcessorMixin class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[str] = '''SpeechT5FeatureExtractor''' lowerCamelCase : Optional[Any] = '''SpeechT5Tokenizer''' def __init__( self : int , _lowercase : List[str] , _lowercase : str ): super().__init__(_lowercase , _lowercase ) def __call__( self : Dict , *_lowercase : Any , **_lowercase : Tuple ): SCREAMING_SNAKE_CASE__ : List[Any] = kwargs.pop('''audio''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = kwargs.pop('''text''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Dict = kwargs.pop('''text_target''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = kwargs.pop('''audio_target''' , _lowercase ) SCREAMING_SNAKE_CASE__ : int = kwargs.pop('''sampling_rate''' , _lowercase ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE__ : Dict = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) elif text is not None: SCREAMING_SNAKE_CASE__ : int = self.tokenizer(_lowercase , **_lowercase ) else: SCREAMING_SNAKE_CASE__ : Tuple = None if audio_target is not None: SCREAMING_SNAKE_CASE__ : str = self.feature_extractor(audio_target=_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = targets['''input_values'''] elif text_target is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = self.tokenizer(_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ : str = targets['''input_ids'''] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE__ : List[str] = labels SCREAMING_SNAKE_CASE__ : List[Any] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE__ : List[str] = decoder_attention_mask return inputs def lowercase__ ( self : List[str] , *_lowercase : Optional[Any] , **_lowercase : Dict ): SCREAMING_SNAKE_CASE__ : Optional[int] = kwargs.pop('''input_values''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Any = kwargs.pop('''input_ids''' , _lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = kwargs.pop('''labels''' , _lowercase ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: SCREAMING_SNAKE_CASE__ : str = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase ) elif input_ids is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tokenizer.pad(_lowercase , **_lowercase ) else: SCREAMING_SNAKE_CASE__ : str = None if labels is not None: if "input_ids" in labels or (isinstance(_lowercase , _lowercase ) and "input_ids" in labels[0]): SCREAMING_SNAKE_CASE__ : int = self.tokenizer.pad(_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = targets['''input_ids'''] else: SCREAMING_SNAKE_CASE__ : List[Any] = self.feature_extractor.feature_size SCREAMING_SNAKE_CASE__ : str = self.feature_extractor.num_mel_bins SCREAMING_SNAKE_CASE__ : Optional[int] = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = feature_size_hack SCREAMING_SNAKE_CASE__ : Optional[Any] = targets['''input_values'''] else: SCREAMING_SNAKE_CASE__ : Dict = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE__ : int = labels SCREAMING_SNAKE_CASE__ : Dict = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE__ : Any = decoder_attention_mask return inputs def lowercase__ ( self : Optional[int] , *_lowercase : Any , **_lowercase : Optional[Any] ): return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def lowercase__ ( self : List[str] , *_lowercase : Any , **_lowercase : List[str] ): return self.tokenizer.decode(*_lowercase , **_lowercase )
35
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = 0 lowerCAmelCase = False lowerCAmelCase = 3.0 class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=a ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def _UpperCamelCase ( self ) -> str: # If no defaults are changed, `to_kwargs` returns an empty dict. snake_case_ = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() snake_case_ = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) snake_case_ = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , a ) @require_multi_gpu def _UpperCamelCase ( self ) -> Optional[Any]: snake_case_ = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(a , env=os.environ.copy() ) if __name__ == "__main__": lowercase = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowercase = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase = torch.nn.Linear(100, 200) lowercase = accelerator.prepare(model) # Check the values changed in kwargs lowercase = "" lowercase = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
198
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _a : _UpperCamelCase: Dict = None def _snake_case ( self ) -> List[Any]: lowerCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def _snake_case ( self ) -> str: lowerCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : Any = os.path.join(UpperCamelCase__ , """feat_extract.json""" ) feat_extract_first.to_json_file(UpperCamelCase__ ) lowerCAmelCase : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _snake_case ( self ) -> List[str]: lowerCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) lowerCAmelCase : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _snake_case ( self ) -> Tuple: lowerCAmelCase : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
711
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __A : Union[str, Any] = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : '''simple docstring''' __magic_name__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""}) __magic_name__ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) __magic_name__ : Optional[str] = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""}) __magic_name__ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""}) __magic_name__ : bool = field(default=_UpperCamelCase , metadata={"""help""": """Set this flag to use fast tokenization."""}) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __magic_name__ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCAmelCase : '''simple docstring''' __magic_name__ : str = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""}) __magic_name__ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) __magic_name__ : int = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __magic_name__ : bool = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""}) def lowercase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A__ : int =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A__ , A__ , A__ : Optional[Any] =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A__ , A__ , A__ : Union[str, Any] =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) A__ : List[Any] =import_module("tasks" ) try: A__ : Tuple =getattr(UpperCamelCase , model_args.task_type ) A__ : TokenClassificationTask =token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , UpperCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task A__ : int =token_classification_task.get_labels(data_args.labels ) A__ : Dict[int, str] =dict(enumerate(UpperCamelCase ) ) A__ : Optional[int] =len(UpperCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ : Optional[Any] =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase , idalabel=UpperCamelCase , labelaid={label: i for i, label in enumerate(UpperCamelCase )} , cache_dir=model_args.cache_dir , ) A__ : Any =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) A__ : Optional[int] =AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets A__ : Any =( TokenClassificationDataset( token_classification_task=UpperCamelCase , data_dir=data_args.data_dir , tokenizer=UpperCamelCase , labels=UpperCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) A__ : Union[str, Any] =( TokenClassificationDataset( token_classification_task=UpperCamelCase , data_dir=data_args.data_dir , tokenizer=UpperCamelCase , labels=UpperCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray ) -> Tuple[List[int], List[int]]: A__ : List[str] =np.argmax(UpperCamelCase , axis=2 ) A__ , A__ : Any =preds.shape A__ : List[str] =[[] for _ in range(UpperCamelCase )] A__ : Union[str, Any] =[[] for _ in range(UpperCamelCase )] for i in range(UpperCamelCase ): for j in range(UpperCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(UpperCamelCase : EvalPrediction ) -> Dict: A__ , A__ : Any =align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(UpperCamelCase , UpperCamelCase ), "precision": precision_score(UpperCamelCase , UpperCamelCase ), "recall": recall_score(UpperCamelCase , UpperCamelCase ), "f1": fa_score(UpperCamelCase , UpperCamelCase ), } # Data collator A__ : List[str] =DataCollatorWithPadding(UpperCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer A__ : Optional[Any] =Trainer( model=UpperCamelCase , args=UpperCamelCase , train_dataset=UpperCamelCase , eval_dataset=UpperCamelCase , compute_metrics=UpperCamelCase , data_collator=UpperCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A__ : List[Any] ={} if training_args.do_eval: logger.info("*** Evaluate ***" ) A__ : List[str] =trainer.evaluate() A__ : Optional[int] =os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(UpperCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , UpperCamelCase , UpperCamelCase ) writer.write("%s = %s\n" % (key, value) ) results.update(UpperCamelCase ) # Predict if training_args.do_predict: A__ : List[Any] =TokenClassificationDataset( token_classification_task=UpperCamelCase , data_dir=data_args.data_dir , tokenizer=UpperCamelCase , labels=UpperCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) A__ , A__ , A__ : Union[str, Any] =trainer.predict(UpperCamelCase ) A__ , A__ : Optional[int] =align_predictions(UpperCamelCase , UpperCamelCase ) A__ : List[str] =os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(UpperCamelCase , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , UpperCamelCase , UpperCamelCase ) writer.write("%s = %s\n" % (key, value) ) # Save predictions A__ : Any =os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(UpperCamelCase , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return results def lowercase ( UpperCamelCase : List[Any] ): """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
656
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __lowerCAmelCase ( unittest.TestCase): '''simple docstring''' def _UpperCAmelCase ( self : List[Any] ): A__ : Tuple =torch.nn.Linear(10 , 10 ) A__ : List[str] =torch.optim.SGD(model.parameters() , 0.1 ) A__ : Union[str, Any] =Accelerator() A__ : str =accelerator.prepare(UpperCamelCase__ ) try: pickle.loads(pickle.dumps(UpperCamelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
656
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=None ,snake_case__=None ) -> str: """simple docstring""" if attention_mask is None: _SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(lowercase__ ,config.pad_token_id ) ,tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __UpperCAmelCase : __snake_case : Tuple = OPTConfig __snake_case : Any = {} __snake_case : Tuple = "gelu" def __init__( self: Union[str, Any] , UpperCAmelCase_: Any , UpperCAmelCase_: List[str]=13 , UpperCAmelCase_: Tuple=7 , UpperCAmelCase_: List[Any]=True , UpperCAmelCase_: Tuple=False , UpperCAmelCase_: Dict=99 , UpperCAmelCase_: List[str]=16 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Optional[Any]=4 , UpperCAmelCase_: str=4 , UpperCAmelCase_: Optional[int]="gelu" , UpperCAmelCase_: int=0.1 , UpperCAmelCase_: Dict=0.1 , UpperCAmelCase_: List[str]=20 , UpperCAmelCase_: Tuple=2 , UpperCAmelCase_: Optional[int]=1 , UpperCAmelCase_: str=0 , UpperCAmelCase_: Union[str, Any]=16 , UpperCAmelCase_: List[Any]=16 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = embed_dim _SCREAMING_SNAKE_CASE = word_embed_proj_dim _SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) _SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase_ , **self.config_updates , ) _SCREAMING_SNAKE_CASE = prepare_opt_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def UpperCamelCase ( self: str , UpperCAmelCase_: List[Any] , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFOPTModel(config=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = inputs_dict["""input_ids"""] _SCREAMING_SNAKE_CASE = input_ids[:1, :] _SCREAMING_SNAKE_CASE = inputs_dict["""attention_mask"""][:1, :] _SCREAMING_SNAKE_CASE = 1 # first forward pass _SCREAMING_SNAKE_CASE = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1 ) _SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _SCREAMING_SNAKE_CASE = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] _SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1E-3 ) @require_tf class __UpperCAmelCase (__a ,__a ,unittest.TestCase ): __snake_case : Tuple = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __snake_case : Dict = (TFOPTForCausalLM,) if is_tf_available() else () __snake_case : Tuple = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) __snake_case : List[Any] = False __snake_case : List[str] = False __snake_case : Dict = False __snake_case : Tuple = 10 def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFOPTModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase_ ) def UpperCamelCase ( self: Dict ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Any ): if hasattr(lowerCAmelCase_ , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCAmelCase_ , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _SCREAMING_SNAKE_CASE = model_class(config=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = _get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings() ) _SCREAMING_SNAKE_CASE = _get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = _get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings() ) _SCREAMING_SNAKE_CASE = _get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _SCREAMING_SNAKE_CASE = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase_ ) # check that weights remain the same after resizing _SCREAMING_SNAKE_CASE = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _SCREAMING_SNAKE_CASE = False self.assertTrue(lowerCAmelCase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _SCREAMING_SNAKE_CASE = False self.assertTrue(lowerCAmelCase_ ) def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" return tf.constant(lowercase__ ,dtype=tf.intaa ) @require_tf class __UpperCAmelCase (unittest.TestCase ): __snake_case : Optional[Any] = 99 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _SCREAMING_SNAKE_CASE = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _SCREAMING_SNAKE_CASE = input_ids.shape[0] _SCREAMING_SNAKE_CASE = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) _SCREAMING_SNAKE_CASE = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _SCREAMING_SNAKE_CASE = tf.not_equal(lowerCAmelCase_ , model.config.pad_token_id ) with tf.GradientTape(): _SCREAMING_SNAKE_CASE = model(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).last_hidden_state _SCREAMING_SNAKE_CASE = (1, 11, 512) self.assertEqual(output.shape , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4E-3 ) ) _SCREAMING_SNAKE_CASE = tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = xla_generate(lowerCAmelCase_ , lowerCAmelCase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4E-2 ) ) @require_tf @slow class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: Tuple ): '''simple docstring''' super().setUp() _SCREAMING_SNAKE_CASE = """facebook/opt-350m""" def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFOPTForCausalLM.from_pretrained(self.path_model ) _SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(self.path_model ) _SCREAMING_SNAKE_CASE = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase_ , return_tensors="""tf""" , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _SCREAMING_SNAKE_CASE = tf.constant( [ [1.38_51, -13.8_923, -10.5_229, -10.7_533, -0.23_09, -10.2_384, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.6_276, -3.94_15, -21.5_242, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.1_650, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.7_926, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-4 ) ) _SCREAMING_SNAKE_CASE = tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-4 ) ) @require_tf @slow class __UpperCAmelCase (unittest.TestCase ): @property def UpperCamelCase ( self: Dict ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """facebook/opt-125m""" _SCREAMING_SNAKE_CASE = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) for prompt in self.prompts: _SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase_ , return_tensors="""tf""" ).input_ids _SCREAMING_SNAKE_CASE = model.generate(lowerCAmelCase_ , max_length=10 ) _SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """facebook/opt-350m""" _SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = """left""" # use different length sentences to test batching _SCREAMING_SNAKE_CASE = [ """Hello, my dog is a little""", """Today, I""", ] _SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase_ , return_tensors="""tf""" , padding=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = inputs["""input_ids"""] _SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase_ , attention_mask=inputs["""attention_mask"""] ) _SCREAMING_SNAKE_CASE = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids _SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) _SCREAMING_SNAKE_CASE = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids _SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase_ , max_length=model.config.max_length - num_paddings ) _SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , [non_padded_sentence, padded_sentence] ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """facebook/opt-350m""" _SCREAMING_SNAKE_CASE = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE = TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) for prompt in self.prompts: _SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase_ , return_tensors="""tf""" ).input_ids _SCREAMING_SNAKE_CASE = model.generate(lowerCAmelCase_ , max_length=10 ) _SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
719
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __UpperCAmelCase : def __init__( self: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: str=99 , UpperCAmelCase_: Optional[int]=13 , UpperCAmelCase_: Dict=16 , UpperCAmelCase_: Union[str, Any]=7 , UpperCAmelCase_: int=True , UpperCAmelCase_: int=True , UpperCAmelCase_: Any=True , UpperCAmelCase_: List[Any]=False , UpperCAmelCase_: str=True , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: int=32 , UpperCAmelCase_: Union[str, Any]=4 , UpperCAmelCase_: List[Any]=4 , UpperCAmelCase_: Optional[int]=30 , UpperCAmelCase_: Dict=0 , UpperCAmelCase_: List[str]=1 , UpperCAmelCase_: Optional[Any]=2 , UpperCAmelCase_: Union[str, Any]=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = decoder_seq_length # For common tests _SCREAMING_SNAKE_CASE = self.decoder_seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_attention_mask _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = d_model _SCREAMING_SNAKE_CASE = d_model _SCREAMING_SNAKE_CASE = decoder_layers _SCREAMING_SNAKE_CASE = decoder_layers _SCREAMING_SNAKE_CASE = decoder_ffn_dim _SCREAMING_SNAKE_CASE = decoder_attention_heads _SCREAMING_SNAKE_CASE = decoder_attention_heads _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = decoder_start_token_id _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = decoder_seq_length _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 1 def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Tuple , UpperCAmelCase_: List[str] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Optional[Any] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = TrOCRDecoder(config=UpperCAmelCase_ ).to(UpperCAmelCase_ ).eval() _SCREAMING_SNAKE_CASE = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) self.parent.assertTrue(len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) ) self.parent.assertTrue(len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) + 1 ) _SCREAMING_SNAKE_CASE = outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )["""last_hidden_state"""] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , past_key_values=UpperCAmelCase_ )["""last_hidden_state"""] # select random slice _SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() _SCREAMING_SNAKE_CASE = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _SCREAMING_SNAKE_CASE = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : Optional[Any] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () __snake_case : Optional[Any] = (TrOCRForCausalLM,) if is_torch_available() else () __snake_case : Tuple = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} __snake_case : str = True __snake_case : List[str] = False def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: str ): '''simple docstring''' pass def UpperCamelCase ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def UpperCamelCase ( self: Any ): '''simple docstring''' pass
569
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : bool = True , A_ : Dict[str, int] = None , A_ : int = 32 , A_ : bool = True , A_ : Union[int, float] = 1 / 2_55 , A_ : bool = True , A_ : bool = True , A_ : Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073] , A_ : Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711] , A_ : bool = True , A_ : Tuple=7 , A_ : Optional[Any]=30 , A_ : Any=4_00 , A_ : int=3 , ) -> Dict: """simple docstring""" lowerCamelCase_: Tuple = parent lowerCamelCase_: int = do_resize lowerCamelCase_: List[Any] = size if size is not None else {"""shortest_edge""": 2_88} lowerCamelCase_: str = size_divisor lowerCamelCase_: str = do_rescale lowerCamelCase_: Optional[Any] = rescale_factor lowerCamelCase_: str = do_normalize lowerCamelCase_: Optional[Any] = do_center_crop lowerCamelCase_: str = image_mean lowerCamelCase_: Tuple = image_std lowerCamelCase_: Optional[int] = do_pad lowerCamelCase_: Any = batch_size lowerCamelCase_: List[str] = num_channels lowerCamelCase_: Dict = min_resolution lowerCamelCase_: List[str] = max_resolution def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCAmelCase ( self : Dict , A_ : Dict , A_ : Union[str, Any]=False ) -> Union[str, Any]: """simple docstring""" if not batched: lowerCamelCase_: Dict = self.size["""shortest_edge"""] lowerCamelCase_: int = image_inputs[0] if isinstance(A_ , Image.Image ): lowerCamelCase_ , lowerCamelCase_: Any = image.size else: lowerCamelCase_ , lowerCamelCase_: Optional[Any] = image.shape[1], image.shape[2] lowerCamelCase_: Dict = size / min(A_ , A_ ) if h < w: lowerCamelCase_ , lowerCamelCase_: str = size, scale * w else: lowerCamelCase_ , lowerCamelCase_: Dict = scale * h, size lowerCamelCase_: Optional[int] = int((13_33 / 8_00) * size ) if max(A_ , A_ ) > max_size: lowerCamelCase_: List[str] = max_size / max(A_ , A_ ) lowerCamelCase_: Union[str, Any] = newh * scale lowerCamelCase_: Optional[Any] = neww * scale lowerCamelCase_ , lowerCamelCase_: List[Any] = int(newh + 0.5 ), int(neww + 0.5 ) lowerCamelCase_ , lowerCamelCase_: Optional[Any] = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: lowerCamelCase_: List[str] = [] for image in image_inputs: lowerCamelCase_ , lowerCamelCase_: Union[str, Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_: Any = max(A_ , key=lambda A_ : item[0] )[0] lowerCamelCase_: str = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _A = BridgeTowerImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_: Union[str, Any] = BridgeTowerImageProcessingTester(self ) @property def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowerCamelCase_: List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , """image_mean""" ) ) self.assertTrue(hasattr(A_ , """image_std""" ) ) self.assertTrue(hasattr(A_ , """do_normalize""" ) ) self.assertTrue(hasattr(A_ , """do_resize""" ) ) self.assertTrue(hasattr(A_ , """size""" ) ) self.assertTrue(hasattr(A_ , """size_divisor""" ) ) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" # Initialize image processor lowerCamelCase_: str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_: Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input lowerCamelCase_: List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCamelCase_ , lowerCamelCase_: Tuple = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_: Tuple = image_processing(A_ , return_tensors="""pt""" ).pixel_values lowerCamelCase_ , lowerCamelCase_: Tuple = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" # Initialize image processor lowerCamelCase_: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input lowerCamelCase_: List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCamelCase_ , lowerCamelCase_: str = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_: List[Any] = image_processing(A_ , return_tensors="""pt""" ).pixel_values lowerCamelCase_ , lowerCamelCase_: List[str] = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" # Initialize image processor lowerCamelCase_: List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_: int = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input lowerCamelCase_: Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCamelCase_ , lowerCamelCase_: Tuple = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_: int = image_processing(A_ , return_tensors="""pt""" ).pixel_values lowerCamelCase_ , lowerCamelCase_: str = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
423
from __future__ import annotations from collections.abc import MutableSequence class a__ : def __init__( self : Optional[Any] , A_ : int , A_ : MutableSequence[float] ) -> None: """simple docstring""" if len(A_ ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) lowerCamelCase_: list[float] = list(A_ ) lowerCamelCase_: Any = degree def __add__( self : str , A_ : Polynomial ) -> Polynomial: """simple docstring""" if self.degree > polynomial_a.degree: lowerCamelCase_: List[Any] = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , A_ ) else: lowerCamelCase_: Tuple = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , A_ ) def __sub__( self : Any , A_ : Polynomial ) -> Polynomial: """simple docstring""" return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : List[Any] ) -> Polynomial: """simple docstring""" return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : int , A_ : Polynomial ) -> Polynomial: """simple docstring""" lowerCamelCase_: list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , A_ ) def lowerCAmelCase ( self : Union[str, Any] , A_ : int | float ) -> int | float: """simple docstring""" lowerCamelCase_: int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Optional[Any] ) -> str: """simple docstring""" lowerCamelCase_: Union[str, Any] = """""" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(A_ ) return polynomial def __repr__( self : List[Any] ) -> str: """simple docstring""" return self.__str__() def lowerCAmelCase ( self : Optional[int] ) -> Polynomial: """simple docstring""" lowerCamelCase_: list[float] = [0] * self.degree for i in range(self.degree ): lowerCamelCase_: Dict = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , A_ ) def lowerCAmelCase ( self : Any , A_ : int | float = 0 ) -> Polynomial: """simple docstring""" lowerCamelCase_: list[float] = [0] * (self.degree + 2) lowerCamelCase_: Union[str, Any] = constant for i in range(self.degree + 1 ): lowerCamelCase_: Tuple = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , A_ ) def __eq__( self : Union[str, Any] , A_ : object ) -> bool: """simple docstring""" if not isinstance(A_ , A_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : List[str] , A_ : object ) -> bool: """simple docstring""" return not self.__eq__(A_ )
423
1
import os from pathlib import Path def snake_case_ ( ): '''simple docstring''' from torch.utils.cpp_extension import load _lowerCAmelCase =Path(lowercase__ ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" _lowerCAmelCase =[ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , lowercase__ , with_cuda=lowercase__ , extra_include_paths=[str(lowercase__ )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
706
from typing import TYPE_CHECKING from ...utils import _LazyModule __SCREAMING_SNAKE_CASE : Optional[Any] = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
149
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __a : Any = logging.getLogger(__name__) def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> Optional[int]: '''simple docstring''' UpperCamelCase = bnb_quantization_config.load_in_abit UpperCamelCase = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) UpperCamelCase = [] # custom device map if isinstance(lowercase_ , lowercase_ ) and len(device_map.keys() ) > 1: UpperCamelCase = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCamelCase = get_keys_to_not_convert(lowercase_ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowercase_ ) UpperCamelCase = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCamelCase = [] UpperCamelCase = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowercase_ ) # compatibility with peft UpperCamelCase = load_in_abit UpperCamelCase = load_in_abit UpperCamelCase = get_parameter_device(lowercase_ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) UpperCamelCase = replace_with_bnb_layers(lowercase_ , lowercase_ , modules_to_not_convert=lowercase_ ) # convert param to the right dtype UpperCamelCase = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCamelCase = name.replace(".weight" , "" ).replace(".bias" , "" ) UpperCamelCase = getattr(lowercase_ , lowercase_ , lowercase_ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowercase_ ): param.to(lowercase_ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): UpperCamelCase = replace_with_bnb_layers( lowercase_ , lowercase_ , modules_to_not_convert=lowercase_ ) UpperCamelCase = get_quantized_model_device_map( lowercase_ , lowercase_ , lowercase_ , max_memory=lowercase_ , no_split_module_classes=lowercase_ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCamelCase = True UpperCamelCase = any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( lowercase_ , lowercase_ , lowercase_ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowercase_ , offload_state_dict=lowercase_ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowercase_ , device_map=lowercase_ , offload_dir=lowercase_ ) def __magic_name__ ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[Any]: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): UpperCamelCase = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." ) if isinstance(lowercase_ , lowercase_ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) UpperCamelCase = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCamelCase = {} UpperCamelCase = special_dtypes UpperCamelCase = no_split_module_classes UpperCamelCase = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCamelCase = get_balanced_memory( lowercase_ , low_zero=(device_map == "balanced_low_0") , max_memory=lowercase_ , **lowercase_ , ) UpperCamelCase = max_memory UpperCamelCase = infer_auto_device_map(lowercase_ , **lowercase_ ) if isinstance(lowercase_ , lowercase_ ): # check if don't have any quantized module on the cpu UpperCamelCase = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCamelCase = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def __magic_name__ ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> Optional[int]: '''simple docstring''' if modules_to_not_convert is None: UpperCamelCase = [] UpperCamelCase , UpperCamelCase = _replace_with_bnb_layers( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def __magic_name__ ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , ) -> Optional[int]: '''simple docstring''' UpperCamelCase = False for name, module in model.named_children(): if current_key_name is None: UpperCamelCase = [] current_key_name.append(lowercase_ ) if isinstance(lowercase_ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCamelCase = ".".join(lowercase_ ) UpperCamelCase = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCamelCase = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCamelCase = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowercase_ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCamelCase = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False" ) UpperCamelCase = module.weight.data if module.bias is not None: UpperCamelCase = module.bias.data bnb_module.requires_grad_(lowercase_ ) setattr(lowercase_ , lowercase_ , lowercase_ ) UpperCamelCase = True if len(list(module.children() ) ) > 0: UpperCamelCase , UpperCamelCase = _replace_with_bnb_layers( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) UpperCamelCase = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __magic_name__ ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' with init_empty_weights(): UpperCamelCase = deepcopy(lowercase_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCamelCase = find_tied_parameters(lowercase_ ) # For compatibility with Accelerate < 0.18 if isinstance(lowercase_ , lowercase_ ): UpperCamelCase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase = sum(lowercase_ , [] ) UpperCamelCase = len(lowercase_ ) > 0 # Check if it is a base model UpperCamelCase = False if hasattr(lowercase_ , "base_model_prefix" ): UpperCamelCase = not hasattr(lowercase_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase = list(model.named_children() ) UpperCamelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase = set(lowercase_ ) - set(lowercase_ ) UpperCamelCase = list(set(lowercase_ ) ) + list(lowercase_ ) # remove ".weight" from the keys UpperCamelCase = [".weight", ".bias"] UpperCamelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase = name.replace(lowercase_ , "" ) filtered_module_names.append(lowercase_ ) return filtered_module_names def __magic_name__ ( lowercase_ ) -> Any: '''simple docstring''' for m in model.modules(): if isinstance(lowercase_ , bnb.nn.Linearabit ): return True return False def __magic_name__ ( lowercase_ ) -> List[str]: '''simple docstring''' return next(parameter.parameters() ).device def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(lowercase_ , lowercase_ , 0 , dtype=lowercase_ , value=lowercase_ ) UpperCamelCase = param_name UpperCamelCase = model if "." in tensor_name: UpperCamelCase = tensor_name.split("." ) for split in splits[:-1]: UpperCamelCase = getattr(lowercase_ , lowercase_ ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) UpperCamelCase = new_module UpperCamelCase = splits[-1] # offload weights UpperCamelCase = False offload_weight(module._parameters[tensor_name] , lowercase_ , lowercase_ , index=lowercase_ ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , lowercase_ , index=lowercase_ , ) else: offload_weight(lowercase_ , lowercase_ , lowercase_ , index=lowercase_ ) offload_weight(lowercase_ , param_name.replace("weight" , "SCB" ) , lowercase_ , index=lowercase_ ) set_module_tensor_to_device(lowercase_ , lowercase_ , "meta" , dtype=lowercase_ , value=torch.empty(*param.size() ) )
606
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __a : Tuple = logging.get_logger(__name__) __a : Optional[int] = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = """blip_2_vision_model""" def __init__( self , SCREAMING_SNAKE_CASE=1408 , SCREAMING_SNAKE_CASE=6144 , SCREAMING_SNAKE_CASE=39 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=224 , SCREAMING_SNAKE_CASE=14 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.00_001 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=1e-10 , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) UpperCamelCase = hidden_size UpperCamelCase = intermediate_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = patch_size UpperCamelCase = image_size UpperCamelCase = initializer_range UpperCamelCase = attention_dropout UpperCamelCase = layer_norm_eps UpperCamelCase = hidden_act UpperCamelCase = qkv_bias @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": UpperCamelCase = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = """blip_2_qformer""" def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=1408 , **SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = cross_attention_frequency UpperCamelCase = encoder_hidden_size @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": UpperCamelCase = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = """blip-2""" lowercase = True def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=32 , **SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) if vision_config is None: UpperCamelCase = {} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values." ) if qformer_config is None: UpperCamelCase = {} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values." ) if text_config is None: UpperCamelCase = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) UpperCamelCase = BlipaVisionConfig(**SCREAMING_SNAKE_CASE ) UpperCamelCase = BlipaQFormerConfig(**SCREAMING_SNAKE_CASE ) UpperCamelCase = text_config["model_type"] if "model_type" in text_config else "opt" UpperCamelCase = CONFIG_MAPPING[text_model_type](**SCREAMING_SNAKE_CASE ) UpperCamelCase = self.text_config.tie_word_embeddings UpperCamelCase = self.text_config.is_encoder_decoder UpperCamelCase = num_query_tokens UpperCamelCase = self.vision_config.hidden_size UpperCamelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCamelCase = 1.0 UpperCamelCase = 0.02 @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" UpperCamelCase = copy.deepcopy(self.__dict__ ) UpperCamelCase = self.vision_config.to_dict() UpperCamelCase = self.qformer_config.to_dict() UpperCamelCase = self.text_config.to_dict() UpperCamelCase = self.__class__.model_type return output
606
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = tempfile.mkdtemp() UpperCamelCase : List[str] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCamelCase : Tuple = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } UpperCamelCase : str = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase : Optional[Any] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.get_tokenizer() UpperCamelCase : Dict = self.get_rust_tokenizer() UpperCamelCase : Dict = self.get_image_processor() UpperCamelCase : Optional[int] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase : Union[str, Any] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase__ ) UpperCamelCase : List[Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase : Union[str, Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase__ ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : Optional[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase : int = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) UpperCamelCase : List[Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_image_processor() UpperCamelCase : str = self.get_tokenizer() UpperCamelCase : str = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) UpperCamelCase : Union[str, Any] = self.prepare_image_inputs() UpperCamelCase : int = image_processor(UpperCamelCase__ , return_tensors='''np''' ) UpperCamelCase : Dict = processor(images=UpperCamelCase__ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_image_processor() UpperCamelCase : Optional[Any] = self.get_tokenizer() UpperCamelCase : List[str] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) UpperCamelCase : Tuple = 'lower newer' UpperCamelCase : Tuple = processor(text=UpperCamelCase__ ) UpperCamelCase : int = tokenizer(UpperCamelCase__ , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = self.get_image_processor() UpperCamelCase : List[Any] = self.get_tokenizer() UpperCamelCase : str = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) UpperCamelCase : str = 'lower newer' UpperCamelCase : Optional[int] = self.prepare_image_inputs() UpperCamelCase : Optional[int] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_image_processor() UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : Union[str, Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) UpperCamelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase : List[str] = processor.batch_decode(UpperCamelCase__ ) UpperCamelCase : Any = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = self.get_image_processor() UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Union[str, Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) UpperCamelCase : str = 'lower newer' UpperCamelCase : List[str] = self.prepare_image_inputs() UpperCamelCase : List[Any] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
709
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __UpperCAmelCase : Optional[int] = 500000 __UpperCAmelCase , __UpperCAmelCase : Any = os.path.split(__file__) __UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : Tuple = dataset.map(**SCREAMING_SNAKE_CASE_ ) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : int = dataset.filter(**SCREAMING_SNAKE_CASE_ ) def a ( ): """simple docstring""" UpperCamelCase : Optional[int] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCamelCase : List[str] = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE_ , '''dataset.arrow''' ) , SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE_ ) def tokenize(SCREAMING_SNAKE_CASE_ : Dict ): return tokenizer(examples['''text'''] ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''numpy''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''pandas''' ): UpperCamelCase : int = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): UpperCamelCase : Dict = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , function=SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = filter(SCREAMING_SNAKE_CASE_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
643
0
def _UpperCAmelCase (UpperCamelCase__ : int ): if length <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(UpperCamelCase__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
503
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]=None ): return field(default_factory=lambda: default , metadata=UpperCamelCase__ ) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( metadata={"help": "The csv file to plot."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Disable logarithmic scale when plotting"} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) __SCREAMING_SNAKE_CASE = list_field( default=a , metadata={"help": "List of model names that are used instead of the ones in the csv file."}) def _UpperCAmelCase (UpperCamelCase__ : List[str] ): try: int(UpperCamelCase__ ) return True except ValueError: return False def _UpperCAmelCase (UpperCamelCase__ : int ): try: float(UpperCamelCase__ ) return True except ValueError: return False class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase) -> Dict: _A : int = args _A : Union[str, Any] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}}) with open(self.args.csv_file , newline="") as csv_file: _A : Union[str, Any] = csv.DictReader(__lowerCamelCase) for row in reader: _A : List[str] = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"])) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"])) if can_convert_to_int(row["result"]): # value is not None _A : Union[str, Any] = int(row["result"]) elif can_convert_to_float(row["result"]): # value is not None _A : Dict = float(row["result"]) def _lowerCamelCase ( self) -> Dict: _A , _A : Any = plt.subplots() _A : Tuple = "Time usage" if self.args.is_time else "Memory usage" _A : int = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log") ax.set_yscale("log") for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter()) for model_name_idx, model_name in enumerate(self.result_dict.keys()): _A : Optional[int] = sorted(set(self.result_dict[model_name]["bsz"])) _A : List[str] = sorted(set(self.result_dict[model_name]["seq_len"])) _A : int = self.result_dict[model_name]["result"] ((_A) , (_A)) : Optional[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _A : Tuple = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _A : Tuple = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowerCamelCase , ) else: _A : Dict = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_A) , (_A)) : Optional[Any] = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) _A : Union[str, Any] = np.asarray(__lowerCamelCase , __lowerCamelCase)[: len(__lowerCamelCase)] plt.scatter( __lowerCamelCase , __lowerCamelCase , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}") plt.plot(__lowerCamelCase , __lowerCamelCase , "--") title_str += F" {label_model_name} vs." _A : int = title_str[:-4] _A : Dict = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(__lowerCamelCase) plt.xlabel(__lowerCamelCase) plt.ylabel(__lowerCamelCase) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file) else: plt.show() def _UpperCAmelCase (): _A : Optional[Any] = HfArgumentParser(UpperCamelCase__ ) _A : str = parser.parse_args_into_dataclasses()[0] _A : Optional[Any] = Plot(args=UpperCamelCase__ ) plot.plot() if __name__ == "__main__": main()
503
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase__ : str = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCamelCase__ : List[Any] = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase__ : str = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase__ : Any = sorted(arg_to_scheduler.keys()) UpperCamelCase__ : str = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __snake_case ( pl.LightningModule ): def __init__( self , _A , _A=None , _A="base" , _A=None , _A=None , _A=None , **_A , ): super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = Path(self.hparams.output_dir) SCREAMING_SNAKE_CASE_ = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_A , **_A , ) else: SCREAMING_SNAKE_CASE_ = config SCREAMING_SNAKE_CASE_ = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , _A , _A): assert hasattr(self.config , _A), f"""model config doesn't have a `{p}` attribute""" setattr(self.config , _A , getattr(self.hparams , _A)) if tokenizer is None: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_A , ) else: SCREAMING_SNAKE_CASE_ = tokenizer SCREAMING_SNAKE_CASE_ = MODEL_MODES[mode] if model is None: SCREAMING_SNAKE_CASE_ = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path) , config=self.config , cache_dir=_A , ) else: SCREAMING_SNAKE_CASE_ = model def lowerCAmelCase__ ( self , *_A , **_A): SCREAMING_SNAKE_CASE_ = self.model_type.from_pretrained(*_A , **_A) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = arg_to_scheduler[self.hparams.lr_scheduler] SCREAMING_SNAKE_CASE_ = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps()) SCREAMING_SNAKE_CASE_ = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.model SCREAMING_SNAKE_CASE_ = ['bias', 'LayerNorm.weight'] SCREAMING_SNAKE_CASE_ = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: SCREAMING_SNAKE_CASE_ = Adafactor( _A , lr=self.hparams.learning_rate , scale_parameter=_A , relative_step=_A) else: SCREAMING_SNAKE_CASE_ = AdamW( _A , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon) SCREAMING_SNAKE_CASE_ = optimizer SCREAMING_SNAKE_CASE_ = self.get_lr_scheduler() return [optimizer], [scheduler] def lowerCAmelCase__ ( self , _A , _A): return self.validation_step(_A , _A) def lowerCAmelCase__ ( self , _A): return self.validation_end(_A) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = max(1 , self.hparams.gpus) # TODO: consider num_tpu_cores SCREAMING_SNAKE_CASE_ = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowerCAmelCase__ ( self , _A): if stage == "test": SCREAMING_SNAKE_CASE_ = len(self.test_dataloader().dataset) else: SCREAMING_SNAKE_CASE_ = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_A) SCREAMING_SNAKE_CASE_ = len(self.train_dataloader().dataset) def lowerCAmelCase__ ( self , _A , _A , _A = False): raise NotImplementedError('You must implement this for your task') def lowerCAmelCase__ ( self): return self.train_loader def lowerCAmelCase__ ( self): return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_A) def lowerCAmelCase__ ( self): return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_A) def lowerCAmelCase__ ( self , _A): return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( _A , list(filter(_A , self.hparams.model_name_or_path.split('/'))).pop() , str(self.hparams.max_seq_length) , ) , ) @pl.utilities.rank_zero_only def lowerCAmelCase__ ( self , _A): SCREAMING_SNAKE_CASE_ = self.output_dir.joinpath('best_tfmr') SCREAMING_SNAKE_CASE_ = self.step_count self.model.save_pretrained(_A) self.tokenizer.save_pretrained(_A) @staticmethod def lowerCAmelCase__ ( _A , _A): parser.add_argument( '--model_name_or_path' , default=_A , type=_A , required=_A , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=_A , help='Pretrained config name or path if not the same as model_name') parser.add_argument( '--tokenizer_name' , default=_A , type=_A , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(_A).parent / 'test_run' / 'cache') , type=_A , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=_A , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=_A , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=_A , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=_A , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=_A , help='The initial learning rate for Adam.') parser.add_argument( '--lr_scheduler' , default='linear' , choices=_A , metavar=_A , type=_A , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=_A , help='Weight decay if we apply some.') parser.add_argument('--adam_epsilon' , default=1E-8 , type=_A , help='Epsilon for Adam optimizer.') parser.add_argument('--warmup_steps' , default=0 , type=_A , help='Linear warmup over warmup_steps.') parser.add_argument('--num_workers' , default=4 , type=_A , help='kwarg passed to DataLoader') parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_A) parser.add_argument('--train_batch_size' , default=32 , type=_A) parser.add_argument('--eval_batch_size' , default=32 , type=_A) parser.add_argument('--adafactor' , action='store_true') class __snake_case ( pl.Callback ): def lowerCAmelCase__ ( self , _A , _A): if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __snake_case ( pl.Callback ): def lowerCAmelCase__ ( self , _A , _A): # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A) class __snake_case ( pl.Callback ): def lowerCAmelCase__ ( self , _A , _A): SCREAMING_SNAKE_CASE_ = trainer.lr_schedulers[0]['scheduler'] SCREAMING_SNAKE_CASE_ = {f"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr())} pl_module.logger.log_metrics(_A) def lowerCAmelCase__ ( self , _A , _A): rank_zero_info('***** Validation results *****') SCREAMING_SNAKE_CASE_ = trainer.callback_metrics # Log results for key in sorted(_A): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key]))) def lowerCAmelCase__ ( self , _A , _A): rank_zero_info('***** Test results *****') SCREAMING_SNAKE_CASE_ = trainer.callback_metrics # Log and save results to file SCREAMING_SNAKE_CASE_ = os.path.join(pl_module.hparams.output_dir , 'test_results.txt') with open(_A , 'w') as writer: for key in sorted(_A): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_A , str(metrics[key]))) writer.write('{} = {}\n'.format(_A , str(metrics[key]))) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(_SCREAMING_SNAKE_CASE ).parent / 'test_run' / 'model_checkpoints' ) , type=_SCREAMING_SNAKE_CASE , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_SCREAMING_SNAKE_CASE , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=_SCREAMING_SNAKE_CASE ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=_SCREAMING_SNAKE_CASE , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=_SCREAMING_SNAKE_CASE , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=_SCREAMING_SNAKE_CASE , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(_SCREAMING_SNAKE_CASE ).parent / 'test_run' / 'dummy-train-data' ) , type=_SCREAMING_SNAKE_CASE , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : BaseTransformer , _SCREAMING_SNAKE_CASE : argparse.Namespace , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Optional[Any]=None , **_SCREAMING_SNAKE_CASE : Union[str, Any] , ): """simple docstring""" pl.seed_everything(args.seed ) # init model SCREAMING_SNAKE_CASE_ = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) # add custom checkpoints if checkpoint_callback is None: SCREAMING_SNAKE_CASE_ = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_SCREAMING_SNAKE_CASE ) if logging_callback is None: SCREAMING_SNAKE_CASE_ = LoggingCallback() SCREAMING_SNAKE_CASE_ = {} if args.fpaa: SCREAMING_SNAKE_CASE_ = 16 if args.gpus > 1: SCREAMING_SNAKE_CASE_ = 'auto' SCREAMING_SNAKE_CASE_ = 'ddp' SCREAMING_SNAKE_CASE_ = args.accumulate_grad_batches SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 'auto' SCREAMING_SNAKE_CASE_ = pl.Trainer.from_argparse_args( _SCREAMING_SNAKE_CASE , weights_summary=_SCREAMING_SNAKE_CASE , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_SCREAMING_SNAKE_CASE , val_check_interval=1 , num_sanity_val_steps=2 , **_SCREAMING_SNAKE_CASE , ) if args.do_train: trainer.fit(_SCREAMING_SNAKE_CASE ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
620
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase__ : int = Lock() def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_SCREAMING_SNAKE_CASE ) process_lock.release() # receive your right neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left SCREAMING_SNAKE_CASE_ = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_SCREAMING_SNAKE_CASE ) process_lock.release() # receive your left neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right SCREAMING_SNAKE_CASE_ = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # after all swaps are performed, send the values back to main result_pipe[1].send(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop SCREAMING_SNAKE_CASE_ = Pipe() SCREAMING_SNAKE_CASE_ = Pipe() process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) SCREAMING_SNAKE_CASE_ = temp_rs SCREAMING_SNAKE_CASE_ = temp_rr for i in range(1 , len(_SCREAMING_SNAKE_CASE ) - 1 ): SCREAMING_SNAKE_CASE_ = Pipe() SCREAMING_SNAKE_CASE_ = Pipe() process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) SCREAMING_SNAKE_CASE_ = temp_rs SCREAMING_SNAKE_CASE_ = temp_rr process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=( len(_SCREAMING_SNAKE_CASE ) - 1, arr[len(_SCREAMING_SNAKE_CASE ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_SCREAMING_SNAKE_CASE ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_SCREAMING_SNAKE_CASE ) ): SCREAMING_SNAKE_CASE_ = result_pipe[p][0].recv() process_array_[p].join() return arr def _UpperCAmelCase ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = odd_even_transposition(_SCREAMING_SNAKE_CASE ) print('Sorted List\n' ) print(*_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
620
1
'''simple docstring''' import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = RoFormerTokenizer SCREAMING_SNAKE_CASE_ = RoFormerTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() def _lowerCamelCase ( self , **_snake_case ): """simple docstring""" return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **_snake_case ) def _lowerCamelCase ( self , **_snake_case ): """simple docstring""" return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **_snake_case ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = '''永和服装饰品有限公司,今天天气非常好''' __lowerCamelCase = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.get_tokenizer() __lowerCamelCase , __lowerCamelCase = self.get_chinese_input_output_texts() __lowerCamelCase = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , output_text.split() ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase , __lowerCamelCase = self.get_chinese_input_output_texts() __lowerCamelCase = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , output_text.split() ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" pass
316
'''simple docstring''' def lowerCamelCase_ ( A_ , A_ ): __lowerCamelCase = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __lowerCamelCase = n - k # Calculate C(n,k) for i in range(A_ ): result *= n - i result //= i + 1 return result def lowerCamelCase_ ( A_ ): return binomial_coefficient(2 * node_count , A_ ) // (node_count + 1) def lowerCamelCase_ ( A_ ): if n < 0: raise ValueError('''factorial() not defined for negative values''' ) __lowerCamelCase = 1 for i in range(1 , n + 1 ): result *= i return result def lowerCamelCase_ ( A_ ): return catalan_number(A_ ) * factorial(A_ ) if __name__ == "__main__": _UpperCamelCase : Dict =int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
316
1
"""simple docstring""" import gc import threading import time import psutil import torch class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self) -> Optional[int]: '''simple docstring''' snake_case__ : Union[str, Any] = psutil.Process() snake_case__ : Optional[int] = False def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' snake_case__ : int = -1 while True: snake_case__ : str = max(self.process.memory_info().rss , self.cpu_memory_peak) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' snake_case__ : List[Any] = True snake_case__ : Union[str, Any] = threading.Thread(target=self.peak_monitor) snake_case__ : Any = True self.thread.start() def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' snake_case__ : str = False self.thread.join() return self.cpu_memory_peak lowercase = PeakCPUMemory() def A__ ( ) -> Tuple: '''simple docstring''' snake_case__ : Union[str, Any] = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem snake_case__ : Union[str, Any] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): snake_case__ : List[Any] = torch.cuda.memory_allocated(_UpperCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def A__ ( _UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' snake_case__ : int = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem snake_case__ : Union[str, Any] = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 snake_case__ : int = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): snake_case__ : int = (torch.cuda.memory_allocated(_UpperCAmelCase ) - start_measures[str(_UpperCAmelCase )]) / 2**20 snake_case__ : Dict = (torch.cuda.max_memory_allocated(_UpperCAmelCase ) - start_measures[str(_UpperCAmelCase )]) / 2**20 return measures def A__ ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' print(F"""{description}:""" ) print(F"""- Time: {measures['time']:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(_UpperCAmelCase )]:.2f}MiB""" ) snake_case__ : Union[str, Any] = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures['cpu']:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures['cpu-peak']:.2f}MiB""" )
150
"""simple docstring""" import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class SCREAMING_SNAKE_CASE_ ( _lowercase): '''simple docstring''' def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' snake_case__ : List[Any] = tempfile.mkdtemp() snake_case__ : Tuple = 8 # DPR tok snake_case__ : List[str] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] snake_case__ : List[Any] = os.path.join(self.tmpdirname , "dpr_tokenizer") os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__) snake_case__ : Optional[int] = os.path.join(lowerCamelCase__ , DPR_VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) # BART tok snake_case__ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] snake_case__ : str = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__)))) snake_case__ : Tuple = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case__ : List[Any] = {"unk_token": "<unk>"} snake_case__ : Tuple = os.path.join(self.tmpdirname , "bart_tokenizer") os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__) snake_case__ : Any = os.path.join(lowerCamelCase__ , BART_VOCAB_FILES_NAMES["vocab_file"]) snake_case__ : Optional[Any] = os.path.join(lowerCamelCase__ , BART_VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(lowerCamelCase__) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(lowerCamelCase__)) def UpperCAmelCase ( self) -> DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer")) def UpperCAmelCase ( self) -> BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer")) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname) @require_tokenizers def UpperCAmelCase ( self) -> Any: '''simple docstring''' snake_case__ : Any = os.path.join(self.tmpdirname , "rag_tokenizer") snake_case__ : Any = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict()) snake_case__ : Dict = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer()) rag_config.save_pretrained(lowerCamelCase__) rag_tokenizer.save_pretrained(lowerCamelCase__) snake_case__ : Optional[int] = RagTokenizer.from_pretrained(lowerCamelCase__ , config=lowerCamelCase__) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowerCamelCase__) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab()) self.assertIsInstance(new_rag_tokenizer.generator , lowerCamelCase__) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab()) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = RagTokenizer.from_pretrained("facebook/rag-token-nq") snake_case__ : List[str] = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] snake_case__ : Union[str, Any] = tokenizer(lowerCamelCase__) self.assertIsNotNone(lowerCamelCase__) @slow def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' snake_case__ : Any = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") snake_case__ : Tuple = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] snake_case__ : Optional[Any] = tokenizer(lowerCamelCase__) self.assertIsNotNone(lowerCamelCase__)
150
1
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = GPTSanJapaneseTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = {'do_clean_text': False, 'add_prefix_space': False} def _lowerCamelCase ( self ): """simple docstring""" super().setUp() # fmt: off _lowercase : List[str] = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on _lowercase : Union[str, Any] = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 _lowercase : List[Any] = {"unk_token": "<unk>"} _lowercase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _lowercase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(_UpperCamelCase ) ) def _lowerCamelCase ( self , **_UpperCamelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : int = "こんにちは、世界。 \nこんばんは、㔺界。😀" _lowercase : str = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase , _lowercase : int = self.get_input_output_texts(_UpperCamelCase ) _lowercase : Tuple = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _lowercase : List[Any] = tokenizer.decode(_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) return text, ids def _lowerCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def _lowerCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def _lowerCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = self.get_tokenizer() # Testing tokenization _lowercase : Optional[int] = "こんにちは、世界。 こんばんは、㔺界。" _lowercase : Tuple = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] _lowercase : str = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) # Testing conversion to ids without special tokens _lowercase : str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _lowercase : int = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) # Testing conversion to ids with special tokens _lowercase : Dict = tokens + [tokenizer.unk_token] _lowercase : Optional[Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] _lowercase : int = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = self.get_tokenizer() # Testing tokenization _lowercase : str = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" _lowercase : List[str] = "こんにちは、、、、世界。こんばんは、、、、世界。" _lowercase : str = tokenizer.encode(_UpperCamelCase ) _lowercase : Tuple = tokenizer.decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _lowercase : Any = "こんにちは、世界。" _lowercase : Union[str, Any] = "こんばんは、㔺界。😀" _lowercase : List[str] = "こんにちは、世界。こんばんは、世界。😀" _lowercase : Dict = tokenizer.encode(prefix_text + input_text ) _lowercase : List[str] = tokenizer.encode("" , prefix_text=prefix_text + input_text ) _lowercase : Tuple = tokenizer.encode(_UpperCamelCase , prefix_text=_UpperCamelCase ) _lowercase : int = tokenizer.decode(_UpperCamelCase ) _lowercase : Tuple = tokenizer.decode(_UpperCamelCase ) _lowercase : List[str] = tokenizer.decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _lowercase : str = "こんにちは、世界。" _lowercase : Tuple = "こんばんは、㔺界。😀" _lowercase : Tuple = len(tokenizer.encode(_UpperCamelCase ) ) - 2 _lowercase : Dict = len(tokenizer.encode(_UpperCamelCase ) ) - 2 _lowercase : Union[str, Any] = [1] + [0] * (len_prefix + len_text + 1) _lowercase : Optional[int] = [1] * (len_prefix + len_text + 1) + [0] _lowercase : str = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _lowercase : Dict = tokenizer(prefix_text + input_text ).token_type_ids _lowercase : int = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids _lowercase : Any = tokenizer(_UpperCamelCase , prefix_text=_UpperCamelCase ).token_type_ids self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _lowercase : Union[str, Any] = tokenizer.encode("あンいワ" ) _lowercase : str = tokenizer.encode("" , prefix_text="あンいワ" ) _lowercase : Optional[int] = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(_UpperCamelCase ) , tokenizer.decode(_UpperCamelCase ) ) self.assertEqual(tokenizer.decode(_UpperCamelCase ) , tokenizer.decode(_UpperCamelCase ) ) self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _lowercase : List[Any] = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] _lowercase : Optional[Any] = tokenizer(_UpperCamelCase , padding=_UpperCamelCase ) _lowercase : int = tokenizer.batch_encode_plus(_UpperCamelCase , padding=_UpperCamelCase ) # fmt: off _lowercase : str = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] _lowercase : Optional[Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _lowercase : Union[str, Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , _UpperCamelCase ) self.assertListEqual(x_token.token_type_ids , _UpperCamelCase ) self.assertListEqual(x_token.attention_mask , _UpperCamelCase ) self.assertListEqual(x_token_a.input_ids , _UpperCamelCase ) self.assertListEqual(x_token_a.token_type_ids , _UpperCamelCase ) self.assertListEqual(x_token_a.attention_mask , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" pass
245
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class a__ : def __init__( self , _UpperCamelCase , _UpperCamelCase=2 , _UpperCamelCase=8 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=16 , _UpperCamelCase=5 , _UpperCamelCase=2 , _UpperCamelCase=36 , _UpperCamelCase="gelu" , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.0_2 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=None , ): """simple docstring""" _lowercase : Tuple = parent _lowercase : Optional[int] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : Optional[Any] = is_training _lowercase : List[str] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : List[str] = use_labels _lowercase : str = vocab_size _lowercase : str = hidden_size _lowercase : Optional[int] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : int = intermediate_size _lowercase : str = hidden_act _lowercase : Any = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Dict = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : str = type_sequence_label_size _lowercase : List[str] = initializer_range _lowercase : Optional[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Optional[int] = scope def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Any = None if self.use_input_mask: _lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : List[Any] = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : List[Any] = None _lowercase : Dict = None _lowercase : int = None if self.use_labels: _lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ): """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = self.get_config() _lowercase : Any = 300 return config def _lowerCamelCase ( self ): """simple docstring""" ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Tuple = self.prepare_config_and_inputs() _lowercase : List[str] = True _lowercase : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Dict = MraModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : Optional[Any] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _lowercase : Tuple = model(_UpperCamelCase , token_type_ids=_UpperCamelCase ) _lowercase : Optional[int] = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): """simple docstring""" _lowercase : Any = True _lowercase : Dict = MraModel(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : str = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , ) _lowercase : Tuple = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , ) _lowercase : Optional[Any] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Union[str, Any] = MraForMaskedLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : Tuple = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Dict = MraForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : Optional[int] = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Union[str, Any] = self.num_labels _lowercase : Tuple = MraForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : List[str] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : List[str] = self.num_labels _lowercase : List[Any] = MraForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : str = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : str = self.num_choices _lowercase : Dict = MraForMultipleChoice(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : Optional[int] = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Union[str, Any] = config_and_inputs _lowercase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[Any] = () def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = MraModelTester(self ) _lowercase : Any = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase : Any = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Optional[Any] = MraModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @unittest.skip(reason="MRA does not output attentions" ) def _lowerCamelCase ( self ): """simple docstring""" return @require_torch class a__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) _lowercase : List[str] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowercase : Dict = model(_UpperCamelCase )[0] _lowercase : List[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _UpperCamelCase ) _lowercase : int = torch.tensor( [[[-0.0_1_4_0, 0.0_8_3_0, -0.0_3_8_1], [0.1_5_4_6, 0.1_4_0_2, 0.0_2_2_0], [0.1_1_6_2, 0.0_8_5_1, 0.0_1_6_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) _lowercase : Dict = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowercase : Optional[Any] = model(_UpperCamelCase )[0] _lowercase : Tuple = 50265 _lowercase : Dict = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) _lowercase : List[Any] = torch.tensor( [[[9.2_5_9_5, -3.6_0_3_8, 1_1.8_8_1_9], [9.3_8_6_9, -3.2_6_9_3, 1_1.0_9_5_6], [1_1.8_5_2_4, -3.4_9_3_8, 1_3.1_2_1_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) _lowercase : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): _lowercase : Union[str, Any] = model(_UpperCamelCase )[0] _lowercase : List[str] = 50265 _lowercase : Dict = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) _lowercase : Union[str, Any] = torch.tensor( [[[5.4_7_8_9, -2.3_5_6_4, 7.5_0_6_4], [7.9_0_6_7, -1.3_3_6_9, 9.9_6_6_8], [9.0_7_1_2, -1.8_1_0_6, 7.0_3_8_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4 ) )
245
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) UpperCamelCase = get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(UpperCAmelCase__ ) , torch_builtin(UpperCAmelCase__ ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCAmelCase__ ) , gelu_new(UpperCAmelCase__ ) ) ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) UpperCamelCase = get_activation("""gelu""" ) UpperCamelCase = get_activation("""gelu_10""" ) UpperCamelCase = torch_builtin(UpperCAmelCase__ ) UpperCamelCase = geluaa(UpperCAmelCase__ ) UpperCamelCase = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCAmelCase__ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowerCamelCase_ ( self : int ): """simple docstring""" get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(UpperCAmelCase__ ): get_activation("""bogus""" ) with self.assertRaises(UpperCAmelCase__ ): get_activation(UpperCAmelCase__ ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = get_activation("""gelu""" ) UpperCamelCase = 1 UpperCamelCase = get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCAmelCase__ ): UpperCamelCase = acta.a
718
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( __snake_case ): lowercase = ["""image_processor""", """tokenizer"""] lowercase = """FlavaImageProcessor""" lowercase = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Optional[int] , __magic_name__ : Optional[int]=None , __magic_name__ : str=None , **__magic_name__ : Any ): """simple docstring""" UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) UpperCamelCase = kwargs.pop("""feature_extractor""" ) UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) UpperCamelCase = self.image_processor def __call__( self : int , __magic_name__ : Optional[ImageInput] = None , __magic_name__ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __magic_name__ : bool = True , __magic_name__ : Union[bool, str, PaddingStrategy] = False , __magic_name__ : Union[bool, str, TruncationStrategy] = False , __magic_name__ : Optional[int] = None , __magic_name__ : int = 0 , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : str , ): """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCamelCase = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if images is not None: UpperCamelCase = self.image_processor( __magic_name__ , return_image_mask=__magic_name__ , return_codebook_pixels=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if text is not None and images is not None: encoding.update(__magic_name__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowerCamelCase_ ( self : Tuple , *__magic_name__ : Dict , **__magic_name__ : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowerCamelCase_ ( self : int , *__magic_name__ : Tuple , **__magic_name__ : Optional[Any] ): """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.tokenizer.model_input_names UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
181
0
import pprint import requests SCREAMING_SNAKE_CASE = 'https://zenquotes.io/api' def a (): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def a (): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": SCREAMING_SNAKE_CASE = random_quotes() pprint.pprint(response)
99
def _lowercase( __a : list[int] ): a__ =len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: a__ , a__ =numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCAmelCase: Tuple = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase: int = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
20
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class snake_case__ ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self : List[str] ) ->List[str]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self : Tuple ) ->Any: snake_case__ : Optional[Any] = ort.SessionOptions() snake_case__ : int = False return options def lowercase_ ( self : Union[str, Any] ) ->List[str]: snake_case__ : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) snake_case__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) snake_case__ : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting', revision='onnx', safety_checker=_snake_case, feature_extractor=_snake_case, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=_snake_case ) snake_case__ : Tuple = 'A red cat sitting on a park bench' snake_case__ : Union[str, Any] = np.random.RandomState(0 ) snake_case__ : List[Any] = pipe( prompt=_snake_case, image=_snake_case, mask_image=_snake_case, guidance_scale=7.5, num_inference_steps=1_0, generator=_snake_case, output_type='np', ) snake_case__ : Dict = output.images snake_case__ : str = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Optional[Any] = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self : Union[str, Any] ) ->List[str]: snake_case__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) snake_case__ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) snake_case__ : List[Any] = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting', subfolder='scheduler', revision='onnx' ) snake_case__ : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting', revision='onnx', scheduler=_snake_case, safety_checker=_snake_case, feature_extractor=_snake_case, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=_snake_case ) snake_case__ : List[str] = 'A red cat sitting on a park bench' snake_case__ : str = np.random.RandomState(0 ) snake_case__ : Tuple = pipe( prompt=_snake_case, image=_snake_case, mask_image=_snake_case, guidance_scale=7.5, num_inference_steps=2_0, generator=_snake_case, output_type='np', ) snake_case__ : Union[str, Any] = output.images snake_case__ : List[str] = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Tuple = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
243
from __future__ import annotations def lowercase_ (A : list[int] ): return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
243
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class A__: """simple docstring""" def __init__( self , _lowercase , _lowercase = 13 , _lowercase = 64 , _lowercase = 2 , _lowercase = 3 , _lowercase = 3 , _lowercase = True , _lowercase = True , _lowercase = 128 , _lowercase=[16, 32, 64, 128] , _lowercase = 7 , _lowercase = 4 , _lowercase = 37 , _lowercase = "gelu" , _lowercase = 0.1 , _lowercase = 0.1 , _lowercase = 10 , _lowercase = 0.0_2 , _lowercase = 2 , _lowercase = 1 , _lowercase = 128 , _lowercase = [2, 2, 2, 2] , _lowercase = 2 , _lowercase = 2 , ) -> Dict: a_ : Dict = parent a_ : Optional[int] = batch_size a_ : str = image_size a_ : Dict = patch_size a_ : str = num_channels a_ : Optional[int] = is_training a_ : Optional[int] = use_labels a_ : Tuple = hidden_size a_ : Optional[int] = num_hidden_layers a_ : List[Any] = num_attention_heads a_ : List[Any] = intermediate_size a_ : List[Any] = hidden_act a_ : Tuple = hidden_dropout_prob a_ : Optional[Any] = attention_probs_dropout_prob a_ : Any = type_sequence_label_size a_ : Tuple = initializer_range a_ : Optional[Any] = encoder_stride a_ : Tuple = num_attention_outputs a_ : List[str] = embed_dim a_ : Dict = embed_dim + 1 a_ : Dict = resolution a_ : Tuple = depths a_ : Union[str, Any] = hidden_sizes a_ : Dict = dim a_ : List[str] = mlp_expansion_ratio def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : Optional[int] = None if self.use_labels: a_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : List[str] = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ) -> Any: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> str: a_ : int = TFEfficientFormerModel(config=_lowercase ) a_ : int = model(_lowercase , training=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Optional[int]: a_ : Dict = self.type_sequence_label_size a_ : Union[str, Any] = TFEfficientFormerForImageClassification(_lowercase ) a_ : List[str] = model(_lowercase , labels=_lowercase , training=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a_ : Any = 1 a_ : Optional[Any] = TFEfficientFormerForImageClassification(_lowercase ) a_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a_ : Dict = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : Any = self.prepare_config_and_inputs() a_ , a_ , a_ : Any = config_and_inputs a_ : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class A__(a_, a_, unittest.TestCase ): """simple docstring""" _A : int = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _A : List[Any] = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _A : Optional[Any] = False _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Union[str, Any] = False def UpperCamelCase__ ( self ) -> int: a_ : List[Any] = TFEfficientFormerModelTester(self ) a_ : Dict = ConfigTester( self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def UpperCamelCase__ ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def UpperCamelCase__ ( self ) -> int: pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def UpperCamelCase__ ( self ) -> Union[str, Any]: pass def UpperCamelCase__ ( self ) -> Any: a_ , a_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Optional[Any] = model_class(_lowercase ) a_ : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Optional[Any] = [*signature.parameters.keys()] a_ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def UpperCamelCase__ ( self ) -> Dict: def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): a_ : List[str] = model_class(_lowercase ) a_ : Optional[Any] = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) a_ : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a_ : Any = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) if hasattr(self.model_tester , """encoder_seq_length""" ): a_ : Optional[Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: a_ : Any = seq_length * self.model_tester.chunk_length else: a_ : Union[str, Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: a_ : List[str] = outputs.decoder_hidden_states self.asseretIsInstance(_lowercase , (list, tuple) ) self.assertEqual(len(_lowercase ) , _lowercase ) a_ : List[Any] = getattr(self.model_tester , """seq_length""" , _lowercase ) a_ : List[Any] = getattr(self.model_tester , """decoder_seq_length""" , _lowercase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) a_ , a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Any = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : Union[str, Any] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase=False ) -> int: a_ : Optional[Any] = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase__ ( self ) -> Union[str, Any]: a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def UpperCamelCase__ ( self ) -> List[str]: a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowercase ) def UpperCamelCase__ ( self ) -> List[Any]: a_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @slow def UpperCamelCase__ ( self ) -> Dict: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Tuple = TFEfficientFormerModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def UpperCamelCase__ ( self ) -> Optional[int]: a_ , a_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() a_ : Dict = True a_ : Dict = getattr(self.model_tester , """seq_length""" , _lowercase ) a_ : Any = getattr(self.model_tester , """encoder_seq_length""" , _lowercase ) a_ : Optional[int] = getattr(self.model_tester , """key_length""" , _lowercase ) a_ : Dict = getattr(self.model_tester , """chunk_length""" , _lowercase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): a_ : Optional[Any] = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: a_ : Optional[int] = True a_ : str = False a_ : List[Any] = True a_ : Union[str, Any] = model_class(_lowercase ) a_ : List[str] = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) a_ : str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a_ : int = True a_ : Any = model_class(_lowercase ) a_ : Dict = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) a_ : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def UpperCamelCase__ ( self ) -> int: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction a_ , a_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model a_ : Union[str, Any] = model_class(_lowercase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes a_ : Any = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowercase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } a_ : str = model(_lowercase ) self.assertTrue(outputs_dict is not None ) def _UpperCAmelCase ( ): '''simple docstring''' a_ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_tf @require_vision class A__(unittest.TestCase ): """simple docstring""" @cached_property def UpperCamelCase__ ( self ) -> Union[str, Any]: return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ) -> int: a_ : int = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) a_ : List[str] = self.default_image_processor a_ : List[str] = prepare_img() a_ : List[str] = image_processor(images=_lowercase , return_tensors="""tf""" ) # forward pass a_ : Dict = model(**_lowercase , training=_lowercase ) # verify the logits a_ : List[Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowercase ) a_ : List[Any] = tf.constant([-0.0_5_5_5, 0.4_8_2_5, -0.0_8_5_2] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) ) @slow def UpperCamelCase__ ( self ) -> Dict: a_ : str = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) a_ : Optional[Any] = self.default_image_processor a_ : Optional[int] = prepare_img() a_ : int = image_processor(images=_lowercase , return_tensors="""tf""" ) # forward pass a_ : Union[str, Any] = model(**_lowercase , training=_lowercase ) # verify the logits a_ : Dict = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowercase ) a_ : int = tf.constant([-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) )
540
from __future__ import annotations def _UpperCAmelCase ( a__): '''simple docstring''' if len(a__) == 0: return [] a_ , a_ : List[Any] = min(a__), max(a__) a_ : Tuple = int(max_value - min_value) + 1 a_ : list[list] = [[] for _ in range(a__)] for i in my_list: buckets[int(i - min_value)].append(a__) return [v for bucket in buckets for v in sorted(a__)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
540
1
"""simple docstring""" lowerCAmelCase__ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
716
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): @slow def snake_case_ (self ) -> List[str]: UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=__a ).to(__a ) UpperCamelCase = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCamelCase = tokenizer("Hello there" , return_tensors="pt" ).input_ids UpperCamelCase = tokenizer("Hi I am" , return_tensors="pt" ).input_ids UpperCamelCase = model(input_ids.to(__a ) , labels=labels.to(__a ) ).loss UpperCamelCase = -(labels.shape[-1] * loss.item()) UpperCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
544
0
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__A ) ) def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(__A ) ) def _snake_case ( self :Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(__A ) ) def _snake_case ( self :Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertFalse(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertTrue(is_safetensors_compatible(__A , variant=__A ) ) def _snake_case ( self :Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE__ = """fp16""" self.assertFalse(is_safetensors_compatible(__A , variant=__A ) )
6
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any: """simple docstring""" super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE__ = Encoder( in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , ) SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) # pass init params to Decoder SCREAMING_SNAKE_CASE__ = Decoder( in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , ) @apply_forward_hook def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.encoder(__A ) SCREAMING_SNAKE_CASE__ = self.quant_conv(__A ) if not return_dict: return (h,) return VQEncoderOutput(latents=__A ) @apply_forward_hook def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if not force_not_quantize: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A ) else: SCREAMING_SNAKE_CASE__ = h SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A ) SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__A ) def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" SCREAMING_SNAKE_CASE__ = sample SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__A )
6
1
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters a_ = False a_ = False def _a( UpperCamelCase__ : Namespace ): '''simple docstring''' return TrainCommand(UpperCamelCase__ ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): @staticmethod def __magic_name__ ( __lowercase : ArgumentParser ) -> Any: SCREAMING_SNAKE_CASE__ : Union[str, Any] =parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''' ) train_parser.add_argument( '''--train_data''' , type=__lowercase , required=__lowercase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=__lowercase , default=0 , help='''Column of the dataset csv file with example labels.''' ) train_parser.add_argument( '''--column_text''' , type=__lowercase , default=1 , help='''Column of the dataset csv file with example texts.''' ) train_parser.add_argument( '''--column_id''' , type=__lowercase , default=2 , help='''Column of the dataset csv file with example ids.''' ) train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''' ) train_parser.add_argument('''--validation_data''' , type=__lowercase , default='''''' , help='''path to validation dataset.''' ) train_parser.add_argument( '''--validation_split''' , type=__lowercase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=__lowercase , default='''./''' , help='''path to saved the trained model.''' ) train_parser.add_argument( '''--task''' , type=__lowercase , default='''text_classification''' , help='''Task to train the model on.''' ) train_parser.add_argument( '''--model''' , type=__lowercase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''' ) train_parser.add_argument('''--train_batch_size''' , type=__lowercase , default=32 , help='''Batch size for training.''' ) train_parser.add_argument('''--valid_batch_size''' , type=__lowercase , default=64 , help='''Batch size for validation.''' ) train_parser.add_argument('''--learning_rate''' , type=__lowercase , default=3e-5 , help='''Learning rate.''' ) train_parser.add_argument('''--adam_epsilon''' , type=__lowercase , default=1e-08 , help='''Epsilon for Adam optimizer.''' ) train_parser.set_defaults(func=__lowercase ) def __init__( self : Tuple , __lowercase : Namespace ) -> List[str]: SCREAMING_SNAKE_CASE__ : Tuple =logging.get_logger('''transformers-cli/training''' ) SCREAMING_SNAKE_CASE__ : int ='''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=__lowercase ) SCREAMING_SNAKE_CASE__ : Any =args.output SCREAMING_SNAKE_CASE__ : str =args.column_label SCREAMING_SNAKE_CASE__ : List[Any] =args.column_text SCREAMING_SNAKE_CASE__ : Tuple =args.column_id self.logger.info(F"Loading {args.task} pipeline for {args.model}" ) if args.task == "text_classification": SCREAMING_SNAKE_CASE__ : List[str] =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F"Loading dataset from {args.train_data}" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =None if args.validation_data: self.logger.info(F"Loading validation dataset from {args.validation_data}" ) SCREAMING_SNAKE_CASE__ : List[Any] =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =args.validation_split SCREAMING_SNAKE_CASE__ : List[Any] =args.train_batch_size SCREAMING_SNAKE_CASE__ : Any =args.valid_batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =args.learning_rate SCREAMING_SNAKE_CASE__ : int =args.adam_epsilon def __magic_name__ ( self : Any ) -> str: if self.framework == "tf": return self.run_tf() return self.run_torch() def __magic_name__ ( self : Optional[int] ) -> Tuple: raise NotImplementedError def __magic_name__ ( self : Dict ) -> List[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
665
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a_ = TypeVar('T') class __SCREAMING_SNAKE_CASE ( Generic[T] ): snake_case_ = 42 # Cache store of keys snake_case_ = 42 # References of the keys in cache snake_case_ = 10 # Maximum capacity of cache def __init__( self : Dict , __lowercase : int ) -> None: SCREAMING_SNAKE_CASE__ : Any =deque() SCREAMING_SNAKE_CASE__ : str =set() if not n: SCREAMING_SNAKE_CASE__ : Optional[Any] =sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] =n def __magic_name__ ( self : List[str] , __lowercase : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: SCREAMING_SNAKE_CASE__ : int =self.dq_store.pop() self.key_reference.remove(__lowercase ) else: self.dq_store.remove(__lowercase ) self.dq_store.appendleft(__lowercase ) self.key_reference.add(__lowercase ) def __magic_name__ ( self : Union[str, Any] ) -> None: for k in self.dq_store: print(__lowercase ) def __repr__( self : List[Any] ) -> str: return F"LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}" if __name__ == "__main__": import doctest doctest.testmod() a_ = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
665
1
'''simple docstring''' import math import sys def A_ ( SCREAMING_SNAKE_CASE_ ) ->int: if number != int(SCREAMING_SNAKE_CASE_ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 lowercase_ = [-1] * (number + 1) lowercase_ = 0 for i in range(1 , number + 1 ): lowercase_ = sys.maxsize lowercase_ = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) for j in range(1 , root + 1 ): lowercase_ = 1 + answers[i - (j**2)] lowercase_ = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
451
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
451
1
from __future__ import annotations class lowerCAmelCase__ : def __init__( self : Dict , __UpperCamelCase : Optional[int]=None ) -> Any: A = data A = None def __repr__( self : int ) -> Optional[int]: A = [] A = self while temp: string_rep.append(f'''{temp.data}''' ) A = temp.next return "->".join(__UpperCamelCase ) def lowerCamelCase_ ( lowerCAmelCase__ : list ) -> str: '''simple docstring''' if not elements_list: raise Exception('The Elements List is empty' ) A = A = Node(elements_list[0] ) for i in range(1 , len(lowerCAmelCase__ ) ): A = Node(elements_list[i] ) A = current.next return head def lowerCamelCase_ ( lowerCAmelCase__ : Node ) -> None: '''simple docstring''' if head_node is not None and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): print_reverse(head_node.next ) print(head_node.data ) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' from doctest import testmod testmod() A = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(lowerCAmelCase__ ) print('Elements in Reverse:' ) print_reverse(lowerCAmelCase__ ) if __name__ == "__main__": main()
709
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase__ : def __init__( self : Any , __UpperCamelCase : str , __UpperCamelCase : Any=13 , __UpperCamelCase : Optional[Any]=7 , __UpperCamelCase : List[str]=True , __UpperCamelCase : Any=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : int=99 , __UpperCamelCase : Any=32 , __UpperCamelCase : int=2 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : List[Any]="gelu" , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Any=512 , __UpperCamelCase : Tuple=16 , __UpperCamelCase : int=2 , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : Optional[Any]=3 , __UpperCamelCase : Any=4 , __UpperCamelCase : List[str]=None , ) -> Union[str, Any]: A = parent A = 13 A = 7 A = True A = True A = True A = True A = 99 A = 384 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.0_2 A = 3 A = 4 A = 128 A = 2 A = 9 A = 1 A = None def __UpperCamelCase ( self : Optional[int] ) -> Dict: A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A = ids_tensor([self.batch_size] , self.num_choices ) A = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: A = TFConvBertModel(config=__UpperCamelCase ) A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} A = [input_ids, input_mask] A = model(__UpperCamelCase ) A = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] ) -> str: A = TFConvBertForMaskedLM(config=__UpperCamelCase ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } A = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : str , __UpperCamelCase : List[str] ) -> Tuple: A = self.num_labels A = TFConvBertForSequenceClassification(config=__UpperCamelCase ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } A = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ) -> Tuple: A = self.num_choices A = TFConvBertForMultipleChoice(config=__UpperCamelCase ) A = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) A = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) A = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) A = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } A = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> Any: A = self.num_labels A = TFConvBertForTokenClassification(config=__UpperCamelCase ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } A = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] ) -> str: A = TFConvBertForQuestionAnswering(config=__UpperCamelCase ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } A = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Any ) -> List[str]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : Tuple = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : int = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : Optional[int] = False A_ : Any = False A_ : str = False def __UpperCamelCase ( self : int ) -> Any: A = TFConvBertModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ) -> Any: self.config_tester.run_common_tests() def __UpperCamelCase ( self : Dict ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def __UpperCamelCase ( self : Tuple ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def __UpperCamelCase ( self : str ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def __UpperCamelCase ( self : Optional[Any] ) -> int: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: A , A = self.model_tester.prepare_config_and_inputs_for_common() A = True A = True if hasattr(__UpperCamelCase , 'use_cache' ): A = True A = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) A = getattr(self.model_tester , 'key_length' , __UpperCamelCase ) for model_class in self.all_model_classes: A = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) A = model_class(__UpperCamelCase ) A = len(model(__UpperCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase , saved_model=__UpperCamelCase ) A = os.path.join(__UpperCamelCase , 'saved_model' , '1' ) A = tf.keras.models.load_model(__UpperCamelCase ) A = model(__UpperCamelCase ) if self.is_encoder_decoder: A = outputs['encoder_hidden_states'] A = outputs['encoder_attentions'] else: A = outputs['hidden_states'] A = outputs['attentions'] self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) A = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __UpperCamelCase ( self : str ) -> str: A = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(__UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() A = True A = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) A = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) A = getattr(self.model_tester , 'key_length' , __UpperCamelCase ) A = getattr(self.model_tester , 'key_length' , __UpperCamelCase ) def check_decoder_attentions_output(__UpperCamelCase : List[Any] ): A = len(__UpperCamelCase ) self.assertEqual(out_len % 2 , 0 ) A = outputs.decoder_attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__UpperCamelCase : Dict ): A = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A = True A = False A = model_class(__UpperCamelCase ) A = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) A = len(__UpperCamelCase ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) if self.is_encoder_decoder: A = model_class(__UpperCamelCase ) A = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_decoder_attentions_output(__UpperCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A = True A = model_class(__UpperCamelCase ) A = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) # Check attention is always last and order is fine A = True A = True A = model_class(__UpperCamelCase ) A = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__UpperCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: A = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(__UpperCamelCase )[0] A = [1, 6, 768] self.assertEqual(output.shape , __UpperCamelCase ) A = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
224
0
import argparse from collections import defaultdict def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" lowerCamelCase__: str =F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__a , "r" ) as f: lowerCamelCase__: Optional[int] =f.readlines() lowerCamelCase__: List[str] =F"""class {class_name}(""" lowerCamelCase__: Any =F"""{4 * " "}def {test_name}(""" lowerCamelCase__: Dict =F"""{8 * " "}{correct_line.split()[0]}""" lowerCamelCase__: Any =F"""{16 * " "}{correct_line.split()[0]}""" lowerCamelCase__: Tuple =False lowerCamelCase__: List[str] =False lowerCamelCase__: List[Any] =False lowerCamelCase__: int =False lowerCamelCase__: Optional[int] =0 lowerCamelCase__: Optional[Any] =0 lowerCamelCase__: List[str] =[] for line in lines: if line.startswith(__a ): lowerCamelCase__: List[str] =True elif in_class and line.startswith(__a ): lowerCamelCase__: Dict =True elif in_class and in_func and (line.startswith(__a ) or line.startswith(__a )): lowerCamelCase__: int =len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: lowerCamelCase__: Dict =True if in_class and in_func and in_line: if ")" not in line: continue else: lowerCamelCase__: Union[str, Any] =True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) lowerCamelCase__: Any =False else: new_lines.append(__a ) with open(__a , "w" ) as f: for line in new_lines: f.write(__a ) def lowerCAmelCase_ ( __a , __a=None ) -> int: """simple docstring""" if fail is not None: with open(__a , "r" ) as f: lowerCamelCase__: str ={l.strip() for l in f.readlines()} else: lowerCamelCase__: List[str] =None with open(__a , "r" ) as f: lowerCamelCase__: Any =f.readlines() lowerCamelCase__: str =defaultdict(__a ) for line in correct_lines: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__a , __a , __a , __a , __a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) __A = parser.parse_args() main(args.correct_filename, args.fail_filename)
59
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __A = logging.getLogger(__name__) def lowerCAmelCase_ ( __a , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = False , ) -> str: """simple docstring""" lowerCamelCase__: int =bnb_quantization_config.load_in_abit lowerCamelCase__: Any =bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) lowerCamelCase__: List[Any] =[] # custom device map if isinstance(__a , __a ) and len(device_map.keys() ) > 1: lowerCamelCase__: Optional[int] =[key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCamelCase__: Any =get_keys_to_not_convert(__a ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__a ) lowerCamelCase__: List[str] =bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCamelCase__: List[Any] =[] lowerCamelCase__: int =bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__a ) # compatibility with peft lowerCamelCase__: List[str] =load_in_abit lowerCamelCase__: int =load_in_abit lowerCamelCase__: Tuple =get_parameter_device(__a ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) lowerCamelCase__: Tuple =replace_with_bnb_layers(__a , __a , modules_to_not_convert=__a ) # convert param to the right dtype lowerCamelCase__: Dict =bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowerCamelCase__: str =name.replace(".weight" , "" ).replace(".bias" , "" ) lowerCamelCase__: Optional[Any] =getattr(__a , __a , __a ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__a ): param.to(__a ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( F"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( F"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): lowerCamelCase__: str =replace_with_bnb_layers( __a , __a , modules_to_not_convert=__a ) lowerCamelCase__: Optional[Any] =get_quantized_model_device_map( __a , __a , __a , max_memory=__a , no_split_module_classes=__a , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCamelCase__: Any =True lowerCamelCase__: List[str] =any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( __a , __a , __a , dtype=bnb_quantization_config.torch_dtype , offload_folder=__a , offload_state_dict=__a , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__a , device_map=__a , offload_dir=__a ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None ) -> str: """simple docstring""" if device_map is None: if torch.cuda.is_available(): lowerCamelCase__: str ={"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." ) if isinstance(__a , __a ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) lowerCamelCase__: Optional[int] ={} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowerCamelCase__: Optional[Any] ={} lowerCamelCase__: str =special_dtypes lowerCamelCase__: List[str] =no_split_module_classes lowerCamelCase__: Dict =bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCamelCase__: Optional[Any] =get_balanced_memory( __a , low_zero=(device_map == "balanced_low_0") , max_memory=__a , **__a , ) lowerCamelCase__: Union[str, Any] =max_memory lowerCamelCase__: Dict =infer_auto_device_map(__a , **__a ) if isinstance(__a , __a ): # check if don't have any quantized module on the cpu lowerCamelCase__: Union[str, Any] =bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCamelCase__: List[Any] ={ key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def lowerCAmelCase_ ( __a , __a , __a=None , __a=None ) -> Optional[Any]: """simple docstring""" if modules_to_not_convert is None: lowerCamelCase__: List[Any] =[] lowerCamelCase__ , lowerCamelCase__: Any =_replace_with_bnb_layers( __a , __a , __a , __a ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , ) -> List[Any]: """simple docstring""" lowerCamelCase__: Optional[int] =False for name, module in model.named_children(): if current_key_name is None: lowerCamelCase__: Optional[Any] =[] current_key_name.append(__a ) if isinstance(__a , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCamelCase__: List[str] =".".join(__a ) lowerCamelCase__: Optional[Any] =True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCamelCase__: int =False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCamelCase__: Optional[int] =bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__a , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCamelCase__: Dict =bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False" ) lowerCamelCase__: Dict =module.weight.data if module.bias is not None: lowerCamelCase__: List[Any] =module.bias.data bnb_module.requires_grad_(__a ) setattr(__a , __a , __a ) lowerCamelCase__: int =True if len(list(module.children() ) ) > 0: lowerCamelCase__ , lowerCamelCase__: List[str] =_replace_with_bnb_layers( __a , __a , __a , __a ) lowerCamelCase__: Union[str, Any] =has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" with init_empty_weights(): lowerCamelCase__: Any =deepcopy(__a ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCamelCase__: str =find_tied_parameters(__a ) # For compatibility with Accelerate < 0.18 if isinstance(__a , __a ): lowerCamelCase__: int =sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCamelCase__: str =sum(__a , [] ) lowerCamelCase__: str =len(__a ) > 0 # Check if it is a base model lowerCamelCase__: Optional[Any] =False if hasattr(__a , "base_model_prefix" ): lowerCamelCase__: Union[str, Any] =not hasattr(__a , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCamelCase__: Optional[int] =list(model.named_children() ) lowerCamelCase__: Optional[int] =[list_modules[-1][0]] # add last module together with tied weights lowerCamelCase__: Union[str, Any] =set(__a ) - set(__a ) lowerCamelCase__: List[str] =list(set(__a ) ) + list(__a ) # remove ".weight" from the keys lowerCamelCase__: List[Any] =[".weight", ".bias"] lowerCamelCase__: Tuple =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCamelCase__: Optional[Any] =name.replace(__a , "" ) filtered_module_names.append(__a ) return filtered_module_names def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" for m in model.modules(): if isinstance(__a , bnb.nn.Linearabit ): return True return False def lowerCAmelCase_ ( __a ) -> List[str]: """simple docstring""" return next(parameter.parameters() ).device def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a , __a ) -> Any: """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(__a , __a , 0 , dtype=__a , value=__a ) lowerCamelCase__: Dict =param_name lowerCamelCase__: Tuple =model if "." in tensor_name: lowerCamelCase__: Any =tensor_name.split("." ) for split in splits[:-1]: lowerCamelCase__: Any =getattr(__a , __a ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) lowerCamelCase__: str =new_module lowerCamelCase__: int =splits[-1] # offload weights lowerCamelCase__: str =False offload_weight(module._parameters[tensor_name] , __a , __a , index=__a ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , __a , index=__a , ) else: offload_weight(__a , __a , __a , index=__a ) offload_weight(__a , param_name.replace("weight" , "SCB" ) , __a , index=__a ) set_module_tensor_to_device(__a , __a , "meta" , dtype=__a , value=torch.empty(*param.size() ) )
59
1
import math def lowerCamelCase__ ( _a , _a): if ( not isinstance(_a , (int, float)) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1.") return apparent_power * power_factor def lowerCamelCase__ ( _a , _a): if ( not isinstance(_a , (int, float)) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1.") return apparent_power * math.sqrt(1 - power_factor**2) if __name__ == "__main__": import doctest doctest.testmod()
193
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__A ) , 'Tatoeba directory does not exist.' ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self : Any ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=a ) @slow def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" self.resolver.convert_models(["heb-eng"] ) @slow def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = self.resolver.write_model_card("opus-mt-he-en" , dry_run=a ) assert mmeta["long_pair"] == "heb-eng"
193
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__): lowerCAmelCase_ = ["""pixel_values"""] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BICUBIC , A_ = True , A_ = True , A_ = 1 / 255 , A_ = None , A_ = True , A_ = None , A_ = None , **A_ , )-> None: '''simple docstring''' super().__init__(**lowercase_ ) UpperCamelCase = size if size is not None else {'height': 224, 'width': 224} UpperCamelCase = get_size_dict(lowercase_ ) UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase = get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name='crop_size' ) UpperCamelCase = do_resize UpperCamelCase = do_rescale UpperCamelCase = do_normalize UpperCamelCase = do_center_crop UpperCamelCase = crop_size UpperCamelCase = size UpperCamelCase = resample UpperCamelCase = rescale_factor UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase_ ( self , A_ , A_ , A_ = PILImageResampling.BILINEAR , A_ = None , **A_ , )-> np.ndarray: '''simple docstring''' UpperCamelCase = get_size_dict(lowercase_ ) if "shortest_edge" in size: UpperCamelCase = get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCamelCase = (size['height'], size['width']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self , A_ , A_ , A_ = None , **A_ , )-> np.ndarray: '''simple docstring''' UpperCamelCase = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self , A_ , A_ , A_ = None , **A_ )-> np.ndarray: '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ = None , **A_ , )-> np.ndarray: '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , )-> BatchFeature: '''simple docstring''' UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase = crop_size if crop_size is not None else self.crop_size UpperCamelCase = get_size_dict(lowercase_ , param_name='crop_size' , default_to_square=lowercase_ ) UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = image_mean if image_mean is not None else self.image_mean UpperCamelCase = image_std if image_std is not None else self.image_std UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(lowercase_ ) if not is_batched(lowercase_ ): UpperCamelCase = [images] if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(lowercase_ ) for image in images] if do_resize: UpperCamelCase = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: UpperCamelCase = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: UpperCamelCase = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] UpperCamelCase = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCamelCase = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
3
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed UpperCAmelCase__ : Dict = logging.getLogger(__name__) def A ( snake_case__ : Optional[int]=2 , snake_case__ : List[str]=3 , snake_case__ : Tuple=16 , snake_case__ : int = 10 , snake_case__ : int = 2 ) -> Optional[Any]: '''simple docstring''' def get_dataset(snake_case__ : int ): __snake_case = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __snake_case = get_dataset(snake_case__ ) __snake_case = get_dataset(snake_case__ ) __snake_case = DataLoader(snake_case__ , shuffle=snake_case__ , batch_size=snake_case__ , num_workers=4 ) __snake_case = DataLoader(snake_case__ , shuffle=snake_case__ , batch_size=snake_case__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def A ( snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : List[Any]=None ) -> Optional[Any]: '''simple docstring''' __snake_case = [] for epoch in range(snake_case__ ): # Train quickly model.train() for batch in dataloader: __snake_case , __snake_case = batch __snake_case = model(snake_case__ ) __snake_case = torch.nn.functional.mse_loss(snake_case__ , snake_case__ ) accelerator.backward(snake_case__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __lowercase ( nn.Module ): def __init__( self) -> Any: super().__init__() __snake_case = nn.Parameter(torch.randn(1)) __snake_case = nn.Parameter(torch.randn(1)) def _a ( self , lowercase_) -> Any: return x * self.a + self.b class __lowercase ( unittest.TestCase ): def _a ( self) -> Tuple: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2) __snake_case = DummyModel() __snake_case = torch.optim.Adam(params=model.parameters() , lr=1e-3) __snake_case , __snake_case = dummy_dataloaders() __snake_case = ProjectConfiguration(total_limit=1 , project_dir=lowercase_ , automatic_checkpoint_naming=lowercase_) # Train baseline __snake_case = Accelerator(project_config=lowercase_) __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir)) , 1) def _a ( self) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2) __snake_case = DummyModel() __snake_case = torch.optim.Adam(params=model.parameters() , lr=1e-3) __snake_case , __snake_case = dummy_dataloaders() # Train baseline __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_) # Save initial __snake_case = os.path.join(lowercase_ , 'initial') accelerator.save_state(lowercase_) ((__snake_case) , (__snake_case)) = model.a.item(), model.b.item() __snake_case = optimizer.state_dict() __snake_case = train(3 , lowercase_ , lowercase_ , lowercase_ , lowercase_) ((__snake_case) , (__snake_case)) = model.a.item(), model.b.item() __snake_case = optimizer.state_dict() # Train partially set_seed(4_2) __snake_case = DummyModel() __snake_case = torch.optim.Adam(params=model.parameters() , lr=1e-3) __snake_case , __snake_case = dummy_dataloaders() __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_) accelerator.load_state(lowercase_) ((__snake_case) , (__snake_case)) = model.a.item(), model.b.item() __snake_case = optimizer.state_dict() self.assertEqual(lowercase_ , lowercase_) self.assertEqual(lowercase_ , lowercase_) self.assertEqual(lowercase_ , lowercase_) __snake_case = train(2 , lowercase_ , lowercase_ , lowercase_ , lowercase_) # Save everything __snake_case = os.path.join(lowercase_ , 'checkpoint') accelerator.save_state(lowercase_) # Load everything back in and make sure all states work accelerator.load_state(lowercase_) test_rands += train(1 , lowercase_ , lowercase_ , lowercase_ , lowercase_) ((__snake_case) , (__snake_case)) = model.a.item(), model.b.item() __snake_case = optimizer.state_dict() self.assertEqual(lowercase_ , lowercase_) self.assertEqual(lowercase_ , lowercase_) self.assertEqual(lowercase_ , lowercase_) self.assertEqual(lowercase_ , lowercase_) def _a ( self) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2) __snake_case = DummyModel() __snake_case = torch.optim.Adam(params=model.parameters() , lr=1e-3) __snake_case , __snake_case = dummy_dataloaders() __snake_case = ProjectConfiguration(automatic_checkpoint_naming=lowercase_) # Train baseline __snake_case = Accelerator(project_dir=lowercase_ , project_config=lowercase_) __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_) # Save initial accelerator.save_state() ((__snake_case) , (__snake_case)) = model.a.item(), model.b.item() __snake_case = optimizer.state_dict() __snake_case = train(3 , lowercase_ , lowercase_ , lowercase_ , lowercase_) ((__snake_case) , (__snake_case)) = model.a.item(), model.b.item() __snake_case = optimizer.state_dict() # Train partially set_seed(4_2) __snake_case = DummyModel() __snake_case = torch.optim.Adam(params=model.parameters() , lr=1e-3) __snake_case , __snake_case = dummy_dataloaders() __snake_case = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowercase_) __snake_case = Accelerator(project_dir=lowercase_ , project_config=lowercase_) __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_) accelerator.load_state(os.path.join(lowercase_ , 'checkpoints' , 'checkpoint_0')) ((__snake_case) , (__snake_case)) = model.a.item(), model.b.item() __snake_case = optimizer.state_dict() self.assertEqual(lowercase_ , lowercase_) self.assertEqual(lowercase_ , lowercase_) self.assertEqual(lowercase_ , lowercase_) __snake_case = train(2 , lowercase_ , lowercase_ , lowercase_ , lowercase_) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowercase_ , 'checkpoints' , 'checkpoint_1')) test_rands += train(1 , lowercase_ , lowercase_ , lowercase_ , lowercase_) ((__snake_case) , (__snake_case)) = model.a.item(), model.b.item() __snake_case = optimizer.state_dict() self.assertEqual(lowercase_ , lowercase_) self.assertEqual(lowercase_ , lowercase_) self.assertEqual(lowercase_ , lowercase_) self.assertEqual(lowercase_ , lowercase_) def _a ( self) -> Union[str, Any]: __snake_case = torch.tensor([1, 2, 3]) __snake_case = torch.tensor([2, 3, 4]) __snake_case = DummyModel() __snake_case = torch.optim.Adam(net.parameters()) __snake_case = Accelerator() with self.assertRaises(lowercase_) as ve: accelerator.register_for_checkpointing(lowercase_ , lowercase_ , lowercase_ , lowercase_) __snake_case = str(ve.exception) self.assertTrue('Item at index 0' in message) self.assertTrue('Item at index 1' in message) self.assertFalse('Item at index 2' in message) self.assertFalse('Item at index 3' in message) def _a ( self) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2) __snake_case = DummyModel() __snake_case = torch.optim.Adam(params=model.parameters() , lr=1e-3) __snake_case = torch.optim.lr_scheduler.StepLR(lowercase_ , step_size=1 , gamma=0.99) __snake_case , __snake_case = dummy_dataloaders() __snake_case = ProjectConfiguration(automatic_checkpoint_naming=lowercase_) # Train baseline __snake_case = Accelerator(project_dir=lowercase_ , project_config=lowercase_) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) # Save initial accelerator.save_state() __snake_case = scheduler.state_dict() train(3 , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) self.assertNotEqual(lowercase_ , scheduler.state_dict()) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowercase_ , 'checkpoints' , 'checkpoint_0')) self.assertEqual(lowercase_ , scheduler.state_dict()) def _a ( self) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2) __snake_case = DummyModel() __snake_case = ProjectConfiguration(automatic_checkpoint_naming=lowercase_ , total_limit=2) # Train baseline __snake_case = Accelerator(project_dir=lowercase_ , project_config=lowercase_) __snake_case = accelerator.prepare(lowercase_) # Save 3 states: for _ in range(1_1): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowercase_ , 'checkpoints' , 'checkpoint_0'))) self.assertTrue(os.path.exists(os.path.join(lowercase_ , 'checkpoints' , 'checkpoint_9'))) self.assertTrue(os.path.exists(os.path.join(lowercase_ , 'checkpoints' , 'checkpoint_10'))) @require_cuda def _a ( self) -> int: __snake_case = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__)] execute_subprocess_async(lowercase_ , env=os.environ.copy()) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = "/tmp/accelerate/state_checkpointing" UpperCAmelCase__ : List[Any] = DummyModel() UpperCAmelCase__ : Optional[Any] = torch.optim.Adam(params=model.parameters(), lr=1e-3) UpperCAmelCase__ : Optional[Any] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) UpperCAmelCase__ , UpperCAmelCase__ : Dict = dummy_dataloaders() UpperCAmelCase__ : List[Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline UpperCAmelCase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) UpperCAmelCase__ , UpperCAmelCase__ : Any = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: UpperCAmelCase__ : str = group["params"][0].device break assert param_device.type == accelerator.device.type UpperCAmelCase__ : Optional[int] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: UpperCAmelCase__ : Optional[Any] = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: UpperCAmelCase__ : Any = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
313
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __a : Dict = get_logger(__name__) def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase=0 ): """simple docstring""" os.makedirs(lowercase , exist_ok=lowercase ) with FSDP.state_dict_type( lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowercase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowercase = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" __lowercase = os.path.join(lowercase , lowercase ) if accelerator.process_index == 0: logger.info(F"Saving model to {output_model_file}" ) torch.save(lowercase , lowercase ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowercase = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) __lowercase = os.path.join(lowercase , lowercase ) logger.info(F"Saving model to {output_model_file}" ) torch.save(lowercase , lowercase ) logger.info(F"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowercase = os.path.join(lowercase , F"{MODEL_NAME}_{model_index}" ) os.makedirs(lowercase , exist_ok=lowercase ) logger.info(F"Saving model to {ckpt_dir}" ) __lowercase = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=lowercase , storage_writer=dist_cp.FileSystemWriter(lowercase ) , planner=DefaultSavePlanner() , ) logger.info(F"Model saved to {ckpt_dir}" ) def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(lowercase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return __lowercase = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" __lowercase = os.path.join(lowercase , lowercase ) logger.info(F"Loading model from {input_model_file}" ) __lowercase = torch.load(lowercase ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowercase = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) __lowercase = os.path.join(lowercase , lowercase ) logger.info(F"Loading model from {input_model_file}" ) __lowercase = torch.load(lowercase ) logger.info(F"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowercase = ( os.path.join(lowercase , F"{MODEL_NAME}_{model_index}" ) if F"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(F"Loading model from {ckpt_dir}" ) __lowercase = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=lowercase , storage_reader=dist_cp.FileSystemReader(lowercase ) , planner=DefaultLoadPlanner() , ) __lowercase = state_dict['''model'''] logger.info(F"Model loaded from {ckpt_dir}" ) model.load_state_dict(lowercase ) def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=0 ): """simple docstring""" os.makedirs(lowercase , exist_ok=lowercase ) with FSDP.state_dict_type( lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowercase = FSDP.optim_state_dict(lowercase , lowercase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __lowercase = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) __lowercase = os.path.join(lowercase , lowercase ) logger.info(F"Saving Optimizer state to {output_optimizer_file}" ) torch.save(lowercase , lowercase ) logger.info(F"Optimizer state saved in {output_optimizer_file}" ) else: __lowercase = os.path.join(lowercase , F"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(lowercase , exist_ok=lowercase ) logger.info(F"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(lowercase ) , planner=DefaultSavePlanner() , ) logger.info(F"Optimizer state saved in {ckpt_dir}" ) def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( lowercase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowercase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __lowercase = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) __lowercase = os.path.join(lowercase , lowercase ) logger.info(F"Loading Optimizer state from {input_optimizer_file}" ) __lowercase = torch.load(lowercase ) logger.info(F"Optimizer state loaded from {input_optimizer_file}" ) else: __lowercase = ( os.path.join(lowercase , F"{OPTIMIZER_NAME}_{optimizer_index}" ) if F"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(F"Loading Optimizer from {ckpt_dir}" ) __lowercase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(lowercase ) , ) __lowercase = optim_state['''optimizer'''] logger.info(F"Optimizer loaded from {ckpt_dir}" ) __lowercase = FSDP.optim_state_dict_to_load(lowercase , lowercase , lowercase ) optimizer.load_state_dict(lowercase )
522
import random from typing import Any def UpperCAmelCase ( lowercase ): """simple docstring""" for _ in range(len(lowercase ) ): __lowercase = random.randint(0 , len(lowercase ) - 1 ) __lowercase = random.randint(0 , len(lowercase ) - 1 ) __lowercase , __lowercase = data[b], data[a] return data if __name__ == "__main__": __a : List[str] = [0, 1, 2, 3, 4, 5, 6, 7] __a : Any = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
522
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __magic_name__ ( self ) -> str: __magic_name__ : Optional[Any] = 1 __magic_name__ : Dict = 3 __magic_name__ : str = (32, 32) __magic_name__ : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def __magic_name__ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) __magic_name__ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def __magic_name__ ( self ) -> Tuple: torch.manual_seed(0 ) __magic_name__ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __magic_name__ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) __magic_name__ : Optional[Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def __magic_name__ ( self ) -> List[str]: def extract(*lowerCAmelCase__ , **lowerCAmelCase__ ): class snake_case__ : def __init__( self ) -> List[Any]: __magic_name__ : Tuple = torch.ones([0] ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__ : Optional[int] = self.dummy_cond_unet __magic_name__ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = self.dummy_vae __magic_name__ : Tuple = self.dummy_text_encoder __magic_name__ : List[str] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __magic_name__ : Any = 77 __magic_name__ : int = self.dummy_image.to(lowerCAmelCase__ ) __magic_name__ : int = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __magic_name__ : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) __magic_name__ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) __magic_name__ : List[str] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ : str = """A painting of a squirrel eating a burger""" __magic_name__ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) __magic_name__ : Any = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=lowerCAmelCase__ , ) __magic_name__ : Union[str, Any] = output.images __magic_name__ : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) __magic_name__ : List[Any] = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] __magic_name__ : Optional[Any] = image[0, -3:, -3:, -1] __magic_name__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ : Dict = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Tuple = self.dummy_cond_unet __magic_name__ : Dict = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.dummy_vae __magic_name__ : Any = self.dummy_text_encoder __magic_name__ : Dict = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __magic_name__ : str = 77 __magic_name__ : Dict = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 __magic_name__ : Union[str, Any] = unet.half() __magic_name__ : Optional[Any] = vae.half() __magic_name__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk __magic_name__ : Optional[Any] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) __magic_name__ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) __magic_name__ : List[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __magic_name__ : List[str] = """A painting of a squirrel eating a burger""" __magic_name__ : Tuple = torch.manual_seed(0 ) __magic_name__ : int = alt_pipe( [prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="""np""" , image=lowerCAmelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __magic_name__ ( self ) -> str: __magic_name__ : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 __magic_name__ : Tuple = init_image.resize((7_60, 5_04) ) __magic_name__ : List[str] = """BAAI/AltDiffusion""" __magic_name__ : Any = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __magic_name__ : Union[str, Any] = """A fantasy landscape, trending on artstation""" __magic_name__ : List[str] = torch.manual_seed(0 ) __magic_name__ : Optional[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="""np""" , ) __magic_name__ : int = output.images[0] __magic_name__ : Union[str, Any] = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) __magic_name__ : int = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __magic_name__ : List[Any] = init_image.resize((7_68, 5_12) ) __magic_name__ : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) __magic_name__ : str = """BAAI/AltDiffusion""" __magic_name__ : Any = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __magic_name__ : Any = """A fantasy landscape, trending on artstation""" __magic_name__ : Optional[int] = torch.manual_seed(0 ) __magic_name__ : Optional[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="""np""" , ) __magic_name__ : List[Any] = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
324
from __future__ import annotations from functools import lru_cache from math import ceil __magic_name__: Tuple = 100 __magic_name__: Any = set(range(3, NUM_PRIMES, 2)) primes.add(2) __magic_name__: int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( _A ): """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __magic_name__ : set[int] = set() __magic_name__ : int __magic_name__ : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( _A = 5000 ): """simple docstring""" for number_to_partition in range(1, _A ): if len(partition(_A ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
324
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowerCamelCase_ = HfArgumentParser(InitializationArguments) lowerCamelCase_ = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowerCamelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowerCamelCase_ = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) lowerCamelCase_ = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowerCamelCase_ = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
714
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCamelCase_ = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __magic_name__ ( __a : Any ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __magic_name__ ( __a : List[Any] , __a : Any ): '''simple docstring''' if args.student_type == "roberta": UpperCamelCase__ = False elif args.student_type == "gpt2": UpperCamelCase__ = False def __magic_name__ ( __a : int , __a : Dict ): '''simple docstring''' if args.student_type == "roberta": UpperCamelCase__ = False def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=__a , required=__a , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=__a , required=__a , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=__a , choices=["""distilbert""", """roberta""", """gpt2"""] , required=__a , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=__a , required=__a , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=__a , type=__a , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=__a , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=__a , required=__a , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=__a , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=__a , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=__a , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=__a , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=__a , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=__a , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=__a , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=__a , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=__a , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=__a , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=__a , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=__a , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=__a , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=__a , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=__a , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=__a , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=__a , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5E-4 , type=__a , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=__a , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=__a , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=__a , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=__a , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=__a , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=__a , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=__a , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=__a , default=500 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=__a , default=4_000 , help="""Checkpoint interval.""" ) UpperCamelCase__ = parser.parse_args() sanity_checks(__a ) # ARGS # init_gpu_params(__a ) set_seed(__a ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(f"Param: {args}" ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(__a ) , __a , indent=4 ) git_log(args.dump_path ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = MODEL_CLASSES[args.student_type] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCamelCase__ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCamelCase__ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCamelCase__ = tokenizer.all_special_tokens.index(__a ) UpperCamelCase__ = tokenizer.all_special_ids[idx] logger.info(f"Special tokens {special_tok_ids}" ) UpperCamelCase__ = special_tok_ids UpperCamelCase__ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"Loading data from {args.data_file}" ) with open(args.data_file , """rb""" ) as fp: UpperCamelCase__ = pickle.load(__a ) if args.mlm: logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , """rb""" ) as fp: UpperCamelCase__ = pickle.load(__a ) UpperCamelCase__ = np.maximum(__a , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCamelCase__ = 0.0 # do not predict special tokens UpperCamelCase__ = torch.from_numpy(__a ) else: UpperCamelCase__ = None UpperCamelCase__ = LmSeqsDataset(params=__a , data=__a ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f"Loading student config from {args.student_config}" ) UpperCamelCase__ = student_config_class.from_pretrained(args.student_config ) UpperCamelCase__ = True if args.student_pretrained_weights is not None: logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}" ) UpperCamelCase__ = student_model_class.from_pretrained(args.student_pretrained_weights , config=__a ) else: UpperCamelCase__ = student_model_class(__a ) if args.n_gpu > 0: student.to(f"cuda:{args.local_rank}" ) logger.info("""Student loaded.""" ) # TEACHER # UpperCamelCase__ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__a ) if args.n_gpu > 0: teacher.to(f"cuda:{args.local_rank}" ) logger.info(f"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__a , __a ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__a , __a ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCamelCase__ = Distiller( params=__a , dataset=__a , token_probs=__a , student=__a , teacher=__a ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
86
0
from math import factorial SCREAMING_SNAKE_CASE :dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if not isinstance(a_ , a_ ): raise TypeError("Parameter number must be int" ) if number < 0: raise ValueError("Parameter number must be greater than or equal to 0" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(a_ ) ) def UpperCAmelCase ( a_ = 6_0 , a_ = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" if not isinstance(a_ , a_ ) or not isinstance(a_ , a_ ): raise TypeError("Parameters chain_length and number_limit must be int" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( "Parameters chain_length and number_limit must be greater than 0" ) # the counter for the chains with the exact desired length __A = 0 # the cached sizes of the previous chains __A = {} for start_chain_element in range(1 , a_ ): # The temporary set will contain the elements of the chain __A = set() __A = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __A = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(a_ ) chain_set_length += 1 __A = digit_factorial_sum(a_ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __A = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
55
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = OrderedDict( [ ('audio-spectrogram-transformer', 'ASTFeatureExtractor'), ('beit', 'BeitFeatureExtractor'), ('chinese_clip', 'ChineseCLIPFeatureExtractor'), ('clap', 'ClapFeatureExtractor'), ('clip', 'CLIPFeatureExtractor'), ('clipseg', 'ViTFeatureExtractor'), ('conditional_detr', 'ConditionalDetrFeatureExtractor'), ('convnext', 'ConvNextFeatureExtractor'), ('cvt', 'ConvNextFeatureExtractor'), ('data2vec-audio', 'Wav2Vec2FeatureExtractor'), ('data2vec-vision', 'BeitFeatureExtractor'), ('deformable_detr', 'DeformableDetrFeatureExtractor'), ('deit', 'DeiTFeatureExtractor'), ('detr', 'DetrFeatureExtractor'), ('dinat', 'ViTFeatureExtractor'), ('donut-swin', 'DonutFeatureExtractor'), ('dpt', 'DPTFeatureExtractor'), ('encodec', 'EncodecFeatureExtractor'), ('flava', 'FlavaFeatureExtractor'), ('glpn', 'GLPNFeatureExtractor'), ('groupvit', 'CLIPFeatureExtractor'), ('hubert', 'Wav2Vec2FeatureExtractor'), ('imagegpt', 'ImageGPTFeatureExtractor'), ('layoutlmv2', 'LayoutLMv2FeatureExtractor'), ('layoutlmv3', 'LayoutLMv3FeatureExtractor'), ('levit', 'LevitFeatureExtractor'), ('maskformer', 'MaskFormerFeatureExtractor'), ('mctct', 'MCTCTFeatureExtractor'), ('mobilenet_v1', 'MobileNetV1FeatureExtractor'), ('mobilenet_v2', 'MobileNetV2FeatureExtractor'), ('mobilevit', 'MobileViTFeatureExtractor'), ('nat', 'ViTFeatureExtractor'), ('owlvit', 'OwlViTFeatureExtractor'), ('perceiver', 'PerceiverFeatureExtractor'), ('poolformer', 'PoolFormerFeatureExtractor'), ('regnet', 'ConvNextFeatureExtractor'), ('resnet', 'ConvNextFeatureExtractor'), ('segformer', 'SegformerFeatureExtractor'), ('sew', 'Wav2Vec2FeatureExtractor'), ('sew-d', 'Wav2Vec2FeatureExtractor'), ('speech_to_text', 'Speech2TextFeatureExtractor'), ('speecht5', 'SpeechT5FeatureExtractor'), ('swiftformer', 'ViTFeatureExtractor'), ('swin', 'ViTFeatureExtractor'), ('swinv2', 'ViTFeatureExtractor'), ('table-transformer', 'DetrFeatureExtractor'), ('timesformer', 'VideoMAEFeatureExtractor'), ('tvlt', 'TvltFeatureExtractor'), ('unispeech', 'Wav2Vec2FeatureExtractor'), ('unispeech-sat', 'Wav2Vec2FeatureExtractor'), ('van', 'ConvNextFeatureExtractor'), ('videomae', 'VideoMAEFeatureExtractor'), ('vilt', 'ViltFeatureExtractor'), ('vit', 'ViTFeatureExtractor'), ('vit_mae', 'ViTFeatureExtractor'), ('vit_msn', 'ViTFeatureExtractor'), ('wav2vec2', 'Wav2Vec2FeatureExtractor'), ('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'), ('wavlm', 'Wav2Vec2FeatureExtractor'), ('whisper', 'WhisperFeatureExtractor'), ('xclip', 'CLIPFeatureExtractor'), ('yolos', 'YolosFeatureExtractor'), ] ) __UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase__ ( __snake_case : str ): '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCAmelCase_ : Union[str, Any] = model_type_to_module_name(__snake_case ) UpperCAmelCase_ : Union[str, Any] = importlib.import_module(F".{module_name}" , 'transformers.models' ) try: return getattr(__snake_case , __snake_case ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(__snake_case , '__name__' , __snake_case ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCAmelCase_ : List[Any] = importlib.import_module('transformers' ) if hasattr(__snake_case , __snake_case ): return getattr(__snake_case , __snake_case ) return None def lowercase__ ( __snake_case : Union[str, os.PathLike] , __snake_case : Optional[Union[str, os.PathLike]] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : Optional[Dict[str, str]] = None , __snake_case : Optional[Union[bool, str]] = None , __snake_case : Optional[str] = None , __snake_case : bool = False , **__snake_case : Tuple , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = get_file_from_repo( __snake_case , __snake_case , cache_dir=__snake_case , force_download=__snake_case , resume_download=__snake_case , proxies=__snake_case , use_auth_token=__snake_case , revision=__snake_case , local_files_only=__snake_case , ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(__snake_case , encoding='utf-8' ) as reader: return json.load(__snake_case ) class lowerCamelCase : '''simple docstring''' def __init__( self ) -> List[Any]: raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(_UpperCamelCase ) def __UpperCAmelCase ( cls , _UpperCamelCase , **_UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : List[str] = kwargs.pop('config' , _UpperCamelCase ) UpperCAmelCase_ : Dict = kwargs.pop('trust_remote_code' , _UpperCamelCase ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : str = config_dict.get('feature_extractor_type' , _UpperCamelCase ) UpperCAmelCase_ : Dict = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): UpperCAmelCase_ : Tuple = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) # It could be in `config.feature_extractor_type`` UpperCAmelCase_ : Tuple = getattr(_UpperCamelCase , 'feature_extractor_type' , _UpperCamelCase ) if hasattr(_UpperCamelCase , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: UpperCAmelCase_ : Optional[int] = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: UpperCAmelCase_ : Dict = feature_extractor_class_from_name(_UpperCamelCase ) UpperCAmelCase_ : str = feature_extractor_auto_map is not None UpperCAmelCase_ : Dict = feature_extractor_class is not None or type(_UpperCamelCase ) in FEATURE_EXTRACTOR_MAPPING UpperCAmelCase_ : Union[str, Any] = resolve_trust_remote_code( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if has_remote_code and trust_remote_code: UpperCAmelCase_ : int = get_class_from_dynamic_module( _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : Any = kwargs.pop('code_revision' , _UpperCamelCase ) if os.path.isdir(_UpperCamelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_UpperCamelCase ) in FEATURE_EXTRACTOR_MAPPING: UpperCAmelCase_ : List[Any] = FEATURE_EXTRACTOR_MAPPING[type(_UpperCamelCase )] return feature_extractor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) raise ValueError( f"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " f"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}" ) @staticmethod def __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> Tuple: FEATURE_EXTRACTOR_MAPPING.register(_UpperCamelCase , _UpperCamelCase )
406
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _a ( lowercase__ ): def __init__( self: Any , UpperCamelCase_: NestedDataStructureLike[PathLike] , UpperCamelCase_: Optional[NamedSplit] = None , UpperCamelCase_: Optional[Features] = None , UpperCamelCase_: str = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[int] = None , **UpperCamelCase_: Tuple , ) -> Any: """simple docstring""" super().__init__( UpperCamelCase_ , split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = field lowercase__ = path_or_paths if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else {self.split: path_or_paths} lowercase__ = Json( cache_dir=UpperCamelCase_ , data_files=UpperCamelCase_ , features=UpperCamelCase_ , field=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCamelCase_ ( self: List[str] ) -> Any: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset class _a : def __init__( self: Optional[Any] , UpperCamelCase_: Dataset , UpperCamelCase_: Union[PathLike, BinaryIO] , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None , **UpperCamelCase_: Any , ) -> Any: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f'num_proc {num_proc} must be an integer > 0.' ) lowercase__ = dataset lowercase__ = path_or_buf lowercase__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowercase__ = num_proc lowercase__ = "utf-8" lowercase__ = to_json_kwargs def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.to_json_kwargs.pop('''path_or_buf''' , UpperCamelCase_ ) lowercase__ = self.to_json_kwargs.pop('''orient''' , '''records''' ) lowercase__ = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) lowercase__ = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) lowercase__ = self.to_json_kwargs.pop('''compression''' , UpperCamelCase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=UpperCamelCase_ ) as buffer: lowercase__ = self._write(file_obj=UpperCamelCase_ , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'The compression parameter is not supported when writing to a buffer, but compression={compression}' ''' was passed. Please provide a local path instead.''' ) lowercase__ = self._write( file_obj=self.path_or_buf , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **self.to_json_kwargs ) return written def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int ) -> str: """simple docstring""" lowercase__ = args lowercase__ = query_table( table=self.dataset.data , key=slice(UpperCamelCase_ , offset + self.batch_size ) , indices=self.dataset._indices , ) lowercase__ = batch.to_pandas().to_json( path_or_buf=UpperCamelCase_ , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **UpperCamelCase_ ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCamelCase_ ( self: str , UpperCamelCase_: BinaryIO , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: str , **UpperCamelCase_: Optional[int] , ) -> int: """simple docstring""" lowercase__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): lowercase__ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCamelCase_ ) else: lowercase__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCamelCase_ , UpperCamelCase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(UpperCamelCase_ ) return written
704
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowerCAmelCase = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _a ( UpperCamelCase__ ): _lowercase : bool = field(default=UpperCamelCase__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) _lowercase : bool = field( default=UpperCamelCase__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) _lowercase : Optional[Union[str, Path, GenerationConfig]] = field( default=UpperCamelCase__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = super().to_dict() for k, v in d.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = v.to_dict() return d
429
0
"""simple docstring""" from typing import Any class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase ): lowercase__: List[str] = data lowercase__: Optional[Any] = None def __repr__( self ): return F"""Node({self.data})""" class UpperCAmelCase : """simple docstring""" def __init__( self ): lowercase__: Dict = None def __iter__( self ): lowercase__: int = self.head while node: yield node.data lowercase__: List[Any] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __getitem__( self , _UpperCAmelCase ): if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _UpperCAmelCase , _UpperCAmelCase ): if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) lowercase__: Optional[int] = self.head for _ in range(_UpperCAmelCase ): lowercase__: List[Any] = current.next lowercase__: List[Any] = data def _snake_case ( self , _UpperCAmelCase ): self.insert_nth(len(self ) , _UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): self.insert_nth(0 , _UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) lowercase__: List[Any] = Node(_UpperCAmelCase ) if self.head is None: lowercase__: Dict = new_node elif index == 0: lowercase__: Any = self.head # link new_node to head lowercase__: Tuple = new_node else: lowercase__: Union[str, Any] = self.head for _ in range(index - 1 ): lowercase__: int = temp.next lowercase__: int = temp.next lowercase__: Any = new_node def _snake_case ( self ): # print every node data print(self ) def _snake_case ( self ): return self.delete_nth(0 ) def _snake_case ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def _snake_case ( self , _UpperCAmelCase = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) lowercase__: Any = self.head # default first node if index == 0: lowercase__: Tuple = self.head.next else: lowercase__: Union[str, Any] = self.head for _ in range(index - 1 ): lowercase__: List[str] = temp.next lowercase__: int = temp.next lowercase__: List[str] = temp.next.next return delete_node.data def _snake_case ( self ): return self.head is None def _snake_case ( self ): lowercase__: Optional[int] = None lowercase__: Union[str, Any] = self.head while current: # Store the current node's next node. lowercase__: Union[str, Any] = current.next # Make the current node's next point backwards lowercase__: Union[str, Any] = prev # Make the previous node be the current node lowercase__: Union[str, Any] = current # Make the current node the next node (to progress iteration) lowercase__: Any = next_node # Return prev in order to put the head at the end lowercase__: int = prev def SCREAMING_SNAKE_CASE__ ( ) -> None: lowercase__: Tuple = LinkedList() assert linked_list.is_empty() is True assert str(__UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(__UpperCAmelCase ) == i linked_list.insert_nth(__UpperCAmelCase , i + 1 ) assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(__UpperCAmelCase ) == 9 assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowercase__: Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(__UpperCAmelCase ) == "->".join(str(__UpperCAmelCase ) for i in range(-8 , 1 ) ) def SCREAMING_SNAKE_CASE__ ( ) -> None: lowercase__: List[Any] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), '''dlrow olleH''', 7, 5_5_5_5, 0, -1_9_2.5_5_5_5_5, '''Hello, world!''', 7_7.9, Node(1_0 ), None, None, 1_2.2_0, ] lowercase__: Union[str, Any] = LinkedList() for i in test_input: linked_list.insert_tail(__UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowercase__: Tuple = linked_list.delete_head() assert result == -9 assert ( str(__UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowercase__: str = linked_list.delete_tail() assert result == 1_2.2 assert ( str(__UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowercase__: List[str] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(__UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(__UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__UpperCAmelCase ) assert ( str(__UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def SCREAMING_SNAKE_CASE__ ( ) -> Dict: from doctest import testmod testmod() lowercase__: Any = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(__UpperCAmelCase ) print('''\nReading/changing Node data using indexing:''' ) print(F"""Element at Position 1: {linked_list[1]}""" ) lowercase__: Optional[int] = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(__UpperCAmelCase ) print(F"""length of linked_list is : {len(__UpperCAmelCase )}""" ) if __name__ == "__main__": main()
586
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = 1_0 , __UpperCAmelCase = 2_2 ) -> int: lowercase__: Optional[Any] = range(1 , __UpperCAmelCase ) lowercase__: Any = range(1 , __UpperCAmelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
586
1
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Union[str, Any] , _lowercase : Union[str, Any]=0.01 , _lowercase : List[str]=10_00 ): __UpperCAmelCase = p_stop __UpperCAmelCase = max_length def __iter__( self : Dict ): __UpperCAmelCase = 0 __UpperCAmelCase = False while not stop and count < self.max_length: yield count count += 1 __UpperCAmelCase = random.random() < self.p_stop class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Any , _lowercase : List[Any] , _lowercase : int , _lowercase : List[Any]=False , _lowercase : Optional[int]=True ): __UpperCAmelCase = [ BatchSamplerShard(_lowercase , 2 , _lowercase , split_batches=_lowercase , even_batches=_lowercase ) for i in range(2 ) ] __UpperCAmelCase = [list(_lowercase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_lowercase ) for shard in batch_sampler_shards] , [len(_lowercase ) for e in expected] ) self.assertListEqual(_lowercase , _lowercase ) def a ( self : Any ): # Check the shards when the dataset is a round multiple of total batch size. __UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_lowercase , _lowercase ) __UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowercase , _lowercase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_lowercase , _lowercase ) __UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowercase , _lowercase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_lowercase , _lowercase ) __UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowercase , _lowercase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_lowercase , _lowercase ) __UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowercase , _lowercase ) # Check the shards when the dataset is very small. __UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_lowercase , _lowercase ) __UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [[], []] self.check_batch_sampler_shards(_lowercase , _lowercase ) def a ( self : Optional[int] ): # Check the shards when the dataset is a round multiple of batch size. __UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , split_batches=_lowercase ) __UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowercase , _lowercase , split_batches=_lowercase ) # Check the shards when the dataset is not a round multiple of batch size. __UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , split_batches=_lowercase ) __UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , split_batches=_lowercase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , split_batches=_lowercase ) __UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , split_batches=_lowercase ) # Check the shards when the dataset is very small. __UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowercase ) __UpperCAmelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_lowercase , _lowercase , split_batches=_lowercase ) __UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowercase ) __UpperCAmelCase = [[], []] self.check_batch_sampler_shards(_lowercase , _lowercase , split_batches=_lowercase ) def a ( self : str ): # Check the shards when the dataset is a round multiple of total batch size. __UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , even_batches=_lowercase ) __UpperCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=_lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowercase , _lowercase , even_batches=_lowercase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , even_batches=_lowercase ) __UpperCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , even_batches=_lowercase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , even_batches=_lowercase ) __UpperCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , even_batches=_lowercase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , even_batches=_lowercase ) __UpperCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , even_batches=_lowercase ) # Check the shards when the dataset is very small. __UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [[[0, 1]], []] self.check_batch_sampler_shards(_lowercase , _lowercase , even_batches=_lowercase ) __UpperCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=_lowercase ) __UpperCAmelCase = [[], []] self.check_batch_sampler_shards(_lowercase , _lowercase , even_batches=_lowercase ) def a ( self : Dict ): # Check the shards when the dataset is a round multiple of batch size. __UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , split_batches=_lowercase , even_batches=_lowercase ) __UpperCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=_lowercase ) # Expected shouldn't change self.check_batch_sampler_shards(_lowercase , _lowercase , split_batches=_lowercase , even_batches=_lowercase ) # Check the shards when the dataset is not a round multiple of batch size. __UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , split_batches=_lowercase , even_batches=_lowercase ) __UpperCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , split_batches=_lowercase , even_batches=_lowercase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , split_batches=_lowercase , even_batches=_lowercase ) __UpperCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=_lowercase ) __UpperCAmelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_lowercase , _lowercase , split_batches=_lowercase , even_batches=_lowercase ) # Check the shards when the dataset is very small. __UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowercase ) __UpperCAmelCase = [[[0, 1]], []] self.check_batch_sampler_shards(_lowercase , _lowercase , split_batches=_lowercase , even_batches=_lowercase ) __UpperCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=_lowercase ) __UpperCAmelCase = [[], []] self.check_batch_sampler_shards(_lowercase , _lowercase , split_batches=_lowercase , even_batches=_lowercase ) def a ( self : Tuple ): __UpperCAmelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __UpperCAmelCase = [BatchSamplerShard(_lowercase , 2 , _lowercase , even_batches=_lowercase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a ( self : Optional[Any] , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : List[str]=False , _lowercase : Optional[int]=2 , _lowercase : int=False ): random.seed(_lowercase ) __UpperCAmelCase = list(_lowercase ) __UpperCAmelCase = [ IterableDatasetShard( _lowercase , batch_size=_lowercase , drop_last=_lowercase , num_processes=_lowercase , process_index=_lowercase , split_batches=_lowercase , ) for i in range(_lowercase ) ] __UpperCAmelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_lowercase ) iterable_dataset_lists.append(list(_lowercase ) ) __UpperCAmelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __UpperCAmelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_lowercase ) , len(_lowercase ) ) self.assertTrue(len(_lowercase ) % shard_batch_size == 0 ) __UpperCAmelCase = [] for idx in range(0 , len(_lowercase ) , _lowercase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_lowercase ) < len(_lowercase ): reference += reference self.assertListEqual(_lowercase , reference[: len(_lowercase )] ) def a ( self : str ): __UpperCAmelCase = 42 __UpperCAmelCase = RandomIterableDataset() self.check_iterable_dataset_shards(_lowercase , _lowercase , batch_size=4 , drop_last=_lowercase , split_batches=_lowercase ) self.check_iterable_dataset_shards(_lowercase , _lowercase , batch_size=4 , drop_last=_lowercase , split_batches=_lowercase ) self.check_iterable_dataset_shards(_lowercase , _lowercase , batch_size=4 , drop_last=_lowercase , split_batches=_lowercase ) self.check_iterable_dataset_shards(_lowercase , _lowercase , batch_size=4 , drop_last=_lowercase , split_batches=_lowercase ) # Edge case with a very small dataset __UpperCAmelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_lowercase , _lowercase , batch_size=4 , drop_last=_lowercase , split_batches=_lowercase ) self.check_iterable_dataset_shards(_lowercase , _lowercase , batch_size=4 , drop_last=_lowercase , split_batches=_lowercase ) self.check_iterable_dataset_shards(_lowercase , _lowercase , batch_size=4 , drop_last=_lowercase , split_batches=_lowercase ) self.check_iterable_dataset_shards(_lowercase , _lowercase , batch_size=4 , drop_last=_lowercase , split_batches=_lowercase ) def a ( self : Tuple ): __UpperCAmelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=_lowercase ) __UpperCAmelCase = SkipBatchSampler(_lowercase , 2 ) self.assertListEqual(list(_lowercase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ): __UpperCAmelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Optional[Any] ): __UpperCAmelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) __UpperCAmelCase = skip_first_batches(_lowercase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ): __UpperCAmelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(_lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a ( self : int ): Accelerator() __UpperCAmelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(_lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_lowercase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
397
"""simple docstring""" from typing import Any def lowercase__ ( snake_case_ :list , snake_case_ :list , snake_case_ :dict , snake_case_ :dict , snake_case_ :dict , ): _validation( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) # Creates data structures and fill initial step __UpperCAmelCase = {} __UpperCAmelCase = {} for state in states_space: __UpperCAmelCase = observations_space[0] __UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case_ ) ): __UpperCAmelCase = observations_space[o] __UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state # Update probabilities and pointers dicts __UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __UpperCAmelCase = arg_max # The final observation __UpperCAmelCase = observations_space[len(snake_case_ ) - 1] # argmax for given final observation __UpperCAmelCase = '''''' __UpperCAmelCase = -1 for k_state in states_space: __UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: __UpperCAmelCase = probability __UpperCAmelCase = k_state __UpperCAmelCase = arg_max # Process pointers backwards __UpperCAmelCase = last_state __UpperCAmelCase = [] for o in range(len(snake_case_ ) - 1 , -1 , -1 ): result.append(snake_case_ ) __UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_not_empty( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) _validate_lists(snake_case_ , snake_case_ ) _validate_dicts( snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any ): _validate_list(snake_case_ , '''observations_space''' ) _validate_list(snake_case_ , '''states_space''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list''' raise ValueError(snake_case_ ) else: for x in _object: if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a list of strings''' raise ValueError(snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :Any , snake_case_ :Any , ): _validate_dict(snake_case_ , '''initial_probabilities''' , snake_case_ ) _validate_nested_dict(snake_case_ , '''transition_probabilities''' ) _validate_nested_dict(snake_case_ , '''emission_probabilities''' ) def lowercase__ ( snake_case_ :Any , snake_case_ :str ): _validate_dict(_object , snake_case_ , snake_case_ ) for x in _object.values(): _validate_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Any , snake_case_ :str , snake_case_ :type , snake_case_ :bool = False ): if not isinstance(_object , snake_case_ ): __UpperCAmelCase = F'''{var_name} must be a dict''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object ): __UpperCAmelCase = F'''{var_name} all keys must be strings''' raise ValueError(snake_case_ ) if not all(isinstance(snake_case_ , snake_case_ ) for x in _object.values() ): __UpperCAmelCase = '''nested dictionary ''' if nested else '''''' __UpperCAmelCase = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case_ ) if __name__ == "__main__": from doctest import testmod testmod()
397
1
'''simple docstring''' from __future__ import annotations import bisect def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = -1 ) -> int: if hi < 0: __lowerCamelCase : List[str] = len(UpperCAmelCase_ ) while lo < hi: __lowerCamelCase : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowerCamelCase : Optional[Any] = mid + 1 else: __lowerCamelCase : Optional[int] = mid return lo def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = -1 ) -> int: if hi < 0: __lowerCamelCase : Optional[int] = len(UpperCAmelCase_ ) while lo < hi: __lowerCamelCase : Tuple = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowerCamelCase : Optional[int] = mid + 1 else: __lowerCamelCase : List[str] = mid return lo def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = -1 ) -> None: sorted_collection.insert(bisect_left(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = -1 ) -> None: sorted_collection.insert(bisect_right(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int ) -> int | None: __lowerCamelCase : List[str] = 0 __lowerCamelCase : Any = len(UpperCAmelCase_ ) - 1 while left <= right: __lowerCamelCase : int = left + (right - left) // 2 __lowerCamelCase : Dict = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowerCamelCase : List[str] = midpoint - 1 else: __lowerCamelCase : Tuple = midpoint + 1 return None def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int ) -> int | None: __lowerCamelCase : List[str] = bisect.bisect_left(UpperCAmelCase_ , UpperCAmelCase_ ) if index != len(UpperCAmelCase_ ) and sorted_collection[index] == item: return index return None def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int | None: if right < left: return None __lowerCamelCase : Union[str, Any] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , midpoint - 1 ) else: return binary_search_by_recursion(UpperCAmelCase_ , UpperCAmelCase_ , midpoint + 1 , UpperCAmelCase_ ) if __name__ == "__main__": A__ : List[str] = input("""Enter numbers separated by comma:\n""").strip() A__ : Optional[int] = sorted(int(item) for item in user_input.split(""",""")) A__ : str = int(input("""Enter a single number to be found in the list:\n""")) A__ : List[Any] = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'yjernite/retribert-base-uncased': 512, } lowerCAmelCase__ = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = RetriBertTokenizer _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]="[UNK]" , UpperCAmelCase_ : Tuple="[SEP]" , UpperCAmelCase_ : Tuple="[PAD]" , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : List[str]="[MASK]" , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : List[str] , ): super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) UpperCamelCase__ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , UpperCAmelCase_) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase_) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase_) != tokenize_chinese_chars ): UpperCamelCase__ : List[Any] = getattr(UpperCAmelCase_ , normalizer_state.pop('type')) UpperCamelCase__ : Optional[Any] = do_lower_case UpperCamelCase__ : List[str] = strip_accents UpperCamelCase__ : List[Any] = tokenize_chinese_chars UpperCamelCase__ : Optional[Any] = normalizer_class(**UpperCAmelCase_) UpperCamelCase__ : int = do_lower_case def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str]=None): UpperCamelCase__ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : List[Any] = [self.sep_token_id] UpperCamelCase__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): UpperCamelCase__ : str = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
596
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowercase__ ( __A: str ,__A: Union[str, Any]=None ): '''simple docstring''' __magic_name__ : Union[str, Any] = None if token is not None: __magic_name__ : Any = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} __magic_name__ : Optional[Any] = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' __magic_name__ : Dict = requests.get(lowerCAmelCase__ ,headers=lowerCAmelCase__ ).json() __magic_name__ : Any = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) __magic_name__ : Union[str, Any] = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCAmelCase__ ): __magic_name__ : Any = requests.get(url + F'''&page={i + 2}''' ,headers=lowerCAmelCase__ ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowercase__ ( __A: List[Any] ,__A: int=None ): '''simple docstring''' __magic_name__ : str = None if token is not None: __magic_name__ : Optional[int] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} __magic_name__ : Dict = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' __magic_name__ : Optional[int] = requests.get(lowerCAmelCase__ ,headers=lowerCAmelCase__ ).json() __magic_name__ : List[Any] = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) __magic_name__ : List[Any] = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(lowerCAmelCase__ ): __magic_name__ : Tuple = requests.get(url + F'''&page={i + 2}''' ,headers=lowerCAmelCase__ ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowercase__ ( __A: List[Any] ,__A: Union[str, Any] ,__A: List[Any] ,__A: Optional[Any] ): '''simple docstring''' __magic_name__ : Any = None if token is not None: __magic_name__ : List[Any] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} __magic_name__ : Optional[int] = requests.get(lowerCAmelCase__ ,headers=lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ) __magic_name__ : int = result.headers['''Location'''] __magic_name__ : int = requests.get(lowerCAmelCase__ ,allow_redirects=lowerCAmelCase__ ) __magic_name__ : List[str] = os.path.join(lowerCAmelCase__ ,F'''{artifact_name}.zip''' ) with open(lowerCAmelCase__ ,'''wb''' ) as fp: fp.write(response.content ) def lowercase__ ( __A: Dict ,__A: List[str]=None ): '''simple docstring''' __magic_name__ : str = [] __magic_name__ : List[Any] = [] __magic_name__ : Dict = None with zipfile.ZipFile(lowerCAmelCase__ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(lowerCAmelCase__ ) as f: for line in f: __magic_name__ : List[Any] = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __magic_name__ : Optional[Any] = line[: line.index(''': ''' )] __magic_name__ : Optional[Any] = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed __magic_name__ : Optional[int] = line[len('''FAILED ''' ) :] failed_tests.append(lowerCAmelCase__ ) elif filename == "job_name.txt": __magic_name__ : Optional[Any] = line if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(lowerCAmelCase__ )} for `errors` ''' F'''and {len(lowerCAmelCase__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' ''' problem.''' ) __magic_name__ : Union[str, Any] = None if job_name and job_links: __magic_name__ : List[Any] = job_links.get(lowerCAmelCase__ ,lowerCAmelCase__ ) # A list with elements of the form (line of error, error, failed test) __magic_name__ : Dict = [x + [y] + [job_link] for x, y in zip(lowerCAmelCase__ ,lowerCAmelCase__ )] return result def lowercase__ ( __A: Union[str, Any] ,__A: Any=None ): '''simple docstring''' __magic_name__ : Optional[Any] = [] __magic_name__ : Tuple = [os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) for p in os.listdir(lowerCAmelCase__ ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(lowerCAmelCase__ ,job_links=lowerCAmelCase__ ) ) return errors def lowercase__ ( __A: Tuple ,__A: Union[str, Any]=None ): '''simple docstring''' __magic_name__ : str = Counter() counter.update([x[1] for x in logs] ) __magic_name__ : Optional[int] = counter.most_common() __magic_name__ : List[str] = {} for error, count in counts: if error_filter is None or error not in error_filter: __magic_name__ : Any = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} __magic_name__ : Optional[int] = dict(sorted(r.items() ,key=lambda __A : item[1]["count"] ,reverse=lowerCAmelCase__ ) ) return r def lowercase__ ( __A: Optional[Any] ): '''simple docstring''' __magic_name__ : int = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): __magic_name__ : Dict = test.split('''/''' )[2] else: __magic_name__ : str = None return test def lowercase__ ( __A: Any ,__A: Union[str, Any]=None ): '''simple docstring''' __magic_name__ : Optional[int] = [(x[0], x[1], get_model(x[2] )) for x in logs] __magic_name__ : List[str] = [x for x in logs if x[2] is not None] __magic_name__ : Any = {x[2] for x in logs} __magic_name__ : Union[str, Any] = {} for test in tests: __magic_name__ : Dict = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __magic_name__ : Union[str, Any] = counter.most_common() __magic_name__ : Tuple = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __magic_name__ : Dict = sum(error_counts.values() ) if n_errors > 0: __magic_name__ : str = {'''count''': n_errors, '''errors''': error_counts} __magic_name__ : Tuple = dict(sorted(r.items() ,key=lambda __A : item[1]["count"] ,reverse=lowerCAmelCase__ ) ) return r def lowercase__ ( __A: Optional[Any] ): '''simple docstring''' __magic_name__ : Any = '''| no. | error | status |''' __magic_name__ : List[str] = '''|-:|:-|:-|''' __magic_name__ : List[Any] = [header, sep] for error in reduced_by_error: __magic_name__ : str = reduced_by_error[error]['''count'''] __magic_name__ : Dict = F'''| {count} | {error[:1_0_0]} | |''' lines.append(lowerCAmelCase__ ) return "\n".join(lowerCAmelCase__ ) def lowercase__ ( __A: Tuple ): '''simple docstring''' __magic_name__ : str = '''| model | no. of errors | major error | count |''' __magic_name__ : List[str] = '''|-:|-:|-:|-:|''' __magic_name__ : Dict = [header, sep] for model in reduced_by_model: __magic_name__ : Union[str, Any] = reduced_by_model[model]['''count'''] __magic_name__ , __magic_name__ : Dict = list(reduced_by_model[model]['''errors'''].items() )[0] __magic_name__ : Tuple = F'''| {model} | {count} | {error[:6_0]} | {_count} |''' lines.append(lowerCAmelCase__ ) return "\n".join(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') __lowerCamelCase : int = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __lowerCamelCase : Any = get_job_links(args.workflow_run_id, token=args.token) __lowerCamelCase : Optional[Any] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __lowerCamelCase : Tuple = k.find(''' / ''') __lowerCamelCase : Any = k[index + len(''' / ''') :] __lowerCamelCase : int = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __lowerCamelCase : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __lowerCamelCase : Any = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __lowerCamelCase : Optional[Any] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __lowerCamelCase : Tuple = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __lowerCamelCase : Any = reduce_by_error(errors) __lowerCamelCase : int = reduce_by_model(errors) __lowerCamelCase : Optional[int] = make_github_table(reduced_by_error) __lowerCamelCase : Tuple = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
721
from sklearn.metrics import mean_squared_error import datasets __lowerCamelCase : List[str] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' __lowerCamelCase : Optional[int] = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' __lowerCamelCase : str = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase__ ( self : Dict ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def UpperCAmelCase__ ( self : List[Any] ) -> Any: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int=None , lowerCamelCase_ : List[Any]="uniform_average" , lowerCamelCase_ : List[str]=True ) -> List[str]: __magic_name__ : Tuple = mean_squared_error( lowerCamelCase_ , lowerCamelCase_ , sample_weight=lowerCamelCase_ , multioutput=lowerCamelCase_ , squared=lowerCamelCase_ ) return {"mse": mse}
501
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _a = logging.getLogger(__name__) @dataclass class _UpperCAmelCase: lowercase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowercase__ = field(default=lowerCamelCase , metadata={'help': 'Whether tp freeze the encoder.'} ) lowercase__ = field(default=lowerCamelCase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class _UpperCAmelCase: lowercase__ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowercase__ = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) lowercase__ = field( default=10_24 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase__ = field( default=1_42 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) lowercase__ = field( default=1_42 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase__ = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) lowercase__ = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) lowercase__ = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) lowercase__ = field(default=lowerCamelCase , metadata={'help': 'Source language id for translation.'} ) lowercase__ = field(default=lowerCamelCase , metadata={'help': 'Target language id for translation.'} ) lowercase__ = field(default=lowerCamelCase , metadata={'help': '# num_beams to use for evaluation.'} ) lowercase__ = field( default=lowerCamelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(__snake_case, os.path.join(__snake_case, F'''{split}_results.json''' ) ) def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() check_output_dir(__snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ), training_args.fpaa, ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''', __snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) _UpperCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(__snake_case, __snake_case, __snake_case ): assert hasattr(__snake_case, __snake_case ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(__snake_case, __snake_case, getattr(__snake_case, __snake_case ) ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path, from_tf='''.ckpt''' in model_args.model_name_or_path, config=__snake_case, cache_dir=model_args.cache_dir, ) # use task specific params use_task_specific_params(__snake_case, data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _UpperCamelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__snake_case, (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__snake_case, __snake_case ): _UpperCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _UpperCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__snake_case ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _UpperCamelCase = SeqaSeqDataset # Get datasets _UpperCamelCase = ( dataset_class( __snake_case, type_path='''train''', data_dir=data_args.data_dir, n_obs=data_args.n_train, max_target_length=data_args.max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or '''''', ) if training_args.do_train else None ) _UpperCamelCase = ( dataset_class( __snake_case, type_path='''val''', data_dir=data_args.data_dir, n_obs=data_args.n_val, max_target_length=data_args.val_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or '''''', ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _UpperCamelCase = ( dataset_class( __snake_case, type_path='''test''', data_dir=data_args.data_dir, n_obs=data_args.n_test, max_target_length=data_args.test_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or '''''', ) if training_args.do_predict else None ) # Initialize our Trainer _UpperCamelCase = ( build_compute_metrics_fn(data_args.task, __snake_case ) if training_args.predict_with_generate else None ) _UpperCamelCase = SeqaSeqTrainer( model=__snake_case, args=__snake_case, data_args=__snake_case, train_dataset=__snake_case, eval_dataset=__snake_case, data_collator=SeqaSeqDataCollator( __snake_case, __snake_case, model.config.decoder_start_token_id, training_args.tpu_num_cores ), compute_metrics=__snake_case, tokenizer=__snake_case, ) _UpperCamelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) _UpperCamelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _UpperCamelCase = train_result.metrics _UpperCamelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''', __snake_case, training_args.output_dir ) all_metrics.update(__snake_case ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate(metric_key_prefix='''val''' ) _UpperCamelCase = data_args.n_val _UpperCamelCase = round(metrics['''val_loss'''], 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''', __snake_case, training_args.output_dir ) all_metrics.update(__snake_case ) if training_args.do_predict: logger.info('''*** Predict ***''' ) _UpperCamelCase = trainer.predict(test_dataset=__snake_case, metric_key_prefix='''test''' ) _UpperCamelCase = test_output.metrics _UpperCamelCase = data_args.n_test if trainer.is_world_process_zero(): _UpperCamelCase = round(metrics['''test_loss'''], 4 ) handle_metrics('''test''', __snake_case, training_args.output_dir ) all_metrics.update(__snake_case ) if training_args.predict_with_generate: _UpperCamelCase = tokenizer.batch_decode( test_output.predictions, skip_special_tokens=__snake_case, clean_up_tokenization_spaces=__snake_case ) _UpperCamelCase = lmap(str.strip, __snake_case ) write_txt_file(__snake_case, os.path.join(training_args.output_dir, '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(__snake_case, os.path.join(training_args.output_dir, '''all_results.json''' ) ) return all_metrics def lowerCamelCase__ ( __snake_case ) -> List[str]: """simple docstring""" main() if __name__ == "__main__": main()
19
"""simple docstring""" from math import sqrt def lowercase (snake_case__ : int ) -> int: '''simple docstring''' lowerCAmelCase = 0 for i in range(1 , int(sqrt(snake_case__ ) + 1 ) ): if n % i == 0 and i != sqrt(snake_case__ ): total += i + n // i elif i == sqrt(snake_case__ ): total += i return total - n def lowercase (snake_case__ : int = 10_000 ) -> int: '''simple docstring''' lowerCAmelCase = sum( i for i in range(1 , snake_case__ ) if sum_of_divisors(sum_of_divisors(snake_case__ ) ) == i and sum_of_divisors(snake_case__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
169
0
"""simple docstring""" __lowercase = {str(digit): digit**5 for digit in range(10)} def lowercase ( A_ )-> int: '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(A_ ) ) def lowercase ( )-> int: '''simple docstring''' return sum( number for number in range(1_000 , 1_000_000 ) if number == digits_fifth_powers_sum(A_ ) ) if __name__ == "__main__": print(solution())
135
"""simple docstring""" import numpy as np def lowercase ( A_ , A_ , A_ , A_ , A_ )-> Tuple: '''simple docstring''' a : List[str] = int(np.ceil((x_end - xa) / h ) ) a : Optional[int] = np.zeros((n + 1,) ) a : Tuple = ya a : Union[str, Any] = xa for k in range(A_ ): a : Any = f(A_ , y[k] ) a : List[Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) a : str = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) a : Union[str, Any] = f(x + h , y[k] + h * ka ) a : Dict = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
135
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCamelCase = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
453
"""simple docstring""" from __future__ import annotations _UpperCamelCase = [] def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ) -> bool: for i in range(len(lowercase__ ) ): if board[row][i] == 1: return False for i in range(len(lowercase__ ) ): if board[i][column] == 1: return False for i, j in zip(range(lowercase__ , -1 , -1 ) , range(lowercase__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowercase__ , -1 , -1 ) , range(lowercase__ , len(lowercase__ ) ) ): if board[i][j] == 1: return False return True def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ) -> bool: if row >= len(lowercase__ ): solution.append(lowercase__ ) printboard(lowercase__ ) print() return True for i in range(len(lowercase__ ) ): if is_safe(lowercase__ , lowercase__ , lowercase__ ): lowerCAmelCase__ : List[Any] = 1 solve(lowercase__ , row + 1 ) lowerCAmelCase__ : Dict = 0 return False def SCREAMING_SNAKE_CASE ( lowercase__ ) -> None: for i in range(len(lowercase__ ) ): for j in range(len(lowercase__ ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) _UpperCamelCase = 8 _UpperCamelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
453
1
"""simple docstring""" def __A ( a_ : int = 1 , a_ : int = 10_00 )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 1 SCREAMING_SNAKE_CASE : List[str] = 0 for divide_by_number in range(a_ , digit + 1 ): SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : str = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(a_ ): SCREAMING_SNAKE_CASE : int = len(a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = divide_by_number else: has_been_divided.append(a_ ) SCREAMING_SNAKE_CASE : List[str] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
18
"""simple docstring""" def __A ( a_ : int )-> list[int]: '''simple docstring''' if num <= 0: raise ValueError('''Input must be a positive integer''' ) SCREAMING_SNAKE_CASE : Optional[int] = [True] * (num + 1) SCREAMING_SNAKE_CASE : Optional[Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , a_ ): SCREAMING_SNAKE_CASE : Any = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ : str = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
18
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Tuple =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any ={ '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } __SCREAMING_SNAKE_CASE : Tuple =[ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowercase = """lm_head""" lowercase = getattr(UpperCamelCase__ ,UpperCamelCase__ ) if weight_type is not None: lowercase = getattr(UpperCamelCase__ ,UpperCamelCase__ ).shape else: lowercase = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase = value elif weight_type == "weight_g": lowercase = value elif weight_type == "weight_v": lowercase = value elif weight_type == "bias": lowercase = value else: lowercase = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = [] lowercase = fairseq_model.state_dict() lowercase = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowercase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,hf_model.config.feat_extract_norm == """group""" ,) lowercase = True else: for key, mapped_key in MAPPING.items(): lowercase = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase = True if "*" in mapped_key: lowercase = name.split(UpperCamelCase__ )[0].split(""".""" )[-2] lowercase = mapped_key.replace("""*""" ,UpperCamelCase__ ) if "weight_g" in name: lowercase = """weight_g""" elif "weight_v" in name: lowercase = """weight_v""" elif "bias" in name: lowercase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase = """weight""" else: lowercase = None set_recursively(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = full_name.split("""conv_layers.""" )[-1] lowercase = name.split(""".""" ) lowercase = int(items[0] ) lowercase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowercase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ,lowerCAmelCase__=None ,lowerCAmelCase__=True ): if config_path is not None: lowercase = UniSpeechConfig.from_pretrained(UpperCamelCase__ ) else: lowercase = UniSpeechConfig() if is_finetuned: if dict_path: lowercase = Dictionary.load_from_json(UpperCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase = target_dict.pad_index lowercase = target_dict.bos_index lowercase = target_dict.eos_index lowercase = len(target_dict.symbols ) lowercase = os.path.join(UpperCamelCase__ ,"""vocab.json""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(UpperCamelCase__ ) ) return os.makedirs(UpperCamelCase__ ,exist_ok=UpperCamelCase__ ) lowercase = target_dict.indices # fairseq has the <pad> and <s> switched lowercase = 42 lowercase = 43 with open(UpperCamelCase__ ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(UpperCamelCase__ ,UpperCamelCase__ ) lowercase = WavaVecaPhonemeCTCTokenizer( UpperCamelCase__ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=UpperCamelCase__ ,) lowercase = True if config.feat_extract_norm == """layer""" else False lowercase = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=UpperCamelCase__ ,return_attention_mask=UpperCamelCase__ ,) lowercase = WavaVecaProcessor(feature_extractor=UpperCamelCase__ ,tokenizer=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) lowercase = UniSpeechForCTC(UpperCamelCase__ ) else: lowercase = UniSpeechForPreTraining(UpperCamelCase__ ) if is_finetuned: lowercase , lowercase , lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: lowercase , lowercase , lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowercase = model[0].eval() recursively_load_weights(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) hf_unispeech.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] =argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __SCREAMING_SNAKE_CASE : Any =parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
428
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "encoder-decoder" lowerCamelCase_ = True def __init__( self :Optional[int] , **__A :str ) -> int: """simple docstring""" super().__init__(**__A ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" SCREAMING_SNAKE_CASE__ = kwargs.pop("""encoder""" ) SCREAMING_SNAKE_CASE__ = encoder_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""decoder""" ) SCREAMING_SNAKE_CASE__ = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A ) SCREAMING_SNAKE_CASE__ = True @classmethod def _snake_case ( cls :str , __A :PretrainedConfig , __A :PretrainedConfig , **__A :List[str] ) -> PretrainedConfig: """simple docstring""" logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A ) def _snake_case ( self :str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.encoder.to_dict() SCREAMING_SNAKE_CASE__ = self.decoder.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
6
0
from __future__ import annotations def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" if len(__a ) < k or k < 0: raise ValueError("Invalid Input" ) lowerCamelCase__: Dict =sum(array[:k] ) for i in range(len(__a ) - k ): lowerCamelCase__: Optional[Any] =current_sum - array[i] + array[i + k] lowerCamelCase__: List[Any] =max(__a , __a ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __A = [randint(-1000, 1000) for i in range(100)] __A = randint(0, 110) print(f'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
437
import os import sys import unittest __A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __A = os.path.join("tests", "models", "bert", "test_modeling_bert.py") __A = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->str: '''simple docstring''' lowerCamelCase__: List[str] =get_test_to_tester_mapping(UpperCAmelCase_) lowerCamelCase__: List[str] =get_test_to_tester_mapping(UpperCAmelCase_) lowerCamelCase__: List[Any] ={"BertModelTest": "BertModelTester"} lowerCamelCase__: Optional[int] ={ "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(get_test_info.to_json(UpperCAmelCase_) , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: str =get_model_to_test_mapping(UpperCAmelCase_) lowerCamelCase__: int =get_model_to_test_mapping(UpperCAmelCase_) lowerCamelCase__: Tuple ={ "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } lowerCamelCase__: Any ={ "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(get_test_info.to_json(UpperCAmelCase_) , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[Any] =get_model_to_tester_mapping(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =get_model_to_tester_mapping(UpperCAmelCase_) lowerCamelCase__: Any ={ "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } lowerCamelCase__: Optional[Any] ={ "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(get_test_info.to_json(UpperCAmelCase_) , UpperCAmelCase_)
437
1
from __future__ import annotations def lowercase ( __A : list[list[int]] ) -> bool: '''simple docstring''' snake_case : Dict = len(__A ) # We need to create solution object to save path. snake_case : Union[str, Any] = [[0 for _ in range(__A )] for _ in range(__A )] snake_case : str = run_maze(__A , 0 , 0 , __A ) if solved: print("""\n""".join(str(__A ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def lowercase ( __A : list[list[int]] , __A : int , __A : int , __A : list[list[int]] ) -> bool: '''simple docstring''' snake_case : Any = len(__A ) # Final check point. if i == j == (size - 1): snake_case : str = 1 return True snake_case : str = (not i < 0) and (not j < 0) # Check lower bounds snake_case : Union[str, Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case : Optional[int] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case : List[str] = 1 # check for directions if ( run_maze(__A , i + 1 , __A , __A ) or run_maze(__A , __A , j + 1 , __A ) or run_maze(__A , i - 1 , __A , __A ) or run_maze(__A , __A , j - 1 , __A ) ): return True snake_case : Optional[int] = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
36
'''simple docstring''' from __future__ import annotations import time import numpy as np _UpperCAmelCase : int = [8, 5, 9, 7] _UpperCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _UpperCAmelCase : Union[str, Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , snake_case_ , snake_case_ , snake_case_ , ): lowercase =claim_vector lowercase =allocated_resources_table lowercase =maximum_claim_table def _A( self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def _A( self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def _A( self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(snake_case_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def _A( self ): return {self.__need().index(snake_case_ ): i for i in self.__need()} def _A( self , **snake_case_ ): lowercase =self.__need() lowercase =self.__allocated_resources_table lowercase =self.__available_resources() lowercase =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: lowercase =False for each_need in need_list: lowercase =True for index, need in enumerate(snake_case_ ): if need > available_resources[index]: lowercase =False break if execution: lowercase =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowercase =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(snake_case_ ) # update available/freed resources stack lowercase =np.array(snake_case_ ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(snake_case_ ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def _A( self ): print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(snake_case_ ) + 1}' + ''' '''.join(f'{it:>8}' for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(snake_case_ ) + 1}' + ''' '''.join(f'{it:>8}' for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(snake_case_ ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(snake_case_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
72
0
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys A : Dict = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") A : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() A : Tuple = "|".join(sys.argv[1:]) A : Optional[Any] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') A : Dict = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
282
"""simple docstring""" import gc import threading import time import psutil import torch class _UpperCamelCase : '''simple docstring''' def __init__( self ): __lowerCAmelCase = psutil.Process() __lowerCAmelCase = False def snake_case ( self ): __lowerCAmelCase = -1 while True: __lowerCAmelCase = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def snake_case ( self ): __lowerCAmelCase = True __lowerCAmelCase = threading.Thread(target=self.peak_monitor ) __lowerCAmelCase = True self.thread.start() def snake_case ( self ): __lowerCAmelCase = False self.thread.join() return self.cpu_memory_peak A : Any = PeakCPUMemory() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCAmelCase = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __lowerCAmelCase = torch.cuda.memory_allocated(_UpperCamelCase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCAmelCase = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 __lowerCAmelCase = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __lowerCAmelCase = (torch.cuda.memory_allocated(_UpperCamelCase ) - start_measures[str(_UpperCamelCase )]) / 2**20 __lowerCAmelCase = (torch.cuda.max_memory_allocated(_UpperCamelCase ) - start_measures[str(_UpperCamelCase )]) / 2**20 return measures def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' print(f"{description}:" ) print(f"- Time: {measures['time']:.2f}s" ) for i in range(torch.cuda.device_count() ): print(f"- GPU {i} allocated: {measures[str(_UpperCamelCase )]:.2f}MiB" ) __lowerCAmelCase = measures[f"{i}-peak"] print(f"- GPU {i} peak: {peak:.2f}MiB" ) print(f"- CPU RAM allocated: {measures['cpu']:.2f}MiB" ) print(f"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB" )
282
1
import fcntl import os import socket import torch import torch.distributed as dist def __SCREAMING_SNAKE_CASE ( *a__ : Union[str, Any] ) -> Union[str, Any]: with open(a_ ,"""r""" ) as fh: fcntl.flock(a_ ,fcntl.LOCK_EX ) try: print(*a_ ) finally: fcntl.flock(a_ ,fcntl.LOCK_UN ) UpperCAmelCase_ : int = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) UpperCAmelCase_ : int = torch.device('''cuda''', local_rank) UpperCAmelCase_ : Dict = socket.gethostname() UpperCAmelCase_ : Any = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase_ : Optional[int] = dist.get_rank() UpperCAmelCase_ : str = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
17
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = (DDPMScheduler,) def _lowerCamelCase ( self , **_UpperCAmelCase ): __a : int = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_UpperCAmelCase ) return config def _lowerCamelCase ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def _lowerCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def _lowerCamelCase ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def _lowerCamelCase ( self ): self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Dict = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def _lowerCamelCase ( self ): __a : int = self.scheduler_classes[0] __a : int = self.get_scheduler_config() __a : Optional[Any] = scheduler_class(**_UpperCAmelCase ) __a : int = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[Any] = self.dummy_sample_deter __a : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Optional[int] = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : List[Any] = pred_prev_sample __a : int = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : Union[str, Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def _lowerCamelCase ( self ): __a : Dict = self.scheduler_classes[0] __a : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) __a : int = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = len(_UpperCAmelCase ) __a : List[str] = self.dummy_model() __a : List[str] = self.dummy_sample_deter __a : str = torch.manual_seed(0 ) for t in reversed(range(_UpperCAmelCase ) ): # 1. predict noise residual __a : Dict = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __a : Dict = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __a : Optional[int] = pred_prev_sample __a : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) __a : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Any = self.get_scheduler_config() __a : str = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_UpperCAmelCase ) __a : List[Any] = scheduler.timesteps for i, timestep in enumerate(_UpperCAmelCase ): if i == len(_UpperCAmelCase ) - 1: __a : Union[str, Any] = -1 else: __a : str = timesteps[i + 1] __a : Dict = scheduler.previous_timestep(_UpperCAmelCase ) __a : str = prev_t.item() self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.scheduler_classes[0] __a : Dict = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Optional[Any] = [100, 87, 50, 51, 0] with self.assertRaises(_UpperCAmelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : Any = scheduler_class(**_UpperCAmelCase ) __a : Union[str, Any] = [100, 87, 50, 1, 0] __a : Optional[int] = len(_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.scheduler_classes[0] __a : Optional[Any] = self.get_scheduler_config() __a : List[str] = scheduler_class(**_UpperCAmelCase ) __a : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( _UpperCAmelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_UpperCAmelCase )
52
0
'''simple docstring''' from collections import defaultdict class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 A__ : int =[ [-1 for i in range(total + 1 )] for j in range(2 ** len(lowerCAmelCase_ ) ) ] A__ : Dict =defaultdict(lowerCAmelCase_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 A__ : Union[str, Any] =(1 << len(lowerCAmelCase_ )) - 1 def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> List[str]: '''simple docstring''' # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement A__ : List[str] =self.count_ways_until(lowerCAmelCase_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. A__ : Dict =total_ways_util return self.dp[mask][task_no] def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' # Store the list of persons for each task for i in range(len(lowerCAmelCase_ ) ): for j in task_performed[i]: self.task[j].append(lowerCAmelCase_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": __snake_case : List[Any] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __snake_case : Union[str, Any] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
721
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : List[Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'linear' __snake_case = 'cosine' __snake_case = 'cosine_with_restarts' __snake_case = 'polynomial' __snake_case = 'constant' __snake_case = 'constant_with_warmup' __snake_case = 'piecewise_constant' def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]: """simple docstring""" return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1.0, __snake_case ) ) return 1.0 return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]: """simple docstring""" A__ : str ={} A__ : Tuple =step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A__ , A__ : int =rule_str.split(""":""" ) A__ : Optional[int] =int(__snake_case ) A__ : List[Any] =float(__snake_case ) A__ : Union[str, Any] =value A__ : int =float(rule_list[-1] ) def create_rules_function(__snake_case : int, __snake_case : Dict ): def rule_func(__snake_case : int ) -> float: A__ : Any =sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ : Any =create_rules_function(__snake_case, __snake_case ) return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : Dict ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]: """simple docstring""" A__ : Optional[int] =optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ : List[Any] =lr_init - lr_end A__ : Any =num_training_steps - num_warmup_steps A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps A__ : List[str] =lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__snake_case, __snake_case, __snake_case ) __snake_case : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple: """simple docstring""" A__ : Tuple =SchedulerType(__snake_case ) A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__snake_case, last_epoch=__snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, ) return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
687
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging a :int = logging.get_logger(__name__) a :Optional[Any] = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Dict = """trajectory_transformer""" _SCREAMING_SNAKE_CASE :Dict = ["""past_key_values"""] _SCREAMING_SNAKE_CASE :Union[str, Any] = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , _a=100 , _a=5 , _a=1 , _a=1 , _a=249 , _a=6 , _a=17 , _a=25 , _a=4 , _a=4 , _a=128 , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.0_006 , _a=512 , _a=0.02 , _a=1E-1_2 , _a=1 , _a=True , _a=1 , _a=50_256 , _a=50_256 , **_a , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = action_weight SCREAMING_SNAKE_CASE__ : List[str] = reward_weight SCREAMING_SNAKE_CASE__ : int = value_weight SCREAMING_SNAKE_CASE__ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE__ : List[Any] = block_size SCREAMING_SNAKE_CASE__ : Any = action_dim SCREAMING_SNAKE_CASE__ : Tuple = observation_dim SCREAMING_SNAKE_CASE__ : Optional[Any] = transition_dim SCREAMING_SNAKE_CASE__ : List[Any] = learning_rate SCREAMING_SNAKE_CASE__ : Tuple = n_layer SCREAMING_SNAKE_CASE__ : str = n_head SCREAMING_SNAKE_CASE__ : int = n_embd SCREAMING_SNAKE_CASE__ : List[str] = embd_pdrop SCREAMING_SNAKE_CASE__ : Any = attn_pdrop SCREAMING_SNAKE_CASE__ : List[Any] = resid_pdrop SCREAMING_SNAKE_CASE__ : int = initializer_range SCREAMING_SNAKE_CASE__ : int = layer_norm_eps SCREAMING_SNAKE_CASE__ : str = kaiming_initializer_range SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_cache super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
680
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline UpperCamelCase__ = 'path-to-your-trained-model' UpperCamelCase__ = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('cuda') UpperCamelCase__ = 'A photo of sks dog in a bucket' UpperCamelCase__ = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('dog-bucket.png')
110
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] =logging.get_logger(__name__) A__ : List[Any] ={ 'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json', # See all SEW models at https://huggingface.co/models?filter=sew } class __A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase ='''sew''' def __init__( self : Any , lowerCamelCase : Union[str, Any]=32 , lowerCamelCase : Union[str, Any]=7_68 , lowerCamelCase : List[str]=12 , lowerCamelCase : List[Any]=12 , lowerCamelCase : Union[str, Any]=30_72 , lowerCamelCase : int=2 , lowerCamelCase : Tuple="gelu" , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Any=0.0 , lowerCamelCase : Tuple=0.1 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : List[str]=0.02 , lowerCamelCase : Union[str, Any]=1e-5 , lowerCamelCase : Any="group" , lowerCamelCase : Optional[Any]="gelu" , lowerCamelCase : Optional[Any]=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , lowerCamelCase : str=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase : int=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase : str=False , lowerCamelCase : Dict=1_28 , lowerCamelCase : str=16 , lowerCamelCase : Optional[int]=True , lowerCamelCase : Tuple=0.05 , lowerCamelCase : Optional[Any]=10 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : int=0.0 , lowerCamelCase : str=10 , lowerCamelCase : int=0 , lowerCamelCase : List[Any]="mean" , lowerCamelCase : Optional[Any]=False , lowerCamelCase : Any=False , lowerCamelCase : int=2_56 , lowerCamelCase : Optional[int]=0 , lowerCamelCase : List[str]=1 , lowerCamelCase : List[Any]=2 , **lowerCamelCase : int , ): """simple docstring""" super().__init__(**lowerCamelCase , pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase ) __A : Dict = hidden_size __A : List[Any] = feat_extract_norm __A : List[str] = feat_extract_activation __A : Optional[Any] = list(lowerCamelCase ) __A : List[str] = list(lowerCamelCase ) __A : str = list(lowerCamelCase ) __A : Optional[Any] = conv_bias __A : Union[str, Any] = num_conv_pos_embeddings __A : Union[str, Any] = num_conv_pos_embedding_groups __A : Tuple = len(self.conv_dim ) __A : Optional[int] = num_hidden_layers __A : Dict = intermediate_size __A : str = squeeze_factor __A : str = hidden_act __A : Dict = num_attention_heads __A : Tuple = hidden_dropout __A : str = attention_dropout __A : Tuple = activation_dropout __A : Any = feat_proj_dropout __A : Union[str, Any] = final_dropout __A : Any = layerdrop __A : Any = layer_norm_eps __A : Any = initializer_range __A : Union[str, Any] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" f"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Tuple = apply_spec_augment __A : List[str] = mask_time_prob __A : List[str] = mask_time_length __A : Tuple = mask_time_min_masks __A : Optional[int] = mask_feature_prob __A : Any = mask_feature_length __A : Any = mask_feature_min_masks # ctc loss __A : str = ctc_loss_reduction __A : Tuple = ctc_zero_infinity # sequence classification __A : List[str] = use_weighted_layer_sum __A : Union[str, Any] = classifier_proj_size @property def lowercase_( self : Optional[Any] ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
499
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def A_ ( __SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: """simple docstring""" if not is_accelerate_available(): return method __A : int = version.parse(accelerate.__version__ ).base_version if version.parse(__SCREAMING_SNAKE_CASE ) < version.parse("""0.17.0""" ): return method def wrapper(self : str , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Tuple ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return wrapper
499
1
lowerCamelCase_ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCamelCase_ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCamelCase_ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
513
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCamelCase_ = logging.getLogger(__name__) def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""" , type=__a , default="""data/dump.txt""" , help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""" , type=__a , default="""bert""" , choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""" , type=__a , default="""bert-base-uncased""" , help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""" , type=__a , default="""data/dump""" , help="""The dump file prefix.""" ) UpperCamelCase__ = parser.parse_args() logger.info(f"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": UpperCamelCase__ = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCamelCase__ = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` UpperCamelCase__ = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCamelCase__ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCamelCase__ = tokenizer.special_tokens_map["""cls_token"""] # `<s>` UpperCamelCase__ = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": UpperCamelCase__ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCamelCase__ = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` UpperCamelCase__ = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(f"Loading text from {args.file_path}" ) with open(args.file_path , """r""" , encoding="""utf8""" ) as fp: UpperCamelCase__ = fp.readlines() logger.info("""Start encoding""" ) logger.info(f"{len(__a )} examples to process." ) UpperCamelCase__ = [] UpperCamelCase__ = 0 UpperCamelCase__ = 10_000 UpperCamelCase__ = time.time() for text in data: UpperCamelCase__ = f"{bos} {text.strip()} {sep}" UpperCamelCase__ = tokenizer.encode(__a , add_special_tokens=__a ) rslt.append(__a ) iter += 1 if iter % interval == 0: UpperCamelCase__ = time.time() logger.info(f"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) UpperCamelCase__ = time.time() logger.info("""Finished binarization""" ) logger.info(f"{len(__a )} examples processed." ) UpperCamelCase__ = f"{args.dump_file}.{args.tokenizer_name}.pickle" UpperCamelCase__ = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCamelCase__ = [np.uintaa(__a ) for d in rslt] else: UpperCamelCase__ = [np.intaa(__a ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"Dump to {dp_file}" ) with open(__a , """wb""" ) as handle: pickle.dump(rslt_ , __a , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
513
1
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _UpperCamelCase: Optional[int] =datasets.utils.logging.get_logger(__name__) class __lowercase( folder_based_builder.FolderBasedBuilderConfig ): """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = None class __lowercase( folder_based_builder.FolderBasedBuilder ): """simple docstring""" UpperCamelCase_ = datasets.Audio() UpperCamelCase_ = '''audio''' UpperCamelCase_ = AudioFolderConfig UpperCamelCase_ = 42 # definition at the bottom of the script UpperCamelCase_ = AudioClassification(audio_column='''audio''' , label_column='''label''' ) _UpperCamelCase: str =[ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] _UpperCamelCase: Dict =AUDIO_EXTENSIONS
585
from PIL import Image def _a ( __SCREAMING_SNAKE_CASE : Image ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = image.size _lowerCAmelCase = 0 _lowerCAmelCase = image.load() for i in range(__SCREAMING_SNAKE_CASE ): for j in range(__SCREAMING_SNAKE_CASE ): _lowerCAmelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(__SCREAMING_SNAKE_CASE ): for i in range(__SCREAMING_SNAKE_CASE ): _lowerCAmelCase = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _UpperCamelCase: List[Any] =mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
585
1
from __future__ import annotations def a ( snake_case__: list , snake_case__: int , snake_case__: int , snake_case__: int ): '''simple docstring''' lowercase_ = [] lowercase_ , lowercase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) lowercase_ = result + left + right return input_list def a ( snake_case__: list ): '''simple docstring''' if len(snake_case__ ) <= 1: return input_list lowercase_ = list(snake_case__ ) # iteration for two-way merging lowercase_ = 2 while p <= len(snake_case__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(snake_case__ ) , snake_case__ ): lowercase_ = i lowercase_ = i + p - 1 lowercase_ = (low + high + 1) // 2 lowercase_ = merge(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # final merge of last two parts if p * 2 >= len(snake_case__ ): lowercase_ = i lowercase_ = merge(snake_case__ , 0 , snake_case__ , len(snake_case__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __a = input('Enter numbers separated by a comma:\n').strip() if user_input == "": __a = [] else: __a = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
97
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) A_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias")) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( F"transformer.decoder.layers.{i}.cross_attn.out_proj.weight", F"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( F"transformer.decoder.layers.{i}.cross_attn.out_proj.bias", F"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", F"decoder.layers.{i}.sa_qcontent_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", F"decoder.layers.{i}.sa_kcontent_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_qpos_proj.weight", F"decoder.layers.{i}.sa_qpos_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_kpos_proj.weight", F"decoder.layers.{i}.sa_kpos_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.sa_v_proj.weight", F"decoder.layers.{i}.sa_v_proj.weight")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", F"decoder.layers.{i}.ca_qcontent_proj.weight") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", F"decoder.layers.{i}.ca_kcontent_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_kpos_proj.weight", F"decoder.layers.{i}.ca_kpos_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.ca_v_proj.weight", F"decoder.layers.{i}.ca_v_proj.weight")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", F"decoder.layers.{i}.ca_qpos_sine_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", F"decoder.layers.{i}.sa_qcontent_proj.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", F"decoder.layers.{i}.sa_kcontent_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.sa_qpos_proj.bias", F"decoder.layers.{i}.sa_qpos_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.sa_kpos_proj.bias", F"decoder.layers.{i}.sa_kpos_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.sa_v_proj.bias", F"decoder.layers.{i}.sa_v_proj.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", F"decoder.layers.{i}.ca_qcontent_proj.bias") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", F"decoder.layers.{i}.ca_kcontent_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.ca_kpos_proj.bias", F"decoder.layers.{i}.ca_kpos_proj.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.ca_v_proj.bias", F"decoder.layers.{i}.ca_v_proj.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", F"decoder.layers.{i}.ca_qpos_sine_proj.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> List[str]: """simple docstring""" lowercase = state_dict.pop(UpperCAmelCase ) lowercase = val def __UpperCAmelCase ( UpperCAmelCase )-> List[str]: """simple docstring""" lowercase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase = key.replace('''backbone.0.body''', '''backbone.conv_encoder.model''' ) lowercase = value else: lowercase = value return new_state_dict def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase=False )-> Tuple: """simple docstring""" lowercase = '''''' if is_panoptic: lowercase = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) lowercase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowercase = in_proj_weight[:256, :] lowercase = in_proj_bias[:256] lowercase = in_proj_weight[256:512, :] lowercase = in_proj_bias[256:512] lowercase = in_proj_weight[-256:, :] lowercase = in_proj_bias[-256:] def __UpperCAmelCase ( )-> Any: """simple docstring""" lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase = Image.open(requests.get(UpperCAmelCase, stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase )-> Tuple: """simple docstring""" lowercase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowercase = '''resnet101''' if "dc5" in model_name: lowercase = True lowercase = '''panoptic''' in model_name if is_panoptic: lowercase = 250 else: lowercase = 91 lowercase = '''huggingface/label-files''' lowercase = '''coco-detection-id2label.json''' lowercase = json.load(open(hf_hub_download(UpperCAmelCase, UpperCAmelCase, repo_type='''dataset''' ), '''r''' ) ) lowercase = {int(UpperCAmelCase ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} # load image processor lowercase = '''coco_panoptic''' if is_panoptic else '''coco_detection''' lowercase = ConditionalDetrImageProcessor(format=UpperCAmelCase ) # prepare image lowercase = prepare_img() lowercase = image_processor(images=UpperCAmelCase, return_tensors='''pt''' ) lowercase = encoding['''pixel_values'''] logger.info(f'Converting model {model_name}...' ) # load original model from torch hub lowercase = torch.hub.load('''DeppMeng/ConditionalDETR''', UpperCAmelCase, pretrained=UpperCAmelCase ).eval() lowercase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowercase = '''conditional_detr.''' + src rename_key(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) lowercase = rename_backbone_keys(UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase, is_panoptic=UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): lowercase = state_dict.pop(UpperCAmelCase ) lowercase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowercase = state_dict.pop(UpperCAmelCase ) lowercase = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: lowercase = state_dict.pop(UpperCAmelCase ) lowercase = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): lowercase = state_dict.pop(UpperCAmelCase ) lowercase = val # finally, create HuggingFace model and load state dict lowercase = ConditionalDetrForSegmentation(UpperCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() model.push_to_hub(repo_id=UpperCAmelCase, organization='''DepuMeng''', commit_message='''Add model''' ) # verify our conversion lowercase = conditional_detr(UpperCAmelCase ) lowercase = model(UpperCAmelCase ) assert torch.allclose(outputs.logits, original_outputs['''pred_logits'''], atol=1e-4 ) assert torch.allclose(outputs.pred_boxes, original_outputs['''pred_boxes'''], atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs['''pred_masks'''], atol=1e-4 ) # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) A_ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
604
0
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self : int , lowercase_ : List[str] , lowercase_ : Any=13 , lowercase_ : Optional[Any]=30 , lowercase_ : Union[str, Any]=2 , lowercase_ : List[str]=3 , lowercase_ : Union[str, Any]=True , lowercase_ : Any=True , lowercase_ : str=32 , lowercase_ : Any=5 , lowercase_ : Optional[int]=4 , lowercase_ : List[str]=37 , lowercase_ : List[str]="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=10 , lowercase_ : Optional[int]=0.02 , lowercase_ : Union[str, Any]=None , lowercase_ : str=2 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = scope snake_case_ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = num_patches + 1 def A_ ( self : str ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def A_ ( self : Any ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A_ ( self : Optional[int] , lowercase_ : int , lowercase_ : str , lowercase_ : List[Any] ): snake_case_ = ViTModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : int , lowercase_ : Any , lowercase_ : Any , lowercase_ : Dict ): snake_case_ = ViTForMaskedImageModeling(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case_ = 1 snake_case_ = ViTForMaskedImageModeling(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A_ ( self : str , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : Dict ): snake_case_ = self.type_sequence_label_size snake_case_ = ViTForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ = 1 snake_case_ = ViTForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self : List[Any] ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): snake_case_ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) snake_case_ = ( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False def A_ ( self : Optional[Any] ): snake_case_ = ViTModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def A_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def A_ ( self : Optional[int] ): pass def A_ ( self : Union[str, Any] ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def A_ ( self : Union[str, Any] ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def A_ ( self : Any ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def A_ ( self : List[str] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_ ) def A_ ( self : Optional[int] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def A_ ( self : Optional[int] ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ViTModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def __magic_name__ ( ) -> Any: '''simple docstring''' snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def A_ ( self : Dict ): return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def A_ ( self : Tuple ): snake_case_ = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(UpperCAmelCase_ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=UpperCAmelCase_ , return_tensors='''pt''' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case_ = model(**UpperCAmelCase_ ) # verify the logits snake_case_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) snake_case_ = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4 ) ) @slow def A_ ( self : Dict ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. snake_case_ = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(UpperCAmelCase_ ) snake_case_ = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=480 ) snake_case_ = prepare_img() snake_case_ = image_processor(images=UpperCAmelCase_ , return_tensors='''pt''' ) snake_case_ = inputs.pixel_values.to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case_ = model(UpperCAmelCase_ , interpolate_pos_encoding=UpperCAmelCase_ ) # verify the logits snake_case_ = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_ ) snake_case_ = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def A_ ( self : List[str] ): snake_case_ = ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''' ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=UpperCAmelCase_ , return_tensors='''pt''' ) snake_case_ = inputs.pixel_values.to(UpperCAmelCase_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): snake_case_ = model(UpperCAmelCase_ )
711
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a : List[Any] = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = ['MobileViTFeatureExtractor'] a : Dict = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys a : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
593
0
"""simple docstring""" import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __UpperCamelCase ( __lowerCAmelCase , unittest.TestCase ): lowerCamelCase : Tuple =MobileBertTokenizer lowerCamelCase : Optional[int] =MobileBertTokenizerFast lowerCamelCase : Tuple =True lowerCamelCase : int =True lowerCamelCase : Any =filter_non_english lowerCamelCase : List[str] ="""google/mobilebert-uncased""" def __a ( self ) -> Union[str, Any]: super().setUp() a : Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] a : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) a : List[Any] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __a ( self , lowerCAmelCase__ ) -> Optional[int]: a : List[Any] = """UNwant\u00E9d,running""" a : str = """unwanted, running""" return input_text, output_text def __a ( self ) -> List[Any]: a : Dict = self.tokenizer_class(self.vocab_file ) a : List[Any] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 12, 10, 11] ) def __a ( self ) -> Tuple: if not self.test_rust_tokenizer: return a : Dict = self.get_tokenizer() a : Union[str, Any] = self.get_rust_tokenizer() a : Union[str, Any] = """UNwant\u00E9d,running""" a : Optional[Any] = tokenizer.tokenize(snake_case_ ) a : Dict = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) a : List[Any] = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) a : Tuple = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) a : str = self.get_rust_tokenizer() a : str = tokenizer.encode(snake_case_ ) a : Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # With lower casing a : int = self.get_tokenizer(do_lower_case=snake_case_ ) a : int = self.get_rust_tokenizer(do_lower_case=snake_case_ ) a : List[Any] = """UNwant\u00E9d,running""" a : Any = tokenizer.tokenize(snake_case_ ) a : List[Any] = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) a : Union[str, Any] = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) a : Tuple = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) a : int = self.get_rust_tokenizer() a : Optional[int] = tokenizer.encode(snake_case_ ) a : List[str] = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __a ( self ) -> Optional[Any]: a : Dict = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __a ( self ) -> List[Any]: a : Optional[int] = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> List[Any]: a : Dict = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __a ( self ) -> Union[str, Any]: a : int = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: a : Any = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> Union[str, Any]: a : int = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Union[str, Any]: a : Any = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Dict: a : Optional[Any] = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> str: a : Dict = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __a ( self ) -> str: a : List[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] a : Any = {} for i, token in enumerate(snake_case_ ): a : Tuple = i a : List[Any] = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __a ( self ) -> List[str]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __a ( self ) -> Union[str, Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __a ( self ) -> Optional[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __a ( self ) -> Any: a : Dict = self.get_tokenizer() a : Optional[int] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(snake_case_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(snake_case_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def __a ( self ) -> Optional[Any]: a : str = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) a : List[Any] = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) a : Optional[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) a : Any = tokenizer.build_inputs_with_special_tokens(snake_case_ ) a : Tuple = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __a ( self ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a : Tuple = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) a : Union[str, Any] = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" a : Dict = tokenizer_r.encode_plus( snake_case_ , return_attention_mask=snake_case_ , return_token_type_ids=snake_case_ , return_offsets_mapping=snake_case_ , add_special_tokens=snake_case_ , ) a : str = tokenizer_r.do_lower_case if hasattr(snake_case_ , "do_lower_case" ) else False a : str = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __a ( self ) -> List[str]: a : Optional[int] = ["""的""", """人""", """有"""] a : Union[str, Any] = """""".join(snake_case_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a : Dict = True a : Any = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) a : Optional[Any] = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) a : List[str] = tokenizer_p.encode(snake_case_ , add_special_tokens=snake_case_ ) a : str = tokenizer_r.encode(snake_case_ , add_special_tokens=snake_case_ ) a : Optional[Any] = tokenizer_r.convert_ids_to_tokens(snake_case_ ) a : Any = tokenizer_p.convert_ids_to_tokens(snake_case_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) a : Optional[int] = False a : Any = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) a : List[Any] = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) a : Tuple = tokenizer_r.encode(snake_case_ , add_special_tokens=snake_case_ ) a : List[str] = tokenizer_p.encode(snake_case_ , add_special_tokens=snake_case_ ) a : List[str] = tokenizer_r.convert_ids_to_tokens(snake_case_ ) a : Optional[Any] = tokenizer_p.convert_ids_to_tokens(snake_case_ ) # it is expected that only the first Chinese character is not preceded by "##". a : Tuple = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(snake_case_ ) ] self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ )
633
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image SCREAMING_SNAKE_CASE_ = ['text', 'image', 'audio'] def UpperCamelCase__ ( _lowercase : List[str] ) -> Tuple: __UpperCAmelCase: Union[str, Any] = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(_lowercase , _lowercase ): inputs.append(create_inputs(_lowercase ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def UpperCamelCase__ ( _lowercase : List ) -> List[str]: __UpperCAmelCase: str = [] for output in outputs: if isinstance(_lowercase , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(_lowercase , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(_lowercase , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class a : """simple docstring""" def lowercase_ ( self ): '''simple docstring''' self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) __UpperCAmelCase: Optional[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) __UpperCAmelCase: Dict = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: str = create_inputs(self.tool.inputs ) __UpperCAmelCase: Any = self.tool(*snake_case_ ) # There is a single output if len(self.tool.outputs ) == 1: __UpperCAmelCase: Union[str, Any] = [outputs] self.assertListEqual(output_types(snake_case_ ) , self.tool.outputs ) def lowercase_ ( self ): '''simple docstring''' self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = create_inputs(self.tool.inputs ) __UpperCAmelCase: Optional[int] = self.tool(*snake_case_ ) if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase: Tuple = [outputs] self.assertEqual(len(snake_case_ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case_ , self.tool.outputs ): __UpperCAmelCase: List[Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case_ , snake_case_ ) ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = create_inputs(self.tool.inputs ) __UpperCAmelCase: Optional[int] = [] for _input, input_type in zip(snake_case_ , self.tool.inputs ): if isinstance(snake_case_ , snake_case_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error __UpperCAmelCase: int = self.tool(*snake_case_ ) if not isinstance(snake_case_ , snake_case_ ): __UpperCAmelCase: Union[str, Any] = [outputs] self.assertEqual(len(snake_case_ ) , len(self.tool.outputs ) )
523
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _UpperCamelCase ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] ) -> Tuple: """simple docstring""" if isinstance(UpperCamelCase_ , torch.Tensor ): return image elif isinstance(UpperCamelCase_ , PIL.Image.Image ): lowerCAmelCase__ = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] lowerCAmelCase__ = np.concatenate(UpperCamelCase_ , axis=0 ) lowerCAmelCase__ = np.array(UpperCamelCase_ ).astype(np.floataa ) / 255.0 lowerCAmelCase__ = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase__ = 2.0 * image - 1.0 lowerCAmelCase__ = torch.from_numpy(UpperCamelCase_ ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase__ = torch.cat(UpperCamelCase_ , dim=0 ) return image def _UpperCamelCase ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict=0.9995 ) -> Tuple: """simple docstring""" if not isinstance(UpperCamelCase_ , np.ndarray ): lowerCAmelCase__ = True lowerCAmelCase__ = va.device lowerCAmelCase__ = va.cpu().numpy() lowerCAmelCase__ = va.cpu().numpy() lowerCAmelCase__ = np.sum(va * va / (np.linalg.norm(UpperCamelCase_ ) * np.linalg.norm(UpperCamelCase_ )) ) if np.abs(UpperCamelCase_ ) > DOT_THRESHOLD: lowerCAmelCase__ = (1 - t) * va + t * va else: lowerCAmelCase__ = np.arccos(UpperCamelCase_ ) lowerCAmelCase__ = np.sin(UpperCamelCase_ ) lowerCAmelCase__ = theta_a * t lowerCAmelCase__ = np.sin(UpperCamelCase_ ) lowerCAmelCase__ = np.sin(theta_a - theta_t ) / sin_theta_a lowerCAmelCase__ = sin_theta_t / sin_theta_a lowerCAmelCase__ = sa * va + sa * va if inputs_are_torch: lowerCAmelCase__ = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) return va def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ = F.normalize(UpperCamelCase_ , dim=-1 ) lowerCAmelCase__ = F.normalize(UpperCamelCase_ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def _UpperCamelCase ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> int: """simple docstring""" for param in model.parameters(): lowerCAmelCase__ = value class __SCREAMING_SNAKE_CASE ( __lowercase): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , ): """simple docstring""" super().__init__() self.register_modules( vae=_UpperCamelCase , text_encoder=_UpperCamelCase , clip_model=_UpperCamelCase , tokenizer=_UpperCamelCase , unet=_UpperCamelCase , scheduler=_UpperCamelCase , feature_extractor=_UpperCamelCase , coca_model=_UpperCamelCase , coca_tokenizer=_UpperCamelCase , coca_transform=_UpperCamelCase , ) lowerCAmelCase__ = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCamelCase ) else feature_extractor.size['shortest_edge'] ) lowerCAmelCase__ = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCamelCase ) set_requires_grad(self.clip_model , _UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCAmelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" self.enable_attention_slicing(_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" set_requires_grad(self.vae , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" set_requires_grad(self.vae , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" set_requires_grad(self.unet , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" set_requires_grad(self.unet , _UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" # get the original timestep using init_timestep lowerCAmelCase__ = min(int(num_inference_steps * strength ) , _UpperCamelCase ) lowerCAmelCase__ = max(num_inference_steps - init_timestep , 0 ) lowerCAmelCase__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" if not isinstance(_UpperCamelCase , torch.Tensor ): raise ValueError(F"`image` has to be of type `torch.Tensor` but is {type(_UpperCamelCase )}" ) lowerCAmelCase__ = image.to(device=_UpperCamelCase , dtype=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): lowerCAmelCase__ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCamelCase ) ] lowerCAmelCase__ = torch.cat(_UpperCamelCase , dim=0 ) else: lowerCAmelCase__ = self.vae.encode(_UpperCamelCase ).latent_dist.sample(_UpperCamelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCAmelCase__ = 0.1_82_15 * init_latents lowerCAmelCase__ = init_latents.repeat_interleave(_UpperCamelCase , dim=0 ) lowerCAmelCase__ = randn_tensor(init_latents.shape , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) # get latents lowerCAmelCase__ = self.scheduler.add_noise(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowerCAmelCase__ = init_latents return latents def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.coca_transform(_UpperCamelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowerCAmelCase__ = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowerCAmelCase__ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.feature_extractor.preprocess(_UpperCamelCase ) lowerCAmelCase__ = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() lowerCAmelCase__ = self.clip_model.get_image_features(_UpperCamelCase ) lowerCAmelCase__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCamelCase ) lowerCAmelCase__ = image_embeddings_clip.repeat_interleave(_UpperCamelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ = latents.detach().requires_grad_() lowerCAmelCase__ = self.scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) # predict the noise residual lowerCAmelCase__ = self.unet(_UpperCamelCase , _UpperCamelCase , encoder_hidden_states=_UpperCamelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowerCAmelCase__ = self.scheduler.alphas_cumprod[timestep] lowerCAmelCase__ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCAmelCase__ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowerCAmelCase__ = torch.sqrt(_UpperCamelCase ) lowerCAmelCase__ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCamelCase ): lowerCAmelCase__ = self.scheduler.sigmas[index] lowerCAmelCase__ = latents - sigma * noise_pred else: raise ValueError(F"scheduler type {type(self.scheduler )} not supported" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCAmelCase__ = 1 / 0.1_82_15 * sample lowerCAmelCase__ = self.vae.decode(_UpperCamelCase ).sample lowerCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase__ = transforms.Resize(self.feature_extractor_size )(_UpperCamelCase ) lowerCAmelCase__ = self.normalize(_UpperCamelCase ).to(latents.dtype ) lowerCAmelCase__ = self.clip_model.get_image_features(_UpperCamelCase ) lowerCAmelCase__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCamelCase ) lowerCAmelCase__ = spherical_dist_loss(_UpperCamelCase , _UpperCamelCase ).mean() * clip_guidance_scale lowerCAmelCase__ = -torch.autograd.grad(_UpperCamelCase , _UpperCamelCase )[0] if isinstance(self.scheduler , _UpperCamelCase ): lowerCAmelCase__ = latents.detach() + grads * (sigma**2) lowerCAmelCase__ = noise_pred_original else: lowerCAmelCase__ = noise_pred_original - torch.sqrt(_UpperCamelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 5_12 , _UpperCamelCase = 5_12 , _UpperCamelCase = 0.6 , _UpperCamelCase = 50 , _UpperCamelCase = 7.5 , _UpperCamelCase = 1 , _UpperCamelCase = 0.0 , _UpperCamelCase = 1_00 , _UpperCamelCase = None , _UpperCamelCase = "pil" , _UpperCamelCase = True , _UpperCamelCase = 0.8 , _UpperCamelCase = 0.1 , _UpperCamelCase = 0.1 , ): """simple docstring""" if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != batch_size: raise ValueError(F"You have passed {batch_size} batch_size, but only {len(_UpperCamelCase )} generators." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if isinstance(_UpperCamelCase , torch.Generator ) and batch_size > 1: lowerCAmelCase__ = [generator] + [None] * (batch_size - 1) lowerCAmelCase__ = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] lowerCAmelCase__ = [x[0] for x in coca_is_none if x[1]] lowerCAmelCase__ = ', '.join(_UpperCamelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCamelCase ): raise ValueError( F"Content prompt is None and CoCa [{coca_is_none_str}] is None." F"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) lowerCAmelCase__ = self.get_image_description(_UpperCamelCase ) if style_prompt is None: if len(_UpperCamelCase ): raise ValueError( F"Style prompt is None and CoCa [{coca_is_none_str}] is None." F" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) lowerCAmelCase__ = self.get_image_description(_UpperCamelCase ) # get prompt text embeddings for content and style lowerCAmelCase__ = self.tokenizer( _UpperCamelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCamelCase , return_tensors='pt' , ) lowerCAmelCase__ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowerCAmelCase__ = self.tokenizer( _UpperCamelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCamelCase , return_tensors='pt' , ) lowerCAmelCase__ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowerCAmelCase__ = slerp(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # duplicate text embeddings for each generation per prompt lowerCAmelCase__ = text_embeddings.repeat_interleave(_UpperCamelCase , dim=0 ) # set timesteps lowerCAmelCase__ = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowerCAmelCase__ = {} if accepts_offset: lowerCAmelCase__ = 1 self.scheduler.set_timesteps(_UpperCamelCase , **_UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowerCAmelCase__ , lowerCAmelCase__ = self.get_timesteps(_UpperCamelCase , _UpperCamelCase , self.device ) lowerCAmelCase__ = timesteps[:1].repeat(_UpperCamelCase ) # Preprocess image lowerCAmelCase__ = preprocess(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowerCAmelCase__ = self.prepare_latents( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , text_embeddings.dtype , self.device , _UpperCamelCase ) lowerCAmelCase__ = preprocess(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowerCAmelCase__ = self.prepare_latents( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , text_embeddings.dtype , self.device , _UpperCamelCase ) lowerCAmelCase__ = slerp(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if clip_guidance_scale > 0: lowerCAmelCase__ = self.get_clip_image_embeddings(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase__ = self.get_clip_image_embeddings(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase__ = slerp( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase__ = content_text_input.input_ids.shape[-1] lowerCAmelCase__ = self.tokenizer([''] , padding='max_length' , max_length=_UpperCamelCase , return_tensors='pt' ) lowerCAmelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowerCAmelCase__ = uncond_embeddings.repeat_interleave(_UpperCamelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase__ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowerCAmelCase__ = torch.randn(_UpperCamelCase , generator=_UpperCamelCase , device='cpu' , dtype=_UpperCamelCase ).to( self.device ) else: lowerCAmelCase__ = torch.randn(_UpperCamelCase , generator=_UpperCamelCase , device=self.device , dtype=_UpperCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase__ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase__ = {} if accepts_eta: lowerCAmelCase__ = eta # check if the scheduler accepts generator lowerCAmelCase__ = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowerCAmelCase__ = generator with self.progress_bar(total=_UpperCamelCase ): for i, t in enumerate(_UpperCamelCase ): # expand the latents if we are doing classifier free guidance lowerCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase__ = self.scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) # predict the noise residual lowerCAmelCase__ = self.unet(_UpperCamelCase , _UpperCamelCase , encoder_hidden_states=_UpperCamelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: lowerCAmelCase__ , lowerCAmelCase__ = noise_pred.chunk(2 ) lowerCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowerCAmelCase__ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowerCAmelCase__ , lowerCAmelCase__ = self.cond_fn( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase__ = self.scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCAmelCase__ = 1 / 0.1_82_15 * latents lowerCAmelCase__ = self.vae.decode(_UpperCamelCase ).sample lowerCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase__ = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCamelCase , nsfw_content_detected=_UpperCamelCase )
365
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __snake_case : str = (7_20, 12_80) # Height, Width __snake_case : Dict = (0.4, 0.6) # if height or width lower than this scale, drop it. __snake_case : Dict = 1 / 1_00 __snake_case : Optional[int] = """""" __snake_case : Union[str, Any] = """""" __snake_case : List[str] = """""" __snake_case : List[str] = 2_50 def _UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = get_dataset(UpperCamelCase_ , UpperCamelCase_ ) for index in range(UpperCamelCase_ ): lowerCAmelCase__ = random.sample(range(len(UpperCamelCase_ ) ) , 4 ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = update_image_and_anno( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , filter_scale=UpperCamelCase_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCAmelCase__ = random_chars(32 ) lowerCAmelCase__ = path.split(os.sep )[-1].rsplit('.' , 1 )[0] lowerCAmelCase__ = F"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(F"{file_root}.jpg" , UpperCamelCase_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) lowerCAmelCase__ = [] for anno in new_annos: lowerCAmelCase__ = anno[3] - anno[1] lowerCAmelCase__ = anno[4] - anno[2] lowerCAmelCase__ = anno[1] + width / 2 lowerCAmelCase__ = anno[2] + height / 2 lowerCAmelCase__ = F"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(UpperCamelCase_ ) with open(F"{file_root}.txt" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def _UpperCamelCase ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> tuple[list, list]: """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = [] for label_file in glob.glob(os.path.join(UpperCamelCase_ , '*.txt' ) ): lowerCAmelCase__ = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(UpperCamelCase_ ) as in_file: lowerCAmelCase__ = in_file.readlines() lowerCAmelCase__ = os.path.join(UpperCamelCase_ , F"{label_name}.jpg" ) lowerCAmelCase__ = [] for obj_list in obj_lists: lowerCAmelCase__ = obj_list.rstrip('\n' ).split(' ' ) lowerCAmelCase__ = float(obj[1] ) - float(obj[3] ) / 2 lowerCAmelCase__ = float(obj[2] ) - float(obj[4] ) / 2 lowerCAmelCase__ = float(obj[1] ) + float(obj[3] ) / 2 lowerCAmelCase__ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(UpperCamelCase_ ) labels.append(UpperCamelCase_ ) return img_paths, labels def _UpperCamelCase ( UpperCamelCase_ : list , UpperCamelCase_ : list , UpperCamelCase_ : list[int] , UpperCamelCase_ : tuple[int, int] , UpperCamelCase_ : tuple[float, float] , UpperCamelCase_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" lowerCAmelCase__ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowerCAmelCase__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase__ = int(scale_x * output_size[1] ) lowerCAmelCase__ = int(scale_y * output_size[0] ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i, index in enumerate(UpperCamelCase_ ): lowerCAmelCase__ = all_img_list[index] path_list.append(UpperCamelCase_ ) lowerCAmelCase__ = all_annos[index] lowerCAmelCase__ = cva.imread(UpperCamelCase_ ) if i == 0: # top-left lowerCAmelCase__ = cva.resize(UpperCamelCase_ , (divid_point_x, divid_point_y) ) lowerCAmelCase__ = img for bbox in img_annos: lowerCAmelCase__ = bbox[1] * scale_x lowerCAmelCase__ = bbox[2] * scale_y lowerCAmelCase__ = bbox[3] * scale_x lowerCAmelCase__ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowerCAmelCase__ = cva.resize(UpperCamelCase_ , (output_size[1] - divid_point_x, divid_point_y) ) lowerCAmelCase__ = img for bbox in img_annos: lowerCAmelCase__ = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase__ = bbox[2] * scale_y lowerCAmelCase__ = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase__ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowerCAmelCase__ = cva.resize(UpperCamelCase_ , (divid_point_x, output_size[0] - divid_point_y) ) lowerCAmelCase__ = img for bbox in img_annos: lowerCAmelCase__ = bbox[1] * scale_x lowerCAmelCase__ = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase__ = bbox[3] * scale_x lowerCAmelCase__ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowerCAmelCase__ = cva.resize( UpperCamelCase_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowerCAmelCase__ = img for bbox in img_annos: lowerCAmelCase__ = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase__ = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase__ = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase__ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowerCAmelCase__ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _UpperCamelCase ( UpperCamelCase_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" lowerCAmelCase__ = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
365
1
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __UpperCamelCase : List[Any] = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class _UpperCamelCase ( A ): '''simple docstring''' a_ : int = "ernie_m" a_ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : Optional[Any] , _lowerCamelCase : int = 2_5_0_0_0_2 , _lowerCamelCase : int = 7_6_8 , _lowerCamelCase : int = 1_2 , _lowerCamelCase : int = 1_2 , _lowerCamelCase : int = 3_0_7_2 , _lowerCamelCase : str = "gelu" , _lowerCamelCase : float = 0.1 , _lowerCamelCase : float = 0.1 , _lowerCamelCase : int = 5_1_4 , _lowerCamelCase : float = 0.02 , _lowerCamelCase : int = 1 , _lowerCamelCase : float = 1E-05 , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : str=False , _lowerCamelCase : Tuple=0.0 , **_lowerCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) __lowerCamelCase : Optional[int] = vocab_size __lowerCamelCase : List[str] = hidden_size __lowerCamelCase : Any = num_hidden_layers __lowerCamelCase : Optional[int] = num_attention_heads __lowerCamelCase : Tuple = intermediate_size __lowerCamelCase : Any = hidden_act __lowerCamelCase : int = hidden_dropout_prob __lowerCamelCase : List[Any] = attention_probs_dropout_prob __lowerCamelCase : List[Any] = max_position_embeddings __lowerCamelCase : Optional[Any] = initializer_range __lowerCamelCase : Tuple = layer_norm_eps __lowerCamelCase : List[str] = classifier_dropout __lowerCamelCase : str = is_decoder __lowerCamelCase : Optional[Any] = act_dropout
519
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class _UpperCamelCase ( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCamelCase : float , _lowerCamelCase : Callable , _lowerCamelCase : int , _lowerCamelCase : float = 1.0 , _lowerCamelCase : str = None , ): '''simple docstring''' super().__init__() __lowerCamelCase : Dict = initial_learning_rate __lowerCamelCase : Any = warmup_steps __lowerCamelCase : Optional[int] = power __lowerCamelCase : str = decay_schedule_fn __lowerCamelCase : Union[str, Any] = name def __call__( self : List[str] , _lowerCamelCase : int ): '''simple docstring''' with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCamelCase : Dict = tf.cast(_lowerCamelCase , tf.floataa ) __lowerCamelCase : Optional[Any] = tf.cast(self.warmup_steps , tf.floataa ) __lowerCamelCase : List[str] = global_step_float / warmup_steps_float __lowerCamelCase : List[str] = self.initial_learning_rate * tf.math.pow(_lowerCamelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_lowerCamelCase , ) def _snake_case ( self : Any ): '''simple docstring''' return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _UpperCAmelCase ( UpperCAmelCase : float , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : float = 0.0 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.9_9_9 , UpperCAmelCase : float = 1e-8 , UpperCAmelCase : Optional[float] = None , UpperCAmelCase : Optional[float] = None , UpperCAmelCase : float = 0.0 , UpperCAmelCase : float = 1.0 , UpperCAmelCase : Optional[List[str]] = None , ): """simple docstring""" __lowerCamelCase : str = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase , ) if num_warmup_steps: __lowerCamelCase : str = WarmUp( initial_learning_rate=UpperCAmelCase , decay_schedule_fn=UpperCAmelCase , warmup_steps=UpperCAmelCase , ) if weight_decay_rate > 0.0: __lowerCamelCase : List[Any] = AdamWeightDecay( learning_rate=UpperCAmelCase , weight_decay_rate=UpperCAmelCase , beta_a=UpperCAmelCase , beta_a=UpperCAmelCase , epsilon=UpperCAmelCase , clipnorm=UpperCAmelCase , global_clipnorm=UpperCAmelCase , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=UpperCAmelCase , ) else: __lowerCamelCase : Optional[int] = tf.keras.optimizers.Adam( learning_rate=UpperCAmelCase , beta_a=UpperCAmelCase , beta_a=UpperCAmelCase , epsilon=UpperCAmelCase , clipnorm=UpperCAmelCase , global_clipnorm=UpperCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : Tuple , _lowerCamelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , _lowerCamelCase : float = 0.9 , _lowerCamelCase : float = 0.999 , _lowerCamelCase : float = 1E-7 , _lowerCamelCase : bool = False , _lowerCamelCase : float = 0.0 , _lowerCamelCase : Optional[List[str]] = None , _lowerCamelCase : Optional[List[str]] = None , _lowerCamelCase : str = "AdamWeightDecay" , **_lowerCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = weight_decay_rate __lowerCamelCase : Tuple = include_in_weight_decay __lowerCamelCase : Optional[Any] = exclude_from_weight_decay @classmethod def _snake_case ( cls : Union[str, Any] , _lowerCamelCase : List[Any] ): '''simple docstring''' __lowerCamelCase : Optional[Any] = {"""WarmUp""": WarmUp} return super(_lowerCamelCase , cls ).from_config(_lowerCamelCase , custom_objects=_lowerCamelCase ) def _snake_case ( self : str , _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] ): '''simple docstring''' super(_lowerCamelCase , self )._prepare_local(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Optional[Any] = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def _snake_case ( self : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple ): '''simple docstring''' __lowerCamelCase : Optional[Any] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def _snake_case ( self : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : str=None , **_lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Union[str, Any] = list(zip(*_lowerCamelCase ) ) return super(_lowerCamelCase , self ).apply_gradients(zip(_lowerCamelCase , _lowerCamelCase ) , name=_lowerCamelCase , **_lowerCamelCase ) def _snake_case ( self : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] ): '''simple docstring''' if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCamelCase : Union[str, Any] = apply_state or {} __lowerCamelCase : Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCamelCase : List[str] = self._fallback_apply_state(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Dict = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _snake_case ( self : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Dict=None ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , _lowerCamelCase ) __lowerCamelCase : Dict = self._decay_weights_op(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with tf.control_dependencies([decay] ): return super(_lowerCamelCase , self )._resource_apply_dense(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def _snake_case ( self : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple=None ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : int = self._get_lr(var.device , var.dtype.base_dtype , _lowerCamelCase ) __lowerCamelCase : str = self._decay_weights_op(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with tf.control_dependencies([decay] ): return super(_lowerCamelCase , self )._resource_apply_sparse(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : int = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def _snake_case ( self : Dict , _lowerCamelCase : List[str] ): '''simple docstring''' if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_lowerCamelCase , _lowerCamelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_lowerCamelCase , _lowerCamelCase ) is not None: return False return True class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : Union[str, Any] ): '''simple docstring''' __lowerCamelCase : Optional[int] = [] __lowerCamelCase : int = None @property def _snake_case ( self : Tuple ): '''simple docstring''' if self._accum_steps is None: __lowerCamelCase : Any = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_lowerCamelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _snake_case ( self : Any ): '''simple docstring''' if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : List[str] , _lowerCamelCase : List[str] ): '''simple docstring''' if not self._gradients: __lowerCamelCase : List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_lowerCamelCase ) , trainable=_lowerCamelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_lowerCamelCase ) != len(self._gradients ): raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(_lowerCamelCase )}""" ) for accum_gradient, gradient in zip(self._gradients , _lowerCamelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_lowerCamelCase ) self._accum_steps.assign_add(1 ) def _snake_case ( self : Any ): '''simple docstring''' if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_lowerCamelCase ) )
519
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class lowerCAmelCase : @staticmethod def _A ( *a__ : Optional[int] , **a__ : Any ): '''simple docstring''' pass def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. snake_case = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): A_ : int = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _A ( self : Any , a__ : Dict , a__ : int , a__ : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = pipeline( "document-question-answering" , model=a__ , tokenizer=a__ , image_processor=a__ ) lowerCAmelCase__ : Optional[int] = INVOICE_URL lowerCAmelCase__ : List[Any] = list(zip(*apply_tesseract(load_image(a__ ) , a__ , "" ) ) ) lowerCAmelCase__ : int = "What is the placebo?" lowerCAmelCase__ : Optional[int] = [ { "image": load_image(a__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _A ( self : Dict , a__ : Tuple , a__ : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = dqa_pipeline(a__ , top_k=2 ) self.assertEqual( a__ , [ [ {"score": ANY(a__ ), "answer": ANY(a__ ), "start": ANY(a__ ), "end": ANY(a__ )}, {"score": ANY(a__ ), "answer": ANY(a__ ), "start": ANY(a__ ), "end": ANY(a__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _A ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) lowerCAmelCase__ : Optional[int] = INVOICE_URL lowerCAmelCase__ : Tuple = "How many cats are there?" lowerCAmelCase__ : str = [ {"score": 0.0001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] lowerCAmelCase__ : Tuple = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) lowerCAmelCase__ : Union[str, Any] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCAmelCase__ : Union[str, Any] = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCAmelCase__ : Optional[Any] = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(a__ , [] ) # We can optionnally pass directly the words and bounding boxes lowerCAmelCase__ : Optional[Any] = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : int = dqa_pipeline(image=a__ , question=a__ , words=a__ , boxes=a__ , top_k=2 ) self.assertEqual(a__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _A ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) lowerCAmelCase__ : Any = INVOICE_URL lowerCAmelCase__ : int = "What is the invoice number?" lowerCAmelCase__ : List[Any] = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCAmelCase__ : Union[str, Any] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCAmelCase__ : int = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _A ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) lowerCAmelCase__ : List[Any] = INVOICE_URL lowerCAmelCase__ : Optional[Any] = "What is the invoice number?" lowerCAmelCase__ : Any = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCAmelCase__ : Any = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCAmelCase__ : str = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _A ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=a__ ) lowerCAmelCase__ : Tuple = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=a__ , revision="3dc6de3" , ) lowerCAmelCase__ : Optional[Any] = INVOICE_URL lowerCAmelCase__ : int = "What is the invoice number?" lowerCAmelCase__ : Any = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) lowerCAmelCase__ : List[Any] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) lowerCAmelCase__ : Union[str, Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) lowerCAmelCase__ : Optional[int] = list(zip(*apply_tesseract(load_image(a__ ) , a__ , "" ) ) ) # This model should also work if `image` is set to None lowerCAmelCase__ : Any = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _A ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : str = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=a__ ) lowerCAmelCase__ : Optional[int] = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=a__ , revision="3dc6de3" , max_seq_len=50 , ) lowerCAmelCase__ : List[Any] = INVOICE_URL lowerCAmelCase__ : int = "What is the invoice number?" lowerCAmelCase__ : Optional[Any] = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCAmelCase__ : List[Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) lowerCAmelCase__ : Dict = list(zip(*apply_tesseract(load_image(a__ ) , a__ , "" ) ) ) # This model should also work if `image` is set to None lowerCAmelCase__ : int = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _A ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) lowerCAmelCase__ : Optional[int] = INVOICE_URL lowerCAmelCase__ : List[Any] = "What is the invoice number?" lowerCAmelCase__ : Optional[Any] = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _A ( self : int ): '''simple docstring''' pass
568
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): A_ : Optional[Any] = LayoutLMTokenizer A_ : Union[str, Any] = LayoutLMTokenizerFast A_ : int = True A_ : str = True def _A ( self : Union[str, Any] ): '''simple docstring''' super().setUp() lowerCAmelCase__ : Any = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _A ( self : int , **a__ : Optional[Any] ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **a__ ) def _A ( self : Optional[Any] , a__ : Tuple ): '''simple docstring''' lowerCAmelCase__ : Any = "UNwant\u00E9d,running" lowerCAmelCase__ : Dict = "unwanted, running" return input_text, output_text def _A ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ : Tuple = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(a__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [7, 4, 5, 10, 8, 9] ) def _A ( self : Optional[Any] ): '''simple docstring''' pass
568
1
'''simple docstring''' def UpperCamelCase ( lowercase_ : int = 1_0_0_0 ) -> int: '''simple docstring''' return sum(e for e in range(3 , lowercase_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
72
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class A ( UpperCamelCase_ ): def __init__( self : str ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[Any] =[] def lowerCamelCase ( self : Dict , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> List[Any]: """simple docstring""" self.events.append('on_init_end' ) def lowerCamelCase ( self : int , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Union[str, Any]: """simple docstring""" self.events.append('on_train_begin' ) def lowerCamelCase ( self : Optional[int] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Tuple , **lowercase_ : str ) -> Optional[Any]: """simple docstring""" self.events.append('on_train_end' ) def lowerCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : int , **lowercase_ : List[str] ) -> Dict: """simple docstring""" self.events.append('on_epoch_begin' ) def lowerCamelCase ( self : Dict , lowercase_ : Any , lowercase_ : Dict , lowercase_ : List[Any] , **lowercase_ : Dict ) -> Optional[Any]: """simple docstring""" self.events.append('on_epoch_end' ) def lowerCamelCase ( self : List[str] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Any , **lowercase_ : Dict ) -> Tuple: """simple docstring""" self.events.append('on_step_begin' ) def lowerCamelCase ( self : List[str] , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Tuple: """simple docstring""" self.events.append('on_step_end' ) def lowerCamelCase ( self : Tuple , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , **lowercase_ : List[Any] ) -> Any: """simple docstring""" self.events.append('on_evaluate' ) def lowerCamelCase ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : List[str] , **lowercase_ : Dict ) -> Dict: """simple docstring""" self.events.append('on_predict' ) def lowerCamelCase ( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : List[Any] , **lowercase_ : Optional[int] ) -> Any: """simple docstring""" self.events.append('on_save' ) def lowerCamelCase ( self : str , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : Optional[int] , **lowercase_ : Optional[int] ) -> List[str]: """simple docstring""" self.events.append('on_log' ) def lowerCamelCase ( self : Any , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] , **lowercase_ : str ) -> List[Any]: """simple docstring""" self.events.append('on_prediction_step' ) @require_torch class A ( unittest.TestCase ): def lowerCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Dict =tempfile.mkdtemp() def lowerCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" shutil.rmtree(self.output_dir ) def lowerCamelCase ( self : Optional[Any] , lowercase_ : Optional[int]=0 , lowercase_ : int=0 , lowercase_ : Dict=64 , lowercase_ : List[str]=64 , lowercase_ : int=None , lowercase_ : Tuple=False , **lowercase_ : Dict ) -> Optional[int]: """simple docstring""" _lowerCamelCase : int =RegressionDataset(length=lowercase_ ) _lowerCamelCase : Optional[Any] =RegressionDataset(length=lowercase_ ) _lowerCamelCase : str =RegressionModelConfig(a=lowercase_ , b=lowercase_ ) _lowerCamelCase : Optional[Any] =RegressionPreTrainedModel(lowercase_ ) _lowerCamelCase : str =TrainingArguments(self.output_dir , disable_tqdm=lowercase_ , report_to=[] , **lowercase_ ) return Trainer( lowercase_ , lowercase_ , train_dataset=lowercase_ , eval_dataset=lowercase_ , callbacks=lowercase_ , ) def lowerCamelCase ( self : List[str] , lowercase_ : int , lowercase_ : int ) -> str: """simple docstring""" self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) # Order doesn't matter _lowerCamelCase : Any =sorted(lowercase_ , key=lambda lowercase_ : cb.__name__ if isinstance(lowercase_ , lowercase_ ) else cb.__class__.__name__ ) _lowerCamelCase : Any =sorted(lowercase_ , key=lambda lowercase_ : cb.__name__ if isinstance(lowercase_ , lowercase_ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase_ , lowercase_ ): if isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ): self.assertEqual(lowercase_ , lowercase_ ) elif isinstance(lowercase_ , lowercase_ ) and not isinstance(lowercase_ , lowercase_ ): self.assertEqual(lowercase_ , cba.__class__ ) elif not isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ): self.assertEqual(cba.__class__ , lowercase_ ) else: self.assertEqual(lowercase_ , lowercase_ ) def lowerCamelCase ( self : Dict , lowercase_ : List[str] ) -> str: """simple docstring""" _lowerCamelCase : List[Any] =['on_init_end', 'on_train_begin'] _lowerCamelCase : Dict =0 _lowerCamelCase : str =len(trainer.get_eval_dataloader() ) _lowerCamelCase : List[Any] =['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(lowercase_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowerCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _lowerCamelCase : Any =self.get_trainer() _lowerCamelCase : Optional[Any] =DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) # Callbacks passed at init are added to the default callbacks _lowerCamelCase : Dict =self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback _lowerCamelCase : List[str] =self.get_trainer(disable_tqdm=lowercase_ ) _lowerCamelCase : Tuple =DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) def lowerCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : int =DEFAULT_CALLBACKS.copy() + [ProgressCallback] _lowerCamelCase : List[str] =self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase_ ) expected_callbacks.remove(lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) _lowerCamelCase : Tuple =self.get_trainer() _lowerCamelCase : Dict =trainer.pop_callback(lowercase_ ) self.assertEqual(cb.__class__ , lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) trainer.add_callback(lowercase_ ) expected_callbacks.insert(0 , lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) # We can also add, pop, or remove by instance _lowerCamelCase : Optional[int] =self.get_trainer() _lowerCamelCase : Any =trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase_ ) expected_callbacks.remove(lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) _lowerCamelCase : Any =self.get_trainer() _lowerCamelCase : Optional[int] =trainer.callback_handler.callbacks[0] _lowerCamelCase : Dict =trainer.pop_callback(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) trainer.add_callback(lowercase_ ) expected_callbacks.insert(0 , lowercase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowercase_ ) def lowerCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=lowercase_ ) _lowerCamelCase : str =self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() _lowerCamelCase : List[Any] =trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) # Independent log/save/eval _lowerCamelCase : str =self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() _lowerCamelCase : Union[str, Any] =trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) _lowerCamelCase : int =self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() _lowerCamelCase : Optional[Any] =trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) _lowerCamelCase : str =self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() _lowerCamelCase : Any =trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) _lowerCamelCase : Optional[int] =self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() _lowerCamelCase : Optional[int] =trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) # A bit of everything _lowerCamelCase : Optional[Any] =self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() _lowerCamelCase : List[str] =trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase_ , self.get_expected_events(lowercase_ ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: _lowerCamelCase : Union[str, Any] =self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(lowercase_ ) in warn_mock.call_args[0][0]
464
0
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int = 1000 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
119
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __SCREAMING_SNAKE_CASE :List[str] = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :List[Any] = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
119
1
SCREAMING_SNAKE_CASE__ : dict[tuple[int, int, int], int] = {} def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: '''simple docstring''' # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCAmelCase__ : Any = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCAmelCase__ : str = _calculate(days - 1 , __lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCAmelCase__ : Optional[int] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCAmelCase__ : List[Any] = _calculate(days - 1 , __lowerCamelCase , 0 ) UpperCAmelCase__ : Optional[Any] = state_late + state_absent + state_ontime UpperCAmelCase__ : Tuple = prizestrings return prizestrings def _lowerCamelCase ( __lowerCamelCase = 30 ) -> int: '''simple docstring''' return _calculate(__lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
79
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def a ( UpperCamelCase_ : Any ) -> List[str]: snake_case__ =os.path.join(args.tf_model_dir , 'parameters.json' ) snake_case__ =json.loads(open(UpperCamelCase_ ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('.pt' ): snake_case__ =args.output + '.pt' snake_case__ =OrderedDict() with tf.device('/CPU:0' ): snake_case__ =tf.train.load_checkpoint(args.tf_model_dir ) snake_case__ =reader.get_variable_to_shape_map() for key_name in shapes.keys(): snake_case__ =reader.get_tensor(UpperCamelCase_ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): snake_case__ =int(key_name[9] ) elif key_name.startswith('pasts/out' ): snake_case__ =8 snake_case__ ='model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time snake_case__ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ =torch.tensor(UpperCamelCase_ ) elif key_name.startswith('model/moe' ): snake_case__ =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): snake_case__ ='model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player snake_case__ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ =torch.tensor(UpperCamelCase_ ) elif key_name.endswith('/softmlp/kernel' ): snake_case__ ='model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player snake_case__ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ =torch.tensor(UpperCamelCase_ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): snake_case__ =key_name[-9:-7] for i in range(16 ): snake_case__ ='model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) snake_case__ =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided snake_case__ =torch.tensor(UpperCamelCase_ ) elif key_name.startswith('model/mlp' ): snake_case__ =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): snake_case__ ='model.blocks.%d.feed_forward.mlp.wi.weight' % player snake_case__ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ =torch.tensor(UpperCamelCase_ ) elif key_name.endswith('/p1/bias' ): snake_case__ ='model.blocks.%d.feed_forward.mlp.wi.bias' % player snake_case__ =vnp.copy() # same because it is one dimensional snake_case__ =torch.tensor(UpperCamelCase_ ) elif key_name.endswith('/p2/kernel' ): snake_case__ ='model.blocks.%d.feed_forward.mlp.wo.weight' % player snake_case__ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ =torch.tensor(UpperCamelCase_ ) elif key_name.endswith('/p2/bias' ): snake_case__ ='model.blocks.%d.feed_forward.mlp.wo.bias' % player snake_case__ =vnp.copy() # same because it is one dimensional snake_case__ =torch.tensor(UpperCamelCase_ ) elif key_name.startswith('model/ln' ): snake_case__ =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): snake_case__ ='model.blocks.%d.feed_forward.norm.bias' % player snake_case__ =vnp.copy() # same because it is one dimensional snake_case__ =torch.tensor(UpperCamelCase_ ) elif key_name.endswith('/g' ): snake_case__ ='model.blocks.%d.feed_forward.norm.weight' % player snake_case__ =vnp.copy() # same because it is one dimensional snake_case__ =torch.tensor(UpperCamelCase_ ) elif key_name.startswith('model/att' ): snake_case__ =int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): snake_case__ =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum snake_case__ =state[:, 0, :, :] snake_case__ =state[:, 1, :, :] snake_case__ =state[:, 2, :, :] snake_case__ =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case__ =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case__ =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case__ ='model.blocks.%d.self_attn.self_attn.q_proj.weight' % player snake_case__ =torch.tensor(UpperCamelCase_ ) snake_case__ ='model.blocks.%d.self_attn.self_attn.k_proj.weight' % player snake_case__ =torch.tensor(UpperCamelCase_ ) snake_case__ ='model.blocks.%d.self_attn.self_attn.v_proj.weight' % player snake_case__ =torch.tensor(UpperCamelCase_ ) elif key_name.endswith('/o/kernel' ): snake_case__ ='model.blocks.%d.self_attn.self_attn.out_proj.weight' % player snake_case__ =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case__ =torch.tensor(UpperCamelCase_ ) elif key_name.startswith('model/an' ): snake_case__ =int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): snake_case__ ='model.blocks.%d.self_attn.norm.bias' % player snake_case__ =vnp.copy() # same because it is one dimensional snake_case__ =torch.tensor(UpperCamelCase_ ) elif key_name.endswith('/g' ): snake_case__ ='model.blocks.%d.self_attn.norm.weight' % player snake_case__ =vnp.copy() # same because it is one dimensional snake_case__ =torch.tensor(UpperCamelCase_ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): snake_case__ ={'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] snake_case__ ='model.%s.weight' % nlayer snake_case__ =vnp.copy() # same in embedded snake_case__ =torch.tensor(UpperCamelCase_ ) if key_name.startswith('model/wte' ): snake_case__ ='lm_head.weight' snake_case__ =vnp.copy() # same in embedded snake_case__ =torch.tensor(UpperCamelCase_ ) elif key_name.startswith('model/wob' ): snake_case__ ='final_logits_bias' snake_case__ =vnp.copy() # same in embedded snake_case__ =state.reshape((1, -1) ) snake_case__ =torch.tensor(UpperCamelCase_ ) elif key_name == "model/dense/kernel": snake_case__ ='model.last_project.weight' snake_case__ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ =torch.tensor(UpperCamelCase_ ) elif key_name == "model/dense_1/bias": snake_case__ ='model.last_project.bias' snake_case__ =vnp.copy() # same because it is one dimensional snake_case__ =torch.tensor(UpperCamelCase_ ) torch.save(UpperCamelCase_ , args.output ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') SCREAMING_SNAKE_CASE__ : str = parser.parse_args() convert_tf_gptsan_to_pt(args)
538
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __snake_case ( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = BertTokenizer lowerCAmelCase__ = BertTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = filter_non_english def UpperCAmelCase__ ( self : Dict ): super().setUp() __snake_case: Optional[int] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __snake_case: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def UpperCAmelCase__ ( self : Union[str, Any] , A : Dict ): __snake_case: List[str] = """UNwant\u00E9d,running""" __snake_case: Dict = """unwanted, running""" return input_text, output_text def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Dict = self.tokenizer_class(self.vocab_file ) __snake_case: Any = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(A , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [9, 6, 7, 12, 10, 11] ) def UpperCAmelCase__ ( self : Dict ): if not self.test_rust_tokenizer: return __snake_case: Any = self.get_tokenizer() __snake_case: Optional[Any] = self.get_rust_tokenizer() __snake_case: Any = """UNwant\u00E9d,running""" __snake_case: Dict = tokenizer.tokenize(A ) __snake_case: str = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) __snake_case: Optional[int] = tokenizer.encode(A , add_special_tokens=A ) __snake_case: List[str] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) __snake_case: Optional[int] = self.get_rust_tokenizer() __snake_case: Optional[int] = tokenizer.encode(A ) __snake_case: Optional[Any] = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) # With lower casing __snake_case: Optional[int] = self.get_tokenizer(do_lower_case=A ) __snake_case: int = self.get_rust_tokenizer(do_lower_case=A ) __snake_case: int = """UNwant\u00E9d,running""" __snake_case: Optional[int] = tokenizer.tokenize(A ) __snake_case: Optional[int] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) __snake_case: Tuple = tokenizer.encode(A , add_special_tokens=A ) __snake_case: Optional[Any] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) __snake_case: Tuple = self.get_rust_tokenizer() __snake_case: Tuple = tokenizer.encode(A ) __snake_case: Union[str, Any] = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ ( self : Any ): __snake_case: Optional[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def UpperCAmelCase__ ( self : str ): __snake_case: List[str] = BasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: List[Any] = BasicTokenizer(do_lower_case=A , strip_accents=A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: List[Any] = BasicTokenizer(do_lower_case=A , strip_accents=A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCAmelCase__ ( self : int ): __snake_case: str = BasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCAmelCase__ ( self : Tuple ): __snake_case: Optional[int] = BasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCAmelCase__ ( self : Any ): __snake_case: str = BasicTokenizer(do_lower_case=A , strip_accents=A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: List[Any] = BasicTokenizer(do_lower_case=A , strip_accents=A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[int] = BasicTokenizer(do_lower_case=A , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: List[Any] = BasicTokenizer() __snake_case: Any = """a\n\'ll !!to?\'d of, can\'t.""" __snake_case: List[str] = ["""a""", """\'""", """ll""", """!""", """!""", """to""", """?""", """\'""", """d""", """of""", """,""", """can""", """\'""", """t""", """."""] self.assertListEqual(tokenizer.tokenize(A ) , A ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Any = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __snake_case: Any = {} for i, token in enumerate(A ): __snake_case: List[str] = i __snake_case: List[Any] = WordpieceTokenizer(vocab=A , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def UpperCAmelCase__ ( self : Union[str, Any] ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def UpperCAmelCase__ ( self : Optional[Any] ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def UpperCAmelCase__ ( self : List[str] ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def UpperCAmelCase__ ( self : Tuple ): __snake_case: str = self.get_tokenizer() __snake_case: str = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(A ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def UpperCAmelCase__ ( self : int ): __snake_case: int = self.tokenizer_class.from_pretrained("""bert-base-uncased""" ) __snake_case: List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=A ) __snake_case: List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A ) __snake_case: Tuple = tokenizer.build_inputs_with_special_tokens(A ) __snake_case: int = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def UpperCAmelCase__ ( self : Optional[int] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case: int = self.rust_tokenizer_class.from_pretrained(A , **A ) __snake_case: Dict = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __snake_case: Dict = tokenizer_r.encode_plus( A , return_attention_mask=A , return_token_type_ids=A , return_offsets_mapping=A , add_special_tokens=A , ) __snake_case: str = tokenizer_r.do_lower_case if hasattr(A , """do_lower_case""" ) else False __snake_case: Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def UpperCAmelCase__ ( self : List[str] ): __snake_case: List[str] = ["""的""", """人""", """有"""] __snake_case: int = """""".join(A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case: Union[str, Any] = True __snake_case: str = self.tokenizer_class.from_pretrained(A , **A ) __snake_case: Dict = self.rust_tokenizer_class.from_pretrained(A , **A ) __snake_case: int = tokenizer_p.encode(A , add_special_tokens=A ) __snake_case: Optional[int] = tokenizer_r.encode(A , add_special_tokens=A ) __snake_case: Optional[Any] = tokenizer_r.convert_ids_to_tokens(A ) __snake_case: Any = tokenizer_p.convert_ids_to_tokens(A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A , A ) self.assertListEqual(A , A ) __snake_case: List[str] = False __snake_case: Tuple = self.rust_tokenizer_class.from_pretrained(A , **A ) __snake_case: List[Any] = self.tokenizer_class.from_pretrained(A , **A ) __snake_case: Dict = tokenizer_r.encode(A , add_special_tokens=A ) __snake_case: str = tokenizer_p.encode(A , add_special_tokens=A ) __snake_case: Tuple = tokenizer_r.convert_ids_to_tokens(A ) __snake_case: List[Any] = tokenizer_p.convert_ids_to_tokens(A ) # it is expected that only the first Chinese character is not preceded by "##". __snake_case: str = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(A ) ] self.assertListEqual(A , A ) self.assertListEqual(A , A )
717
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=5) -> Optional[int]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count("""<mask>""") == 1 __snake_case: Dict = torch.tensor(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__)).unsqueeze(0) # Batch size 1 __snake_case: Optional[Any] = model(SCREAMING_SNAKE_CASE__)[0] # The last hidden-state is the first element of the output tuple __snake_case: Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __snake_case: List[Any] = logits[0, masked_index, :] __snake_case: Optional[int] = logits.softmax(dim=0) __snake_case , __snake_case: Optional[int] = prob.topk(k=SCREAMING_SNAKE_CASE__ , dim=0) __snake_case: List[str] = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(SCREAMING_SNAKE_CASE__))]) __snake_case: List[Any] = tokenizer.mask_token __snake_case: Union[str, Any] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """)): __snake_case: Any = predicted_token_bpe.replace("""\u2581""" , """ """) if " {0}".format(SCREAMING_SNAKE_CASE__) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(SCREAMING_SNAKE_CASE__) , SCREAMING_SNAKE_CASE__), values[index].item(), predicted_token, )) else: topk_filled_outputs.append( ( masked_input.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__), values[index].item(), predicted_token, )) return topk_filled_outputs __UpperCAmelCase : Union[str, Any] = CamembertTokenizer.from_pretrained("camembert-base") __UpperCAmelCase : int = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() __UpperCAmelCase : List[Any] = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
155
0
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=3_2 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=1_6 , __UpperCAmelCase=[1, 2, 1] , __UpperCAmelCase=[2, 2, 4] , __UpperCAmelCase=2 , __UpperCAmelCase=2.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=1_0 , __UpperCAmelCase=8 , __UpperCAmelCase=["stage1", "stage2", "stage3"] , __UpperCAmelCase=[1, 2, 3] , ): '''simple docstring''' lowerCAmelCase__ :Tuple = parent lowerCAmelCase__ :str = batch_size lowerCAmelCase__ :List[str] = image_size lowerCAmelCase__ :Optional[int] = patch_size lowerCAmelCase__ :List[str] = num_channels lowerCAmelCase__ :Tuple = embed_dim lowerCAmelCase__ :Optional[int] = depths lowerCAmelCase__ :Optional[Any] = num_heads lowerCAmelCase__ :List[str] = window_size lowerCAmelCase__ :int = mlp_ratio lowerCAmelCase__ :Union[str, Any] = qkv_bias lowerCAmelCase__ :Any = hidden_dropout_prob lowerCAmelCase__ :str = attention_probs_dropout_prob lowerCAmelCase__ :Union[str, Any] = drop_path_rate lowerCAmelCase__ :List[Any] = hidden_act lowerCAmelCase__ :str = use_absolute_embeddings lowerCAmelCase__ :int = patch_norm lowerCAmelCase__ :Tuple = layer_norm_eps lowerCAmelCase__ :Optional[int] = initializer_range lowerCAmelCase__ :List[Any] = is_training lowerCAmelCase__ :Optional[Any] = scope lowerCAmelCase__ :int = use_labels lowerCAmelCase__ :str = type_sequence_label_size lowerCAmelCase__ :List[str] = encoder_stride lowerCAmelCase__ :Tuple = out_features lowerCAmelCase__ :Tuple = out_indices def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ :Any = None if self.use_labels: lowerCAmelCase__ :Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ :Any = self.get_config() return config, pixel_values, labels def snake_case ( self ): '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = MaskFormerSwinModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :int = model(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase__ :Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = MaskFormerSwinBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :int = model(__UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ :List[str] = ['stem'] lowerCAmelCase__ :Dict = MaskFormerSwinBackbone(config=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = config_and_inputs lowerCAmelCase__ :Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :Dict = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __magic_name__ :List[Any] = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} __magic_name__ :List[str] = False __magic_name__ :Optional[Any] = False __magic_name__ :Union[str, Any] = False __magic_name__ :Optional[Any] = False __magic_name__ :str = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = MaskFormerSwinModelTester(self ) lowerCAmelCase__ :Any = ConfigTester(self , config_class=__UpperCAmelCase , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self ): '''simple docstring''' return def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__UpperCAmelCase ) @unittest.skip('Swin does not use inputs_embeds' ) def snake_case ( self ): '''simple docstring''' pass @unittest.skip('Swin does not support feedforward chunking' ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ :Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ :Union[str, Any] = model_class(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ :Union[str, Any] = [*signature.parameters.keys()] lowerCAmelCase__ :Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def snake_case ( self ): '''simple docstring''' pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ :Dict = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ :Tuple = outputs.hidden_states lowerCAmelCase__ :Any = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # Swin has a different seq_length lowerCAmelCase__ :Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ :Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :str = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ :List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase__ :Dict = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ :Dict = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ :Any = 3 lowerCAmelCase__ :List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase__ :str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ :Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase__ :List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase__ :Tuple = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ :str = True self.check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def snake_case ( self ): '''simple docstring''' pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def snake_case ( self ): '''simple docstring''' pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__UpperCAmelCase ): lowerCAmelCase__ :List[Any] = 0 return t def check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase={} ): with torch.no_grad(): lowerCAmelCase__ :List[str] = model(**__UpperCAmelCase , return_dict=__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :Any = model(**__UpperCAmelCase , return_dict=__UpperCAmelCase , **__UpperCAmelCase ).to_tuple() def recursive_check(__UpperCAmelCase , __UpperCAmelCase ): if isinstance(__UpperCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__UpperCAmelCase , __UpperCAmelCase ): recursive_check(__UpperCAmelCase , __UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__UpperCAmelCase , __UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__UpperCAmelCase ) , set_nan_tensor_to_zero(__UpperCAmelCase ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' F" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" F" {torch.isnan(__UpperCAmelCase ).any()} and `inf`: {torch.isinf(__UpperCAmelCase )}. Dict has" F" `nan`: {torch.isnan(__UpperCAmelCase ).any()} and `inf`: {torch.isinf(__UpperCAmelCase )}." ) , ) recursive_check(__UpperCAmelCase , __UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase__ :str = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ :List[str] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :int = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) lowerCAmelCase__ :Dict = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , {'output_hidden_states': True} ) lowerCAmelCase__ :int = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) lowerCAmelCase__ :Dict = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , {'output_hidden_states': True} ) @require_torch class _lowerCAmelCase ( unittest.TestCase , a ): """simple docstring""" __magic_name__ :Dict = (MaskFormerSwinBackbone,) if is_torch_available() else () __magic_name__ :str = MaskFormerSwinConfig def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = MaskFormerSwinModelTester(self ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ :Optional[Any] = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: lowerCAmelCase__ :Optional[int] = backbone_class(__UpperCAmelCase ) backbone.to(__UpperCAmelCase ) backbone.eval() lowerCAmelCase__ :List[str] = backbone(**__UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowerCAmelCase__ :Any = backbone(**__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Tuple = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowerCAmelCase__ :Tuple = backbone(**__UpperCAmelCase , output_attentions=__UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
93
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase ( snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : Dict = KandinskyInpaintPipeline _snake_case : int = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _snake_case : str = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _snake_case : Optional[int] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _snake_case : Optional[Any] = False @property def A ( self : int )-> Tuple: return 32 @property def A ( self : int )-> List[Any]: return 32 @property def A ( self : Dict )-> Tuple: return self.time_input_dim @property def A ( self : Union[str, Any] )-> Tuple: return self.time_input_dim * 4 @property def A ( self : Dict )-> str: return 1_00 @property def A ( self : int )-> Dict: __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def A ( self : Tuple )-> Optional[Any]: torch.manual_seed(0 ) __UpperCamelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __UpperCamelCase = MultilingualCLIP(A_ ) __UpperCamelCase = text_encoder.eval() return text_encoder @property def A ( self : int )-> str: torch.manual_seed(0 ) __UpperCamelCase = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __UpperCamelCase = UNetaDConditionModel(**A_ ) return model @property def A ( self : Optional[int] )-> Union[str, Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A ( self : List[str] )-> Tuple: torch.manual_seed(0 ) __UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def A ( self : str )-> List[Any]: __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = self.dummy_tokenizer __UpperCamelCase = self.dummy_unet __UpperCamelCase = self.dummy_movq __UpperCamelCase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=A_ , set_alpha_to_one=A_ , steps_offset=1 , prediction_type="epsilon" , thresholding=A_ , ) __UpperCamelCase = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def A ( self : Union[str, Any] , A_ : Optional[Any] , A_ : Optional[Any]=0 )-> Dict: __UpperCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(A_ ) # create init_image __UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase = Image.fromarray(np.uinta(A_ ) ).convert("RGB" ).resize((2_56, 2_56) ) # create mask __UpperCamelCase = np.ones((64, 64) , dtype=np.floataa ) __UpperCamelCase = 0 if str(A_ ).startswith("mps" ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def A ( self : Optional[int] )-> Dict: __UpperCamelCase = "cpu" __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) __UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = pipe(**self.get_dummy_inputs(A_ ) ) __UpperCamelCase = output.images __UpperCamelCase = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) __UpperCamelCase = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def A ( self : Union[str, Any] )-> int: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : str )-> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Any )-> str: __UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) __UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) __UpperCamelCase = np.ones((7_68, 7_68) , dtype=np.floataa ) __UpperCamelCase = 0 __UpperCamelCase = "a hat" __UpperCamelCase = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) __UpperCamelCase = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) __UpperCamelCase = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) __UpperCamelCase = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCamelCase , __UpperCamelCase = pipe_prior( A_ , generator=A_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() __UpperCamelCase = pipeline( A_ , image=A_ , mask_image=A_ , image_embeds=A_ , negative_image_embeds=A_ , generator=A_ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="np" , ) __UpperCamelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(A_ , A_ )
505
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Dataset , SCREAMING_SNAKE_CASE :Dict[str, str] ) -> Tuple: __lowerCAmelCase : str = args.log_outputs __lowerCAmelCase : str = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric __lowerCAmelCase : Any = load_metric("""wer""" ) __lowerCAmelCase : Any = load_metric("""cer""" ) # compute metrics __lowerCAmelCase : Union[str, Any] = wer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) __lowerCAmelCase : Dict = cer.compute(references=result["""target"""] , predictions=result["""prediction"""] ) # print & log results __lowerCAmelCase : Tuple = F'''WER: {wer_result}\nCER: {cer_result}''' print(SCREAMING_SNAKE_CASE ) with open(F'''{dataset_id}_eval_results.txt''' , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __lowerCAmelCase : Tuple = F'''log_{dataset_id}_predictions.txt''' __lowerCAmelCase : Tuple = F'''log_{dataset_id}_targets.txt''' with open(SCREAMING_SNAKE_CASE , """w""" ) as p, open(SCREAMING_SNAKE_CASE , """w""" ) as t: # mapping function to write output def write_to_file(SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Tuple ): p.write(F'''{i}''' + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(F'''{i}''' + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(SCREAMING_SNAKE_CASE , with_indices=SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str ) -> str: __lowerCAmelCase : Any = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __lowerCAmelCase : Optional[int] = re.sub(SCREAMING_SNAKE_CASE , """""" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __lowerCAmelCase : List[str] = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: __lowerCAmelCase : Tuple = """ """.join(text.split(SCREAMING_SNAKE_CASE ) ) return text def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Optional[int]: # load dataset __lowerCAmelCase : Tuple = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=SCREAMING_SNAKE_CASE ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __lowerCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(args.model_id ) __lowerCAmelCase : Any = feature_extractor.sampling_rate # resample audio __lowerCAmelCase : int = dataset.cast_column("""audio""" , Audio(sampling_rate=SCREAMING_SNAKE_CASE ) ) # load eval pipeline if args.device is None: __lowerCAmelCase : Any = 0 if torch.cuda.is_available() else -1 __lowerCAmelCase : Any = pipeline("""automatic-speech-recognition""" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(SCREAMING_SNAKE_CASE :Tuple ): __lowerCAmelCase : List[str] = asr( batch["""audio"""]["""array"""] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __lowerCAmelCase : Dict = prediction["""text"""] __lowerCAmelCase : Tuple = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples __lowerCAmelCase : Optional[Any] = dataset.map(SCREAMING_SNAKE_CASE , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) _UpperCAmelCase = parser.parse_args() main(args)
240
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Optional[Any]=() , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :int="no" , SCREAMING_SNAKE_CASE :Dict="29500" ) -> Dict: __lowerCAmelCase : List[str] = False __lowerCAmelCase : int = False if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ): __lowerCAmelCase : int = True elif "IPython" in sys.modules: __lowerCAmelCase : Optional[int] = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() ) try: __lowerCAmelCase : List[str] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""" , SCREAMING_SNAKE_CASE ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """ """your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if num_processes is None: __lowerCAmelCase : List[Any] = 8 __lowerCAmelCase : List[str] = PrepareForLaunch(SCREAMING_SNAKE_CASE , distributed_type="""TPU""" ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="""fork""" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on one CPU.""" ) function(*SCREAMING_SNAKE_CASE ) else: if num_processes is None: raise ValueError( """You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """ """inside your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if torch.cuda.is_initialized(): raise ValueError( """To launch a multi-GPU training from your notebook, you need to avoid running any instruction """ """using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """ """function.""" ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=SCREAMING_SNAKE_CASE , master_addr="""127.0.01""" , master_port=SCREAMING_SNAKE_CASE , mixed_precision=SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = PrepareForLaunch(SCREAMING_SNAKE_CASE , distributed_type="""MULTI_GPU""" ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="""fork""" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( """CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """ """This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """ """Please review your imports and test them when running the `notebook_launcher()` to identify """ """which one is problematic.""" ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): __lowerCAmelCase : Optional[Any] = """1""" print("""Launching training on MPS.""" ) elif torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on CPU.""" ) function(*SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Optional[Any]=() , SCREAMING_SNAKE_CASE :Optional[int]=2 ) -> Dict: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=SCREAMING_SNAKE_CASE , master_addr="""127.0.01""" , master_port="""29500""" , accelerate_mixed_precision="""no""" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="""yes""" , ): __lowerCAmelCase : Any = PrepareForLaunch(SCREAMING_SNAKE_CASE , debug=SCREAMING_SNAKE_CASE ) start_processes(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="""fork""" )
240
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __A : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Tuple , __lowerCamelCase : WhisperForConditionalGeneration , __lowerCamelCase : WhisperProcessor , __lowerCamelCase : AutoencoderKL , __lowerCamelCase : CLIPTextModel , __lowerCamelCase : CLIPTokenizer , __lowerCamelCase : UNetaDConditionModel , __lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __lowerCamelCase : StableDiffusionSafetyChecker , __lowerCamelCase : CLIPImageProcessor , ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=__lowerCamelCase , speech_processor=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase , feature_extractor=__lowerCamelCase , ) def _snake_case ( self : Tuple , __lowerCamelCase : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": SCREAMING_SNAKE_CASE = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCamelCase ) def _snake_case ( self : Any ): self.enable_attention_slicing(__lowerCamelCase ) @torch.no_grad() def __call__( self : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str]=16000 , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : Dict , ): SCREAMING_SNAKE_CASE = self.speech_processor.feature_extractor( __lowerCamelCase , return_tensors="pt" , sampling_rate=__lowerCamelCase ).input_features.to(self.device ) SCREAMING_SNAKE_CASE = self.speech_model.generate(__lowerCamelCase , max_length=480000 ) SCREAMING_SNAKE_CASE = self.speech_processor.tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , normalize=__lowerCamelCase )[ 0 ] if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = 1 elif isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(__lowerCamelCase )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCamelCase , __lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(__lowerCamelCase )}." ) # get prompt text embeddings SCREAMING_SNAKE_CASE = self.tokenizer( __lowerCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) SCREAMING_SNAKE_CASE = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) SCREAMING_SNAKE_CASE = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = text_embeddings.shape SCREAMING_SNAKE_CASE = text_embeddings.repeat(1 , __lowerCamelCase , 1 ) SCREAMING_SNAKE_CASE = text_embeddings.view(bs_embed * num_images_per_prompt , __lowerCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. SCREAMING_SNAKE_CASE = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = 42 if negative_prompt is None: SCREAMING_SNAKE_CASE = [""] * batch_size elif type(__lowerCamelCase ) is not type(__lowerCamelCase ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(__lowerCamelCase )} !=" f" {type(__lowerCamelCase )}." ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = [negative_prompt] elif batch_size != len(__lowerCamelCase ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(__lowerCamelCase )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE = self.tokenizer( __lowerCamelCase , padding="max_length" , max_length=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" , ) SCREAMING_SNAKE_CASE = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE = uncond_embeddings.shape[1] SCREAMING_SNAKE_CASE = uncond_embeddings.repeat(1 , __lowerCamelCase , 1 ) SCREAMING_SNAKE_CASE = uncond_embeddings.view(batch_size * num_images_per_prompt , __lowerCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. SCREAMING_SNAKE_CASE = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) SCREAMING_SNAKE_CASE = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps SCREAMING_SNAKE_CASE = torch.randn(__lowerCamelCase , generator=__lowerCamelCase , device="cpu" , dtype=__lowerCamelCase ).to( self.device ) else: SCREAMING_SNAKE_CASE = torch.randn(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) SCREAMING_SNAKE_CASE = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand SCREAMING_SNAKE_CASE = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE = {} if accepts_eta: SCREAMING_SNAKE_CASE = eta for i, t in enumerate(self.progress_bar(__lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) # predict the noise residual SCREAMING_SNAKE_CASE = self.unet(__lowerCamelCase , __lowerCamelCase , encoder_hidden_states=__lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = 1 / 0.18_215 * latents SCREAMING_SNAKE_CASE = self.vae.decode(__lowerCamelCase ).sample SCREAMING_SNAKE_CASE = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__lowerCamelCase , nsfw_content_detected=__lowerCamelCase )
16
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''efficientformer''' def __init__( self , snake_case = [3, 2, 6, 4] , snake_case = [48, 96, 224, 448] , snake_case = [True, True, True, True] , snake_case = 448 , snake_case = 32 , snake_case = 4 , snake_case = 7 , snake_case = 5 , snake_case = 8 , snake_case = 4 , snake_case = 0.0 , snake_case = 16 , snake_case = 3 , snake_case = 3 , snake_case = 3 , snake_case = 2 , snake_case = 1 , snake_case = 0.0 , snake_case = 1 , snake_case = True , snake_case = True , snake_case = 1E-5 , snake_case = "gelu" , snake_case = 0.02 , snake_case = 1E-12 , snake_case = 224 , snake_case = 1E-05 , **snake_case , ) -> None: super().__init__(**snake_case ) _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = hidden_sizes _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = depths _UpperCAmelCase = mlp_expansion_ratio _UpperCAmelCase = downsamples _UpperCAmelCase = dim _UpperCAmelCase = key_dim _UpperCAmelCase = attention_ratio _UpperCAmelCase = resolution _UpperCAmelCase = pool_size _UpperCAmelCase = downsample_patch_size _UpperCAmelCase = downsample_stride _UpperCAmelCase = downsample_pad _UpperCAmelCase = drop_path_rate _UpperCAmelCase = num_metaad_blocks _UpperCAmelCase = distillation _UpperCAmelCase = use_layer_scale _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = image_size _UpperCAmelCase = batch_norm_eps
573
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowercase : """simple docstring""" a__ = 42 a__ = None a__ = None def lowerCamelCase_ ( ) -> Any: _UpperCamelCase : int = Node(1 ) _UpperCamelCase : List[Any] = Node(2 ) _UpperCamelCase : Dict = Node(3 ) _UpperCamelCase : List[str] = Node(4 ) _UpperCamelCase : Dict = Node(5 ) return tree def lowerCamelCase_ ( UpperCAmelCase_ : Tuple ) -> Dict: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] ) -> Optional[Any]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Dict: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowerCamelCase_ ( UpperCAmelCase_ : Any ) -> Optional[int]: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowerCamelCase_ ( UpperCAmelCase_ : List[str] ) -> int: _UpperCamelCase : Dict = [] if root is None: return output _UpperCamelCase : Optional[int] = deque([root] ) while process_queue: _UpperCamelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] ) -> List[Any]: _UpperCamelCase : Union[str, Any] = [] def populate_output(UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(UpperCamelCase__ , UpperCamelCase__ ) return output def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ) -> List[str]: _UpperCamelCase : int = [] def populate_output(UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(UpperCamelCase__ , UpperCamelCase__ ) return output def lowerCamelCase_ ( UpperCAmelCase_ : List[str] ) -> Optional[Any]: if root is None: return [] _UpperCamelCase : List[Any] = [] _UpperCamelCase : List[str] = 0 _UpperCamelCase : Optional[int] = height(UpperCamelCase__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(UpperCamelCase__ , UpperCamelCase__ ) ) _UpperCamelCase : int = 1 else: output.append(get_nodes_from_right_to_left(UpperCamelCase__ , UpperCamelCase__ ) ) _UpperCamelCase : int = 0 return output def lowerCamelCase_ ( ) -> Any: # Main function for testing. _UpperCamelCase : Optional[Any] = make_tree() print(F'''In-order Traversal: {inorder(UpperCamelCase__ )}''' ) print(F'''Pre-order Traversal: {preorder(UpperCamelCase__ )}''' ) print(F'''Post-order Traversal: {postorder(UpperCamelCase__ )}''' , '\n' ) print(F'''Height of Tree: {height(UpperCamelCase__ )}''' , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(UpperCamelCase__ ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(UpperCamelCase__ ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(UpperCamelCase__ , level=UpperCamelCase__ ) ) print('\nZigZag order Traversal: ' ) print(zigzag(UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
"""simple docstring""" def A ( __snake_case: float , __snake_case: int ) -> Dict: """simple docstring""" if digit_amount > 0: return round(number - int(__UpperCAmelCase ) , __UpperCAmelCase ) return number - int(__UpperCAmelCase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
545
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = (DDIMParallelScheduler,) __UpperCAmelCase = (("eta", 0.0), ("num_inference_steps", 5_0)) def lowercase_ ( self , **_UpperCAmelCase ): __snake_case : List[str] = { 'num_train_timesteps': 1_000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**_UpperCAmelCase ) return config def lowercase_ ( self , **_UpperCAmelCase ): __snake_case : int = self.scheduler_classes[0] __snake_case : int = self.get_scheduler_config(**_UpperCAmelCase ) __snake_case : Any = scheduler_class(**_UpperCAmelCase ) __snake_case , __snake_case : List[str] = 10, 0.0 __snake_case : str = self.dummy_model() __snake_case : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for t in scheduler.timesteps: __snake_case : Tuple = model(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : List[str] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def lowercase_ ( self ): for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowercase_ ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCAmelCase ) __snake_case : str = self.scheduler_classes[0] __snake_case : Union[str, Any] = self.get_scheduler_config(steps_offset=1 ) __snake_case : Optional[Any] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def lowercase_ ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def lowercase_ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def lowercase_ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowercase_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def lowercase_ ( self ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_UpperCAmelCase ) def lowercase_ ( self ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_UpperCAmelCase ) def lowercase_ ( self ): self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def lowercase_ ( self ): for t in [1, 10, 49]: self.check_over_forward(time_step=_UpperCAmelCase ) def lowercase_ ( self ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase ) def lowercase_ ( self ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_UpperCAmelCase , eta=_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[Any] = self.scheduler_classes[0] __snake_case : List[str] = self.get_scheduler_config() __snake_case : Optional[int] = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def lowercase_ ( self ): __snake_case : Dict = self.scheduler_classes[0] __snake_case : Any = self.get_scheduler_config() __snake_case : Any = scheduler_class(**_UpperCAmelCase ) __snake_case , __snake_case : List[str] = 10, 0.0 scheduler.set_timesteps(_UpperCAmelCase ) __snake_case : List[Any] = self.dummy_model() __snake_case : Any = self.dummy_sample_deter __snake_case : Union[str, Any] = self.dummy_sample_deter + 0.1 __snake_case : Dict = self.dummy_sample_deter - 0.1 __snake_case : Optional[int] = samplea.shape[0] __snake_case : str = torch.stack([samplea, samplea, samplea] , dim=0 ) __snake_case : List[str] = torch.arange(_UpperCAmelCase )[0:3, None].repeat(1 , _UpperCAmelCase ) __snake_case : str = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __snake_case : Dict = scheduler.batch_step_no_noise(_UpperCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _UpperCAmelCase ) __snake_case : List[str] = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : List[str] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def lowercase_ ( self ): __snake_case : Optional[int] = self.full_loop() __snake_case : str = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : Tuple = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def lowercase_ ( self ): __snake_case : Any = self.full_loop(prediction_type='v_prediction' ) __snake_case : Any = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : str = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def lowercase_ ( self ): # We specify different beta, so that the first alpha is 0.99 __snake_case : int = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) __snake_case : Dict = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def lowercase_ ( self ): # We specify different beta, so that the first alpha is 0.99 __snake_case : Optional[int] = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) __snake_case : Dict = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : List[str] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
576
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=_lowerCamelCase , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=_lowerCamelCase , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=_lowerCamelCase ) return parser.parse_args() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = parse_args() # Import training_script as a module. lowerCamelCase_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCamelCase_ = script_fpath.stem lowerCamelCase_ = importlib.import_module(_lowerCamelCase ) # Patch sys.argv lowerCamelCase_ = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
704
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
0
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=4 , ): '''simple docstring''' UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_attention_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_choices def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_attention_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = config_and_inputs UpperCamelCase__ = True UpperCamelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCamelCase__ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Any = True _UpperCamelCase : Tuple = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = FlaxBertModelTester(self ) @slow def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = FlaxBertModel.from_pretrained("bert-base-cased" ) UpperCamelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case )
551
def UpperCamelCase_( _A :Union[str, Any] )-> List[str]: UpperCamelCase__ = [0] * len(_A ) UpperCamelCase__ = [] UpperCamelCase__ = [] UpperCamelCase__ = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: UpperCamelCase__ = queue.pop(0 ) cnt += 1 topo.append(_A ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_A ) if cnt != len(_A ): print("Cycle exists" ) else: print(_A ) # Adjacency List of Graph __UpperCamelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
551
1
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCAmelCase : int ="""3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
504
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None): if attention_mask is None: UpperCamelCase_ = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id) , tf.inta) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _lowercase : '''simple docstring''' lowercase__ = OPTConfig lowercase__ = {} lowercase__ = """gelu""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=16 , snake_case__=2 , snake_case__=4 , snake_case__=4 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , snake_case__=16 , snake_case__=16 , ): '''simple docstring''' UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id UpperCamelCase_ = embed_dim UpperCamelCase_ = word_embed_proj_dim UpperCamelCase_ = False def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=snake_case__ , **self.config_updates , ) UpperCamelCase_ = prepare_opt_inputs_dict(snake_case__ , snake_case__ ) return config, inputs_dict def _lowerCamelCase ( self , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = TFOPTModel(config=snake_case__ ) UpperCamelCase_ = inputs_dict["input_ids"] UpperCamelCase_ = input_ids[:1, :] UpperCamelCase_ = inputs_dict["attention_mask"][:1, :] UpperCamelCase_ = 1 # first forward pass UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ , use_cache=snake_case__ ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ )[0] UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 ) @require_tf class _lowercase (a_ , a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowercase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowercase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = 10 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = TFOPTModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(snake_case__ , snake_case__ ): if hasattr(snake_case__ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(snake_case__ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings UpperCamelCase_ = model_class(config=snake_case__ ) UpperCamelCase_ = _get_word_embedding_weight(snake_case__ , model.get_input_embeddings() ) UpperCamelCase_ = _get_word_embedding_weight(snake_case__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(snake_case__ ) UpperCamelCase_ = _get_word_embedding_weight(snake_case__ , model.get_input_embeddings() ) UpperCamelCase_ = _get_word_embedding_weight(snake_case__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. UpperCamelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , snake_case__ ) # check that weights remain the same after resizing UpperCamelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: UpperCamelCase_ = False self.assertTrue(snake_case__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , snake_case__ ) UpperCamelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: UpperCamelCase_ = False self.assertTrue(snake_case__ ) def _lowerCAmelCase (_lowerCAmelCase): return tf.constant(_lowerCAmelCase , dtype=tf.intaa) @require_tf class _lowercase (unittest.TestCase ): '''simple docstring''' lowercase__ = 99 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 UpperCamelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) UpperCamelCase_ = input_ids.shape[0] UpperCamelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _lowercase (unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = TFOPTModel.from_pretrained("facebook/opt-350m" ) UpperCamelCase_ = _long_tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase_ = tf.not_equal(snake_case__ , model.config.pad_token_id ) with tf.GradientTape(): UpperCamelCase_ = model(input_ids=snake_case__ , attention_mask=snake_case__ ).last_hidden_state UpperCamelCase_ = (1, 11, 512) self.assertEqual(output.shape , snake_case__ ) UpperCamelCase_ = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case__ , atol=4e-3 ) ) UpperCamelCase_ = tf.function(snake_case__ , jit_compile=snake_case__ ) UpperCamelCase_ = xla_generate(snake_case__ , snake_case__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , snake_case__ , atol=4e-2 ) ) @require_tf @slow class _lowercase (unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): '''simple docstring''' super().setUp() UpperCamelCase_ = "facebook/opt-350m" def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) UpperCamelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) UpperCamelCase_ = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False UpperCamelCase_ = tokenizer(snake_case__ , return_tensors="tf" , padding=snake_case__ , add_special_tokens=snake_case__ ) UpperCamelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) UpperCamelCase_ = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-4 ) ) UpperCamelCase_ = tf.function(snake_case__ , jit_compile=snake_case__ ) UpperCamelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-4 ) ) @require_tf @slow class _lowercase (unittest.TestCase ): '''simple docstring''' @property def _lowerCamelCase ( self ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "facebook/opt-125m" UpperCamelCase_ = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] UpperCamelCase_ = [] UpperCamelCase_ = GPTaTokenizer.from_pretrained(snake_case__ ) UpperCamelCase_ = TFOPTForCausalLM.from_pretrained(snake_case__ ) for prompt in self.prompts: UpperCamelCase_ = tokenizer(snake_case__ , return_tensors="tf" ).input_ids UpperCamelCase_ = model.generate(snake_case__ , max_length=10 ) UpperCamelCase_ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) predicted_outputs += generated_string self.assertListEqual(snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "facebook/opt-350m" UpperCamelCase_ = GPTaTokenizer.from_pretrained(snake_case__ ) UpperCamelCase_ = TFOPTForCausalLM.from_pretrained(snake_case__ ) UpperCamelCase_ = "left" # use different length sentences to test batching UpperCamelCase_ = [ "Hello, my dog is a little", "Today, I", ] UpperCamelCase_ = tokenizer(snake_case__ , return_tensors="tf" , padding=snake_case__ ) UpperCamelCase_ = inputs["input_ids"] UpperCamelCase_ = model.generate(input_ids=snake_case__ , attention_mask=inputs["attention_mask"] ) UpperCamelCase_ = tokenizer(sentences[0] , return_tensors="tf" ).input_ids UpperCamelCase_ = model.generate(input_ids=snake_case__ ) UpperCamelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) UpperCamelCase_ = tokenizer(sentences[1] , return_tensors="tf" ).input_ids UpperCamelCase_ = model.generate(input_ids=snake_case__ , max_length=model.config.max_length - num_paddings ) UpperCamelCase_ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) UpperCamelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case__ ) UpperCamelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case__ ) UpperCamelCase_ = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , [non_padded_sentence, padded_sentence] ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "facebook/opt-350m" UpperCamelCase_ = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] UpperCamelCase_ = [] UpperCamelCase_ = GPTaTokenizer.from_pretrained(snake_case__ ) UpperCamelCase_ = TFOPTForCausalLM.from_pretrained(snake_case__ ) for prompt in self.prompts: UpperCamelCase_ = tokenizer(snake_case__ , return_tensors="tf" ).input_ids UpperCamelCase_ = model.generate(snake_case__ , max_length=10 ) UpperCamelCase_ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) predicted_outputs += generated_string self.assertListEqual(snake_case__ , snake_case__ )
504
1
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase__ : Any = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def a__ ( lowercase : Tuple, lowercase : Optional[int], lowercase : Any=None, lowercase : Optional[Any]=None, lowercase : Dict=None, lowercase : List[str]=None, lowercase : Any=None, lowercase : Tuple=None, ) -> Tuple: """simple docstring""" if attention_mask is None: _UpperCamelCase = np.where(input_ids != config.pad_token_id, 1, 0 ) if decoder_attention_mask is None: _UpperCamelCase = np.where(decoder_input_ids != config.pad_token_id, 1, 0 ) if head_mask is None: _UpperCamelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __lowerCAmelCase : """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=13 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Tuple=99 , lowerCAmelCase__ : Dict=16 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : Tuple=4 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Dict=32 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Tuple=0 , lowerCAmelCase__ : List[Any]=0.02 , ) -> List[str]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id _UpperCamelCase = initializer_range def snake_case__ ( self : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _UpperCamelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , 1 , 2 ) _UpperCamelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , ) _UpperCamelCase = prepare_blenderbot_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def snake_case__ ( self : int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def snake_case__ ( self : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(lowerCAmelCase__ ) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] ) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase__ , ) _UpperCamelCase = model.decode(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def snake_case__ ( self : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(lowerCAmelCase__ ) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] ) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) _UpperCamelCase = model.decode(lowerCAmelCase__ , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ ) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : List[Any] = 9_9 def snake_case__ ( self : Dict ) -> List[Any]: '''simple docstring''' _UpperCamelCase = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _UpperCamelCase = input_ids.shape[0] _UpperCamelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def snake_case__ ( self : Dict ) -> List[str]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_config_and_data() _UpperCamelCase = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase__ ) _UpperCamelCase = lm_model(input_ids=lowerCAmelCase__ ) _UpperCamelCase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _UpperCamelCase = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase__ ) _UpperCamelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _UpperCamelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _UpperCamelCase = lm_model(input_ids=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) _UpperCamelCase = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , lowerCAmelCase__ ) def snake_case__ ( self : List[str] ) -> Dict: '''simple docstring''' _UpperCamelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , 1 , 2 ) _UpperCamelCase = np.equal(lowerCAmelCase__ , 1 ).astype(np.floataa ).sum() _UpperCamelCase = np.equal(lowerCAmelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCAmelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase , __magic_name__ ): """simple docstring""" _snake_case : Dict = True _snake_case : str = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _snake_case : Tuple = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def snake_case__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = FlaxBlenderbotModelTester(self ) def snake_case__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = model_class(lowerCAmelCase__ ) @jax.jit def encode_jitted(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict=None , **lowerCAmelCase__ : Optional[Any] ): return model.encode(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) with self.subTest('''JIT Enabled''' ): _UpperCamelCase = encode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case__ ( self : Dict ) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] ): return model.decode( decoder_input_ids=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , encoder_outputs=lowerCAmelCase__ , ) with self.subTest('''JIT Enabled''' ): _UpperCamelCase = decode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case__ ( self : Dict ) -> Any: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _UpperCamelCase = np.ones((1, 1) ) * model.config.eos_token_id _UpperCamelCase = model(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def snake_case__ ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} _UpperCamelCase = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} _UpperCamelCase = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=lowerCAmelCase__ ) _UpperCamelCase = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) _UpperCamelCase = ['''Sam'''] _UpperCamelCase = tokenizer(lowerCAmelCase__ , return_tensors='''jax''' ) _UpperCamelCase = model.generate(**lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = '''Sam is a great name. It means "sun" in Gaelic.''' _UpperCamelCase = tokenizer.batch_decode(lowerCAmelCase__ , **lowerCAmelCase__ ) assert generated_txt[0].strip() == tgt_text
98
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _UpperCAmelCase : def __init__( self , lowercase_ = "cpu" , lowercase_ = "openai/clip-vit-large-patch14" ) -> None: UpperCAmelCase = device UpperCAmelCase = CLIPTokenizerFast.from_pretrained(lowercase_ ) UpperCAmelCase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] UpperCAmelCase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] UpperCAmelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) UpperCAmelCase = torchvision.transforms.Resize(2_2_4 ) UpperCAmelCase = torchvision.transforms.CenterCrop(2_2_4 ) def a_ ( self , lowercase_ ) -> Any: UpperCAmelCase = self.resize(lowercase_ ) UpperCAmelCase = self.center_crop(lowercase_ ) UpperCAmelCase = self.normalize(lowercase_ ) return images def __call__( self , lowercase_=None , lowercase_=None , **lowercase_ ) -> Union[str, Any]: UpperCAmelCase = self.tokenizer(text=lowercase_ , **lowercase_ ) UpperCAmelCase = self.preprocess_img(lowercase_ ) UpperCAmelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _UpperCAmelCase ( nn.Module ): def __init__( self , lowercase_=1_0 , lowercase_=0.0_1 , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=False , lowercase_=True , lowercase_="image" , lowercase_=True , lowercase_=False , lowercase_=False , lowercase_=False , ) -> None: super().__init__() UpperCAmelCase = None UpperCAmelCase = device if device else get_device() if vqgan: UpperCAmelCase = vqgan else: UpperCAmelCase = load_vqgan(self.device , conf_path=lowercase_ , ckpt_path=lowercase_ ) self.vqgan.eval() if clip: UpperCAmelCase = clip else: UpperCAmelCase = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) UpperCAmelCase = ProcessorGradientFlow(device=self.device ) UpperCAmelCase = iterations UpperCAmelCase = lr UpperCAmelCase = log UpperCAmelCase = make_grid UpperCAmelCase = return_val UpperCAmelCase = quantize UpperCAmelCase = self.vqgan.decoder.z_shape def a_ ( self , lowercase_=None , lowercase_=None , lowercase_=5 , lowercase_=True ) -> Dict: UpperCAmelCase = [] if output_path is None: UpperCAmelCase = './animation.gif' if input_path is None: UpperCAmelCase = self.save_path UpperCAmelCase = sorted(glob(input_path + '/*' ) ) if not len(lowercase_ ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(lowercase_ ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) UpperCAmelCase = total_duration / len(lowercase_ ) UpperCAmelCase = [frame_duration] * len(lowercase_ ) if extend_frames: UpperCAmelCase = 1.5 UpperCAmelCase = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(lowercase_ ) ) imageio.mimsave(lowercase_ , lowercase_ , duration=lowercase_ ) print(F"gif saved to {output_path}" ) def a_ ( self , lowercase_=None , lowercase_=None ) -> List[Any]: if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError UpperCAmelCase = preprocess(Image.open(lowercase_ ) , target_image_size=2_5_6 ).to(self.device ) UpperCAmelCase = preprocess_vqgan(lowercase_ ) UpperCAmelCase , *UpperCAmelCase = self.vqgan.encode(lowercase_ ) return z def a_ ( self , lowercase_ ) -> Optional[int]: UpperCAmelCase = self.latent.detach().requires_grad_() UpperCAmelCase = base_latent + transform_vector if self.quantize: UpperCAmelCase , *UpperCAmelCase = self.vqgan.quantize(lowercase_ ) else: UpperCAmelCase = trans_latent return self.vqgan.decode(lowercase_ ) def a_ ( self , lowercase_ , lowercase_ , lowercase_=None ) -> str: UpperCAmelCase = self.clip_preprocessor(text=lowercase_ , images=lowercase_ , return_tensors='pt' , padding=lowercase_ ) UpperCAmelCase = self.clip(**lowercase_ ) UpperCAmelCase = clip_outputs.logits_per_image if weights is not None: UpperCAmelCase = similarity_logits * weights return similarity_logits.sum() def a_ ( self , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: UpperCAmelCase = self._get_clip_similarity(pos_prompts['prompts'] , lowercase_ , weights=(1 / pos_prompts['weights']) ) if neg_prompts: UpperCAmelCase = self._get_clip_similarity(neg_prompts['prompts'] , lowercase_ , weights=neg_prompts['weights'] ) else: UpperCAmelCase = torch.tensor([1] , device=self.device ) UpperCAmelCase = -torch.log(lowercase_ ) + torch.log(lowercase_ ) return loss def a_ ( self , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: UpperCAmelCase = torch.randn_like(self.latent , requires_grad=lowercase_ , device=self.device ) UpperCAmelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCAmelCase = self._add_vector(lowercase_ ) UpperCAmelCase = loop_post_process(lowercase_ ) UpperCAmelCase = self._get_CLIP_loss(lowercase_ , lowercase_ , lowercase_ ) print('CLIP loss' , lowercase_ ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=lowercase_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def a_ ( self , lowercase_ , lowercase_ , lowercase_ ) -> Dict: wandb.init(reinit=lowercase_ , project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: UpperCAmelCase = Image.open(lowercase_ ) UpperCAmelCase = image.resize((2_5_6, 2_5_6) ) wandb.log('Original Image' , wandb.Image(lowercase_ ) ) def a_ ( self , lowercase_ ) -> Tuple: if not prompts: return [] UpperCAmelCase = [] UpperCAmelCase = [] if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(lowercase_ , (tuple, list) ): UpperCAmelCase = prompt[0] UpperCAmelCase = float(prompt[1] ) elif ":" in prompt: UpperCAmelCase , UpperCAmelCase = prompt.split(':' ) UpperCAmelCase = float(lowercase_ ) else: UpperCAmelCase = prompt UpperCAmelCase = 1.0 processed_prompts.append(lowercase_ ) weights.append(lowercase_ ) return { "prompts": processed_prompts, "weights": torch.tensor(lowercase_ , device=self.device ), } def a_ ( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_=None , ) -> List[str]: if image_path: UpperCAmelCase = self._get_latent(lowercase_ ) else: UpperCAmelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(lowercase_ , lowercase_ , lowercase_ ) assert pos_prompts, "You must provide at least one positive prompt." UpperCAmelCase = self.process_prompts(lowercase_ ) UpperCAmelCase = self.process_prompts(lowercase_ ) if save_final and save_path is None: UpperCAmelCase = os.path.join('./outputs/' , '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(lowercase_ ): os.makedirs(lowercase_ ) else: UpperCAmelCase = save_path + '_' + get_timestamp() os.makedirs(lowercase_ ) UpperCAmelCase = save_path UpperCAmelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(lowercase_ ) ) UpperCAmelCase = loop_post_process(lowercase_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowercase_ , lowercase_ , lowercase_ ) ): if show_intermediate: show_pil(lowercase_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'Image': wandb.Image(lowercase_ )} ) if show_final: show_pil(lowercase_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}_final.png" ) )
373
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: a_ :Dict = None a_ :List[str] = logging.get_logger(__name__) a_ :Dict = "▁" a_ :Dict = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} a_ :Union[str, Any] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } a_ :List[Any] = { "google/pegasus-xsum": 512, } class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = PegasusTokenizer _SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__( self : Any, _snake_case : Any=None, _snake_case : Optional[Any]=None, _snake_case : Tuple="<pad>", _snake_case : Tuple="</s>", _snake_case : List[str]="<unk>", _snake_case : Any="<mask_2>", _snake_case : Optional[Any]="<mask_1>", _snake_case : Tuple=None, _snake_case : str=1_0_3, **_snake_case : Dict, ) ->List[Any]: snake_case__ : Any = offset if additional_special_tokens is not None: if not isinstance(_snake_case, _snake_case ): raise TypeError( F'''additional_special_tokens should be of type {type(_snake_case )}, but is''' F''' {type(_snake_case )}''' ) snake_case__ : int = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(_snake_case ), self.offset - 1 ) ] if len(set(_snake_case ) ) != len(_snake_case ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) snake_case__ : Optional[int] = additional_special_tokens_extended else: snake_case__ : Optional[Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2, self.offset )] super().__init__( _snake_case, tokenizer_file=_snake_case, pad_token=_snake_case, eos_token=_snake_case, unk_token=_snake_case, mask_token=_snake_case, mask_token_sent=_snake_case, offset=_snake_case, additional_special_tokens=_snake_case, **_snake_case, ) snake_case__ : str = vocab_file snake_case__ : int = False if not self.vocab_file else True def lowercase_ ( self : Optional[Any], _snake_case : str ) ->Dict: snake_case__ : int = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' F''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase_ ( self : Dict, _snake_case : List, _snake_case : Optional[List] = None, _snake_case : bool = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_snake_case ) elif token_ids_a is None: return self._special_token_mask(_snake_case ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase_ ( self : Any, _snake_case : Union[str, Any], _snake_case : Union[str, Any]=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[Any], _snake_case : str, _snake_case : Optional[str] = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[Any] = os.path.join( _snake_case, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file, _snake_case ) return (out_vocab_file,)
243
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = KandinskyInpaintPipeline _SCREAMING_SNAKE_CASE = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _SCREAMING_SNAKE_CASE = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _SCREAMING_SNAKE_CASE = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _SCREAMING_SNAKE_CASE = False @property def lowercase_ ( self : Optional[Any] ) ->Optional[Any]: return 3_2 @property def lowercase_ ( self : int ) ->str: return 3_2 @property def lowercase_ ( self : Any ) ->List[str]: return self.time_input_dim @property def lowercase_ ( self : Optional[Any] ) ->str: return self.time_input_dim * 4 @property def lowercase_ ( self : Tuple ) ->int: return 1_0_0 @property def lowercase_ ( self : str ) ->Dict: snake_case__ : Union[str, Any] = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def lowercase_ ( self : Any ) ->Optional[int]: torch.manual_seed(0 ) snake_case__ : str = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=3_7, num_attention_heads=4, num_hidden_layers=5, vocab_size=1_0_0_5, ) snake_case__ : Optional[Any] = MultilingualCLIP(_snake_case ) snake_case__ : List[Any] = text_encoder.eval() return text_encoder @property def lowercase_ ( self : Tuple ) ->Optional[int]: torch.manual_seed(0 ) snake_case__ : Optional[Any] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } snake_case__ : Dict = UNetaDConditionModel(**_snake_case ) return model @property def lowercase_ ( self : Dict ) ->Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self : Union[str, Any] ) ->List[Any]: torch.manual_seed(0 ) snake_case__ : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self : Any ) ->Any: snake_case__ : int = self.dummy_text_encoder snake_case__ : str = self.dummy_tokenizer snake_case__ : Any = self.dummy_unet snake_case__ : Tuple = self.dummy_movq snake_case__ : int = DDIMScheduler( num_train_timesteps=1_0_0_0, beta_schedule='linear', beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, clip_sample=_snake_case, set_alpha_to_one=_snake_case, steps_offset=1, prediction_type='epsilon', thresholding=_snake_case, ) snake_case__ : Optional[int] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase_ ( self : str, _snake_case : Any, _snake_case : int=0 ) ->str: snake_case__ : Union[str, Any] = floats_tensor((1, self.cross_attention_dim), rng=random.Random(_snake_case ) ).to(_snake_case ) snake_case__ : str = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1 ) ).to(_snake_case ) # create init_image snake_case__ : Tuple = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(_snake_case ) ).to(_snake_case ) snake_case__ : Optional[Any] = image.cpu().permute(0, 2, 3, 1 )[0] snake_case__ : Tuple = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create mask snake_case__ : Any = np.ones((6_4, 6_4), dtype=np.floataa ) snake_case__ : Optional[Any] = 0 if str(_snake_case ).startswith('mps' ): snake_case__ : Union[str, Any] = torch.manual_seed(_snake_case ) else: snake_case__ : Any = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) snake_case__ : int = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def lowercase_ ( self : Optional[int] ) ->Optional[Any]: snake_case__ : int = 'cpu' snake_case__ : str = self.get_dummy_components() snake_case__ : Any = self.pipeline_class(**_snake_case ) snake_case__ : Optional[Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) snake_case__ : Tuple = pipe(**self.get_dummy_inputs(_snake_case ) ) snake_case__ : List[Any] = output.images snake_case__ : List[Any] = pipe( **self.get_dummy_inputs(_snake_case ), return_dict=_snake_case, )[0] snake_case__ : Optional[int] = image[0, -3:, -3:, -1] snake_case__ : int = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : Any = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def lowercase_ ( self : Any ) ->List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Dict ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[int] ) ->List[str]: snake_case__ : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) snake_case__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) snake_case__ : Union[str, Any] = np.ones((7_6_8, 7_6_8), dtype=np.floataa ) snake_case__ : str = 0 snake_case__ : List[str] = 'a hat' snake_case__ : Any = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior', torch_dtype=torch.floataa ) pipe_prior.to(_snake_case ) snake_case__ : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint', torch_dtype=torch.floataa ) snake_case__ : Tuple = pipeline.to(_snake_case ) pipeline.set_progress_bar_config(disable=_snake_case ) snake_case__ : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case__ , snake_case__ : Tuple = pipe_prior( _snake_case, generator=_snake_case, num_inference_steps=5, negative_prompt='', ).to_tuple() snake_case__ : Optional[Any] = pipeline( _snake_case, image=_snake_case, mask_image=_snake_case, image_embeds=_snake_case, negative_image_embeds=_snake_case, generator=_snake_case, num_inference_steps=1_0_0, height=7_6_8, width=7_6_8, output_type='np', ) snake_case__ : Dict = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_snake_case, _snake_case )
243
1
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" a__ : List[str] = tf.convert_to_tensor( [ [ 8.2_2_2_0_9_9_1, # 3rd highest value; idx. 0 -0.5_6_2_0_0_4_4, 5.2_3_2_2_9_7_5_2, 4.0_3_8_6_3_9_3, -6.8_7_9_8_3_7_8, -0.5_4_7_8_5_8_0_2, -3.2_0_1_2_1_5_3, 2.9_2_7_7_7_1_7_6, 1.8_8_1_7_1_9_5_3, 7.3_5_3_4_1_2_7_6, # 5th highest value; idx. 9 8.4_3_2_0_7_8_3_3, # 2nd highest value; idx. 10 -9.8_5_7_1_1_8_3_6, -5.9_6_2_0_9_2_3_6, -1.1_3_0_3_9_1_6_1, -7.1_1_1_5_2_9_4, -0.8_3_6_9_6_3_3, -5.3_1_8_6_4_0_8, 7.0_6_4_2_7_4_0_7, 0.8_1_3_6_9_3_4_4, -0.8_2_0_2_3_8_1_7, -5.9_1_7_9_7_9_6, 0.5_8_8_1_3_4_4_3, -6.9_9_7_7_8_4_3_8, 4.7_1_5_5_1_1_8_9, -0.1_8_7_7_1_6_3_7, 7.4_4_0_2_0_7_5_9, # 4th highest value; idx. 25 9.3_8_4_5_0_9_8_7, # 1st highest value; idx. 26 2.1_2_6_6_2_9_4_1, -9.3_2_5_6_2_0_3_8, 2.3_5_6_5_2_5_2_2, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5_8_4_2_5_5_1_8, 4.5_3_1_3_9_2_3_8, -5.5_7_5_1_0_4_6_4, -6.2_8_0_3_0_6_9_9, -7.1_9_5_2_9_5_0_3, -4.0_2_1_2_2_5_5_1, 1.3_9_3_3_7_0_3_7, -6.0_6_7_0_7_0_5_7, 1.5_9_4_8_0_5_1_7, -9.6_4_3_1_1_9, 0.0_3_9_0_7_7_9_9, 0.6_7_2_3_1_7_6_2, -8.8_8_2_0_6_7_2_6, 6.2_7_1_1_5_9_2_2, # 4th highest value; idx. 13 2.2_8_5_2_0_7_2_3, 4.8_2_7_6_7_5_0_6, 4.3_0_4_2_1_3_6_8, 8.8_2_7_5_3_1_3, # 2nd highest value; idx. 17 5.4_4_0_2_9_9_5_8, # 5th highest value; idx. 18 -4.4_7_3_5_7_9_4, 7.3_8_5_7_9_5_3_6, # 3rd highest value; idx. 20 -2.9_1_0_5_1_6_6_3, 2.6_1_9_4_6_0_7_7, -2.5_6_7_4_7_6_2, -9.4_8_9_5_9_3_0_2, -4.0_2_9_2_2_6_4_5, -1.3_5_4_1_6_9_1_8, 9.6_7_7_0_2_3_2_3, # 1st highest value; idx. 27 -5.8_9_4_7_8_5_5_3, 1.8_5_3_7_0_4_6_7, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) a__ : Dict = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above a__ : Dict = tf.convert_to_tensor( [8.2_2_2_0_9_9, 7.3_5_3_4_1_2_6, 8.4_3_2_0_7_8, 7.4_4_0_2_0_7_5, 9.3_8_4_5_1, 6.2_7_1_1_5_9, 8.8_2_7_5_3_1, 5.4_4_0_2_9_9_5, 7.3_8_5_7_9_5_6, 9.6_7_7_0_2_3] , dtype=tf.floataa , ) # expected non filtered values as noted above a__ : Union[str, Any] = tf_top_k_top_p_filtering(__lowercase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) a__ : Optional[int] = output[output != -float("""inf""" )] a__ : Any = tf.cast( tf.where(tf.not_equal(__lowercase , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__lowercase , __lowercase , rtol=1E-12 ) tf.debugging.assert_equal(__lowercase , __lowercase ) @require_tf class snake_case__ (unittest.TestCase , A__ ): """simple docstring""" if is_tf_available(): __lowerCAmelCase :Tuple = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" a__ : Optional[int] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) a__ : Tuple = 2 a__ : Union[str, Any] = 2 class snake_case__ (tf.Module ): """simple docstring""" def __init__( self , __lowercase ) -> Optional[Any]: """simple docstring""" super(__lowercase , self ).__init__() a__ : Optional[int] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__lowercase , ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Optional[Any]: """simple docstring""" a__ : Optional[Any] = self.model.generate( input_ids=__lowercase , attention_mask=__lowercase , max_new_tokens=__lowercase , return_dict_in_generate=__lowercase , ) return {"sequences": outputs["sequences"]} a__ : Optional[Any] = [[2, 0], [1_0_2, 1_0_3]] a__ : int = [[1, 0], [1, 1]] a__ : Union[str, Any] = DummyModel(model=__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__lowercase , __lowercase , signatures={"""serving_default""": dummy_model.serving} ) a__ : Tuple = tf.saved_model.load(__lowercase ).signatures["""serving_default"""] for batch_size in range(1 , len(__lowercase ) + 1 ): a__ : Dict = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } a__ : str = serving_func(**__lowercase )["""sequences"""] a__ : Optional[Any] = test_model.generate(**__lowercase , max_new_tokens=__lowercase ) tf.debugging.assert_equal(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : Dict = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) a__ : Any = 1 a__ : Any = 2 class snake_case__ (tf.Module ): """simple docstring""" def __init__( self , __lowercase ) -> Optional[int]: """simple docstring""" super(__lowercase , self ).__init__() a__ : int = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__lowercase , ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Any: """simple docstring""" a__ : Optional[int] = self.model.generate( input_ids=__lowercase , attention_mask=__lowercase , max_new_tokens=__lowercase , return_dict_in_generate=__lowercase , ) return {"sequences": outputs["sequences"]} a__ : Optional[int] = [[2], [1_0_2, 1_0_3]] a__ : Any = [[1], [1, 1]] a__ : int = DummyModel(model=__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__lowercase , __lowercase , signatures={"""serving_default""": dummy_model.serving} ) a__ : Optional[int] = tf.saved_model.load(__lowercase ).signatures["""serving_default"""] for input_row in range(len(__lowercase ) ): a__ : Optional[int] = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } a__ : int = serving_func(**__lowercase )["""sequences"""] a__ : List[Any] = test_model.generate(**__lowercase , max_new_tokens=__lowercase ) tf.debugging.assert_equal(__lowercase , __lowercase ) @slow @require_tensorflow_text def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__lowercase ) class snake_case__ (tf.keras.layers.Layer ): """simple docstring""" def __init__( self ) -> List[str]: """simple docstring""" super().__init__() a__ : Any = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__lowercase , """spiece.model""" ) , """rb""" ).read() ) a__ : str = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def SCREAMING_SNAKE_CASE__( self , __lowercase , *__lowercase , **__lowercase ) -> str: """simple docstring""" a__ : Optional[int] = self.tokenizer.tokenize(__lowercase ) a__ , a__ : Dict = text.pad_model_inputs( __lowercase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) a__ : List[str] = self.model.generate(input_ids=__lowercase , attention_mask=__lowercase ) return self.tokenizer.detokenize(__lowercase ) a__ : int = CompleteSentenceTransformer() a__ : Dict = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) a__ : Dict = complete_model(__lowercase ) a__ : List[Any] = tf.keras.Model(__lowercase , __lowercase ) keras_model.save(__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : List[str] = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 1_0, """temperature""": 0.7, } a__ : Optional[Any] = 1_4 a__ : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) a__ : Dict = """Hello, my dog is cute and""" a__ : Union[str, Any] = tokenizer(__lowercase , return_tensors="""tf""" ) a__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) a__ : str = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) a__ : Tuple = model.generate(**__lowercase , eos_token_id=__lowercase , **__lowercase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) a__ : Optional[int] = [6_3_8, 1_9_8] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) a__ : str = model.generate(**__lowercase , eos_token_id=__lowercase , **__lowercase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) a__ : str = """Hugging Face is a technology company based in New York and Paris.""" a__ : List[str] = bart_tokenizer(__lowercase , return_tensors="""tf""" ).input_ids a__ : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) a__ : List[str] = bart_model.generate(__lowercase ).numpy() class snake_case__ (A__ ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=None , **__lowercase ) -> Union[str, Any]: """simple docstring""" return super().call(__lowercase , **__lowercase ) a__ : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) a__ : List[str] = bart_model.generate(__lowercase , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__lowercase , __lowercase ) ) class snake_case__ (bart_model.model.encoder.__class__ ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self , __lowercase , **__lowercase ) -> Union[str, Any]: """simple docstring""" return super().call(__lowercase , **__lowercase ) a__ : Any = FakeEncoder(bart_model.config , bart_model.model.shared ) a__ : int = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) a__ : Union[str, Any] = bart_model.generate(__lowercase ).numpy() with self.assertRaises(__lowercase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__lowercase , foo="""bar""" )
136
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowercase : str =argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") _lowercase : Optional[Any] =parser.parse_args() _lowercase : Optional[Any] ="cpu" _lowercase : List[str] ="a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" _lowercase : str ="path-to-your-trained-model" _lowercase : Optional[Any] =StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowercase : Union[str, Any] =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowercase : Union[str, Any] =pipe.to(device) # to channels last _lowercase : int =pipe.unet.to(memory_format=torch.channels_last) _lowercase : List[str] =pipe.vae.to(memory_format=torch.channels_last) _lowercase : int =pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowercase : Union[str, Any] =pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowercase : str =torch.randn(2, 4, 64, 64) _lowercase : Any =torch.rand(1) * 999 _lowercase : List[str] =torch.randn(2, 77, 768) _lowercase : Tuple =(sample, timestep, encoder_hidden_status) try: _lowercase : Optional[int] =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowercase : List[Any] =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowercase : Optional[int] =ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowercase : Optional[Any] =ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowercase : Optional[Any] =ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowercase : str =666 _lowercase : Dict =torch.Generator(device).manual_seed(seed) _lowercase : Tuple ={"generator": generator} if args.steps is not None: _lowercase : Tuple =args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowercase : Tuple =pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
136
1
from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : str = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = """mctct""" def __init__( self : Any , A : Optional[Any]=8_065 , A : List[Any]=1_536 , A : List[str]=36 , A : Optional[int]=6_144 , A : int=4 , A : List[str]=384 , A : Any=920 , A : Optional[Any]=1E-5 , A : str=0.3 , A : Dict="relu" , A : int=0.02 , A : Any=0.3 , A : Optional[int]=0.3 , A : Optional[int]=1 , A : Optional[int]=0 , A : Optional[int]=2 , A : Any=1 , A : Union[str, Any]=0.3 , A : Tuple=1 , A : Optional[int]=(7,) , A : Tuple=(3,) , A : List[Any]=80 , A : Tuple=1 , A : Optional[int]=None , A : Optional[int]="sum" , A : List[str]=False , **A : Optional[int] , ): super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A ) __snake_case: List[str] = vocab_size __snake_case: str = hidden_size __snake_case: Union[str, Any] = num_hidden_layers __snake_case: Any = intermediate_size __snake_case: List[str] = num_attention_heads __snake_case: List[str] = attention_head_dim __snake_case: Tuple = max_position_embeddings __snake_case: Optional[Any] = layer_norm_eps __snake_case: List[str] = layerdrop __snake_case: Any = hidden_act __snake_case: Any = initializer_range __snake_case: Optional[int] = hidden_dropout_prob __snake_case: List[str] = attention_probs_dropout_prob __snake_case: Union[str, Any] = pad_token_id __snake_case: Any = bos_token_id __snake_case: List[Any] = eos_token_id __snake_case: Any = conv_glu_dim __snake_case: Optional[int] = conv_dropout __snake_case: Union[str, Any] = num_conv_layers __snake_case: List[str] = input_feat_per_channel __snake_case: int = input_channels __snake_case: Tuple = conv_channels __snake_case: List[str] = ctc_loss_reduction __snake_case: Optional[int] = ctc_zero_infinity # prevents config testing fail with exporting to json __snake_case: Optional[Any] = list(A ) __snake_case: List[str] = list(A ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ f'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
155
def A__ ( SCREAMING_SNAKE_CASE__ = 1000) -> int: __snake_case , __snake_case: Dict = 1, 1 __snake_case: int = 2 while True: __snake_case: str = 0 __snake_case: Any = fa + fa __snake_case , __snake_case: Tuple = fa, f index += 1 for _ in str(SCREAMING_SNAKE_CASE__): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
155
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCamelCase = Features({"""audio""": Audio()} ) lowerCamelCase = Features({"""labels""": ClassLabel} ) lowerCamelCase = """audio""" lowerCamelCase = """labels""" def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : str ) -> Dict: """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) snake_case : Any = copy.deepcopy(self ) snake_case : str = self.label_schema.copy() snake_case : int = features[self.label_column] snake_case : Tuple = label_schema return task_template @property def lowerCAmelCase ( self : Tuple ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
638
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = KandinskyVaaInpaintPipeline __snake_case = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] __snake_case = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] __snake_case = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __snake_case = False @property def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" return self.time_input_dim @property def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" return 100 @property def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" torch.manual_seed(0 ) a = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } a = UNetaDConditionModel(**__UpperCAmelCase ) return model @property def __lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) a = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.dummy_unet a = self.dummy_movq a = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__UpperCAmelCase , ) a = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : int=0 ) ->Optional[int]: """simple docstring""" a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCAmelCase ) # create init_image a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) a = image.cpu().permute(0 , 2 , 3 , 1 )[0] a = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create mask a = np.ones((64, 64) , dtype=np.floataa ) a = 0 if str(__UpperCAmelCase ).startswith('''mps''' ): a = torch.manual_seed(__UpperCAmelCase ) else: a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self : Dict ) ->int: """simple docstring""" a = '''cpu''' a = self.get_dummy_components() a = self.pipeline_class(**__UpperCAmelCase ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) a = output.images a = pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] a = image[0, -3:, -3:, -1] a = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) a = np.array( [0.50775903, 0.49527195, 0.48824543, 0.50192237, 0.48644906, 0.49373814, 0.4780598, 0.47234827, 0.48327848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) a = np.ones((768, 768) , dtype=np.floataa ) a = 0 a = '''a hat''' a = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCAmelCase ) a = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) a = pipeline.to(__UpperCAmelCase ) pipeline.set_progress_bar_config(disable=__UpperCAmelCase ) a = torch.Generator(device='''cpu''' ).manual_seed(0 ) a , a = pipe_prior( __UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() a = pipeline( image=__UpperCAmelCase , mask_image=__UpperCAmelCase , image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
117
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE( __A ): snake_case_ : Tuple = (DPMSolverSinglestepScheduler,) snake_case_ : int = (("""num_inference_steps""", 25),) def snake_case__ ( self , **lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """prediction_type""": """epsilon""", """thresholding""": False, """sample_max_value""": 1.0, """algorithm_type""": """dpmsolver++""", """solver_type""": """midpoint""", """lambda_min_clipped""": -float("""inf""" ), """variance_type""": None, } config.update(**lowerCamelCase__ ) return config def snake_case__ ( self , lowerCamelCase__=0 , **lowerCamelCase__ ) -> Any: """simple docstring""" __lowercase = dict(self.forward_default_kwargs ) __lowercase = kwargs.pop("""num_inference_steps""" , lowerCamelCase__ ) __lowercase = self.dummy_sample __lowercase = 0.1 * sample __lowercase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowercase = self.get_scheduler_config(**lowerCamelCase__ ) __lowercase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals __lowercase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) __lowercase = scheduler_class.from_pretrained(lowerCamelCase__ ) new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals __lowercase = dummy_past_residuals[: new_scheduler.config.solver_order] __lowercase ,__lowercase = sample, sample for t in range(lowerCamelCase__ , time_step + scheduler.config.solver_order + 1 ): __lowercase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample __lowercase = new_scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self ) -> str: """simple docstring""" pass def snake_case__ ( self , lowerCamelCase__=0 , **lowerCamelCase__ ) -> Tuple: """simple docstring""" __lowercase = dict(self.forward_default_kwargs ) __lowercase = kwargs.pop("""num_inference_steps""" , lowerCamelCase__ ) __lowercase = self.dummy_sample __lowercase = 0.1 * sample __lowercase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) __lowercase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) __lowercase = scheduler_class.from_pretrained(lowerCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) __lowercase = dummy_past_residuals[: new_scheduler.config.solver_order] __lowercase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample __lowercase = new_scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self , lowerCamelCase__=None , **lowerCamelCase__ ) -> Optional[int]: """simple docstring""" if scheduler is None: __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(**lowerCamelCase__ ) __lowercase = scheduler_class(**lowerCamelCase__ ) __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(**lowerCamelCase__ ) __lowercase = scheduler_class(**lowerCamelCase__ ) __lowercase = 10 __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowercase = model(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample return sample def snake_case__ ( self ) -> str: """simple docstring""" __lowercase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowercase = 50 __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowercase = model(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample __lowercase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.25_74 ) < 1E-3 def snake_case__ ( self ) -> List[str]: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def snake_case__ ( self ) -> int: """simple docstring""" __lowercase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowercase = self.full_loop(scheduler=lowerCamelCase__ ) __lowercase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 __lowercase = DEISMultistepScheduler.from_config(scheduler.config ) __lowercase = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowercase = UniPCMultistepScheduler.from_config(scheduler.config ) __lowercase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowercase = self.full_loop(scheduler=lowerCamelCase__ ) __lowercase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" self.check_over_configs(thresholding=lowerCamelCase__ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase__ , prediction_type=lowerCamelCase__ , sample_max_value=lowerCamelCase__ , algorithm_type="""dpmsolver++""" , solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def snake_case__ ( self ) -> str: """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , prediction_type=lowerCamelCase__ , algorithm_type=lowerCamelCase__ , ) __lowercase = self.full_loop( solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , prediction_type=lowerCamelCase__ , algorithm_type=lowerCamelCase__ , ) assert not torch.isnan(lowerCamelCase__ ).any(), "Samples have nan numbers" def snake_case__ ( self ) -> Any: """simple docstring""" self.check_over_configs(lower_order_final=lowerCamelCase__ ) self.check_over_configs(lower_order_final=lowerCamelCase__ ) def snake_case__ ( self ) -> Any: """simple docstring""" self.check_over_configs(lambda_min_clipped=-float("""inf""" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" self.check_over_configs(variance_type=lowerCamelCase__ ) self.check_over_configs(variance_type="""learned_range""" ) def snake_case__ ( self ) -> Tuple: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowerCamelCase__ , time_step=0 ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" __lowercase = self.full_loop() __lowercase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 def snake_case__ ( self ) -> Any: """simple docstring""" __lowercase = self.full_loop(use_karras_sigmas=lowerCamelCase__ ) __lowercase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.22_48 ) < 1E-3 def snake_case__ ( self ) -> Any: """simple docstring""" __lowercase = self.full_loop(prediction_type="""v_prediction""" ) __lowercase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.14_53 ) < 1E-3 def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = self.full_loop(prediction_type="""v_prediction""" , use_karras_sigmas=lowerCamelCase__ ) __lowercase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.06_49 ) < 1E-3 def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(thresholding=lowerCamelCase__ , dynamic_thresholding_ratio=0 ) __lowercase = scheduler_class(**lowerCamelCase__ ) __lowercase = 10 __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowercase = model(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample assert sample.dtype == torch.floataa
163
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE( unittest.TestCase ): def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = BlipImageProcessor() __lowercase = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) __lowercase = BlipaProcessor(lowerCamelCase__ , lowerCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def snake_case__ ( self , **lowerCamelCase__ ) -> int: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ).tokenizer def snake_case__ ( self , **lowerCamelCase__ ) -> Optional[int]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ).image_processor def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(lowerCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case__ ( self ) -> List[str]: """simple docstring""" __lowercase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowercase = self.get_image_processor(do_normalize=lowerCamelCase__ , padding_value=1.0 ) __lowercase = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipaProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(lowerCamelCase__ , return_tensors="""np""" ) __lowercase = processor(images=lowerCamelCase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipaProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowercase = """lower newer""" __lowercase = processor(text=lowerCamelCase__ ) __lowercase = tokenizer(lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipaProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowercase = """lower newer""" __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def snake_case__ ( self ) -> int: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipaProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.batch_decode(lowerCamelCase__ ) __lowercase = tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ) -> Dict: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipaProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __lowercase = """lower newer""" __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
163
1
"""simple docstring""" import os import pytest from attr import dataclass _snake_case = "us-east-1" # defaults region @dataclass class _a : a_ : List[str] = 42 a_ : Optional[Any] = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' a_ : Any = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5500, } a_ : Union[str, Any] = {**hyperparameters, 'max_steps': 1000} @property def _UpperCamelCase ( self : Any ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _UpperCamelCase ( self : Optional[int] ): return F'{self.framework}-transfromers-test' @property def _UpperCamelCase ( self : List[str] ): return F'./tests/sagemaker/scripts/{self.framework}' @property def _UpperCamelCase ( self : Any ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def snake_case ( _a: Tuple )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = SageMakerTestEnvironment(framework=request.cls.framework )
510
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
585
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ : Tuple = """mobilenet_v1""" def __init__( self , A=3 , A=224 , A=1.0 , A=8 , A="relu6" , A=True , A=0.9_9_9 , A=0.0_2 , A=0.0_0_1 , **A , ): super().__init__(**A ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : Optional[Any] = image_size _lowerCamelCase : Tuple = depth_multiplier _lowerCamelCase : Dict = min_depth _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[int] = tf_padding _lowerCamelCase : Optional[int] = classifier_dropout_prob _lowerCamelCase : Any = initializer_range _lowerCamelCase : str = layer_norm_eps class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ : Dict = version.parse("""1.11""" ) @property def _lowerCAmelCase ( self ): return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def _lowerCAmelCase ( self ): if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def _lowerCAmelCase ( self ): return 1E-4
349
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class A_(unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = tempfile.mkdtemp() # fmt: off _lowerCamelCase : List[str] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(A , range(len(A ) ) ) ) _lowerCamelCase : Optional[int] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _lowerCamelCase : Optional[Any] = {'unk_token': '<unk>'} _lowerCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) _lowerCamelCase : Any = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } _lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(A , A ) def _lowerCAmelCase ( self , **A ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowerCAmelCase ( self , **A ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A ) def _lowerCAmelCase ( self , **A ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **A ) def _lowerCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCamelCase : List[Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = self.get_tokenizer() _lowerCamelCase : Optional[int] = self.get_rust_tokenizer() _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : str = CLIPProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) _lowerCamelCase : Union[str, Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A ) _lowerCamelCase : Dict = CLIPProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) _lowerCamelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : str = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : int = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCamelCase : str = self.get_image_processor(do_normalize=A , padding_value=1.0 ) _lowerCamelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : Any = CLIPProcessor(tokenizer=A , image_processor=A ) _lowerCamelCase : str = self.prepare_image_inputs() _lowerCamelCase : List[Any] = image_processor(A , return_tensors='np' ) _lowerCamelCase : int = processor(images=A , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Dict = CLIPProcessor(tokenizer=A , image_processor=A ) _lowerCamelCase : Optional[Any] = 'lower newer' _lowerCamelCase : Union[str, Any] = processor(text=A ) _lowerCamelCase : Tuple = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self ): _lowerCamelCase : str = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : List[Any] = CLIPProcessor(tokenizer=A , image_processor=A ) _lowerCamelCase : Any = 'lower newer' _lowerCamelCase : Any = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Optional[int] = CLIPProcessor(tokenizer=A , image_processor=A ) _lowerCamelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : int = processor.batch_decode(A ) _lowerCamelCase : Dict = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Any = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : int = CLIPProcessor(tokenizer=A , image_processor=A ) _lowerCamelCase : str = 'lower newer' _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
349
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase :Dict = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase :List[Any] = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __lowerCamelCase :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
222
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def snake_case ( UpperCamelCase__ : str ) -> Any: lowerCamelCase : Dict = model.config lowerCamelCase : Dict = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowerCamelCase : Dict = MBartConfig( is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , add_cross_attention=UpperCamelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=UpperCamelCase__ , add_final_layer_norm=UpperCamelCase__ , ) return encoder_config, decoder_config def snake_case ( UpperCamelCase__ : str ) -> List[str]: if "encoder.model" in name: lowerCamelCase : Optional[Any] = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowerCamelCase : Tuple = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowerCamelCase : Optional[int] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCamelCase : Dict = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowerCamelCase : str = """encoder.""" + name if "attn.proj" in name: lowerCamelCase : str = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowerCamelCase : List[str] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCamelCase : str = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCamelCase : List[str] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCamelCase : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase : List[str] = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowerCamelCase : Optional[int] = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowerCamelCase : List[Any] = """encoder.layernorm.bias""" return name def snake_case ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): lowerCamelCase : List[Any] = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: lowerCamelCase : Tuple = key.split(""".""" ) lowerCamelCase : Dict = int(key_split[3] ) lowerCamelCase : List[Any] = int(key_split[5] ) lowerCamelCase : Dict = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCamelCase : List[Any] = val[:dim, :] lowerCamelCase : Any = val[dim : dim * 2, :] lowerCamelCase : Optional[Any] = val[-dim:, :] else: lowerCamelCase : str = val[:dim] lowerCamelCase : List[str] = val[dim : dim * 2] lowerCamelCase : str = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowerCamelCase : Dict = val return orig_state_dict def snake_case ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=False ) -> Optional[int]: # load original model lowerCamelCase : Tuple = DonutModel.from_pretrained(UpperCamelCase__ ).eval() # load HuggingFace model lowerCamelCase , lowerCamelCase : List[Any] = get_configs(UpperCamelCase__ ) lowerCamelCase : str = DonutSwinModel(UpperCamelCase__ ) lowerCamelCase : Optional[int] = MBartForCausalLM(UpperCamelCase__ ) lowerCamelCase : int = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() lowerCamelCase : Any = original_model.state_dict() lowerCamelCase : str = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # verify results on scanned document lowerCamelCase : Optional[int] = load_dataset("""hf-internal-testing/example-documents""" ) lowerCamelCase : str = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowerCamelCase : List[Any] = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase__ , from_slow=UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowerCamelCase : Dict = DonutProcessor(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : int = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowerCamelCase : List[str] = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowerCamelCase : Union[str, Any] = """When is the coffee break?""" lowerCamelCase : int = task_prompt.replace("""{user_input}""" , UpperCamelCase__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowerCamelCase : Dict = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowerCamelCase : Tuple = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowerCamelCase : Optional[int] = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowerCamelCase : Optional[int] = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowerCamelCase : Tuple = """hello world""" else: raise ValueError("""Model name not supported""" ) lowerCamelCase : Any = original_model.decoder.tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="""pt""" )[ """input_ids""" ] lowerCamelCase : str = original_model.encoder.model.patch_embed(UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : Optional[Any] = model.encoder.embeddings(UpperCamelCase__ ) assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) # verify encoder hidden states lowerCamelCase : Union[str, Any] = original_model.encoder(UpperCamelCase__ ) lowerCamelCase : Tuple = model.encoder(UpperCamelCase__ ).last_hidden_state assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-2 ) # verify decoder hidden states lowerCamelCase : Any = original_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).logits lowerCamelCase : Tuple = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": __lowerCamelCase :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) __lowerCamelCase :Tuple = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
222
1
class _UpperCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , a : Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = arr.split("," ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [int(self.array[0] )] * len(self.array ) SCREAMING_SNAKE_CASE : Tuple = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): SCREAMING_SNAKE_CASE : List[Any] = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) SCREAMING_SNAKE_CASE : Tuple = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": a_ = input('please input some numbers:') a_ = SubArray(whole_array) a_ = array.solve_sub_array() print(('the results is:', re))
717
from __future__ import annotations def lowerCamelCase__ ( _a , _a): if b == 0: return (1, 0) ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Tuple = extended_euclid(_a , a % b) SCREAMING_SNAKE_CASE : Dict = a // b return (y, x - k * y) def lowerCamelCase__ ( _a , _a , _a , _a): ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : str = extended_euclid(_a , _a) SCREAMING_SNAKE_CASE : str = na * na SCREAMING_SNAKE_CASE : int = ra * x * na + ra * y * na return (n % m + m) % m def lowerCamelCase__ ( _a , _a): ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : List[str] = extended_euclid(_a , _a) if b < 0: SCREAMING_SNAKE_CASE : int = (b % n + n) % n return b def lowerCamelCase__ ( _a , _a , _a , _a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = invert_modulo(_a , _a), invert_modulo(_a , _a) SCREAMING_SNAKE_CASE : Optional[int] = na * na SCREAMING_SNAKE_CASE : Optional[Any] = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
193
0
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' UpperCamelCase__ : Dict = ['''image_processor''', '''tokenizer'''] UpperCamelCase__ : Union[str, Any] = '''AutoImageProcessor''' UpperCamelCase__ : Optional[Any] = '''AutoTokenizer''' def __init__( self , _A=None , _A=None , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _A , ) __SCREAMING_SNAKE_CASE = kwargs.pop('feature_extractor' ) __SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_A , _A ) __SCREAMING_SNAKE_CASE = self.image_processor __SCREAMING_SNAKE_CASE = False def __call__( self , *_A , **_A ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_A , **_A ) __SCREAMING_SNAKE_CASE = kwargs.pop('images' , _A ) __SCREAMING_SNAKE_CASE = kwargs.pop('text' , _A ) if len(_A ) > 0: __SCREAMING_SNAKE_CASE = args[0] __SCREAMING_SNAKE_CASE = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: __SCREAMING_SNAKE_CASE = self.image_processor(_A , *_A , **_A ) if text is not None: __SCREAMING_SNAKE_CASE = self.tokenizer(_A , **_A ) if text is None: return inputs elif images is None: return encodings else: __SCREAMING_SNAKE_CASE = encodings['input_ids'] return inputs def _A ( self , *_A , **_A ): '''simple docstring''' return self.tokenizer.batch_decode(*_A , **_A ) def _A ( self , *_A , **_A ): '''simple docstring''' return self.tokenizer.decode(*_A , **_A ) @contextmanager def _A ( self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.tokenizer yield __SCREAMING_SNAKE_CASE = self.image_processor __SCREAMING_SNAKE_CASE = False def _A ( self , _A , _A=False , _A=None ): '''simple docstring''' if added_vocab is None: __SCREAMING_SNAKE_CASE = self.tokenizer.get_added_vocab() __SCREAMING_SNAKE_CASE = {} while tokens: __SCREAMING_SNAKE_CASE = re.search(r'<s_(.*?)>' , _A , re.IGNORECASE ) if start_token is None: break __SCREAMING_SNAKE_CASE = start_token.group(1 ) __SCREAMING_SNAKE_CASE = re.search(rf"""</s_{key}>""" , _A , re.IGNORECASE ) __SCREAMING_SNAKE_CASE = start_token.group() if end_token is None: __SCREAMING_SNAKE_CASE = tokens.replace(_A , '' ) else: __SCREAMING_SNAKE_CASE = end_token.group() __SCREAMING_SNAKE_CASE = re.escape(_A ) __SCREAMING_SNAKE_CASE = re.escape(_A ) __SCREAMING_SNAKE_CASE = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" , _A , re.IGNORECASE ) if content is not None: __SCREAMING_SNAKE_CASE = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __SCREAMING_SNAKE_CASE = self.tokenajson(_A , is_inner_value=_A , added_vocab=_A ) if value: if len(_A ) == 1: __SCREAMING_SNAKE_CASE = value[0] __SCREAMING_SNAKE_CASE = value else: # leaf nodes __SCREAMING_SNAKE_CASE = [] for leaf in content.split(r'<sep/>' ): __SCREAMING_SNAKE_CASE = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __SCREAMING_SNAKE_CASE = leaf[1:-2] # for categorical special tokens output[key].append(_A ) if len(output[key] ) == 1: __SCREAMING_SNAKE_CASE = output[key][0] __SCREAMING_SNAKE_CASE = tokens[tokens.find(_A ) + len(_A ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_A , added_vocab=_A ) if len(_A ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def _A ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _A , ) return self.image_processor_class @property def _A ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _A , ) return self.image_processor
148
'''simple docstring''' import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging SCREAMING_SNAKE_CASE_ = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] SCREAMING_SNAKE_CASE_ = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = " Hello world! cécé herlolip" SCREAMING_SNAKE_CASE_ = [ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): __a : Dict = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Dict = dct.pop(SCREAMING_SNAKE_CASE__ ) __a : Dict = val def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): __a : Dict = torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) __a : Dict = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): __a , __a : Dict = emb.weight.shape __a : Optional[Any] = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) __a : List[Any] = emb.weight.data return lin_layer @torch.no_grad() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): if not os.path.exists(SCREAMING_SNAKE_CASE__ ): __a : Tuple = torch.hub.load('pytorch/fairseq' , SCREAMING_SNAKE_CASE__ ).eval() else: __a : Optional[int] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: __a : List[str] = checkpoint_path.replace('.' , '-' ) __a : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) __a : List[str] = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( f'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": __a : List[Any] = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) __a : str = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : Dict = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __a : Any = bart.predict('mnli' , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about __a : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = state_dict['decoder.embed_tokens.weight'] __a : List[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": __a : Dict = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __a : str = model(SCREAMING_SNAKE_CASE__ ).model[0] else: __a : Optional[Any] = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , 'lm_head' ): __a : Optional[int] = make_linear_from_emb(model.model.shared ) __a : List[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
597
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class A : '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Tuple=13 , _UpperCamelCase : Dict=7 , _UpperCamelCase : List[Any]=6 , _UpperCamelCase : Any=17 , _UpperCamelCase : List[str]=23 , _UpperCamelCase : Optional[Any]=11 , _UpperCamelCase : List[Any]=True , ): _lowercase: Any = parent _lowercase: Dict = batch_size _lowercase: str = seq_length _lowercase: List[str] = act_dim _lowercase: List[str] = state_dim _lowercase: Any = hidden_size _lowercase: Dict = max_length _lowercase: Tuple = is_training def UpperCAmelCase__ ( self : List[Any]): _lowercase: str = floats_tensor((self.batch_size, self.seq_length, self.state_dim)) _lowercase: Dict = floats_tensor((self.batch_size, self.seq_length, self.act_dim)) _lowercase: int = floats_tensor((self.batch_size, self.seq_length, 1)) _lowercase: List[Any] = floats_tensor((self.batch_size, self.seq_length, 1)) _lowercase: Optional[Any] = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000) _lowercase: int = random_attention_mask((self.batch_size, self.seq_length)) _lowercase: Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def UpperCAmelCase__ ( self : int): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def UpperCAmelCase__ ( self : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , ): _lowercase: Optional[int] = DecisionTransformerModel(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowercase: Dict = model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.parent.assertEqual(result.state_preds.shape , states.shape) self.parent.assertEqual(result.action_preds.shape , actions.shape) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size)) # seq length *3 as there are 3 modelities: states, returns and actions def UpperCAmelCase__ ( self : List[str]): _lowercase: str = self.prepare_config_and_inputs() ( _lowercase ): List[Any] = config_and_inputs _lowercase: Optional[Any] = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase : str = (DecisionTransformerModel,) if is_torch_available() else () lowerCamelCase : List[str] = () lowerCamelCase : Any = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCamelCase : int = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCamelCase : List[str] = False lowerCamelCase : Any = False lowerCamelCase : List[str] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Optional[int] = False lowerCamelCase : Optional[Any] = False lowerCamelCase : Dict = False lowerCamelCase : int = False def UpperCAmelCase__ ( self : Union[str, Any]): _lowercase: int = DecisionTransformerModelTester(self) _lowercase: Tuple = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37) def UpperCAmelCase__ ( self : List[Any]): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[int]): _lowercase: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase) @slow def UpperCAmelCase__ ( self : int): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase: int = DecisionTransformerModel.from_pretrained(_UpperCamelCase) self.assertIsNotNone(_UpperCamelCase) def UpperCAmelCase__ ( self : Any): _lowercase: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase: str = model_class(_UpperCamelCase) _lowercase: Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase: Tuple = [*signature.parameters.keys()] _lowercase: List[Any] = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(_UpperCamelCase)] , _UpperCamelCase) @require_torch class A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase__ ( self : Optional[int]): _lowercase: Any = 2 # number of steps of autoregressive prediction we will perform _lowercase: Any = 10 # defined by the RL environment, may be normalized _lowercase: Tuple = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert") _lowercase: Optional[int] = model.to(_UpperCamelCase) _lowercase: List[Any] = model.config torch.manual_seed(0) _lowercase: Any = torch.randn(1 , 1 , config.state_dim).to(device=_UpperCamelCase , dtype=torch.floataa) # env.reset() _lowercase: Any = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=_UpperCamelCase) _lowercase: Union[str, Any] = torch.tensor(_UpperCamelCase , device=_UpperCamelCase , dtype=torch.floataa).reshape(1 , 1 , 1) _lowercase: Dict = state _lowercase: Any = torch.zeros(1 , 0 , config.act_dim , device=_UpperCamelCase , dtype=torch.floataa) _lowercase: int = torch.zeros(1 , 0 , device=_UpperCamelCase , dtype=torch.floataa) _lowercase: Optional[int] = torch.tensor(0 , device=_UpperCamelCase , dtype=torch.long).reshape(1 , 1) for step in range(_UpperCamelCase): _lowercase: List[str] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_UpperCamelCase)] , dim=1) _lowercase: Any = torch.cat([rewards, torch.zeros(1 , 1 , device=_UpperCamelCase)] , dim=1) _lowercase: Optional[Any] = torch.ones(1 , states.shape[1]).to(dtype=torch.long , device=states.device) with torch.no_grad(): _lowercase: Optional[Any] = model( states=_UpperCamelCase , actions=_UpperCamelCase , rewards=_UpperCamelCase , returns_to_go=_UpperCamelCase , timesteps=_UpperCamelCase , attention_mask=_UpperCamelCase , return_dict=_UpperCamelCase , ) self.assertEqual(action_pred.shape , actions.shape) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4)) _lowercase: Tuple = ( # env.step(action) torch.randn(1 , 1 , config.state_dim).to(device=_UpperCamelCase , dtype=torch.floataa), 1.0, False, {}, ) _lowercase: Union[str, Any] = action_pred[0, -1] _lowercase: List[str] = torch.cat([states, state] , dim=1) _lowercase: Optional[int] = returns_to_go[0, -1] - reward _lowercase: List[str] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1)] , dim=1) _lowercase: Dict = torch.cat( [timesteps, torch.ones((1, 1) , device=_UpperCamelCase , dtype=torch.long) * (step + 1)] , dim=1)
705
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE : Optional[Any] = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BeitFeatureExtractor'] _SCREAMING_SNAKE_CASE : Optional[int] = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
206
0
def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __A = gray_code_sequence_string(a_ ) # # convert them to integers for i in range(len(a_ ) ): __A = int(sequence[i] , 2 ) return sequence def UpperCAmelCase ( a_ ) -> list: """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __A = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __A = gray_code_sequence_string(bit_count - 1 ) __A = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __A = "0" + smaller_sequence[i] sequence.append(a_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __A = "1" + smaller_sequence[i] sequence.append(a_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
55
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = ['''image_processor''', '''tokenizer'''] __UpperCAmelCase = '''ViltImageProcessor''' __UpperCAmelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , lowercase_=None , lowercase_=None , **lowercase_) -> List[Any]: __snake_case = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase_ , ) __snake_case = kwargs.pop('feature_extractor') __snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(lowercase_ , lowercase_) __snake_case = self.image_processor def __call__( self , lowercase_ , lowercase_ = None , lowercase_ = True , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = 0 , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = False , lowercase_ = True , lowercase_ = None , **lowercase_ , ) -> BatchEncoding: __snake_case = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel_values + pixel_mask __snake_case = self.image_processor(lowercase_ , return_tensors=lowercase_) encoding.update(lowercase_) return encoding def _a ( self , *lowercase_ , **lowercase_) -> Optional[Any]: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> Dict: return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def _a ( self) -> Tuple: __snake_case = self.tokenizer.model_input_names __snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def _a ( self) -> Optional[int]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase_ , ) return self.image_processor_class @property def _a ( self) -> List[str]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase_ , ) return self.image_processor
313
0
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy __magic_name__ : Tuple = logging.get_logger(__name__) __magic_name__ : Optional[int] = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } __magic_name__ : int = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } __magic_name__ : List[str] = { 'jukebox': 512, } class A__ ( __lowercase ): '''simple docstring''' snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_LYRIC_TOKENS_SIZES snake_case__ = ["""input_ids""", """attention_mask"""] def __init__( self : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any]=["v3", "v2", "v2"] , _SCREAMING_SNAKE_CASE : Any=512 , _SCREAMING_SNAKE_CASE : str=5 , _SCREAMING_SNAKE_CASE : Tuple="<|endoftext|>" , **_SCREAMING_SNAKE_CASE : Optional[int] , ): """simple docstring""" UpperCamelCase = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else unk_token super().__init__( unk_token=_SCREAMING_SNAKE_CASE , n_genres=_SCREAMING_SNAKE_CASE , version=_SCREAMING_SNAKE_CASE , max_n_lyric_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = version UpperCamelCase = max_n_lyric_tokens UpperCamelCase = n_genres with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as vocab_handle: UpperCamelCase = json.load(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as vocab_handle: UpperCamelCase = json.load(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as vocab_handle: UpperCamelCase = json.load(_SCREAMING_SNAKE_CASE ) UpperCamelCase = r"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: UpperCamelCase = oov.replace(r'\-\'' , r'\-+\'' ) UpperCamelCase = regex.compile(_SCREAMING_SNAKE_CASE ) UpperCamelCase = {v: k for k, v in self.artists_encoder.items()} UpperCamelCase = {v: k for k, v in self.genres_encoder.items()} UpperCamelCase = {v: k for k, v in self.lyrics_encoder.items()} @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def _SCREAMING_SNAKE_CASE ( self : Dict , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" UpperCamelCase = [self.artists_encoder.get(_SCREAMING_SNAKE_CASE , 0 ) for artist in list_artists] for genres in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase = [self.genres_encoder.get(_SCREAMING_SNAKE_CASE , 0 ) for genre in list_genres[genres]] UpperCamelCase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) UpperCamelCase = [[self.lyrics_encoder.get(_SCREAMING_SNAKE_CASE , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" return list(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Tuple , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , **_SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" UpperCamelCase = self.prepare_for_tokenization(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._tokenize(_SCREAMING_SNAKE_CASE ) return artist, genre, lyrics def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool = False ): """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": UpperCamelCase = artists[idx].lower() UpperCamelCase = [genres[idx].lower()] else: UpperCamelCase = self._normalize(artists[idx] ) + ".v2" UpperCamelCase = [ self._normalize(_SCREAMING_SNAKE_CASE ) + ".v2" for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": UpperCamelCase = regex.compile(r'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n" UpperCamelCase = {vocab[index]: index + 1 for index in range(len(_SCREAMING_SNAKE_CASE ) )} UpperCamelCase = 0 UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) + 1 UpperCamelCase = self.vocab UpperCamelCase = {v: k for k, v in self.vocab.items()} UpperCamelCase = "" else: UpperCamelCase = regex.compile(r'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) UpperCamelCase = self._run_strip_accents(_SCREAMING_SNAKE_CASE ) UpperCamelCase = lyrics.replace('\\' , '\n' ) UpperCamelCase = self.out_of_vocab.sub('' , _SCREAMING_SNAKE_CASE ), [], [] return artists, genres, lyrics def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" UpperCamelCase = unicodedata.normalize('NFD' , _SCREAMING_SNAKE_CASE ) UpperCamelCase = [] for char in text: UpperCamelCase = unicodedata.category(_SCREAMING_SNAKE_CASE ) if cat == "Mn": continue output.append(_SCREAMING_SNAKE_CASE ) return "".join(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Any , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" UpperCamelCase = ( [chr(_SCREAMING_SNAKE_CASE ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_SCREAMING_SNAKE_CASE ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_SCREAMING_SNAKE_CASE ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ["."] ) UpperCamelCase = frozenset(_SCREAMING_SNAKE_CASE ) UpperCamelCase = re.compile(r'_+' ) UpperCamelCase = "".join([c if c in accepted else '_' for c in text.lower()] ) UpperCamelCase = pattern.sub('_' , _SCREAMING_SNAKE_CASE ).strip('_' ) return text def _SCREAMING_SNAKE_CASE ( self : Dict , _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" return " ".join(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE : bool = False ): """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = TensorType(_SCREAMING_SNAKE_CASE ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf UpperCamelCase = tf.constant UpperCamelCase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch UpperCamelCase = torch.tensor UpperCamelCase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 UpperCamelCase = jnp.array UpperCamelCase = _is_jax else: UpperCamelCase = np.asarray UpperCamelCase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: UpperCamelCase = [inputs] if not is_tensor(_SCREAMING_SNAKE_CASE ): UpperCamelCase = as_tensor(_SCREAMING_SNAKE_CASE ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str="" , _SCREAMING_SNAKE_CASE : Optional[Any]="pt" ): """simple docstring""" UpperCamelCase = [0, 0, 0] UpperCamelCase = [artist] * len(self.version ) UpperCamelCase = [genres] * len(self.version ) UpperCamelCase = self.tokenize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._convert_token_to_id(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = [-INFINITY] * len(full_tokens[-1] ) UpperCamelCase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_SCREAMING_SNAKE_CASE ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def _SCREAMING_SNAKE_CASE ( self : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_SCREAMING_SNAKE_CASE ) ) return (artists_file, genres_file, lyrics_file) def _SCREAMING_SNAKE_CASE ( self : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" UpperCamelCase = self.artists_decoder.get(_SCREAMING_SNAKE_CASE ) UpperCamelCase = [self.genres_decoder.get(_SCREAMING_SNAKE_CASE ) for genre in genres_index] UpperCamelCase = [self.lyrics_decoder.get(_SCREAMING_SNAKE_CASE ) for character in lyric_index] return artist, genres, lyrics
706
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : int = logging.get_logger(__name__) __magic_name__ : Optional[Any] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class A__ ( __snake_case ): '''simple docstring''' snake_case__ = """visual_bert""" def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int]=3_0522 , _SCREAMING_SNAKE_CASE : Dict=768 , _SCREAMING_SNAKE_CASE : Tuple=512 , _SCREAMING_SNAKE_CASE : Optional[Any]=12 , _SCREAMING_SNAKE_CASE : Any=12 , _SCREAMING_SNAKE_CASE : Any=3072 , _SCREAMING_SNAKE_CASE : Dict="gelu" , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , _SCREAMING_SNAKE_CASE : Any=0.1 , _SCREAMING_SNAKE_CASE : Optional[int]=512 , _SCREAMING_SNAKE_CASE : List[Any]=2 , _SCREAMING_SNAKE_CASE : str=0.0_2 , _SCREAMING_SNAKE_CASE : Any=1E-1_2 , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Optional[int]=True , _SCREAMING_SNAKE_CASE : Dict=1 , _SCREAMING_SNAKE_CASE : Optional[int]=0 , _SCREAMING_SNAKE_CASE : str=2 , **_SCREAMING_SNAKE_CASE : Dict , ): """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = visual_embedding_dim UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = type_vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = bypass_transformer UpperCamelCase = special_visual_initialize
410
0
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_: List[Any] = CTRLTokenizer SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = False def A ( self ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _SCREAMING_SNAKE_CASE : str = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] _SCREAMING_SNAKE_CASE : Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _SCREAMING_SNAKE_CASE : str = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] _SCREAMING_SNAKE_CASE : Union[str, Any] = {'unk_token': '<unk>'} _SCREAMING_SNAKE_CASE : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def A ( self , **lowerCAmelCase_ ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def A ( self , lowerCAmelCase_ ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = 'adapt react readapt apt' _SCREAMING_SNAKE_CASE : Union[str, Any] = 'adapt react readapt apt' return input_text, output_text def A ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _SCREAMING_SNAKE_CASE : Any = 'adapt react readapt apt' _SCREAMING_SNAKE_CASE : Any = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() _SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : int = tokens + [tokenizer.unk_token] _SCREAMING_SNAKE_CASE : Any = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ )
621
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 16 lowerCAmelCase__ = 32 def lowercase__ ( lowerCamelCase, lowerCamelCase = 16 ): _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained('bert-base-cased' ) _SCREAMING_SNAKE_CASE : Any = load_dataset('glue', 'mrpc' ) def tokenize_function(lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) _SCREAMING_SNAKE_CASE : int = tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCamelCase, max_length=lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _SCREAMING_SNAKE_CASE : Tuple = datasets.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _SCREAMING_SNAKE_CASE : Dict = tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _SCREAMING_SNAKE_CASE : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _SCREAMING_SNAKE_CASE : List[str] = 16 elif accelerator.mixed_precision != "no": _SCREAMING_SNAKE_CASE : Dict = 8 else: _SCREAMING_SNAKE_CASE : str = None return tokenizer.pad( lowerCamelCase, padding='longest', max_length=lowerCamelCase, pad_to_multiple_of=lowerCamelCase, return_tensors='pt', ) # Instantiate dataloaders. _SCREAMING_SNAKE_CASE : List[str] = DataLoader( tokenized_datasets['train'], shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets['validation'], shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ = mocked_dataloaders # noqa: F811 def lowercase__ ( lowerCamelCase, lowerCamelCase ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCamelCase ) == "1": _SCREAMING_SNAKE_CASE : int = 2 # Initialize accelerator _SCREAMING_SNAKE_CASE : Optional[int] = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _SCREAMING_SNAKE_CASE : Any = config['lr'] _SCREAMING_SNAKE_CASE : Tuple = int(config['num_epochs'] ) _SCREAMING_SNAKE_CASE : Dict = int(config['seed'] ) _SCREAMING_SNAKE_CASE : List[Any] = int(config['batch_size'] ) _SCREAMING_SNAKE_CASE : Tuple = evaluate.load('glue', 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCamelCase ) def inner_training_loop(lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _SCREAMING_SNAKE_CASE : Tuple = AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _SCREAMING_SNAKE_CASE : Any = model.to(accelerator.device ) # Instantiate optimizer _SCREAMING_SNAKE_CASE : str = AdamW(params=model.parameters(), lr=lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = get_dataloaders(lowerCamelCase, lowerCamelCase ) # Instantiate scheduler _SCREAMING_SNAKE_CASE : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowerCamelCase, num_warmup_steps=100, num_training_steps=(len(lowerCamelCase ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = accelerator.prepare( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) # Now we train the model for epoch in range(lowerCamelCase ): model.train() for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(**lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = outputs.loss accelerator.backward(lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[str] = model(**lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = outputs.logits.argmax(dim=-1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCamelCase, references=lowerCamelCase, ) _SCREAMING_SNAKE_CASE : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def lowercase__ ( ): _SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowerCamelCase, default=lowerCamelCase, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() _SCREAMING_SNAKE_CASE : Optional[Any] = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCamelCase, lowerCamelCase ) if __name__ == "__main__": main()
621
1
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __snake_case : """simple docstring""" def __init__( self : int , lowerCamelCase : List[Any] , lowerCamelCase : List[Any]=13 , lowerCamelCase : Optional[Any]=64 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Optional[Any]=3 , lowerCamelCase : Tuple=True , lowerCamelCase : Optional[int]=True , lowerCamelCase : Optional[int]=32 , lowerCamelCase : str=5 , lowerCamelCase : str=4 , lowerCamelCase : Optional[Any]=37 , lowerCamelCase : str="gelu" , lowerCamelCase : Any=0.1 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : Union[str, Any]=10 , lowerCamelCase : Any=0.02 , lowerCamelCase : Any=[1, 16, 4, 4] , lowerCamelCase : Dict=None , ) -> List[Any]: lowerCAmelCase_ : Any = parent lowerCAmelCase_ : List[str] = batch_size lowerCAmelCase_ : Optional[Any] = image_size lowerCAmelCase_ : List[Any] = patch_size lowerCAmelCase_ : Any = num_channels lowerCAmelCase_ : Dict = is_training lowerCAmelCase_ : Any = use_labels lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : Any = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : Any = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_probs_dropout_prob lowerCAmelCase_ : int = type_sequence_label_size lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : Union[str, Any] = scope lowerCAmelCase_ : Optional[Any] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : List[str] = (self.image_size // 32) ** 2 lowerCAmelCase_ : str = num_patches + 1 def __lowercase ( self : List[str] ) -> Dict: lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : List[Any] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : str = self.get_config() return config, pixel_values, labels def __lowercase ( self : int ) -> Optional[Any]: lowerCAmelCase_ : Dict = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=lowerCamelCase , ) def __lowercase ( self : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] ) -> Tuple: lowerCAmelCase_ : Tuple = ViTHybridModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Optional[int] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : str , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Dict ) -> Any: lowerCAmelCase_ : List[Any] = self.type_sequence_label_size lowerCAmelCase_ : str = ViTHybridForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCAmelCase_ : Tuple = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Optional[Any] ) -> Tuple: lowerCAmelCase_ : int = self.prepare_config_and_inputs() lowerCAmelCase_ : Dict = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def __lowercase ( self : Optional[Any] ) -> str: lowerCAmelCase_ : List[Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : Dict = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def __lowercase ( self : Optional[Any] ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def __lowercase ( self : Optional[Any] ) -> Tuple: pass def __lowercase ( self : str ) -> str: lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def __lowercase ( self : Any ) -> List[str]: lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Dict = model_class(lowerCamelCase ) lowerCAmelCase_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Dict = [*signature.parameters.keys()] lowerCAmelCase_ : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __lowercase ( self : List[Any] ) -> Any: lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __lowercase ( self : str ) -> Any: lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def __lowercase ( self : str ) -> Dict: lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Optional[Any] = _config_zero_init(lowerCamelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Tuple = model_class(config=lowerCamelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Optional[Any] = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __lowercase ( self : Optional[int] ) -> Tuple: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Tuple = ViTHybridModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase): """simple docstring""" @cached_property def __lowercase ( self : Any ) -> List[str]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowercase ( self : Union[str, Any] ) -> Dict: lowerCAmelCase_ : List[Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCamelCase ) lowerCAmelCase_ : Any = self.default_image_processor lowerCAmelCase_ : List[Any] = prepare_img() lowerCAmelCase_ : Union[str, Any] = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**lowerCamelCase ) # verify the logits lowerCAmelCase_ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) lowerCAmelCase_ : Dict = torch.tensor([-1.9_090, -0.4_993, -0.2_389] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) ) @slow @require_accelerate def __lowercase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase_ : Any = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : List[str] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Any = prepare_img() lowerCAmelCase_ : List[Any] = image_processor(images=lowerCamelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Any = model(**lowerCamelCase ) lowerCAmelCase_ : str = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
700
'''simple docstring''' import numpy as np def UpperCamelCase_ ( A__ : np.array ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def UpperCamelCase_ ( A__ : np.array ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
398
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a__ ( __magic_name__ ): @staticmethod @abstractmethod def a_ ( UpperCamelCase_ : ArgumentParser): """simple docstring""" raise NotImplementedError() @abstractmethod def a_ ( self : List[Any]): """simple docstring""" raise NotImplementedError()
77
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a__ ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any=13 , UpperCamelCase_ : Optional[int]=3 , UpperCamelCase_ : int=224 , UpperCamelCase_ : int=30 , UpperCamelCase_ : str=400 , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Optional[int]=[0.5, 0.5, 0.5] , UpperCamelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ): """simple docstring""" __UpperCAmelCase : Tuple = size if size is not None else {"height": 18, "width": 18} __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Tuple = batch_size __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : List[Any] = image_size __UpperCAmelCase : str = min_resolution __UpperCAmelCase : Tuple = max_resolution __UpperCAmelCase : Optional[Any] = do_resize __UpperCAmelCase : Any = size __UpperCAmelCase : Any = do_normalize __UpperCAmelCase : Any = image_mean __UpperCAmelCase : Optional[Any] = image_std def a_ ( self : str): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class a__ ( __magic_name__ , unittest.TestCase ): lowercase_ = ViTImageProcessor if is_vision_available() else None def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : Optional[Any] = EfficientFormerImageProcessorTester(self) @property def a_ ( self : Union[str, Any]): """simple docstring""" return self.image_proc_tester.prepare_image_processor_dict() def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCamelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCamelCase_ , "image_std")) self.assertTrue(hasattr(UpperCamelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCamelCase_ , "do_resize")) self.assertTrue(hasattr(UpperCamelCase_ , "size")) def a_ ( self : Dict): """simple docstring""" pass def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images __UpperCAmelCase : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase_) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image) # Test not batched input __UpperCAmelCase : Optional[int] = image_processor(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched __UpperCAmelCase : Optional[int] = image_processor(UpperCamelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray) # Test not batched input __UpperCAmelCase : Tuple = image_processor(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched __UpperCAmelCase : Any = image_processor(UpperCamelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __UpperCAmelCase : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor) # Test not batched input __UpperCAmelCase : Optional[Any] = image_processor(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched __UpperCAmelCase : Optional[int] = image_processor(UpperCamelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
77
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(snake_case_ ) , "Tatoeba directory does not exist." ) class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = tempfile.mkdtemp() return TatoebaConverter(save_dir=UpperCAmelCase ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' self.resolver.convert_models(["heb-eng"] ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ = self.resolver.write_model_card("opus-mt-he-en" , dry_run=UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
601
import string import numpy def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , __lowerCamelCase ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowerCAmelCase__ = numpy.vectorize(lambda snake_case_ : x % 36 ) lowerCAmelCase__ = numpy.vectorize(snake_case_ ) def __init__( self , UpperCAmelCase ) -> None: '''simple docstring''' lowercase_ = self.modulus(UpperCAmelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowercase_ = encrypt_key.shape[0] def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self.key_string.index(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self.key_string[round(UpperCAmelCase )] def A__ ( self ) -> None: '''simple docstring''' lowercase_ = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase_ = det % len(self.key_string ) lowercase_ = len(self.key_string ) if greatest_common_divisor(UpperCAmelCase , len(self.key_string ) ) != 1: lowercase_ = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = [char for char in text.upper() if char in self.key_string] lowercase_ = chars[-1] while len(UpperCAmelCase ) % self.break_key != 0: chars.append(UpperCAmelCase ) return "".join(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = self.process_text(text.upper() ) lowercase_ = "" for i in range(0 , len(UpperCAmelCase ) - self.break_key + 1 , self.break_key ): lowercase_ = text[i : i + self.break_key] lowercase_ = [self.replace_letters(UpperCAmelCase ) for char in batch] lowercase_ = numpy.array([vec] ).T lowercase_ = self.modulus(self.encrypt_key.dot(UpperCAmelCase ) ).T.tolist()[ 0 ] lowercase_ = "".join( self.replace_digits(UpperCAmelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def A__ ( self ) -> numpy.ndarray: '''simple docstring''' lowercase_ = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase_ = det % len(self.key_string ) lowercase_ = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowercase_ = i break lowercase_ = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCAmelCase ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = self.make_decrypt_key() lowercase_ = self.process_text(text.upper() ) lowercase_ = "" for i in range(0 , len(UpperCAmelCase ) - self.break_key + 1 , self.break_key ): lowercase_ = text[i : i + self.break_key] lowercase_ = [self.replace_letters(UpperCAmelCase ) for char in batch] lowercase_ = numpy.array([vec] ).T lowercase_ = self.modulus(decrypt_key.dot(UpperCAmelCase ) ).T.tolist()[0] lowercase_ = "".join( self.replace_digits(UpperCAmelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = int(input("Enter the order of the encryption key: " ) ) lowercase_ = [] print("Enter each row of the encryption key with space separated integers" ) for _ in range(__lowerCamelCase ): lowercase_ = [int(__lowerCamelCase ) for x in input().split()] hill_matrix.append(__lowerCamelCase ) lowercase_ = HillCipher(numpy.array(__lowerCamelCase ) ) print("Would you like to encrypt or decrypt some text? (1 or 2)" ) lowercase_ = input("\n1. Encrypt\n2. Decrypt\n" ) if option == "1": lowercase_ = input("What text would you like to encrypt?: " ) print("Your encrypted text is:" ) print(hc.encrypt(__lowerCamelCase ) ) elif option == "2": lowercase_ = input("What text would you like to decrypt?: " ) print("Your decrypted text is:" ) print(hc.decrypt(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
601
1
import os from datetime import datetime as dt from github import Github a__ = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _a : List[str] = Github(os.environ['''GITHUB_TOKEN'''] ) _a : Tuple = g.get_repo('''huggingface/diffusers''' ) _a : str = repo.get_issues(state='''open''' ) for issue in open_issues: _a : Optional[int] = sorted(issue.get_comments() ,key=lambda __a : i.created_at ,reverse=__a ) _a : Union[str, Any] = comments[0] if len(__a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
14
def _lowerCamelCase ( __A : int ) -> str: _UpperCAmelCase : Tuple = int(__A ) if decimal in (0, 1): # Exit cases for the recursion return str(__A ) _UpperCAmelCase , _UpperCAmelCase : int = divmod(__A , 2 ) return binary_recursive(__A ) + str(__A ) def _lowerCamelCase ( __A : str ) -> str: _UpperCAmelCase : List[Any] = str(__A ).strip() if not number: raise ValueError('''No input value was provided''' ) _UpperCAmelCase : Tuple = '''-''' if number.startswith('''-''' ) else '''''' _UpperCAmelCase : Dict = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return f'''{negative}0b{binary_recursive(int(__A ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
485
0
"""simple docstring""" class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = graph self._normalize_graph(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = len(__UpperCAmelCase ) __UpperCamelCase = None def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if sources is int: __UpperCamelCase = [sources] if sinks is int: __UpperCamelCase = [sinks] if len(__UpperCAmelCase ) == 0 or len(__UpperCAmelCase ) == 0: return __UpperCamelCase = sources[0] __UpperCamelCase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__UpperCAmelCase ) > 1 or len(__UpperCAmelCase ) > 1: __UpperCamelCase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __UpperCamelCase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __UpperCamelCase = max_input_flow __UpperCamelCase = 0 __UpperCamelCase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __UpperCamelCase = max_input_flow __UpperCamelCase = size - 1 def UpperCAmelCase ( self ): '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = algorithm(self ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = flow_network __UpperCamelCase = flow_network.verticesCount __UpperCamelCase = flow_network.sourceIndex __UpperCamelCase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __UpperCamelCase = flow_network.graph __UpperCamelCase = False def UpperCAmelCase ( self ): '''simple docstring''' if not self.executed: self._algorithm() __UpperCamelCase = True def UpperCAmelCase ( self ): '''simple docstring''' pass class __lowerCAmelCase ( A_ ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase ) # use this to save your result __UpperCamelCase = -1 def UpperCAmelCase ( self ): '''simple docstring''' if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class __lowerCAmelCase ( A_ ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase ) __UpperCamelCase = [[0] * self.verticies_count for i in range(self.verticies_count )] __UpperCamelCase = [0] * self.verticies_count __UpperCamelCase = [0] * self.verticies_count def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __UpperCamelCase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __UpperCamelCase = 0 while i < len(__UpperCAmelCase ): __UpperCamelCase = vertices_list[i] __UpperCamelCase = self.heights[vertex_index] self.process_vertex(__UpperCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__UpperCAmelCase ) ) __UpperCamelCase = 0 else: i += 1 __UpperCamelCase = sum(self.preflow[self.source_index] ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__UpperCAmelCase , __UpperCAmelCase ) self.relabel(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __UpperCamelCase = self.heights[to_index] if min_height is not None: __UpperCamelCase = min_height + 1 if __name__ == "__main__": UpperCamelCase : Tuple = [0] UpperCamelCase : Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase : List[Any] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase : Dict = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase : str = flow_network.find_maximum_flow() print(f'''maximum flow is {maximum_flow}''')
708
"""simple docstring""" import string import numpy def A ( snake_case :int , snake_case :int ) -> int: return b if a == 0 else greatest_common_divisor(b % a , snake_case ) class __lowerCAmelCase : lowercase = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowercase = numpy.vectorize(lambda __SCREAMING_SNAKE_CASE : x % 36 ) lowercase = numpy.vectorize(__SCREAMING_SNAKE_CASE ) def __init__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.modulus(__UpperCAmelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __UpperCamelCase = encrypt_key.shape[0] def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.key_string.index(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.key_string[round(__UpperCAmelCase )] def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __UpperCamelCase = det % len(self.key_string ) __UpperCamelCase = len(self.key_string ) if greatest_common_divisor(__UpperCAmelCase , len(self.key_string ) ) != 1: __UpperCamelCase = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [char for char in text.upper() if char in self.key_string] __UpperCamelCase = chars[-1] while len(__UpperCAmelCase ) % self.break_key != 0: chars.append(__UpperCAmelCase ) return "".join(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.process_text(text.upper() ) __UpperCamelCase = '' for i in range(0 , len(__UpperCAmelCase ) - self.break_key + 1 , self.break_key ): __UpperCamelCase = text[i : i + self.break_key] __UpperCamelCase = [self.replace_letters(__UpperCAmelCase ) for char in batch] __UpperCamelCase = numpy.array([vec] ).T __UpperCamelCase = self.modulus(self.encrypt_key.dot(__UpperCAmelCase ) ).T.tolist()[ 0 ] __UpperCamelCase = ''.join( self.replace_digits(__UpperCAmelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __UpperCamelCase = det % len(self.key_string ) __UpperCamelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __UpperCamelCase = i break __UpperCamelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__UpperCAmelCase ) ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.make_decrypt_key() __UpperCamelCase = self.process_text(text.upper() ) __UpperCamelCase = '' for i in range(0 , len(__UpperCAmelCase ) - self.break_key + 1 , self.break_key ): __UpperCamelCase = text[i : i + self.break_key] __UpperCamelCase = [self.replace_letters(__UpperCAmelCase ) for char in batch] __UpperCamelCase = numpy.array([vec] ).T __UpperCamelCase = self.modulus(decrypt_key.dot(__UpperCAmelCase ) ).T.tolist()[0] __UpperCamelCase = ''.join( self.replace_digits(__UpperCAmelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def A ( ) -> None: __UpperCamelCase = int(input('Enter the order of the encryption key: ' ) ) __UpperCamelCase = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(snake_case ): __UpperCamelCase = [int(snake_case ) for x in input().split()] hill_matrix.append(snake_case ) __UpperCamelCase = HillCipher(numpy.array(snake_case ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) __UpperCamelCase = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": __UpperCamelCase = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(snake_case ) ) elif option == "2": __UpperCamelCase = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
293
0
from math import factorial def lowerCAmelCase_ ( lowercase: int = 100 ) -> int: '''simple docstring''' return sum(int(__UpperCamelCase ) for x in str(factorial(__UpperCamelCase ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
271
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel SCREAMING_SNAKE_CASE__ = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 1_3_1_0_7_2, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, } def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> str: return torch.atana(__UpperCamelCase , __UpperCamelCase ) / math.pi * 2 def lowercase__ ( __UpperCamelCase )-> Tuple: UpperCamelCase = torch.sin(t * math.pi / 2 ) ** 2 UpperCamelCase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(__UpperCamelCase , __UpperCamelCase ) class a_ ( lowerCamelCase ): pass class a_ ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" super().__init__() UpperCamelCase = DiffusionAttnUnetaD(_SCREAMING_SNAKE_CASE , n_attn_layers=4 ) UpperCamelCase = deepcopy(self.diffusion ) UpperCamelCase = torch.quasirandom.SobolEngine(1 , scramble=_SCREAMING_SNAKE_CASE ) def lowercase__ ( __UpperCamelCase )-> List[str]: UpperCamelCase = MODELS_MAP[model_name]["""url"""] os.system(F"wget {url} ./" ) return F"./{model_name}.ckpt" SCREAMING_SNAKE_CASE__ = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } SCREAMING_SNAKE_CASE__ = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } SCREAMING_SNAKE_CASE__ = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } SCREAMING_SNAKE_CASE__ = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } SCREAMING_SNAKE_CASE__ = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } SCREAMING_SNAKE_CASE__ = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def lowercase__ ( __UpperCamelCase )-> List[str]: if name.startswith("""skip""" ): return name.replace("""skip""" , RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(F"ResConvBlock error with {name}" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def lowercase__ ( __UpperCamelCase )-> List[Any]: for key, value in ATTN_MAP.items(): if name.startswith(__UpperCamelCase ) and not isinstance(__UpperCamelCase , __UpperCamelCase ): return name.replace(__UpperCamelCase , __UpperCamelCase ) elif name.startswith(__UpperCamelCase ): return [name.replace(__UpperCamelCase , __UpperCamelCase ) for v in value] raise ValueError(F"Attn error with {name}" ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase=13 )-> int: UpperCamelCase = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" , """time_proj""" ) UpperCamelCase = 0 if string.startswith("""net.3.""" ): depth += 1 UpperCamelCase = string[6:] elif string.startswith("""net.""" ): UpperCamelCase = string[4:] while string.startswith("""main.7.""" ): depth += 1 UpperCamelCase = string[7:] if string.startswith("""main.""" ): UpperCamelCase = string[5:] # mid block if string[:2].isdigit(): UpperCamelCase = string[:2] UpperCamelCase = string[2:] else: UpperCamelCase = string[0] UpperCamelCase = string[1:] if depth == max_depth: UpperCamelCase = MID_NUM_TO_LAYER[layer_num] UpperCamelCase = """mid_block""" elif depth > 0 and int(__UpperCamelCase ) < 7: UpperCamelCase = DOWN_NUM_TO_LAYER[layer_num] UpperCamelCase = F"down_blocks.{depth}" elif depth > 0 and int(__UpperCamelCase ) > 7: UpperCamelCase = UP_NUM_TO_LAYER[layer_num] UpperCamelCase = F"up_blocks.{max_depth - depth - 1}" elif depth == 0: UpperCamelCase = DEPTH_0_TO_LAYER[layer_num] UpperCamelCase = F"up_blocks.{max_depth - 1}" if int(__UpperCamelCase ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(F"Naming error with {input_string} and string_left: {string_left}." ) UpperCamelCase = string_left[1:] if "resnets" in new_layer: UpperCamelCase = convert_resconv_naming(__UpperCamelCase ) elif "attentions" in new_layer: UpperCamelCase = convert_attn_naming(__UpperCamelCase ) UpperCamelCase = new_string_left if not isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase = prefix + """.""" + new_layer + """.""" + string_left else: UpperCamelCase = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def lowercase__ ( __UpperCamelCase )-> Tuple: UpperCamelCase = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue UpperCamelCase = rename(__UpperCamelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase = transform_conv_attns(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: UpperCamelCase = v return new_state_dict def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: if len(__UpperCamelCase ) == 1: if len(v.shape ) == 3: # weight UpperCamelCase = v[:, :, 0] else: # bias UpperCamelCase = v else: # qkv matrices UpperCamelCase = v.shape[0] UpperCamelCase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: UpperCamelCase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: UpperCamelCase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def lowercase__ ( __UpperCamelCase )-> Union[str, Any]: UpperCamelCase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) UpperCamelCase = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"Make sure to provide one of the official model names {MODELS_MAP.keys()}" UpperCamelCase = download(__UpperCamelCase ) UpperCamelCase = MODELS_MAP[model_name]["""sample_rate"""] UpperCamelCase = MODELS_MAP[model_name]["""sample_size"""] UpperCamelCase = Object() UpperCamelCase = sample_size UpperCamelCase = sample_rate UpperCamelCase = 0 UpperCamelCase = UNetaDModel(sample_size=__UpperCamelCase , sample_rate=__UpperCamelCase ) UpperCamelCase = diffusers_model.state_dict() UpperCamelCase = DiffusionUncond(__UpperCamelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=__UpperCamelCase )["""state_dict"""] ) UpperCamelCase = orig_model.diffusion_ema.eval() UpperCamelCase = orig_model.state_dict() UpperCamelCase = rename_orig_weights(__UpperCamelCase ) UpperCamelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) UpperCamelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(__UpperCamelCase ) == 0, F"Problem with {renamed_minus_diffusers}" assert all(k.endswith("""kernel""" ) for k in list(__UpperCamelCase ) ), F"Problem with {diffusers_minus_renamed}" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}" if key == "time_proj.weight": UpperCamelCase = value.squeeze() UpperCamelCase = value diffusers_model.load_state_dict(__UpperCamelCase ) UpperCamelCase = 100 UpperCamelCase = 33 UpperCamelCase = IPNDMScheduler(num_train_timesteps=__UpperCamelCase ) UpperCamelCase = torch.manual_seed(__UpperCamelCase ) UpperCamelCase = torch.randn([1, 2, config.sample_size] , generator=__UpperCamelCase ).to(__UpperCamelCase ) UpperCamelCase = torch.linspace(1 , 0 , steps + 1 , device=__UpperCamelCase )[:-1] UpperCamelCase = get_crash_schedule(__UpperCamelCase ) UpperCamelCase = DanceDiffusionPipeline(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) UpperCamelCase = torch.manual_seed(33 ) UpperCamelCase = pipe(num_inference_steps=__UpperCamelCase , generator=__UpperCamelCase ).audios UpperCamelCase = sampling.iplms_sample(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , {} ) UpperCamelCase = generated.clamp(-1 , 1 ) UpperCamelCase = (generated - audio).abs().sum() UpperCamelCase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" , __UpperCamelCase ) print("""Diff max""" , __UpperCamelCase ) assert diff_max < 1E-3, F"Diff max: {diff_max} is too much :-/" print(F"Conversion for {model_name} successful!" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') SCREAMING_SNAKE_CASE__ = parser.parse_args() main(args)
301
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowerCamelCase ( lowerCamelCase_ ): """simple docstring""" a_: List[Any] = 'Salesforce/blip-image-captioning-base' a_: Dict = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) a_: str = 'image_captioner' a_: Dict = AutoModelForVisionaSeq a_: Optional[Any] = ['image'] a_: List[str] = ['text'] def __init__( self : List[str] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Union[str, Any] ): requires_backends(self , ["""vision"""] ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase_ : "Image" ): return self.pre_processor(images=UpperCAmelCase__ , return_tensors="""pt""" ) def lowerCAmelCase__ ( self : Any , lowerCamelCase_ : Union[str, Any] ): return self.model.generate(**UpperCAmelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase_ : List[Any] ): return self.pre_processor.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ )[0].strip()
718
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCamelCase ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" a_: Any = KandinskyVaaImgaImgPipeline a_: Optional[int] = ["""image_embeds""", """negative_image_embeds""", """image"""] a_: int = [ """image_embeds""", """negative_image_embeds""", """image""", ] a_: Dict = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a_: Dict = False @property def lowerCAmelCase__ ( self : Any ): return 32 @property def lowerCAmelCase__ ( self : str ): return 32 @property def lowerCAmelCase__ ( self : Dict ): return self.time_input_dim @property def lowerCAmelCase__ ( self : Union[str, Any] ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self : Any ): return 100 @property def lowerCAmelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _lowerCAmelCase ={ """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCAmelCase =UNetaDConditionModel(**lowerCamelCase_ ) return model @property def lowerCAmelCase__ ( self : Dict ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self : str ): torch.manual_seed(0 ) _lowerCAmelCase =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self : Optional[int] ): _lowerCAmelCase =self.dummy_unet _lowerCAmelCase =self.dummy_movq _lowerCAmelCase ={ """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowerCAmelCase =DDIMScheduler(**lowerCamelCase_ ) _lowerCAmelCase ={ """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase__ ( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple=0 ): _lowerCAmelCase =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) _lowerCAmelCase =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image _lowerCAmelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) _lowerCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("""RGB""" ).resize((256, 256) ) if str(lowerCamelCase_ ).startswith("""mps""" ): _lowerCAmelCase =torch.manual_seed(lowerCamelCase_ ) else: _lowerCAmelCase =torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _lowerCAmelCase ={ """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self : Union[str, Any] ): _lowerCAmelCase ="""cpu""" _lowerCAmelCase =self.get_dummy_components() _lowerCAmelCase =self.pipeline_class(**lowerCamelCase_ ) _lowerCAmelCase =pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase =pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) _lowerCAmelCase =output.images _lowerCAmelCase =pipe( **self.get_dummy_inputs(lowerCamelCase_ ) , return_dict=lowerCamelCase_ , )[0] _lowerCAmelCase =image[0, -3:, -3:, -1] _lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase =np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self : int ): _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _lowerCAmelCase ="""A red cartoon frog, 4k""" _lowerCAmelCase =KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) _lowerCAmelCase =KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _lowerCAmelCase =pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) _lowerCAmelCase =torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase =pipe_prior( lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _lowerCAmelCase =pipeline( image=lowerCamelCase_ , image_embeds=lowerCamelCase_ , negative_image_embeds=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
149
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
632
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Tuple = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
297
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowercase = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : UpperCamelCase__ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase__ = field( default=A__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCamelCase__ = field( default=A__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) UpperCamelCase__ = field( default=A__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase__ = field( default=A__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) UpperCamelCase__ = field( default=A__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class _UpperCAmelCase : UpperCamelCase__ = field( default=A__ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase__ = field( default=A__ , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) UpperCamelCase__ = field( default=A__ , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) UpperCamelCase__ = field( default=A__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase__ = field( default=A__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase__ = field( default=A__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase__ = field( default=A__ , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) UpperCamelCase__ = field( default=A__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase__ = field( default=A__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCamelCase__ = field( default=A__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def lowerCAmelCase__ ( )-> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A__ , A__ , A__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , UpperCamelCase_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A__ = training_args.get_process_log_level() logger.setLevel(UpperCamelCase_ ) datasets.utils.logging.set_verbosity(UpperCamelCase_ ) transformers.utils.logging.set_verbosity(UpperCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. A__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: A__ = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: A__ = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A__ = train_dataset.features['''label'''].names if training_args.do_eval: A__ = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A__ = eval_dataset.features['''label'''].names if training_args.do_predict: A__ = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A__ = predict_dataset.features['''label'''].names # Labels A__ = len(UpperCamelCase_ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase_ , idalabel={str(UpperCamelCase_ ): label for i, label in enumerate(UpperCamelCase_ )} , labelaid={label: i for i, label in enumerate(UpperCamelCase_ )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: A__ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch A__ = False def preprocess_function(UpperCamelCase_ : str ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=UpperCamelCase_ , max_length=data_args.max_seq_length , truncation=UpperCamelCase_ , ) if training_args.do_train: if data_args.max_train_samples is not None: A__ = min(len(UpperCamelCase_ ) , data_args.max_train_samples ) A__ = train_dataset.select(range(UpperCamelCase_ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): A__ = train_dataset.map( UpperCamelCase_ , batched=UpperCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(UpperCamelCase_ ) ) , 3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) if training_args.do_eval: if data_args.max_eval_samples is not None: A__ = min(len(UpperCamelCase_ ) , data_args.max_eval_samples ) A__ = eval_dataset.select(range(UpperCamelCase_ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): A__ = eval_dataset.map( UpperCamelCase_ , batched=UpperCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: A__ = min(len(UpperCamelCase_ ) , data_args.max_predict_samples ) A__ = predict_dataset.select(range(UpperCamelCase_ ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): A__ = predict_dataset.map( UpperCamelCase_ , batched=UpperCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function A__ = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase_ : EvalPrediction ): A__ = p.predictions[0] if isinstance(p.predictions , UpperCamelCase_ ) else p.predictions A__ = np.argmax(UpperCamelCase_ , axis=1 ) return metric.compute(predictions=UpperCamelCase_ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: A__ = default_data_collator elif training_args.fpaa: A__ = DataCollatorWithPadding(UpperCamelCase_ , pad_to_multiple_of=8 ) else: A__ = None # Initialize our Trainer A__ = Trainer( model=UpperCamelCase_ , args=UpperCamelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , data_collator=UpperCamelCase_ , ) # Training if training_args.do_train: A__ = None if training_args.resume_from_checkpoint is not None: A__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A__ = last_checkpoint A__ = trainer.train(resume_from_checkpoint=UpperCamelCase_ ) A__ = train_result.metrics A__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase_ ) ) A__ = min(UpperCamelCase_ , len(UpperCamelCase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , UpperCamelCase_ ) trainer.save_metrics('''train''' , UpperCamelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A__ = trainer.evaluate(eval_dataset=UpperCamelCase_ ) A__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase_ ) A__ = min(UpperCamelCase_ , len(UpperCamelCase_ ) ) trainer.log_metrics('''eval''' , UpperCamelCase_ ) trainer.save_metrics('''eval''' , UpperCamelCase_ ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) A__ , A__ , A__ = trainer.predict(UpperCamelCase_ , metric_key_prefix='''predict''' ) A__ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(UpperCamelCase_ ) ) A__ = min(UpperCamelCase_ , len(UpperCamelCase_ ) ) trainer.log_metrics('''predict''' , UpperCamelCase_ ) trainer.save_metrics('''predict''' , UpperCamelCase_ ) A__ = np.argmax(UpperCamelCase_ , axis=1 ) A__ = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(UpperCamelCase_ , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(UpperCamelCase_ ): A__ = label_list[item] writer.write(f"{index}\t{item}\n" ) if __name__ == "__main__": main()
700
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class _UpperCAmelCase ( A__ ): UpperCamelCase__ = '''bert''' def __init__( self , a__=3_0_5_2_2 , a__=7_6_8 , a__=1_2 , a__=1_2 , a__=3_0_7_2 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_1_2 , a__=2 , a__=0.0_2 , a__=1e-12 , a__=0 , a__="absolute" , a__=True , a__=None , **a__ , ): super().__init__(pad_token_id=a__ , **a__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class _UpperCAmelCase ( A__ ): @property def snake_case_ ( self): if self.task == "multiple-choice": A__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
526
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __snake_case =None __snake_case =logging.get_logger(__name__) __snake_case ={"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} __snake_case ={ """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } __snake_case ={ """facebook/nllb-large-en-ro""": 1_024, """facebook/nllb-200-distilled-600M""": 1_024, } # fmt: off __snake_case =["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : str = VOCAB_FILES_NAMES lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] lowerCamelCase : Tuple = NllbTokenizer lowerCamelCase : List[int] = [] lowerCamelCase : List[int] = [] def __init__( self : Tuple , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : int="<s>" , UpperCAmelCase__ : List[Any]="</s>" , UpperCAmelCase__ : List[Any]="</s>" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Optional[Any]="<unk>" , UpperCAmelCase__ : Any="<pad>" , UpperCAmelCase__ : Tuple="<mask>" , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Union[str, Any]=False , **UpperCAmelCase__ : Any , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token lowerCAmelCase = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , src_lang=UpperCAmelCase__ , tgt_lang=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , legacy_behaviour=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase = vocab_file lowerCAmelCase = False if not self.vocab_file else True lowerCAmelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCAmelCase = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCAmelCase = src_lang if src_lang is not None else 'eng_Latn' lowerCAmelCase = self.convert_tokens_to_ids(self._src_lang ) lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self : List[str] ) -> str: return self._src_lang @src_lang.setter def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : str ) -> None: lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] , UpperCAmelCase__ : Optional[str] , **UpperCAmelCase__ : str ) -> str: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCAmelCase = src_lang lowerCAmelCase = self(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = self.convert_tokens_to_ids(UpperCAmelCase__ ) lowerCAmelCase = tgt_lang_id return inputs def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str = "eng_Latn" , UpperCAmelCase__ : Optional[List[str]] = None , UpperCAmelCase__ : str = "fra_Latn" , **UpperCAmelCase__ : Optional[Any] , ) -> BatchEncoding: lowerCAmelCase = src_lang lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[Any] ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : List[str] ) -> None: lowerCAmelCase = self.convert_tokens_to_ids(UpperCAmelCase__ ) if self.legacy_behaviour: lowerCAmelCase = [] lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase = [self.cur_lang_code] lowerCAmelCase = [self.eos_token_id] lowerCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : str ) -> None: lowerCAmelCase = self.convert_tokens_to_ids(UpperCAmelCase__ ) if self.legacy_behaviour: lowerCAmelCase = [] lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: lowerCAmelCase = [self.cur_lang_code] lowerCAmelCase = [self.eos_token_id] lowerCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return lowerCAmelCase = os.path.join( UpperCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
133
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase_ : def __init__( self : Union[str, Any] , UpperCAmelCase__ : list[tuple[float, float]] ) -> Optional[int]: lowerCAmelCase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowerCAmelCase = len(UpperCAmelCase__ ) - 1 def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : float ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCAmelCase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , UpperCAmelCase__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCAmelCase__ ) , 5 ) == 1 return output_values def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : float ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCAmelCase = self.basis_function(UpperCAmelCase__ ) lowerCAmelCase = 0.0 lowerCAmelCase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : float = 0.01 ) -> Union[str, Any]: from matplotlib import pyplot as plt # type: ignore lowerCAmelCase = [] # x coordinates of points to plot lowerCAmelCase = [] # y coordinates of points to plot lowerCAmelCase = 0.0 while t <= 1: lowerCAmelCase = self.bezier_curve_function(UpperCAmelCase__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowerCAmelCase = [i[0] for i in self.list_of_points] lowerCAmelCase = [i[1] for i in self.list_of_points] plt.plot( UpperCAmelCase__ , UpperCAmelCase__ , color='blue' , label='Curve of Degree ' + str(self.degree ) , ) plt.scatter(UpperCAmelCase__ , UpperCAmelCase__ , color='red' , label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
133
1
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def _snake_case ( A , A=() , A=None , A="no" , A="29500" ) -> int: lowerCAmelCase__ = False lowerCAmelCase__ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): lowerCAmelCase__ = True elif "IPython" in sys.modules: lowerCAmelCase__ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: lowerCAmelCase__ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , A ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: lowerCAmelCase__ = 8 lowerCAmelCase__ = PrepareForLaunch(A , distributed_type='''TPU''' ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(A , args=A , nprocs=A , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*A ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=A , master_addr='''127.0.01''' , master_port=A , mixed_precision=A ): lowerCAmelCase__ = PrepareForLaunch(A , distributed_type='''MULTI_GPU''' ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(A , args=A , nprocs=A , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCAmelCase__ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*A ) def _snake_case ( A , A=() , A=2 ) -> Optional[Any]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=A , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): lowerCAmelCase__ = PrepareForLaunch(A , debug=A ) start_processes(A , args=A , nprocs=A , start_method='''fork''' )
98
'''simple docstring''' from __future__ import annotations class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ = 0 ) -> List[Any]: lowerCAmelCase__ = key def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> list[str]: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase_ ) ^ key ) for ch in content] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> list[str]: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCamelCase_ ) ^ key ) for ch in content] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = 0 ) -> str: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned lowerCAmelCase__ = '''''' for ch in content: ans += chr(ord(lowerCamelCase_ ) ^ key ) return ans def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = 0 ) -> str: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned lowerCAmelCase__ = '''''' for ch in content: ans += chr(ord(lowerCamelCase_ ) ^ key ) return ans def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = 0 ) -> bool: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) try: with open(lowerCamelCase_ ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCamelCase_ , lowerCamelCase_ ) ) except OSError: return False return True def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> bool: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) try: with open(lowerCamelCase_ ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCamelCase_ , lowerCamelCase_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
98
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : str ) -> Tuple: __lowerCAmelCase = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __lowerCAmelCase = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) __lowerCAmelCase = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __lowerCAmelCase = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6_0_0_0, 'return_attention_mask': False, 'do_normalize': True, } __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCAmelCase = os.path.join(self.tmpdirname , lowercase__ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase__ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase__ ) + '\n' ) # load decoder from hub __lowerCAmelCase = 'hf-internal-testing/ngram-beam-search-decoder' def lowercase ( self : Optional[int] , **lowerCAmelCase_ : Any ) -> int: __lowerCAmelCase = self.add_kwargs_tokens_map.copy() kwargs.update(lowercase__ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def lowercase ( self : Optional[int] , **lowerCAmelCase_ : str ) -> Optional[int]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **lowercase__ ) def lowercase ( self : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **lowercase__ ) def lowercase ( self : Optional[Any] ) -> Any: shutil.rmtree(self.tmpdirname ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_decoder() __lowerCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase__ , feature_extractor=lowercase__ , decoder=lowercase__ ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase__ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase__ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , lowercase__ ) def lowercase ( self : Dict ) -> int: __lowerCAmelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowerCAmelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(lowercase__ , 'include' ): WavaVecaProcessorWithLM( tokenizer=lowercase__ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_decoder() __lowerCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase__ , feature_extractor=lowercase__ , decoder=lowercase__ ) __lowerCAmelCase = floats_list((3, 1_0_0_0) ) __lowerCAmelCase = feature_extractor(lowercase__ , return_tensors='np' ) __lowerCAmelCase = processor(lowercase__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase ( self : int ) -> Any: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_decoder() __lowerCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase__ , feature_extractor=lowercase__ , decoder=lowercase__ ) __lowerCAmelCase = 'This is a test string' __lowerCAmelCase = processor(text=lowercase__ ) __lowerCAmelCase = tokenizer(lowercase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase ( self : Any , lowerCAmelCase_ : Union[str, Any]=(2, 1_0, 1_6) , lowerCAmelCase_ : Optional[Any]=7_7 ) -> Optional[int]: np.random.seed(lowercase__ ) return np.random.rand(*lowercase__ ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_decoder() __lowerCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase__ , feature_extractor=lowercase__ , decoder=lowercase__ ) __lowerCAmelCase = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) __lowerCAmelCase = processor.decode(lowercase__ ) __lowerCAmelCase = decoder.decode_beams(lowercase__ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def lowercase ( self : int , lowerCAmelCase_ : Optional[int] ) -> Dict: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_decoder() __lowerCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase__ , feature_extractor=lowercase__ , decoder=lowercase__ ) __lowerCAmelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowerCAmelCase = processor.batch_decode(lowercase__ ) else: with get_context(lowercase__ ).Pool() as pool: __lowerCAmelCase = processor.batch_decode(lowercase__ , lowercase__ ) __lowerCAmelCase = list(lowercase__ ) with get_context('fork' ).Pool() as p: __lowerCAmelCase = decoder.decode_beams_batch(lowercase__ , lowercase__ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowercase__ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(lowercase__ , decoded_processor.logit_score ) self.assertListEqual(lowercase__ , decoded_processor.lm_score ) def lowercase ( self : Union[str, Any] ) -> Dict: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_decoder() __lowerCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase__ , feature_extractor=lowercase__ , decoder=lowercase__ ) __lowerCAmelCase = self._get_dummy_logits() __lowerCAmelCase = 1_5 __lowerCAmelCase = -2_0.0 __lowerCAmelCase = -4.0 __lowerCAmelCase = processor.batch_decode( lowercase__ , beam_width=lowercase__ , beam_prune_logp=lowercase__ , token_min_logp=lowercase__ , ) __lowerCAmelCase = decoded_processor_out.text __lowerCAmelCase = list(lowercase__ ) with get_context('fork' ).Pool() as pool: __lowerCAmelCase = decoder.decode_beams_batch( lowercase__ , lowercase__ , beam_width=lowercase__ , beam_prune_logp=lowercase__ , token_min_logp=lowercase__ , ) __lowerCAmelCase = [d[0][0] for d in decoded_decoder_out] __lowerCAmelCase = [d[0][2] for d in decoded_decoder_out] __lowerCAmelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowercase__ , lowercase__ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , lowercase__ ) self.assertTrue(np.array_equal(lowercase__ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , lowercase__ , atol=1e-3 ) ) self.assertTrue(np.array_equal(lowercase__ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , lowercase__ , atol=1e-3 ) ) def lowercase ( self : int ) -> List[str]: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_decoder() __lowerCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase__ , feature_extractor=lowercase__ , decoder=lowercase__ ) __lowerCAmelCase = self._get_dummy_logits() __lowerCAmelCase = 2.0 __lowerCAmelCase = 5.0 __lowerCAmelCase = -2_0.0 __lowerCAmelCase = True __lowerCAmelCase = processor.batch_decode( lowercase__ , alpha=lowercase__ , beta=lowercase__ , unk_score_offset=lowercase__ , lm_score_boundary=lowercase__ , ) __lowerCAmelCase = decoded_processor_out.text __lowerCAmelCase = list(lowercase__ ) decoder.reset_params( alpha=lowercase__ , beta=lowercase__ , unk_score_offset=lowercase__ , lm_score_boundary=lowercase__ , ) with get_context('fork' ).Pool() as pool: __lowerCAmelCase = decoder.decode_beams_batch( lowercase__ , lowercase__ , ) __lowerCAmelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowercase__ , lowercase__ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , lowercase__ ) __lowerCAmelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , lowercase__ ) def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowerCAmelCase = processor.decoder.model_container[processor.decoder._model_key] __lowerCAmelCase = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __lowerCAmelCase = os.listdir(lowercase__ ) __lowerCAmelCase = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowercase__ , lowercase__ ) def lowercase ( self : Any ) -> int: __lowerCAmelCase = snapshot_download('hf-internal-testing/processor_with_lm' ) __lowerCAmelCase = WavaVecaProcessorWithLM.from_pretrained(lowercase__ ) __lowerCAmelCase = processor.decoder.model_container[processor.decoder._model_key] __lowerCAmelCase = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __lowerCAmelCase = os.listdir(lowercase__ ) __lowerCAmelCase = os.listdir(lowercase__ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowercase__ , lowercase__ ) def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowerCAmelCase = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowerCAmelCase = floats_list((3, 1_0_0_0) ) __lowerCAmelCase = processor_wavaveca(lowercase__ , return_tensors='np' ) __lowerCAmelCase = processor_auto(lowercase__ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __lowerCAmelCase = self._get_dummy_logits() __lowerCAmelCase = processor_wavaveca.batch_decode(lowercase__ ) __lowerCAmelCase = processor_auto.batch_decode(lowercase__ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase ( self : List[Any] ) -> Tuple: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_decoder() __lowerCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase__ , feature_extractor=lowercase__ , decoder=lowercase__ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def lowercase ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str ) -> Tuple: __lowerCAmelCase = [d[key] for d in offsets] return retrieved_list def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowerCAmelCase = self._get_dummy_logits()[0] __lowerCAmelCase = processor.decode(lowercase__ , output_word_offsets=lowercase__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(lowercase__ , lowercase__ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowerCAmelCase = self._get_dummy_logits() __lowerCAmelCase = processor.batch_decode(lowercase__ , output_word_offsets=lowercase__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(lowercase__ , lowercase__ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(lowercase__ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase ( self : Dict ) -> Any: import torch __lowerCAmelCase = load_dataset('common_voice' , 'en' , split='train' , streaming=lowercase__ ) __lowerCAmelCase = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) __lowerCAmelCase = iter(lowercase__ ) __lowerCAmelCase = next(lowercase__ ) __lowerCAmelCase = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __lowerCAmelCase = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowerCAmelCase = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __lowerCAmelCase = model(lowercase__ ).logits.cpu().numpy() __lowerCAmelCase = processor.decode(logits[0] , output_word_offsets=lowercase__ ) __lowerCAmelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowerCAmelCase = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __lowerCAmelCase = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(lowercase__ , 'word' ) ) , lowercase__ ) self.assertEqual(' '.join(self.get_from_offsets(lowercase__ , 'word' ) ) , output.text ) # output times __lowerCAmelCase = torch.tensor(self.get_from_offsets(lowercase__ , 'start_time' ) ) __lowerCAmelCase = torch.tensor(self.get_from_offsets(lowercase__ , 'end_time' ) ) # fmt: off __lowerCAmelCase = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) __lowerCAmelCase = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=0.01 ) ) self.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=0.01 ) )
53
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase: Any = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: str = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: str = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _lowercase: Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
192
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def lowercase (_A ): """simple docstring""" if isinstance(_A , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_A , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_A ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = ["pixel_values"] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BILINEAR , snake_case__ = True , snake_case__ = None , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = True , snake_case__ = None , snake_case__ = None , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Optional[Any] = size if size is not None else {'shortest_edge': 256} _lowerCAmelCase : str = get_size_dict(snake_case__ , default_to_square=snake_case__ ) _lowerCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCAmelCase : Any = get_size_dict(snake_case__ , param_name='crop_size' ) _lowerCAmelCase : Tuple = do_resize _lowerCAmelCase : int = size _lowerCAmelCase : Optional[Any] = do_center_crop _lowerCAmelCase : Tuple = crop_size _lowerCAmelCase : Optional[int] = resample _lowerCAmelCase : Optional[Any] = do_rescale _lowerCAmelCase : Optional[Any] = rescale_factor _lowerCAmelCase : str = offset _lowerCAmelCase : Tuple = do_normalize _lowerCAmelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def a ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BILINEAR , snake_case__ = None , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Any = get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "shortest_edge" in size: _lowerCAmelCase : List[Any] = get_resize_output_image_size(snake_case__ , size['shortest_edge'] , default_to_square=snake_case__ ) elif "height" in size and "width" in size: _lowerCAmelCase : Union[str, Any] = (size['height'], size['width']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Any = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(snake_case__ , size=(size['height'], size['width']) , data_format=snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ , snake_case__ = True , snake_case__ = None , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : int = image.astype(np.floataa ) if offset: _lowerCAmelCase : Union[str, Any] = image - (scale / 2) return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): '''simple docstring''' return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , ): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. _lowerCAmelCase : Dict = to_numpy_array(snake_case__ ) if do_resize: _lowerCAmelCase : Dict = self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) if do_center_crop: _lowerCAmelCase : Union[str, Any] = self.center_crop(snake_case__ , size=snake_case__ ) if do_rescale: _lowerCAmelCase : Union[str, Any] = self.rescale(image=snake_case__ , scale=snake_case__ , offset=snake_case__ ) if do_normalize: _lowerCAmelCase : int = self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) _lowerCAmelCase : List[str] = to_channel_dimension_format(snake_case__ , snake_case__ ) return image def a ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Any = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : Any = resample if resample is not None else self.resample _lowerCAmelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : str = offset if offset is not None else self.offset _lowerCAmelCase : Any = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : List[str] = image_std if image_std is not None else self.image_std _lowerCAmelCase : Tuple = size if size is not None else self.size _lowerCAmelCase : Union[str, Any] = get_size_dict(snake_case__ , default_to_square=snake_case__ ) _lowerCAmelCase : str = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : List[str] = get_size_dict(snake_case__ , param_name='crop_size' ) if not valid_images(snake_case__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) _lowerCAmelCase : int = make_batched(snake_case__ ) _lowerCAmelCase : Optional[int] = [ [ self._preprocess_image( image=snake_case__ , do_resize=snake_case__ , size=snake_case__ , resample=snake_case__ , do_center_crop=snake_case__ , crop_size=snake_case__ , do_rescale=snake_case__ , rescale_factor=snake_case__ , offset=snake_case__ , do_normalize=snake_case__ , image_mean=snake_case__ , image_std=snake_case__ , data_format=snake_case__ , ) for img in video ] for video in videos ] _lowerCAmelCase : Any = {'pixel_values': videos} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
630
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowerCAmelCase : int = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
630
1