code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCAmelCase : @staticmethod def UpperCAmelCase_ ( *_lowerCamelCase , **_lowerCamelCase ): pass @is_pipeline_test @require_vision @require_torch class __UpperCAmelCase ( unittest.TestCase ): __A : List[Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowerCAmelCase_ = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = object_detector(examples[0] , threshold=0.0 ) lowerCAmelCase_ = len(_lowerCamelCase ) self.assertGreater(_lowerCamelCase , 0 ) self.assertEqual( _lowerCamelCase , [ { '''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase ), '''box''': {'''xmin''': ANY(_lowerCamelCase ), '''ymin''': ANY(_lowerCamelCase ), '''xmax''': ANY(_lowerCamelCase ), '''ymax''': ANY(_lowerCamelCase )}, } for i in range(_lowerCamelCase ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def UpperCAmelCase_ ( self ): pass @require_torch def UpperCAmelCase_ ( self ): lowerCAmelCase_ = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowerCAmelCase_ = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.72_35, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.72_18, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.71_84, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.67_48, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.66_56, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.66_14, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.64_56, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.6_42, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.64_19, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] , ) lowerCAmelCase_ = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.72_35, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.72_18, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.71_84, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.67_48, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.66_56, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.66_14, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.64_56, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.6_42, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.64_19, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ] , ) @require_torch @slow def UpperCAmelCase_ ( self ): lowerCAmelCase_ = pipeline('''zero-shot-object-detection''' ) lowerCAmelCase_ = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ] , ) lowerCAmelCase_ = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def UpperCAmelCase_ ( self ): pass @require_torch @slow def UpperCAmelCase_ ( self ): lowerCAmelCase_ = 0.2 lowerCAmelCase_ = pipeline('''zero-shot-object-detection''' ) lowerCAmelCase_ = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=_lowerCamelCase , ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ] , ) @require_torch @slow def UpperCAmelCase_ ( self ): lowerCAmelCase_ = 2 lowerCAmelCase_ = pipeline('''zero-shot-object-detection''' ) lowerCAmelCase_ = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=_lowerCamelCase , ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ] , )
274
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Optional[Any] ={ '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict =['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] =[ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys A_ : List[str] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
274
1
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class UpperCAmelCase_ ( _lowercase): snake_case__ = 42 @flax_register_to_config class UpperCAmelCase_ ( nn.Module , _lowercase , _lowercase): snake_case__ = 32 snake_case__ = 4 snake_case__ = 4 snake_case__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) snake_case__ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") snake_case__ = False snake_case__ = (3_20, 6_40, 12_80, 12_80) snake_case__ = 2 snake_case__ = 8 snake_case__ = None snake_case__ = 12_80 snake_case__ = 0.0 snake_case__ = False snake_case__ = jnp.floataa snake_case__ = True snake_case__ = 0 snake_case__ = False def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : jax.random.KeyArray ) -> FrozenDict: # init input tensors _UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size) _UpperCamelCase = jnp.zeros(__UpperCamelCase , dtype=jnp.floataa ) _UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa ) _UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _UpperCamelCase , _UpperCamelCase = jax.random.split(__UpperCamelCase ) _UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )["params"] def _UpperCamelCase ( self : Optional[Any] ) -> Tuple: _UpperCamelCase = self.block_out_channels _UpperCamelCase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _UpperCamelCase = self.num_attention_heads or self.attention_head_dim # input _UpperCamelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _UpperCamelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _UpperCamelCase = FlaxTimestepEmbedding(__UpperCamelCase , dtype=self.dtype ) _UpperCamelCase = self.only_cross_attention if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = (num_attention_heads,) * len(self.down_block_types ) # down _UpperCamelCase = [] _UpperCamelCase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): _UpperCamelCase = output_channel _UpperCamelCase = block_out_channels[i] _UpperCamelCase = i == len(__UpperCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": _UpperCamelCase = FlaxCrossAttnDownBlockaD( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _UpperCamelCase = FlaxDownBlockaD( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__UpperCamelCase ) _UpperCamelCase = down_blocks # mid _UpperCamelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up _UpperCamelCase = [] _UpperCamelCase = list(reversed(__UpperCamelCase ) ) _UpperCamelCase = list(reversed(__UpperCamelCase ) ) _UpperCamelCase = list(reversed(__UpperCamelCase ) ) _UpperCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): _UpperCamelCase = output_channel _UpperCamelCase = reversed_block_out_channels[i] _UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(__UpperCamelCase ) - 1 )] _UpperCamelCase = i == len(__UpperCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": _UpperCamelCase = FlaxCrossAttnUpBlockaD( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , prev_output_channel=__UpperCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _UpperCamelCase = FlaxUpBlockaD( in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , prev_output_channel=__UpperCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__UpperCamelCase ) _UpperCamelCase = output_channel _UpperCamelCase = up_blocks # out _UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) _UpperCamelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : int=None , __UpperCamelCase : str=None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(__UpperCamelCase , jnp.ndarray ): _UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__UpperCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: _UpperCamelCase = timesteps.astype(dtype=jnp.floataa ) _UpperCamelCase = jnp.expand_dims(__UpperCamelCase , 0 ) _UpperCamelCase = self.time_proj(__UpperCamelCase ) _UpperCamelCase = self.time_embedding(__UpperCamelCase ) # 2. pre-process _UpperCamelCase = jnp.transpose(__UpperCamelCase , (0, 2, 3, 1) ) _UpperCamelCase = self.conv_in(__UpperCamelCase ) # 3. down _UpperCamelCase = (sample,) for down_block in self.down_blocks: if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase , _UpperCamelCase = down_block(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , deterministic=not train ) else: _UpperCamelCase , _UpperCamelCase = down_block(__UpperCamelCase , __UpperCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: _UpperCamelCase = () for down_block_res_sample, down_block_additional_residual in zip( __UpperCamelCase , __UpperCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) _UpperCamelCase = new_down_block_res_samples # 4. mid _UpperCamelCase = self.mid_block(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: _UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :] _UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = up_block( __UpperCamelCase , temb=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , res_hidden_states_tuple=__UpperCamelCase , deterministic=not train , ) else: _UpperCamelCase = up_block(__UpperCamelCase , temb=__UpperCamelCase , res_hidden_states_tuple=__UpperCamelCase , deterministic=not train ) # 6. post-process _UpperCamelCase = self.conv_norm_out(__UpperCamelCase ) _UpperCamelCase = nn.silu(__UpperCamelCase ) _UpperCamelCase = self.conv_out(__UpperCamelCase ) _UpperCamelCase = jnp.transpose(__UpperCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__UpperCamelCase )
342
"""simple docstring""" import cmath import math def lowercase ( a__ : float , a__ : float , a__ : float , a__ : float ) -> complex: _UpperCamelCase = math.radians(a__ ) _UpperCamelCase = math.radians(a__ ) # Convert voltage and current to rectangular form _UpperCamelCase = cmath.rect(a__ , a__ ) _UpperCamelCase = cmath.rect(a__ , a__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
342
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowercase ( lowercase__ ): lowercase = '''openai/whisper-base''' lowercase = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) lowercase = '''transcriber''' lowercase = WhisperProcessor lowercase = WhisperForConditionalGeneration lowercase = ['''audio'''] lowercase = ['''text'''] def UpperCAmelCase (self : int ,SCREAMING_SNAKE_CASE_ : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.pre_processor(SCREAMING_SNAKE_CASE_ ,return_tensors='''pt''' ).input_features def UpperCAmelCase (self : str ,SCREAMING_SNAKE_CASE_ : Tuple ) -> List[str]: """simple docstring""" return self.model.generate(inputs=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : Optional[int] ,SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[str]: """simple docstring""" return self.pre_processor.batch_decode(SCREAMING_SNAKE_CASE_ ,skip_special_tokens=SCREAMING_SNAKE_CASE_ )[0]
535
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase ( lowercase__ ): lowercase = ['''image_processor''', '''tokenizer'''] lowercase = '''CLIPImageProcessor''' lowercase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__(self : Union[str, Any] ,SCREAMING_SNAKE_CASE_ : int=None ,SCREAMING_SNAKE_CASE_ : str=None ,**SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: """simple docstring""" lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,SCREAMING_SNAKE_CASE_ ,) lowerCAmelCase = kwargs.pop('''feature_extractor''' ) lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def __call__(self : Union[str, Any] ,SCREAMING_SNAKE_CASE_ : List[str]=None ,SCREAMING_SNAKE_CASE_ : Optional[int]=None ,SCREAMING_SNAKE_CASE_ : Union[str, Any]=None ,**SCREAMING_SNAKE_CASE_ : Any ) -> List[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowerCAmelCase = self.tokenizer(SCREAMING_SNAKE_CASE_ ,return_tensors=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) if images is not None: lowerCAmelCase = self.image_processor(SCREAMING_SNAKE_CASE_ ,return_tensors=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) if text is not None and images is not None: lowerCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) ,tensor_type=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : List[str] ,*SCREAMING_SNAKE_CASE_ : Union[str, Any] ,**SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : Union[str, Any] ,*SCREAMING_SNAKE_CASE_ : int ,**SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Any: """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) @property def UpperCAmelCase (self : List[Any] ) -> Dict: """simple docstring""" lowerCAmelCase = self.tokenizer.model_input_names lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
535
1
def UpperCamelCase_ ( __a ) -> bool: if num < 0: return False a__ : int = num a__ : int = 0 while num > 0: a__ : str = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
151
def UpperCamelCase_ ( __a = 3 , __a = 7 , __a = 1_000_000 ) -> int: a__ : List[Any] = 0 a__ : int = 1 for current_denominator in range(1 , limit + 1 ): a__ : Optional[Any] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: a__ : int = current_numerator a__ : Dict = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
151
1
"""simple docstring""" from torch import nn def snake_case_ ( A_ : int ): '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
83
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs SCREAMING_SNAKE_CASE__ : int = imread(r"digital_image_processing/image_data/lena_small.jpg") SCREAMING_SNAKE_CASE__ : List[Any] = cvtColor(img, COLOR_BGR2GRAY) def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = cn.convert_to_negative(lowercase__ ) # assert negative_img array for at least one True assert negative_img.any() def _a ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase__ , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() SCREAMING_SNAKE_CASE__ : List[str] = canny.canny(lowercase__ ) # assert canny array for at least one True assert canny_array.any() def _a ( ): '''simple docstring''' assert gg.gaussian_filter(lowercase__ , 5 , sigma=0.9 ).all() def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) SCREAMING_SNAKE_CASE__ : Tuple = conv.img_convolve(lowercase__ , lowercase__ ).astype(lowercase__ ) assert res.any() def _a ( ): '''simple docstring''' assert med.median_filter(lowercase__ , 3 ).any() def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = sob.sobel_filter(lowercase__ ) assert grad.any() and theta.any() def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = sp.make_sepia(lowercase__ , 20 ) assert sepia.all() def _a ( lowercase__ : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = bs.Burkes(imread(lowercase__ , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _a ( lowercase__ : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = rs.NearestNeighbour(imread(lowercase__ , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. SCREAMING_SNAKE_CASE__ : Dict = imread(lowercase__ , 0 ) # Test for get_neighbors_pixel function() return not None SCREAMING_SNAKE_CASE__ : str = 0 SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Any = image[x_coordinate][y_coordinate] SCREAMING_SNAKE_CASE__ : List[Any] = lbp.get_neighbors_pixel( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image SCREAMING_SNAKE_CASE__ : Optional[Any] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): SCREAMING_SNAKE_CASE__ : str = lbp.local_binary_value(lowercase__ , lowercase__ , lowercase__ ) assert lbp_image.any()
85
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE_ ( _lowercase): '''simple docstring''' __magic_name__ : torch.FloatTensor class SCREAMING_SNAKE_CASE_ ( _lowercase , _lowercase): '''simple docstring''' @register_to_config def __init__( self , lowerCamelCase__ = 65_536 , lowerCamelCase__ = None , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 0 , lowerCamelCase__ = "fourier" , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = 0.0 , lowerCamelCase__ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase__ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase__ = "UNetMidBlock1D" , lowerCamelCase__ = None , lowerCamelCase__ = (32, 32, 64) , lowerCamelCase__ = None , lowerCamelCase__ = 8 , lowerCamelCase__ = 1 , lowerCamelCase__ = False , ) -> str: '''simple docstring''' super().__init__() snake_case__ : int = sample_size # time if time_embedding_type == "fourier": snake_case__ : Optional[int] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase__ , log=lowerCamelCase__ , flip_sin_to_cos=lowerCamelCase__) snake_case__ : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": snake_case__ : Dict = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase__ , downscale_freq_shift=lowerCamelCase__) snake_case__ : List[Any] = block_out_channels[0] if use_timestep_embedding: snake_case__ : Tuple = block_out_channels[0] * 4 snake_case__ : Tuple = TimestepEmbedding( in_channels=lowerCamelCase__ , time_embed_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ , out_dim=block_out_channels[0] , ) snake_case__ : Any = nn.ModuleList([]) snake_case__ : Optional[int] = None snake_case__ : str = nn.ModuleList([]) snake_case__ : Any = None # down snake_case__ : str = in_channels for i, down_block_type in enumerate(lowerCamelCase__): snake_case__ : Optional[Any] = output_channel snake_case__ : Any = block_out_channels[i] if i == 0: input_channel += extra_in_channels snake_case__ : int = i == len(lowerCamelCase__) - 1 snake_case__ : Union[str, Any] = get_down_block( lowerCamelCase__ , num_layers=lowerCamelCase__ , in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase__) # mid snake_case__ : str = get_mid_block( lowerCamelCase__ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase__ , add_downsample=lowerCamelCase__ , ) # up snake_case__ : List[Any] = list(reversed(lowerCamelCase__)) snake_case__ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: snake_case__ : Optional[int] = out_channels else: snake_case__ : List[str] = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase__): snake_case__ : int = output_channel snake_case__ : Any = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase__) - 1 else final_upsample_channels ) snake_case__ : List[Any] = i == len(lowerCamelCase__) - 1 snake_case__ : Any = get_up_block( lowerCamelCase__ , num_layers=lowerCamelCase__ , in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase__) snake_case__ : str = output_channel # out snake_case__ : Union[str, Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) snake_case__ : Any = get_out_block( out_block_type=lowerCamelCase__ , num_groups_out=lowerCamelCase__ , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase__ , act_fn=lowerCamelCase__ , fc_dim=block_out_channels[-1] // 4 , ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' snake_case__ : List[str] = timestep if not torch.is_tensor(lowerCamelCase__): snake_case__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(lowerCamelCase__) and len(timesteps.shape) == 0: snake_case__ : Tuple = timesteps[None].to(sample.device) snake_case__ : str = self.time_proj(lowerCamelCase__) if self.config.use_timestep_embedding: snake_case__ : Union[str, Any] = self.time_mlp(lowerCamelCase__) else: snake_case__ : List[Any] = timestep_embed[..., None] snake_case__ : Dict = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) snake_case__ : Any = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down snake_case__ : List[str] = () for downsample_block in self.down_blocks: snake_case__ : Optional[Any] = downsample_block(hidden_states=lowerCamelCase__ , temb=lowerCamelCase__) down_block_res_samples += res_samples # 3. mid if self.mid_block: snake_case__ : Dict = self.mid_block(lowerCamelCase__ , lowerCamelCase__) # 4. up for i, upsample_block in enumerate(self.up_blocks): snake_case__ : Optional[Any] = down_block_res_samples[-1:] snake_case__ : Optional[int] = down_block_res_samples[:-1] snake_case__ : Optional[Any] = upsample_block(lowerCamelCase__ , res_hidden_states_tuple=lowerCamelCase__ , temb=lowerCamelCase__) # 5. post-process if self.out_block: snake_case__ : Optional[int] = self.out_block(lowerCamelCase__ , lowerCamelCase__) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase__)
719
"""simple docstring""" import numpy class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__) -> None: '''simple docstring''' snake_case__ : str = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. snake_case__ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. snake_case__ : Optional[Any] = numpy.random.rand( 4 , 3) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. snake_case__ : str = numpy.random.rand(3 , 1) # Real output values provided. snake_case__ : Optional[int] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. snake_case__ : Optional[int] = numpy.zeros(output_array.shape) def UpperCAmelCase ( self) -> numpy.ndarray: '''simple docstring''' snake_case__ : Any = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights)) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. snake_case__ : List[str] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. snake_case__ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase ( self) -> None: '''simple docstring''' snake_case__ : int = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , ) snake_case__ : Optional[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , ) snake_case__ : List[str] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__) -> None: '''simple docstring''' for iteration in range(1 , iterations + 1): snake_case__ : Any = self.feedforward() self.back_propagation() if give_loss: snake_case__ : Optional[Any] = numpy.mean(numpy.square(output - self.feedforward())) print(f"""Iteration {iteration} Loss: {loss}""") def UpperCAmelCase ( self , lowerCamelCase__) -> int: '''simple docstring''' snake_case__ : Optional[int] = input_arr snake_case__ : List[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights)) snake_case__ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) snake_case__ : Tuple = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return int(self.layer_between_second_hidden_layer_and_output > 0.6) def A__ ( _UpperCAmelCase : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def A__ ( _UpperCAmelCase : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def A__ ( ) -> int: '''simple docstring''' snake_case__ : List[Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. snake_case__ : Dict = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. snake_case__ : Any = TwoHiddenLayerNeuralNetwork( input_array=_UpperCAmelCase , output_array=_UpperCAmelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_UpperCAmelCase , iterations=10 , give_loss=_UpperCAmelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
150
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
7
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = {'vocab_file': 'vocab.txt'} UpperCAmelCase_ : Tuple = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/esm2_t6_8M_UR50D': 1024, 'facebook/esm2_t12_35M_UR50D': 1024, } def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] ) -> Union[str, Any]: """simple docstring""" with open(__A , 'r' ) as f: a_ : int = f.read().splitlines() return [l.strip() for l in lines] class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Tuple = VOCAB_FILES_NAMES snake_case__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int]="<unk>" , SCREAMING_SNAKE_CASE__ : str="<cls>" , SCREAMING_SNAKE_CASE__ : List[str]="<pad>" , SCREAMING_SNAKE_CASE__ : List[Any]="<mask>" , SCREAMING_SNAKE_CASE__ : int="<eos>" , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = load_vocab_file(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = dict(enumerate(self.all_tokens ) ) a_ : Any = {tok: ind for ind, tok in enumerate(self.all_tokens )} a_ : List[str] = unk_token a_ : Optional[int] = cls_token a_ : List[str] = pad_token a_ : Optional[Any] = mask_token a_ : Dict = eos_token a_ : Dict = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> str: return self._id_to_token.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> int: return self._token_to_id.get(SCREAMING_SNAKE_CASE__ , self._token_to_id.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]: return text.split() def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : str=False ) -> List[str]: return len(self._id_to_token ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: return {token: i for i, token in enumerate(self.all_tokens )} def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str ) -> int: return self._token_to_id.get(SCREAMING_SNAKE_CASE__ , self._token_to_id.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> str: return self._id_to_token.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: a_ : Any = [self.cls_token_id] a_ : Tuple = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : List , SCREAMING_SNAKE_CASE__ : Optional[List] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] a_ : List[str] = [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] if token_ids_a is not None: mask += [0] * len(SCREAMING_SNAKE_CASE__ ) + [1] return mask def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: a_ : str = os.path.join(SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.get_vocab_size(with_added_tokens=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[List[str], List[AddedToken]] , SCREAMING_SNAKE_CASE__ : bool = False ) -> int: return super()._add_tokens(SCREAMING_SNAKE_CASE__ , special_tokens=SCREAMING_SNAKE_CASE__ )
570
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Dict = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = 'conditional_detr' lowerCAmelCase = ['past_key_values'] lowerCAmelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , a__=True , a__=None , a__=3 , a__=300 , a__=6 , a__=2048 , a__=8 , a__=6 , a__=2048 , a__=8 , a__=0.0 , a__=0.0 , a__=True , a__="relu" , a__=256 , a__=0.1 , a__=0.0 , a__=0.0 , a__=0.02 , a__=1.0 , a__=False , a__="sine" , a__="resnet50" , a__=True , a__=False , a__=2 , a__=5 , a__=2 , a__=1 , a__=1 , a__=2 , a__=5 , a__=2 , a__=0.25 , **a__ , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(a__ , a__ ): A = backbone_config.get("""model_type""" ) A = CONFIG_MAPPING[backbone_model_type] A = config_class.from_dict(a__ ) A = use_timm_backbone A = backbone_config A = num_channels A = num_queries A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = init_xavier_std A = encoder_layerdrop A = decoder_layerdrop A = encoder_layers A = auxiliary_loss A = position_embedding_type A = backbone A = use_pretrained_backbone A = dilation # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = mask_loss_coefficient A = dice_loss_coefficient A = cls_loss_coefficient A = bbox_loss_coefficient A = giou_loss_coefficient A = focal_alpha super().__init__(is_encoder_decoder=a__ , **a__ ) @property def _UpperCAmelCase ( self ) -> int: return self.encoder_attention_heads @property def _UpperCAmelCase ( self ) -> int: return self.d_model def _UpperCAmelCase ( self ) -> Optional[Any]: A = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A = self.backbone_config.to_dict() A = self.__class__.model_type return output class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = version.parse('1.11' ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-5 @property def _UpperCAmelCase ( self ) -> int: return 12
546
import os def _lowerCAmelCase ( UpperCamelCase__: str = "matrix.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(UpperCamelCase__ ) , UpperCamelCase__ ) ) as in_file: A = in_file.read() A = [[int(UpperCamelCase__ ) for cell in row.split(""",""" )] for row in data.strip().splitlines()] A = [[0 for cell in row] for row in grid] A = len(grid[0] ) A = [[0 for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )] A = grid[0][0] for i in range(1 , UpperCamelCase__ ): A = grid[0][i] + dp[0][i - 1] for i in range(1 , UpperCamelCase__ ): A = grid[i][0] + dp[i - 1][0] for i in range(1 , UpperCamelCase__ ): for j in range(1 , UpperCamelCase__ ): A = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f'''{solution() = }''')
546
1
def __lowercase ( __lowerCAmelCase : Tuple ): if any(not isinstance(_UpperCamelCase , _UpperCamelCase ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(_UpperCamelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_UpperCamelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
335
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A__ , unittest.TestCase ): __lowerCamelCase = LayoutLMTokenizer __lowerCamelCase = LayoutLMTokenizerFast __lowerCamelCase = True __lowerCamelCase = True def lowerCamelCase_ ( self : int ): '''simple docstring''' super().setUp() lowerCamelCase__: Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCamelCase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCamelCase_ ( self : int , **__a : Union[str, Any] ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCamelCase_ ( self : List[Any] , __a : List[str] ): '''simple docstring''' lowerCamelCase__: str = """UNwant\u00E9d,running""" lowerCamelCase__: Any = """unwanted, running""" return input_text, output_text def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase__: Tuple = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__a , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [7, 4, 5, 10, 8, 9] ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' pass
306
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ :str = logging.get_logger(__name__) a_ :Tuple = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowercase ( _UpperCamelCase ): lowerCamelCase : Tuple = "biogpt" def __init__( self : List[Any] , _lowercase : List[Any]=4_23_84 , _lowercase : Optional[Any]=10_24 , _lowercase : Dict=24 , _lowercase : List[str]=16 , _lowercase : Any=40_96 , _lowercase : Tuple="gelu" , _lowercase : List[str]=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : Any=10_24 , _lowercase : Dict=0.02 , _lowercase : str=1E-12 , _lowercase : Optional[int]=True , _lowercase : Union[str, Any]=True , _lowercase : Optional[int]=0.0 , _lowercase : Dict=0.0 , _lowercase : List[str]=1 , _lowercase : Dict=0 , _lowercase : Any=2 , **_lowercase : int , ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : List[Any] = hidden_size SCREAMING_SNAKE_CASE__ : int = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE__ : Tuple = hidden_act SCREAMING_SNAKE_CASE__ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Tuple = scale_embedding SCREAMING_SNAKE_CASE__ : List[str] = use_cache SCREAMING_SNAKE_CASE__ : Any = layerdrop SCREAMING_SNAKE_CASE__ : Optional[Any] = activation_dropout super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
707
def a ( A__ = 4_0_0_0_0_0_0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(A__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = b, a + b return sum(A__ ) if __name__ == "__main__": print(F'''{solution() = }''')
250
0
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[str] = ['image_processor', 'tokenizer'] _lowerCamelCase : Dict = 'BlipImageProcessor' _lowerCamelCase : Optional[int] = 'AutoTokenizer' def __init__( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple ): super().__init__(UpperCAmelCase , UpperCAmelCase ) # add QFormer tokenizer A_ = qformer_tokenizer def __call__( self : Optional[Any] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ): if images is None and text is None: raise ValueError("You have to specify at least images or text." ) A_ = BatchFeature() if text is not None: A_ = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) encoding.update(UpperCAmelCase ) A_ = self.qformer_tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) A_ = qformer_text_encoding.pop("input_ids" ) A_ = qformer_text_encoding.pop("attention_mask" ) if images is not None: A_ = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) encoding.update(UpperCAmelCase ) return encoding def __A ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : int ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __A ( self : Any ): A_ = self.tokenizer.model_input_names A_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def __A ( self : Tuple , UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[str] ): if os.path.isfile(UpperCAmelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) A_ = os.path.join(UpperCAmelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(UpperCAmelCase ) return super().save_pretrained(UpperCAmelCase , **UpperCAmelCase ) @classmethod def __A ( cls : Optional[int] , UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ): A_ = AutoTokenizer.from_pretrained(UpperCAmelCase , subfolder="qformer_tokenizer" ) A_ = cls._get_arguments_from_pretrained(UpperCAmelCase , **UpperCAmelCase ) args.append(UpperCAmelCase ) return cls(*UpperCAmelCase )
86
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : List[str] ): """simple docstring""" A_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } A_ = f'''{src_lang}-{tgt_lang}''' A_ = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) A_ = os.path.join(__UpperCamelCase ,"README.md" ) print(f'''Generating {path}''' ) with open(__UpperCamelCase ,"w" ,encoding="utf-8" ) as f: f.write(__UpperCamelCase ) # make sure we are under the root of the project __a :Optional[Any] = Path(__file__).resolve().parent.parent.parent __a :Optional[Any] = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __a , __a , __a :int = model_name.split('-') __a :str = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
86
1
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __UpperCAmelCase ( a_: List[Any], a_: Dict ): _UpperCAmelCase : Dict = checkpoint _UpperCAmelCase : Optional[Any] = {} _UpperCAmelCase : Optional[Any] = vae_state_dict["""encoder.conv_in.weight"""] _UpperCAmelCase : Any = vae_state_dict["""encoder.conv_in.bias"""] _UpperCAmelCase : int = vae_state_dict["""encoder.conv_out.weight"""] _UpperCAmelCase : List[Any] = vae_state_dict["""encoder.conv_out.bias"""] _UpperCAmelCase : List[str] = vae_state_dict["""encoder.norm_out.weight"""] _UpperCAmelCase : Any = vae_state_dict["""encoder.norm_out.bias"""] _UpperCAmelCase : Any = vae_state_dict["""decoder.conv_in.weight"""] _UpperCAmelCase : List[Any] = vae_state_dict["""decoder.conv_in.bias"""] _UpperCAmelCase : Union[str, Any] = vae_state_dict["""decoder.conv_out.weight"""] _UpperCAmelCase : int = vae_state_dict["""decoder.conv_out.bias"""] _UpperCAmelCase : Any = vae_state_dict["""decoder.norm_out.weight"""] _UpperCAmelCase : List[str] = vae_state_dict["""decoder.norm_out.bias"""] _UpperCAmelCase : Any = vae_state_dict["""quant_conv.weight"""] _UpperCAmelCase : str = vae_state_dict["""quant_conv.bias"""] _UpperCAmelCase : List[Any] = vae_state_dict["""post_quant_conv.weight"""] _UpperCAmelCase : Any = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only _UpperCAmelCase : Any = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) _UpperCAmelCase : Union[str, Any] = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the decoder up blocks only _UpperCAmelCase : List[Any] = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) _UpperCAmelCase : Tuple = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(snake_case_ ) } for i in range(snake_case_ ): _UpperCAmelCase : Optional[int] = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: _UpperCAmelCase : Dict = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) _UpperCAmelCase : int = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) _UpperCAmelCase : Dict = renew_vae_resnet_paths(snake_case_ ) _UpperCAmelCase : Tuple = {"""old""": f"""down.{i}.block""", """new""": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_, snake_case_, snake_case_, additional_replacements=[meta_path], config=snake_case_ ) _UpperCAmelCase : Tuple = [key for key in vae_state_dict if """encoder.mid.block""" in key] _UpperCAmelCase : List[str] = 2 for i in range(1, num_mid_res_blocks + 1 ): _UpperCAmelCase : Dict = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] _UpperCAmelCase : Any = renew_vae_resnet_paths(snake_case_ ) _UpperCAmelCase : Tuple = {"""old""": f"""mid.block_{i}""", """new""": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_, snake_case_, snake_case_, additional_replacements=[meta_path], config=snake_case_ ) _UpperCAmelCase : List[Any] = [key for key in vae_state_dict if """encoder.mid.attn""" in key] _UpperCAmelCase : List[str] = renew_vae_attention_paths(snake_case_ ) _UpperCAmelCase : str = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(snake_case_, snake_case_, snake_case_, additional_replacements=[meta_path], config=snake_case_ ) conv_attn_to_linear(snake_case_ ) for i in range(snake_case_ ): _UpperCAmelCase : Dict = num_up_blocks - 1 - i _UpperCAmelCase : Any = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: _UpperCAmelCase : Tuple = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] _UpperCAmelCase : Union[str, Any] = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] _UpperCAmelCase : List[str] = renew_vae_resnet_paths(snake_case_ ) _UpperCAmelCase : Union[str, Any] = {"""old""": f"""up.{block_id}.block""", """new""": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_, snake_case_, snake_case_, additional_replacements=[meta_path], config=snake_case_ ) _UpperCAmelCase : List[str] = [key for key in vae_state_dict if """decoder.mid.block""" in key] _UpperCAmelCase : str = 2 for i in range(1, num_mid_res_blocks + 1 ): _UpperCAmelCase : Dict = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] _UpperCAmelCase : List[Any] = renew_vae_resnet_paths(snake_case_ ) _UpperCAmelCase : Any = {"""old""": f"""mid.block_{i}""", """new""": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_, snake_case_, snake_case_, additional_replacements=[meta_path], config=snake_case_ ) _UpperCAmelCase : str = [key for key in vae_state_dict if """decoder.mid.attn""" in key] _UpperCAmelCase : List[str] = renew_vae_attention_paths(snake_case_ ) _UpperCAmelCase : Union[str, Any] = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(snake_case_, snake_case_, snake_case_, additional_replacements=[meta_path], config=snake_case_ ) conv_attn_to_linear(snake_case_ ) return new_checkpoint def __UpperCAmelCase ( a_: Any, a_: str, ): # Only support V1 _UpperCAmelCase : str = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) _UpperCAmelCase : Any = io.BytesIO(r.content ) _UpperCAmelCase : Optional[Any] = OmegaConf.load(snake_case_ ) _UpperCAmelCase : Tuple = 512 _UpperCAmelCase : str = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open _UpperCAmelCase : int = {} with safe_open(snake_case_, framework="pt", device="cpu" ) as f: for key in f.keys(): _UpperCAmelCase : Optional[Any] = f.get_tensor(snake_case_ ) else: _UpperCAmelCase : str = torch.load(snake_case_, map_location=snake_case_ )["""state_dict"""] # Convert the VAE model. _UpperCAmelCase : int = create_vae_diffusers_config(snake_case_, image_size=snake_case_ ) _UpperCAmelCase : Optional[int] = custom_convert_ldm_vae_checkpoint(snake_case_, snake_case_ ) _UpperCAmelCase : List[str] = AutoencoderKL(**snake_case_ ) vae.load_state_dict(snake_case_ ) vae.save_pretrained(snake_case_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') __a = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
710
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[Any], a_: Optional[Any], a_: int ): _UpperCAmelCase : List[str] = UniSpeechSatForSequenceClassification.from_pretrained(a_, config=a_ ) _UpperCAmelCase : List[str] = downstream_dict["projector.weight"] _UpperCAmelCase : List[Any] = downstream_dict["projector.bias"] _UpperCAmelCase : Union[str, Any] = downstream_dict["model.post_net.linear.weight"] _UpperCAmelCase : Dict = downstream_dict["model.post_net.linear.bias"] return model def __UpperCAmelCase ( a_: Optional[Any], a_: Union[str, Any], a_: str ): _UpperCAmelCase : Optional[Any] = UniSpeechSatForAudioFrameClassification.from_pretrained(a_, config=a_ ) _UpperCAmelCase : List[str] = downstream_dict["model.linear.weight"] _UpperCAmelCase : Optional[int] = downstream_dict["model.linear.bias"] return model def __UpperCAmelCase ( a_: Tuple, a_: List[str], a_: Any ): _UpperCAmelCase : int = UniSpeechSatForXVector.from_pretrained(a_, config=a_ ) _UpperCAmelCase : List[Any] = downstream_dict["connector.weight"] _UpperCAmelCase : Optional[int] = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _UpperCAmelCase : str = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] _UpperCAmelCase : Union[str, Any] = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] _UpperCAmelCase : Optional[int] = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] _UpperCAmelCase : Any = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] _UpperCAmelCase : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] _UpperCAmelCase : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] _UpperCAmelCase : List[Any] = downstream_dict["objective.W"] return model @torch.no_grad() def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple, a_: Any, a_: Optional[Any] ): _UpperCAmelCase : Any = torch.load(a_, map_location="cpu" ) _UpperCAmelCase : Tuple = checkpoint["Downstream"] _UpperCAmelCase : Dict = UniSpeechSatConfig.from_pretrained(a_ ) _UpperCAmelCase : Any = WavaVecaFeatureExtractor.from_pretrained( a_, return_attention_mask=a_, do_normalize=a_ ) _UpperCAmelCase : List[Any] = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): _UpperCAmelCase : Union[str, Any] = convert_classification(a_, a_, a_ ) elif arch.endswith("ForAudioFrameClassification" ): _UpperCAmelCase : Any = convert_diarization(a_, a_, a_ ) elif arch.endswith("ForXVector" ): _UpperCAmelCase : str = convert_xvector(a_, a_, a_ ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: _UpperCAmelCase : Union[str, Any] = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(a_ ) hf_model.save_pretrained(a_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') __a = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
257
0
import math def snake_case (UpperCAmelCase__ ) -> bool: return math.sqrt(UpperCAmelCase__ ) * math.sqrt(UpperCAmelCase__ ) == num def snake_case (UpperCAmelCase__ ) -> bool: UpperCamelCase_: List[str] = 0 UpperCamelCase_: Tuple = n while left <= right: UpperCamelCase_: int = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: UpperCamelCase_: List[str] = mid - 1 else: UpperCamelCase_: List[str] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
57
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 A_ : int = get_tests_dir('fixtures') A_ : int = get_tests_dir('fixtures/dummy_feature_extractor_config.json') A_ : Dict = get_tests_dir('fixtures/dummy-config.json') class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 0 def _lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : str = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : List[Any] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally SCREAMING_SNAKE_CASE : Optional[Any] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ).to_dict() config_dict.pop('feature_extractor_type' ) SCREAMING_SNAKE_CASE : int = WavaVecaFeatureExtractor(**_SCREAMING_SNAKE_CASE ) # save in new folder model_config.save_pretrained(_SCREAMING_SNAKE_CASE ) config.save_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , 'bert-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE : str = AutoFeatureExtractor.from_pretrained('bert-base' ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE , revision='aaaaaa' ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): SCREAMING_SNAKE_CASE : int = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def _lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : int = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" try: AutoConfig.register('custom' , _SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE : Union[str, Any] = CustomFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" class lowerCAmelCase__ ( _lowerCamelCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = True try: AutoConfig.register('custom' , _SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE : str = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE : List[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(_SCREAMING_SNAKE_CASE , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
265
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( lowerCamelCase_ :int , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Optional[int] , ): '''simple docstring''' snake_case_ : List[Any] = len(UpperCamelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(UpperCamelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , UpperCamelCase__ , UpperCamelCase__ , ) def lowerCamelCase ( lowerCamelCase_ :List[Any] ): '''simple docstring''' snake_case_ : Dict = [] depth_first_search([] , [] , [] , UpperCamelCase__ , UpperCamelCase__ ) # Print all the boards for board in boards: for column in board: print(UpperCamelCase__ ) print("""""" ) print(len(UpperCamelCase__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
703
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping __A : str = tuple[int, int] class __UpperCamelCase : def __init__( self :Union[str, Any] ,_UpperCamelCase :set[int] ,_UpperCamelCase :Mapping[EdgeT, int] ): snake_case_ : set[int] = vertices snake_case_ : dict[EdgeT, int] = { (min(_UpperCamelCase ), max(_UpperCamelCase )): weight for edge, weight in edges.items() } def a__ ( self :Tuple ,_UpperCamelCase :EdgeT ,_UpperCamelCase :int ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) snake_case_ : str = weight def a__ ( self :Tuple ): snake_case_ : Graph = Graph({min(self.vertices )} ,{} ) snake_case_ : EdgeT snake_case_ : int snake_case_ : EdgeT snake_case_ : int while len(subgraph.vertices ) < len(self.vertices ): snake_case_ : int = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: snake_case_ : Dict = edge snake_case_ : Dict = weight subgraph.add_edge(_UpperCamelCase ,_UpperCamelCase ) return subgraph def UpperCAmelCase ( lowerCamelCase_ :str = "p107_network.txt" ): '''simple docstring''' snake_case_ : str = os.path.abspath(os.path.dirname(lowerCamelCase_ ) ) snake_case_ : str = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) snake_case_ : dict[EdgeT, int] = {} snake_case_ : list[str] snake_case_ : int snake_case_ : int with open(lowerCamelCase_ ) as f: snake_case_ : Optional[int] = f.read().strip().split("""\n""" ) snake_case_ : Any = [line.split(""",""" ) for line in data] for edgea in range(1 , len(lowerCamelCase_ ) ): for edgea in range(lowerCamelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": snake_case_ : str = int(adjaceny_matrix[edgea][edgea] ) snake_case_ : Graph = Graph(set(range(len(lowerCamelCase_ ) ) ) , lowerCamelCase_ ) snake_case_ : Graph = graph.prims_algorithm() snake_case_ : int = sum(graph.edges.values() ) snake_case_ : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
267
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _lowerCamelCase : """simple docstring""" @property def _snake_case ( self )->Optional[int]: '''simple docstring''' return self.get_dummy_input() @property def _snake_case ( self )->Union[str, Any]: '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , )->List[str]: '''simple docstring''' A_ : List[str] = 4 A_ : Optional[int] = 32 A_ : Tuple = (32, 32) A_ : Optional[int] = torch.manual_seed(0 ) A_ : str = torch.device(_SCREAMING_SNAKE_CASE ) A_ : Tuple = (batch_size, num_channels) + sizes A_ : Dict = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) A_ : Tuple = {'''hidden_states''': hidden_states} if include_temb: A_ : Tuple = 128 A_ : List[str] = randn_tensor((batch_size, temb_channels) , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) if include_res_hidden_states_tuple: A_ : Dict = torch.manual_seed(1 ) A_ : int = (randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ),) if include_encoder_hidden_states: A_ : int = floats_tensor((batch_size, 32, 32) ).to(_SCREAMING_SNAKE_CASE ) if include_skip_sample: A_ : str = randn_tensor(((batch_size, 3) + sizes) , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) return dummy_input def _snake_case ( self )->int: '''simple docstring''' A_ : Optional[Any] = { '''in_channels''': 32, '''out_channels''': 32, '''temb_channels''': 128, } if self.block_type == "up": A_ : Union[str, Any] = 32 if self.block_type == "mid": init_dict.pop('''out_channels''' ) A_ : Tuple = self.dummy_input return init_dict, inputs_dict def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[Any]: '''simple docstring''' A_ , A_ : int = self.prepare_init_args_and_inputs_for_common() A_ : List[Any] = self.block_class(**_SCREAMING_SNAKE_CASE ) unet_block.to(_SCREAMING_SNAKE_CASE ) unet_block.eval() with torch.no_grad(): A_ : Optional[int] = unet_block(**_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = output[0] self.assertEqual(output.shape , self.output_shape ) A_ : Any = output[0, -1, -3:, -3:] A_ : List[str] = torch.tensor(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) assert torch_all_close(output_slice.flatten() , _SCREAMING_SNAKE_CASE , atol=5e-3 ) @unittest.skipIf(torch_device == '''mps''' , '''Training is not supported in mps''' ) def _snake_case ( self )->Dict: '''simple docstring''' A_ , A_ : str = self.prepare_init_args_and_inputs_for_common() A_ : Optional[Any] = self.block_class(**_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = output[0] A_ : Optional[int] = torch.device(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = randn_tensor(output.shape , device=_SCREAMING_SNAKE_CASE ) A_ : Any = torch.nn.functional.mse_loss(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward()
590
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class _lowerCamelCase : """simple docstring""" # setable values snake_case = None snake_case = None snake_case = None # sigma(t_i) @classmethod def _snake_case ( cls )->int: '''simple docstring''' return cls() @dataclass class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = 42 snake_case = 42 snake_case = 42 class _lowerCamelCase ( UpperCamelCase , UpperCamelCase ): """simple docstring""" @property def _snake_case ( self )->Dict: '''simple docstring''' return True @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 0.0_2 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 1.0_0_7 , _SCREAMING_SNAKE_CASE = 80 , _SCREAMING_SNAKE_CASE = 0.0_5 , _SCREAMING_SNAKE_CASE = 50 , )->Union[str, Any]: '''simple docstring''' pass def _snake_case ( self )->List[Any]: '''simple docstring''' return KarrasVeSchedulerState.create() def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = () )->KarrasVeSchedulerState: '''simple docstring''' A_ : str = jnp.arange(0 , _SCREAMING_SNAKE_CASE )[::-1].copy() A_ : Optional[Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=_SCREAMING_SNAKE_CASE , schedule=jnp.array(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) , timesteps=_SCREAMING_SNAKE_CASE , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )->Tuple[jnp.ndarray, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: A_ : List[Any] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: A_ : Any = 0 # sample eps ~ N(0, S_noise^2 * I) A_ : Any = random.split(_SCREAMING_SNAKE_CASE , num=1 ) A_ : List[str] = self.config.s_noise * random.normal(key=_SCREAMING_SNAKE_CASE , shape=sample.shape ) A_ : Optional[Any] = sigma + gamma * sigma A_ : Any = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , )->Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' A_ : int = sample_hat + sigma_hat * model_output A_ : Dict = (sample_hat - pred_original_sample) / sigma_hat A_ : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_SCREAMING_SNAKE_CASE , derivative=_SCREAMING_SNAKE_CASE , state=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , )->Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' A_ : List[Any] = sample_prev + sigma_prev * model_output A_ : str = (sample_prev - pred_original_sample) / sigma_prev A_ : List[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_SCREAMING_SNAKE_CASE , derivative=_SCREAMING_SNAKE_CASE , state=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' raise NotImplementedError()
590
1
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration UpperCAmelCase_ : List[Any] = HfArgumentParser(InitializationArguments) UpperCAmelCase_ : Optional[Any] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks UpperCAmelCase_ : Optional[int] = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) UpperCAmelCase_ : int = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config UpperCAmelCase_ : List[Any] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : int = { "configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = ["VisionEncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = ["TFVisionEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = ["FlaxVisionEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
424
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( __A , unittest.TestCase ): UpperCAmelCase : int = MgpstrTokenizer UpperCAmelCase : Any = False UpperCAmelCase : str = {} UpperCAmelCase : int = False def A ( self ) -> Optional[Any]: """simple docstring""" super().setUp() # fmt: off a_ : List[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on a_ : List[str] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + """\n""" ) def A ( self , **UpperCamelCase_ ) -> List[str]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def A ( self , UpperCamelCase_ ) -> Union[str, Any]: """simple docstring""" a_ : List[Any] = """tester""" a_ : Tuple = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def A ( self ) -> Optional[int]: """simple docstring""" pass def A ( self ) -> Dict: """simple docstring""" a_ : Optional[Any] = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): a_ : str = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) a_ : Tuple = tokenizer.encode([special_token] , add_special_tokens=UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , 1 ) a_ : List[Any] = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) self.assertTrue(special_token not in decoded ) def A ( self ) -> List[str]: """simple docstring""" a_ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): a_ , a_ : str = self.get_input_output_texts(UpperCamelCase_ ) a_ : List[str] = tokenizer.tokenize(UpperCamelCase_ ) a_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) a_ : Dict = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) a_ : int = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertNotEqual(len(UpperCamelCase_ ) , 0 ) a_ : Union[str, Any] = tokenizer.decode(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(text_a.replace(""" """ , """""" ) , UpperCamelCase_ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def A ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def A ( self ) -> int: """simple docstring""" pass
419
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ : def __init__( self , UpperCamelCase_ , UpperCamelCase_=2 , UpperCamelCase_=32 , UpperCamelCase_=16 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=32 , UpperCamelCase_=4 , UpperCamelCase_=[0, 1, 2, 3] , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.02 , UpperCamelCase_=3 , UpperCamelCase_=[1, 384, 24, 24] , UpperCamelCase_=True , UpperCamelCase_=None , ) -> Optional[Any]: """simple docstring""" a_ : Optional[int] = parent a_ : Dict = batch_size a_ : Tuple = image_size a_ : Any = patch_size a_ : Dict = num_channels a_ : int = is_training a_ : Optional[Any] = use_labels a_ : int = hidden_size a_ : str = num_hidden_layers a_ : List[str] = backbone_out_indices a_ : str = num_attention_heads a_ : Union[str, Any] = intermediate_size a_ : str = hidden_act a_ : Any = hidden_dropout_prob a_ : int = attention_probs_dropout_prob a_ : Optional[int] = initializer_range a_ : Any = num_labels a_ : Optional[Any] = backbone_featmap_shape a_ : str = scope a_ : Dict = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) a_ : List[Any] = (image_size // patch_size) ** 2 a_ : Any = num_patches + 1 def A ( self ) -> Any: """simple docstring""" a_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : int = None if self.use_labels: a_ : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a_ : Dict = self.get_config() return config, pixel_values, labels def A ( self ) -> List[str]: """simple docstring""" a_ : Optional[int] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=UpperCamelCase_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: """simple docstring""" a_ : Tuple = DPTModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() a_ : Optional[Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: """simple docstring""" a_ : Tuple = self.num_labels a_ : Optional[int] = DPTForDepthEstimation(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() a_ : int = model(UpperCamelCase_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: """simple docstring""" a_ : List[Any] = self.num_labels a_ : Dict = DPTForSemanticSegmentation(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() a_ : Dict = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self ) -> List[str]: """simple docstring""" a_ : str = self.prepare_config_and_inputs() a_ , a_ , a_ : Tuple = config_and_inputs a_ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( __A , __A , unittest.TestCase ): UpperCAmelCase : List[str] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCAmelCase : Optional[Any] = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase : int = False UpperCAmelCase : str = False UpperCAmelCase : Any = False def A ( self ) -> Optional[Any]: """simple docstring""" a_ : int = DPTModelTester(self ) a_ : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def A ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def A ( self ) -> int: """simple docstring""" pass def A ( self ) -> List[str]: """simple docstring""" a_ , a_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Optional[Any] = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def A ( self ) -> List[Any]: """simple docstring""" a_ , a_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : int = model_class(UpperCamelCase_ ) a_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : List[str] = [*signature.parameters.keys()] a_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def A ( self ) -> List[Any]: """simple docstring""" a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def A ( self ) -> Optional[int]: """simple docstring""" a_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*UpperCamelCase_ ) def A ( self ) -> List[Any]: """simple docstring""" a_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase_ ) def A ( self ) -> Optional[Any]: """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() a_ : Tuple = True if model_class in get_values(UpperCamelCase_ ): continue a_ : Optional[int] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.train() a_ : Any = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) a_ : List[Any] = model(**UpperCamelCase_ ).loss loss.backward() def A ( self ) -> Optional[int]: """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a_ , a_ : int = self.model_tester.prepare_config_and_inputs_for_common() a_ : Optional[Any] = False a_ : str = True if model_class in get_values(UpperCamelCase_ ) or not model_class.supports_gradient_checkpointing: continue a_ : Tuple = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.gradient_checkpointing_enable() model.train() a_ : Tuple = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) a_ : List[str] = model(**UpperCamelCase_ ).loss loss.backward() def A ( self ) -> str: """simple docstring""" a_ , a_ : int = self.model_tester.prepare_config_and_inputs_for_common() a_ : Dict = _config_zero_init(UpperCamelCase_ ) for model_class in self.all_model_classes: a_ : int = model_class(config=UpperCamelCase_ ) # Skip the check for the backbone a_ : Optional[int] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": a_ : Tuple = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A ( self ) -> Optional[Any]: """simple docstring""" pass @slow def A ( self ) -> Optional[int]: """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: a_ : List[str] = DPTModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def A ( self ) -> int: """simple docstring""" a_ , a_ : Any = self.model_tester.prepare_config_and_inputs_for_common() a_ : int = """add""" with self.assertRaises(UpperCamelCase_ ): a_ : List[str] = DPTForDepthEstimation(UpperCamelCase_ ) def _lowerCamelCase ( ): """simple docstring""" a_ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class snake_case__ ( unittest.TestCase ): def A ( self ) -> List[Any]: """simple docstring""" a_ : Any = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) a_ : int = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(UpperCamelCase_ ) a_ : Union[str, Any] = prepare_img() a_ : Dict = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): a_ : Optional[int] = model(**UpperCamelCase_ ) a_ : List[Any] = outputs.predicted_depth # verify the predicted depth a_ : Tuple = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , UpperCamelCase_ ) a_ : Any = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , UpperCamelCase_ , atol=1e-4 ) )
419
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
635
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class _snake_case ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : str): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""") _SCREAMING_SNAKE_CASE : str = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""") model.to(_A) from datasets import load_dataset _SCREAMING_SNAKE_CASE : Any = load_dataset("""nielsr/rvlcdip-demo""") _SCREAMING_SNAKE_CASE : Any = dataset["""train"""][0]["""image"""].convert("""RGB""") _SCREAMING_SNAKE_CASE : str = image_processor(_A , return_tensors="""pt""").to(_A) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE : Any = model(**_A) _SCREAMING_SNAKE_CASE : List[Any] = outputs.logits _SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 1_6)) self.assertEqual(logits.shape , _A) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=_A , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _A , atol=1e-4))
635
1
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self , _lowercase=None , _lowercase=None , _lowercase=None , **_lowercase ): """simple docstring""" if tokenize_kwargs is None: _lowerCAmelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) _lowerCAmelCase = truncation _lowerCAmelCase = tokenize_kwargs _lowerCAmelCase = {} if return_tensors is not None: _lowerCAmelCase = return_tensors return preprocess_params, {}, postprocess_params def _lowercase ( self , _lowercase , **_lowercase ): """simple docstring""" _lowerCAmelCase = self.framework _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) return model_inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.model(**_lowercase ) return model_outputs def _lowercase ( self , _lowercase , _lowercase=False ): """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_lowercase , **_lowercase ): """simple docstring""" return super().__call__(*_lowercase , **_lowercase )
5
'''simple docstring''' def A (): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: _lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A (): return next(i for i in triangle_number_generator() if count_divisors(__lowerCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
5
1
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ : Any = logging.get_logger(__name__) snake_case__ : int = '▁' snake_case__ : Dict = {'vocab_file': 'prophetnet.tokenizer'} snake_case__ : int = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } snake_case__ : Any = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } snake_case__ : Any = { 'microsoft/xprophetnet-large-wiki100-cased': 5_1_2, } def lowerCamelCase__ ( _lowerCamelCase ) ->Optional[int]: _UpperCAmelCase =collections.OrderedDict() with open(_lowerCamelCase , "r" , encoding="utf-8" ) as reader: _UpperCAmelCase =reader.readlines() for index, token in enumerate(_lowerCamelCase ): _UpperCAmelCase =token.rstrip("\n" ) _UpperCAmelCase =index return vocab class _a ( A__ ): """simple docstring""" snake_case =VOCAB_FILES_NAMES snake_case =PRETRAINED_VOCAB_FILES_MAP snake_case =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case =["""input_ids""", """attention_mask"""] def __init__( self , _snake_case , _snake_case="[SEP]" , _snake_case="[SEP]" , _snake_case="[SEP]" , _snake_case="[UNK]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ): _UpperCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_snake_case , eos_token=_snake_case , sep_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise _UpperCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) _UpperCAmelCase =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab _UpperCAmelCase ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): _UpperCAmelCase =F"[unused{i}]" _UpperCAmelCase =5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab _UpperCAmelCase =12 _UpperCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(_snake_case ) def __getstate__( self ): _UpperCAmelCase =self.__dict__.copy() _UpperCAmelCase =None return state def __setstate__( self , _snake_case ): _UpperCAmelCase =d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase ={} _UpperCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None , _snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return ([0] * len(_snake_case )) + [1] return ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1] def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None ): _UpperCAmelCase =[self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self ): return len(self.sp_model ) + self.fairseq_offset def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ={self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self , _snake_case ): return self.sp_model.encode(_snake_case , out_type=_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase =self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self , _snake_case ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self , _snake_case ): _UpperCAmelCase ="".join(_snake_case ).replace(_snake_case , " " ).strip() return out_string def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None ): if not os.path.isdir(_snake_case ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _UpperCAmelCase =os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , "wb" ) as fi: _UpperCAmelCase =self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None ): if token_ids_a is None: return token_ids_a + [self.sep_token_id] _UpperCAmelCase =[self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
592
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def lowerCamelCase__ ( _lowerCamelCase ) ->List[str]: _UpperCAmelCase =split_dict._to_yaml_list() assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _UpperCAmelCase =SplitDict._from_yaml_list(_lowerCamelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _UpperCAmelCase =None # the split name of split_dict takes over the name of the split info object _UpperCAmelCase =split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=_lowerCamelCase ), SplitInfo(dataset_name="my_dataset" )] ) def lowerCamelCase__ ( _lowerCamelCase ) ->Any: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files _UpperCAmelCase =asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
592
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __UpperCAmelCase = None __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase = { "google/bigbird-roberta-base": 4_096, "google/bigbird-roberta-large": 4_096, "google/bigbird-base-trivia-itc": 4_096, } __UpperCAmelCase = "▁" class lowercase_ ( a_ ): __magic_name__ : int = VOCAB_FILES_NAMES __magic_name__ : Dict = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Any = BigBirdTokenizer __magic_name__ : List[str] = ["""input_ids""", """attention_mask"""] __magic_name__ : List[int] = [] def __init__( self : Optional[Any] , _lowercase : List[Any]=None , _lowercase : Union[str, Any]=None , _lowercase : Optional[int]="<unk>" , _lowercase : Union[str, Any]="<s>" , _lowercase : Union[str, Any]="</s>" , _lowercase : int="<pad>" , _lowercase : Optional[Any]="[SEP]" , _lowercase : str="[MASK]" , _lowercase : List[str]="[CLS]" , **_lowercase : str , ): lowerCAmelCase__ : Optional[int] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token lowerCAmelCase__ : Any = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token lowerCAmelCase__ : Optional[int] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token lowerCAmelCase__ : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token lowerCAmelCase__ : str = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token lowerCAmelCase__ : int = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ : Optional[int] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( _lowercase , tokenizer_file=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) lowerCAmelCase__ : Dict = vocab_file lowerCAmelCase__ : Optional[int] = False if not self.vocab_file else True def _lowerCAmelCase ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): lowerCAmelCase__ : Tuple = [self.sep_token_id] lowerCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCAmelCase ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] def _lowerCAmelCase ( self : Dict , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): lowerCAmelCase__ : Any = [self.sep_token_id] lowerCAmelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase ( self : List[str] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase__ : Any = os.path.join( _lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
308
"""simple docstring""" import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def lowercase__ ( lowerCamelCase : List[str]=3_2 , lowerCamelCase : Optional[Any]=1_0 , lowerCamelCase : List[str]=1_0_0 , lowerCamelCase : Optional[Any]=1_0_2_6 , lowerCamelCase : Any=True , lowerCamelCase : Optional[Any]="data/tokenized_stories_train_wikitext103.jbl" , lowerCamelCase : Union[str, Any]="igf_context_pairs.jbl" , ) -> List[str]: set_seed(3 ) # generate train_data and objective_set lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = generate_datasets( lowerCamelCase , lowerCamelCase , number=lowerCamelCase , min_len=1_0_2_6 , trim=lowerCamelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowerCAmelCase__ : Dict = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model lowerCAmelCase__ : List[Any] = load_gpta("gpt2" ).to(lowerCamelCase ) print("computing perplexity on objective set" ) lowerCAmelCase__ : Union[str, Any] = compute_perplexity(lowerCamelCase , lowerCamelCase , lowerCamelCase ).item() print("perplexity on objective set:" , lowerCamelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def lowercase__ ( lowerCamelCase : Tuple , lowerCamelCase : Dict=1_5 , lowerCamelCase : Tuple=1_2_8 , lowerCamelCase : Dict=1_0_0 , lowerCamelCase : Union[str, Any]="igf_model.pt" , ) -> List[Any]: set_seed(4_2 ) # Load pre-trained model lowerCAmelCase__ : Any = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model lowerCAmelCase__ : Any = SecondaryLearner(lowerCamelCase ) # Train secondary learner lowerCAmelCase__ : Tuple = train_secondary_learner( lowerCamelCase , lowerCamelCase , max_epochs=lowerCamelCase , batch_size=lowerCamelCase , eval_freq=1_0_0 , igf_model_path=lowerCamelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def lowercase__ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Tuple=3_2 , lowerCamelCase : Union[str, Any]=1_0_0_0 , lowerCamelCase : int=1_6 , lowerCamelCase : str=1.0 , lowerCamelCase : int=recopy_gpta , lowerCamelCase : Any=None , lowerCamelCase : Optional[int]=1_0 , lowerCamelCase : Dict="gpt2_finetuned.pt" , ) -> Optional[int]: lowerCAmelCase__ : Union[str, Any] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase__ : Union[str, Any] = RandomSampler(lowerCamelCase ) lowerCAmelCase__ : Optional[int] = DataLoader(lowerCamelCase , sampler=lowerCamelCase ) lowerCAmelCase__ : Optional[int] = max_steps // (len(lowerCamelCase )) + 1 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Dict = torch.zeros((1, context_len) , dtype=torch.long , device=lowerCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = recopy_model(lowerCamelCase , lowerCamelCase , lowerCamelCase ) model.train() if secondary_learner is not None: secondary_learner.to(lowerCamelCase ) secondary_learner.eval() lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : Tuple = [] # Compute the performance of the transformer model at the beginning lowerCAmelCase__ : str = compute_perplexity(lowerCamelCase , lowerCamelCase , lowerCamelCase ) test_perps.append(lowerCamelCase ) print("Test perplexity, step" , lowerCamelCase , ":" , lowerCamelCase ) for epoch in range(int(lowerCamelCase ) ): for step, example in enumerate(lowerCamelCase ): torch.cuda.empty_cache() lowerCAmelCase__ : Dict = random.randint(0 , example.size(2 ) - context_len - 1 ) lowerCAmelCase__ : Optional[int] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowerCAmelCase__ : Optional[Any] = model(lowerCamelCase , labels=lowerCamelCase ) lowerCAmelCase__ : Tuple = True if secondary_learner is not None: lowerCAmelCase__ : Tuple = secondary_learner.forward( torch.tensor(lowerCamelCase , dtype=torch.long , device=lowerCamelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(lowerCamelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 1_0: lowerCAmelCase__ : Dict = -1 if predicted_q < threshold: lowerCAmelCase__ : Union[str, Any] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowerCAmelCase__ : str = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowerCAmelCase__ : Dict = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowerCAmelCase__ : Dict = compute_perplexity(lowerCamelCase , lowerCamelCase , lowerCamelCase ) test_perps.append(lowerCamelCase ) print("Test perplexity, step" , lowerCamelCase , ":" , lowerCamelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 6_0: break if max_steps > 0 and global_step > 6_0: break # save finetuned transformer model torch.save(model.state_dict() , lowerCamelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def lowercase__ ( ) -> Optional[int]: lowerCAmelCase__ : Any = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=lowerCamelCase , type=lowerCamelCase , required=lowerCamelCase , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=lowerCamelCase , type=lowerCamelCase , required=lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=lowerCamelCase , default=lowerCamelCase , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=lowerCamelCase , default=lowerCamelCase , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=lowerCamelCase , type=lowerCamelCase , required=lowerCamelCase , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=lowerCamelCase , type=lowerCamelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=lowerCamelCase , default=lowerCamelCase , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=3_2 , type=lowerCamelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=1_0_0 , type=lowerCamelCase , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=1_0_0 , type=lowerCamelCase , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=1_0_0_0 , type=lowerCamelCase , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=1_2_8 , type=lowerCamelCase , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=1_6 , type=lowerCamelCase , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=1_0 , type=lowerCamelCase , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=1_0_0 , type=lowerCamelCase , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=1_0_2_6 , type=lowerCamelCase , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=1_5 , type=lowerCamelCase , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=lowerCamelCase , type=lowerCamelCase , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=lowerCamelCase , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=lowerCamelCase , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=lowerCamelCase , type=lowerCamelCase , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=3_2 , max_steps=1_0 , size_objective_set=1_0_0 , min_len=1_0_2_6 , trim=lowerCamelCase , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner lowerCAmelCase__ : Optional[int] = joblib.load("data/IGF_values.jbl" ) # Train secondary learner lowerCAmelCase__ : List[Any] = training_secondary_learner( lowerCamelCase , secondary_learner_max_epochs=1_5 , secondary_learner_batch_size=1_2_8 , eval_freq=1_0_0 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model lowerCAmelCase__ : Optional[Any] = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(4_2 ) # Generate train and test data to train and evaluate gpt2 model lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = generate_datasets( context_len=3_2 , file="data/tokenized_stories_train_wikitext103.jbl" , number=1_0_0 , min_len=1_0_2_6 , trim=lowerCamelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( lowerCamelCase , lowerCamelCase , lowerCamelCase , context_len=3_2 , max_steps=1_0_0_0 , batch_size=1_6 , threshold=1.0 , recopy_model=lowerCamelCase , secondary_learner=lowerCamelCase , eval_interval=1_0 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
308
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase_ (_UpperCAmelCase ): @staticmethod @abstractmethod def lowerCamelCase__ ( a_ ) ->Optional[int]: '''simple docstring''' raise NotImplementedError() @abstractmethod def lowerCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' raise NotImplementedError()
612
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
612
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class A (__UpperCAmelCase ): _SCREAMING_SNAKE_CASE = """mvp""" _SCREAMING_SNAKE_CASE = ["""past_key_values"""] _SCREAMING_SNAKE_CASE = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowercase_=5_0267 , lowercase_=1024 , lowercase_=12 , lowercase_=4096 , lowercase_=16 , lowercase_=12 , lowercase_=4096 , lowercase_=16 , lowercase_=0.0 , lowercase_=0.0 , lowercase_="gelu" , lowercase_=1024 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=0.0 , lowercase_=False , lowercase_=True , lowercase_=1 , lowercase_=0 , lowercase_=2 , lowercase_=True , lowercase_=2 , lowercase_=2 , lowercase_=False , lowercase_=100 , lowercase_=800 , **lowercase_ , ) -> str: '''simple docstring''' _snake_case : int = vocab_size _snake_case : Dict = max_position_embeddings _snake_case : Optional[Any] = d_model _snake_case : Tuple = encoder_ffn_dim _snake_case : Optional[int] = encoder_layers _snake_case : List[Any] = encoder_attention_heads _snake_case : List[str] = decoder_ffn_dim _snake_case : Optional[Any] = decoder_layers _snake_case : Union[str, Any] = decoder_attention_heads _snake_case : Tuple = dropout _snake_case : str = attention_dropout _snake_case : Optional[int] = activation_dropout _snake_case : Union[str, Any] = activation_function _snake_case : Dict = init_std _snake_case : Optional[int] = encoder_layerdrop _snake_case : Dict = decoder_layerdrop _snake_case : Any = classifier_dropout _snake_case : List[str] = use_cache _snake_case : List[Any] = encoder_layers _snake_case : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True _snake_case : List[str] = use_prompt _snake_case : Any = prompt_length _snake_case : Optional[int] = prompt_mid_dim super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , **lowercase_ , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , lowercase_ ): _snake_case : Union[str, Any] = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' '''The config can simply be saved and uploaded again to be fixed.''' )
326
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class A (__UpperCAmelCase ): def __init__( self , *lowercase_ , **lowercase_ ) -> None: '''simple docstring''' warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
326
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Dict = (DDPMScheduler,) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__SCREAMING_SNAKE_CASE ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = self.scheduler_classes[0] UpperCamelCase : Union[str, Any] = self.get_scheduler_config() UpperCamelCase : Optional[int] = scheduler_class(**__SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.scheduler_classes[0] UpperCamelCase : int = self.get_scheduler_config() UpperCamelCase : Optional[Any] = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = self.dummy_model() UpperCamelCase : str = self.dummy_sample_deter UpperCamelCase : str = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase : List[Any] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase : List[str] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase : Optional[int] = pred_prev_sample UpperCamelCase : Tuple = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : List[str] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = self.scheduler_classes[0] UpperCamelCase : List[str] = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCamelCase : Optional[int] = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.dummy_model() UpperCamelCase : str = self.dummy_sample_deter UpperCamelCase : str = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase : List[Any] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase : str = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase : Optional[int] = pred_prev_sample UpperCamelCase : Dict = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Union[str, Any] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = self.scheduler_classes[0] UpperCamelCase : Dict = self.get_scheduler_config() UpperCamelCase : Any = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = scheduler.timesteps for i, timestep in enumerate(__SCREAMING_SNAKE_CASE ): if i == len(__SCREAMING_SNAKE_CASE ) - 1: UpperCamelCase : int = -1 else: UpperCamelCase : List[Any] = timesteps[i + 1] UpperCamelCase : int = scheduler.previous_timestep(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = prev_t.item() self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = self.scheduler_classes[0] UpperCamelCase : Optional[Any] = self.get_scheduler_config() UpperCamelCase : List[str] = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = [100, 87, 50, 51, 0] with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = self.scheduler_classes[0] UpperCamelCase : Tuple = self.get_scheduler_config() UpperCamelCase : Optional[Any] = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [100, 87, 50, 1, 0] UpperCamelCase : Any = len(__SCREAMING_SNAKE_CASE ) with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.scheduler_classes[0] UpperCamelCase : Tuple = self.get_scheduler_config() UpperCamelCase : Any = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( __SCREAMING_SNAKE_CASE , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
643
import torch from transformers import AutoModel class UpperCAmelCase_ ( torch.nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() UpperCamelCase : List[str] = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCamelCase : List[Any] = torch.nn.Softmax(dim=1 ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = W_supports['''sizes'''].tolist() UpperCamelCase : Optional[int] = W_supports['''start_token_id'''].item() UpperCamelCase : Any = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase : Union[str, Any] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = None UpperCamelCase : Any = None UpperCamelCase : Optional[Any] = W_supports['''input_ids'''] == start_token_id UpperCamelCase : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: UpperCamelCase : Optional[int] = 0 else: UpperCamelCase : Tuple = support_sizes[i - 1] UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase : List[str] = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) ) UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: UpperCamelCase : str = p_start UpperCamelCase : Optional[int] = p_end return p_starts, p_ends
643
1
def A__ ( __A : List[str] , __A : List[Any] , __A : Any , __A : int ) ->Any: if height >= 1: move_tower(height - 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) move_disk(__lowerCamelCase , __lowerCamelCase ) move_tower(height - 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def A__ ( __A : str , __A : str ) ->Optional[int]: print('''moving disk from''' , __lowerCamelCase , '''to''' , __lowerCamelCase ) def A__ ( ) ->Optional[Any]: __A =int(input('''Height of hanoi: ''' ).strip() ) move_tower(__lowerCamelCase , '''A''' , '''B''' , '''C''' ) if __name__ == "__main__": main()
184
'''simple docstring''' def UpperCAmelCase_ ( __lowerCamelCase : int ): if number > 0: raise ValueError("input must be a negative integer" ) lowercase_ :Optional[Any] = len(bin(__lowerCamelCase )[3:] ) lowercase_ :Optional[int] = bin(abs(__lowerCamelCase ) - (1 << binary_number_length) )[3:] lowercase_ :Dict = ( ( "1" + "0" * (binary_number_length - len(__lowerCamelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
172
0
'''simple docstring''' def lowercase ( __magic_name__ , __magic_name__ , __magic_name__=False ): '''simple docstring''' if isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ): UpperCAmelCase : Dict = len(set_a.intersection(__magic_name__ ) ) if alternative_union: UpperCAmelCase : Dict = len(__magic_name__ ) + len(__magic_name__ ) else: UpperCAmelCase : str = len(set_a.union(__magic_name__ ) ) return intersection / union if isinstance(__magic_name__ , (list, tuple) ) and isinstance(__magic_name__ , (list, tuple) ): UpperCAmelCase : Optional[int] = [element for element in set_a if element in set_b] if alternative_union: UpperCAmelCase : Optional[int] = len(__magic_name__ ) + len(__magic_name__ ) return len(__magic_name__ ) / union else: UpperCAmelCase : Union[str, Any] = set_a + [element for element in set_b if element not in set_a] return len(__magic_name__ ) / len(__magic_name__ ) return len(__magic_name__ ) / len(__magic_name__ ) return None if __name__ == "__main__": a : List[str] = {"a", "b", "c", "d", "e"} a : int = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
609
'''simple docstring''' from collections.abc import Callable class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case = None ): '''simple docstring''' UpperCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. UpperCAmelCase : dict = {} # Stores current size of heap. UpperCAmelCase : Tuple = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. UpperCAmelCase : Tuple = key or (lambda snake_case : x) def A_ ( self , snake_case ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : List[str] = int(2 * i + 1 ) return left if 0 < left < self.size else None def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[Any] = int(2 * i + 2 ) return right if 0 < right < self.size else None def A_ ( self , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[Any] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. UpperCAmelCase , UpperCAmelCase : Optional[int] = self.arr[j], self.arr[i] def A_ ( self , snake_case , snake_case ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : int = self._left(snake_case ) UpperCAmelCase : Any = self._right(snake_case ) UpperCAmelCase : str = i if left is not None and not self._cmp(snake_case , snake_case ): UpperCAmelCase : Optional[Any] = left if right is not None and not self._cmp(snake_case , snake_case ): UpperCAmelCase : Optional[int] = right return valid_parent def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self._parent(snake_case ) while parent is not None and not self._cmp(snake_case , snake_case ): self._swap(snake_case , snake_case ) UpperCAmelCase , UpperCAmelCase : Optional[int] = parent, self._parent(snake_case ) def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[int] = self._get_valid_parent(snake_case ) while valid_parent != index: self._swap(snake_case , snake_case ) UpperCAmelCase , UpperCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(snake_case ) def A_ ( self , snake_case , snake_case ): '''simple docstring''' if item not in self.pos_map: return UpperCAmelCase : Optional[int] = self.pos_map[item] UpperCAmelCase : Dict = [item, self.key(snake_case )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(snake_case ) self._heapify_down(snake_case ) def A_ ( self , snake_case ): '''simple docstring''' if item not in self.pos_map: return UpperCAmelCase : Optional[Any] = self.pos_map[item] del self.pos_map[item] UpperCAmelCase : Dict = self.arr[self.size - 1] UpperCAmelCase : Any = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(snake_case ) self._heapify_down(snake_case ) def A_ ( self , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : str = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(snake_case )] ) else: UpperCAmelCase : Tuple = [item, self.key(snake_case )] UpperCAmelCase : Any = self.size self.size += 1 self._heapify_up(self.size - 1 ) def A_ ( self ): '''simple docstring''' return self.arr[0] if self.size else None def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowercase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
609
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowercase : int = get_tests_dir("""fixtures""") class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : List[str] = mock.Mock() a__ : Any = 500 a__ : List[Any] = {} a__ : List[str] = HTTPError a__ : Optional[Any] = {} # Download this model to make sure it's in the cache. a__ : Dict = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowercase) as mock_head: a__ : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit') # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Optional[Any] = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json') def __lowercase ( self) -> int: '''simple docstring''' with self.assertRaises(lowercase): # config is in subfolder, the following should not work without specifying the subfolder a__ : Optional[int] = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants') a__ : int = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor') self.assertIsNotNone(lowercase) @is_staging_test class A__ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls) -> Dict: '''simple docstring''' a__ : Union[str, Any] = TOKEN HfFolder.save_token(lowercase) @classmethod def __lowercase ( cls) -> Optional[Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-image-processor') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-image-processor') except HTTPError: pass def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : str = ViTImageProcessor.from_pretrained(lowercase) image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token) a__ : Dict = ViTImageProcessor.from_pretrained(F'{USER}/test-image-processor') for k, v in image_processor.__dict__.items(): self.assertEqual(lowercase , getattr(lowercase , lowercase)) # Reset repo delete_repo(token=self._token , repo_id='test-image-processor') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( lowercase , repo_id='test-image-processor' , push_to_hub=lowercase , use_auth_token=self._token) a__ : List[str] = ViTImageProcessor.from_pretrained(F'{USER}/test-image-processor') for k, v in image_processor.__dict__.items(): self.assertEqual(lowercase , getattr(lowercase , lowercase)) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : int = ViTImageProcessor.from_pretrained(lowercase) image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token) a__ : Any = ViTImageProcessor.from_pretrained('valid_org/test-image-processor') for k, v in image_processor.__dict__.items(): self.assertEqual(lowercase , getattr(lowercase , lowercase)) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-image-processor') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( lowercase , repo_id='valid_org/test-image-processor-org' , push_to_hub=lowercase , use_auth_token=self._token) a__ : int = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org') for k, v in image_processor.__dict__.items(): self.assertEqual(lowercase , getattr(lowercase , lowercase)) def __lowercase ( self) -> List[str]: '''simple docstring''' CustomImageProcessor.register_for_auto_class() a__ : List[Any] = CustomImageProcessor.from_pretrained(lowercase) image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , ) a__ : str = AutoImageProcessor.from_pretrained( F'{USER}/test-dynamic-image-processor' , trust_remote_code=lowercase) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor')
302
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class A__ ( __UpperCAmelCase ): """simple docstring""" __A : "DiagonalGaussianDistribution" class A__ ( __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __A : Union[str, Any] = True @register_to_config def __init__( self , lowercase = 3 , lowercase = 3 , lowercase = ("DownEncoderBlock2D",) , lowercase = ("UpDecoderBlock2D",) , lowercase = (64,) , lowercase = 1 , lowercase = "silu" , lowercase = 4 , lowercase = 32 , lowercase = 32 , lowercase = 0.1_82_15 , ) -> str: '''simple docstring''' super().__init__() # pass init params to Encoder a__ : List[Any] = Encoder( in_channels=lowercase , out_channels=lowercase , down_block_types=lowercase , block_out_channels=lowercase , layers_per_block=lowercase , act_fn=lowercase , norm_num_groups=lowercase , double_z=lowercase , ) # pass init params to Decoder a__ : List[str] = Decoder( in_channels=lowercase , out_channels=lowercase , up_block_types=lowercase , block_out_channels=lowercase , layers_per_block=lowercase , norm_num_groups=lowercase , act_fn=lowercase , ) a__ : Optional[Any] = nn.Convad(2 * latent_channels , 2 * latent_channels , 1) a__ : Optional[Any] = nn.Convad(lowercase , lowercase , 1) a__ : Optional[int] = False a__ : Dict = False # only relevant if vae tiling is enabled a__ : Optional[int] = self.config.sample_size a__ : List[Any] = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple)) else self.config.sample_size ) a__ : Union[str, Any] = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) a__ : Dict = 0.25 def __lowercase ( self , lowercase , lowercase=False) -> Union[str, Any]: '''simple docstring''' if isinstance(lowercase , (Encoder, Decoder)): a__ : Tuple = value def __lowercase ( self , lowercase = True) -> int: '''simple docstring''' a__ : List[Any] = use_tiling def __lowercase ( self) -> Dict: '''simple docstring''' self.enable_tiling(lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Union[str, Any] = True def __lowercase ( self) -> int: '''simple docstring''' a__ : str = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowercase ( self) -> Dict[str, AttentionProcessor]: '''simple docstring''' a__ : int = {} def fn_recursive_add_processors(lowercase , lowercase , lowercase): if hasattr(lowercase , 'set_processor'): a__ : Optional[int] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' , lowercase , lowercase) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowercase , lowercase , lowercase) return processors def __lowercase ( self , lowercase) -> Optional[int]: '''simple docstring''' a__ : Optional[Any] = len(self.attn_processors.keys()) if isinstance(lowercase , lowercase) and len(lowercase) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(lowercase)} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.') def fn_recursive_attn_processor(lowercase , lowercase , lowercase): if hasattr(lowercase , 'set_processor'): if not isinstance(lowercase , lowercase): module.set_processor(lowercase) else: module.set_processor(processor.pop(F'{name}.processor')) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' , lowercase , lowercase) for name, module in self.named_children(): fn_recursive_attn_processor(lowercase , lowercase , lowercase) def __lowercase ( self) -> List[str]: '''simple docstring''' self.set_attn_processor(AttnProcessor()) @apply_forward_hook def __lowercase ( self , lowercase , lowercase = True) -> AutoencoderKLOutput: '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(lowercase , return_dict=lowercase) if self.use_slicing and x.shape[0] > 1: a__ : List[str] = [self.encoder(lowercase) for x_slice in x.split(1)] a__ : str = torch.cat(lowercase) else: a__ : Tuple = self.encoder(lowercase) a__ : Any = self.quant_conv(lowercase) a__ : Optional[Any] = DiagonalGaussianDistribution(lowercase) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowercase) def __lowercase ( self , lowercase , lowercase = True) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(lowercase , return_dict=lowercase) a__ : Optional[Any] = self.post_quant_conv(lowercase) a__ : Union[str, Any] = self.decoder(lowercase) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase) @apply_forward_hook def __lowercase ( self , lowercase , lowercase = True) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if self.use_slicing and z.shape[0] > 1: a__ : List[str] = [self._decode(lowercase).sample for z_slice in z.split(1)] a__ : str = torch.cat(lowercase) else: a__ : Optional[Any] = self._decode(lowercase).sample if not return_dict: return (decoded,) return DecoderOutput(sample=lowercase) def __lowercase ( self , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__ : Dict = min(a.shape[2] , b.shape[2] , lowercase) for y in range(lowercase): a__ : Any = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __lowercase ( self , lowercase , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' a__ : int = min(a.shape[3] , b.shape[3] , lowercase) for x in range(lowercase): a__ : int = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __lowercase ( self , lowercase , lowercase = True) -> AutoencoderKLOutput: '''simple docstring''' a__ : Union[str, Any] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) a__ : Union[str, Any] = int(self.tile_latent_min_size * self.tile_overlap_factor) a__ : str = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. a__ : Union[str, Any] = [] for i in range(0 , x.shape[2] , lowercase): a__ : int = [] for j in range(0 , x.shape[3] , lowercase): a__ : Optional[Any] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] a__ : List[str] = self.encoder(lowercase) a__ : Any = self.quant_conv(lowercase) row.append(lowercase) rows.append(lowercase) a__ : Dict = [] for i, row in enumerate(lowercase): a__ : Tuple = [] for j, tile in enumerate(lowercase): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: a__ : Any = self.blend_v(rows[i - 1][j] , lowercase , lowercase) if j > 0: a__ : int = self.blend_h(row[j - 1] , lowercase , lowercase) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(lowercase , dim=3)) a__ : Dict = torch.cat(lowercase , dim=2) a__ : Optional[Any] = DiagonalGaussianDistribution(lowercase) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowercase) def __lowercase ( self , lowercase , lowercase = True) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' a__ : Tuple = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) a__ : Optional[int] = int(self.tile_sample_min_size * self.tile_overlap_factor) a__ : List[str] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. a__ : Optional[Any] = [] for i in range(0 , z.shape[2] , lowercase): a__ : int = [] for j in range(0 , z.shape[3] , lowercase): a__ : List[str] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] a__ : List[str] = self.post_quant_conv(lowercase) a__ : Any = self.decoder(lowercase) row.append(lowercase) rows.append(lowercase) a__ : int = [] for i, row in enumerate(lowercase): a__ : str = [] for j, tile in enumerate(lowercase): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: a__ : Tuple = self.blend_v(rows[i - 1][j] , lowercase , lowercase) if j > 0: a__ : Optional[Any] = self.blend_h(row[j - 1] , lowercase , lowercase) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(lowercase , dim=3)) a__ : Any = torch.cat(lowercase , dim=2) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase) def __lowercase ( self , lowercase , lowercase = False , lowercase = True , lowercase = None , ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' a__ : int = sample a__ : int = self.encode(lowercase).latent_dist if sample_posterior: a__ : Dict = posterior.sample(generator=lowercase) else: a__ : Tuple = posterior.mode() a__ : Any = self.decode(lowercase).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase)
302
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): UpperCAmelCase = '''dandelin/vilt-b32-finetuned-vqa''' UpperCAmelCase = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) UpperCAmelCase = '''image_qa''' UpperCAmelCase = AutoProcessor UpperCAmelCase = AutoModelForVisualQuestionAnswering UpperCAmelCase = ['''image''', '''text'''] UpperCAmelCase = ['''text'''] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ) -> int: requires_backends(self , ["vision"] ) super().__init__(*__UpperCamelCase , **__UpperCamelCase ) def a_ ( self , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: return self.pre_processor(__UpperCamelCase , __UpperCamelCase , return_tensors="pt" ) def a_ ( self , __UpperCamelCase ) -> Dict: with torch.no_grad(): return self.model(**__UpperCamelCase ).logits def a_ ( self , __UpperCamelCase ) -> List[str]: _a = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
276
'''simple docstring''' class __SCREAMING_SNAKE_CASE : def __init__( self , __UpperCamelCase ) -> Optional[Any]: # we need a list not a string, so do something to change the type _a = arr.split("," ) def a_ ( self ) -> List[Any]: _a = [int(self.array[0] )] * len(self.array ) _a = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _a = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _a = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowercase__ = input("please input some numbers:") lowercase__ = SubArray(whole_array) lowercase__ = array.solve_sub_array() print(("the results is:", re))
276
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __lowercase : Optional[int] = logging.get_logger(__name__) class _A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : int , *A_ : str , **A_ : str ) -> None: warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , A_ , ) super().__init__(*A_ , **A_ )
564
"""simple docstring""" import os import numpy import onnx def SCREAMING_SNAKE_CASE ( snake_case, snake_case): __snake_case = a.name __snake_case = b.name __snake_case = '''''' __snake_case = '''''' __snake_case = a == b __snake_case = name_a __snake_case = name_b return res def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): for i, input_name in enumerate(node_proto.input): if input_name == name: node_proto.input.insert(snake_case, snake_case) node_proto.input.pop(i + 1) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g, snake_case, snake_case) _graph_replace_input_with(node_proto.attribute[1].g, snake_case, snake_case) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g, snake_case, snake_case) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): for n in graph_proto.node: _node_replace_input_with(snake_case, snake_case, snake_case) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): __snake_case = list(model.graph.initializer) __snake_case = list(model_without_ext.graph.initializer) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __snake_case = inits[i].name __snake_case = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i]) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph, snake_case, snake_case) def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = os.path.dirname(snake_case) __snake_case = os.path.basename(snake_case) __snake_case = onnx.load(os.path.join(snake_case, snake_case)) __snake_case = list(model.graph.initializer) __snake_case = set() __snake_case = {} __snake_case = [] __snake_case = 0 for i in range(len(snake_case)): if i in dup_set: continue for j in range(i + 1, len(snake_case)): if j in dup_set: continue if _is_equal_tensor_proto(inits[i], inits[j]): dup_set.add(snake_case) dup_set.add(snake_case) __snake_case = inits[j].data_type __snake_case = numpy.prod(inits[j].dims) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''', snake_case) total_reduced_size += mem_size __snake_case = inits[i].name __snake_case = inits[j].name if name_i in dup_map: dup_map[name_i].append(snake_case) else: __snake_case = [name_j] ind_to_replace.append((j, i)) print('''total reduced size: ''', total_reduced_size / 10_24 / 10_24 / 10_24, '''GB''') __snake_case = sorted(snake_case) _remove_dup_initializers_from_model(snake_case, snake_case, snake_case) __snake_case = '''optimized_''' + model_file_name __snake_case = os.path.join(snake_case, snake_case) onnx.save(snake_case, snake_case) return new_model
564
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _A : Union[str, Any] = logging.get_logger(__name__) @dataclass class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Any = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : Optional[int] , **A : int ) ->List[Any]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowerCamelCase__ : Tuple = deprecated_arg[3:] setattr(self , A , not kwargs.pop(A ) ) logger.warning( F"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or" F" {positive_arg}={kwargs[positive_arg]}" ) lowerCamelCase__ : Dict = kwargs.pop('''torchscript''' , self.torchscript ) lowerCamelCase__ : Optional[int] = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) lowerCamelCase__ : List[Any] = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**A ) _UpperCAmelCase : bool = field(default=lowerCAmelCase_ ,metadata={"help": "Trace the models using torchscript"} ) _UpperCAmelCase : bool = field(default=lowerCAmelCase_ ,metadata={"help": "Print Xla/PyTorch tpu metrics"} ) _UpperCAmelCase : str = field( default="O1" ,metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } ,) @cached_property def __lowerCamelCase ( self : Tuple ) ->Tuple["torch.device", int]: requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: lowerCamelCase__ : int = torch.device('''cpu''' ) lowerCamelCase__ : str = 0 elif is_torch_tpu_available(): lowerCamelCase__ : Dict = xm.xla_device() lowerCamelCase__ : Any = 0 else: lowerCamelCase__ : Optional[int] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowerCamelCase__ : int = torch.cuda.device_count() return device, n_gpu @property def __lowerCamelCase ( self : int ) ->Dict: return is_torch_tpu_available() and self.tpu @property def __lowerCamelCase ( self : str ) ->int: requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __lowerCamelCase ( self : Dict ) ->"torch.device": requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def __lowerCamelCase ( self : Tuple ) ->Dict: requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def __lowerCamelCase ( self : Dict ) ->List[str]: return self.n_gpu > 0
130
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self : Any , A : str ) ->int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): lowerCamelCase__ : Any = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(A ) def __lowerCamelCase ( self : List[str] ) ->List[str]: lowerCamelCase__ : Optional[Any] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=A , multi_process=A , ) lowerCamelCase__ : Tuple = TensorFlowBenchmark(A ) lowerCamelCase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Dict ) ->Optional[Any]: lowerCamelCase__ : Tuple = '''sgugger/tiny-distilbert-classification''' lowerCamelCase__ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , only_pretrain_model=A , ) lowerCamelCase__ : str = TensorFlowBenchmark(A ) lowerCamelCase__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Tuple ) ->Dict: lowerCamelCase__ : int = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowerCamelCase__ : str = TensorFlowBenchmark(A ) lowerCamelCase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Union[str, Any] ) ->Tuple: lowerCamelCase__ : Optional[int] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : List[Any] = AutoConfig.from_pretrained(A ) lowerCamelCase__ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=A , multi_process=A , ) lowerCamelCase__ : List[Any] = TensorFlowBenchmark(A , [config] ) lowerCamelCase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : List[Any] ) ->Any: lowerCamelCase__ : Optional[int] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(A ) lowerCamelCase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowerCamelCase__ : Optional[Any] = TensorFlowBenchmark(A , [config] ) lowerCamelCase__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Any ) ->Optional[Any]: lowerCamelCase__ : List[str] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowerCamelCase__ : Union[str, Any] = TensorFlowBenchmark(A ) lowerCamelCase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self : Union[str, Any] ) ->Any: lowerCamelCase__ : Tuple = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : Optional[int] = AutoConfig.from_pretrained(A ) lowerCamelCase__ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowerCamelCase__ : str = TensorFlowBenchmark(A , [config] ) lowerCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self : Any ) ->Any: lowerCamelCase__ : Dict = '''patrickvonplaten/t5-tiny-random''' lowerCamelCase__ : int = AutoConfig.from_pretrained(A ) lowerCamelCase__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowerCamelCase__ : Dict = TensorFlowBenchmark(A , configs=[config] ) lowerCamelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def __lowerCamelCase ( self : Dict ) ->Dict: lowerCamelCase__ : Dict = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , use_xla=A , multi_process=A , ) lowerCamelCase__ : List[Any] = TensorFlowBenchmark(A ) lowerCamelCase__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Any ) ->Optional[Any]: lowerCamelCase__ : List[str] = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=A , save_to_csv=A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(A , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(A , '''env.csv''' ) , multi_process=A , ) lowerCamelCase__ : Tuple = TensorFlowBenchmark(A ) benchmark.run() self.assertTrue(Path(os.path.join(A , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(A , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(A , '''env.csv''' ) ).exists() ) def __lowerCamelCase ( self : Tuple ) ->Optional[int]: lowerCamelCase__ : List[Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(A : int ): self.assertTrue(hasattr(A , '''sequential''' ) ) self.assertTrue(hasattr(A , '''cumulative''' ) ) self.assertTrue(hasattr(A , '''current''' ) ) self.assertTrue(hasattr(A , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A , '''log.txt''' ) , log_print=A , trace_memory_line_by_line=A , eager_mode=A , multi_process=A , ) lowerCamelCase__ : Any = TensorFlowBenchmark(A ) lowerCamelCase__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(A , '''log.txt''' ) ).exists() )
130
1
"""simple docstring""" def __magic_name__ ( UpperCamelCase : list ) -> bool: if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(UpperCamelCase ) == 0: raise ValueError('Input list must be a non empty list' ) if len(UpperCamelCase ) == 1: return True a__ = series[1] - series[0] for index in range(len(UpperCamelCase ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __magic_name__ ( UpperCamelCase : list ) -> float: if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(UpperCamelCase ) == 0: raise ValueError('Input list must be a non empty list' ) a__ = 0 for val in series: answer += val return answer / len(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
273
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping a : Optional[Any] = tuple[int, int] class lowercase: def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" a__ = vertices a__ = { (min(__SCREAMING_SNAKE_CASE ), max(__SCREAMING_SNAKE_CASE )): weight for edge, weight in edges.items() } def lowercase__ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) a__ = weight def lowercase__ ( self ) -> Graph: """simple docstring""" a__ = Graph({min(self.vertices )} , {} ) a__ = 42 a__ = 42 a__ = 42 a__ = 42 while len(subgraph.vertices ) < len(self.vertices ): a__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: a__ = edge a__ = weight subgraph.add_edge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return subgraph def __magic_name__ ( UpperCamelCase : str = "p107_network.txt" ) -> int: a__ = os.path.abspath(os.path.dirname(UpperCamelCase ) ) a__ = os.path.join(UpperCamelCase , UpperCamelCase ) a__ = {} a__ = 42 a__ = 42 a__ = 42 with open(UpperCamelCase ) as f: a__ = f.read().strip().split('\n' ) a__ = [line.split(',' ) for line in data] for edgea in range(1 , len(UpperCamelCase ) ): for edgea in range(UpperCamelCase ): if adjaceny_matrix[edgea][edgea] != "-": a__ = int(adjaceny_matrix[edgea][edgea] ) a__ = Graph(set(range(len(UpperCamelCase ) ) ) , UpperCamelCase ) a__ = graph.prims_algorithm() a__ = sum(graph.edges.values() ) a__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
273
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __a ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" _A : Any = DebertaTokenizer _A : Dict = True _A : Dict = DebertaTokenizerFast def __A ( self : Tuple ) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ =[ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] SCREAMING_SNAKE_CASE__ =dict(zip(_UpperCamelCase ,range(len(_UpperCamelCase ) ) ) ) SCREAMING_SNAKE_CASE__ =["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] SCREAMING_SNAKE_CASE__ ={"""unk_token""": """[UNK]"""} SCREAMING_SNAKE_CASE__ =os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ =os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCamelCase ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_UpperCamelCase ) ) def __A ( self : List[Any] ,**_UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_UpperCamelCase ) def __A ( self : Dict ,_UpperCamelCase : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ ="""lower newer""" SCREAMING_SNAKE_CASE__ ="""lower newer""" return input_text, output_text def __A ( self : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.get_tokenizer() SCREAMING_SNAKE_CASE__ ="""lower newer""" SCREAMING_SNAKE_CASE__ =["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] SCREAMING_SNAKE_CASE__ =tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase ,_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ =[0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) ,_UpperCamelCase ) def __A ( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.get_tokenizer() SCREAMING_SNAKE_CASE__ =tokenizer("""Hello""" ,"""World""" ) SCREAMING_SNAKE_CASE__ =[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] ,_UpperCamelCase ) @slow def __A ( self : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) SCREAMING_SNAKE_CASE__ =tokenizer.encode("""sequence builders""" ,add_special_tokens=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =tokenizer.encode("""multi-sequence build""" ,add_special_tokens=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =tokenizer.encode( """sequence builders""" ,add_special_tokens=_UpperCamelCase ,add_prefix_space=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =tokenizer.encode( """sequence builders""" ,"""multi-sequence build""" ,add_special_tokens=_UpperCamelCase ,add_prefix_space=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =tokenizer.build_inputs_with_special_tokens(_UpperCamelCase ,_UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __A ( self : int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ =[self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: SCREAMING_SNAKE_CASE__ =tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) SCREAMING_SNAKE_CASE__ =[ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] SCREAMING_SNAKE_CASE__ =tokenizer(_UpperCamelCase ,padding=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =[tokenizer.decode(_UpperCamelCase ,skip_special_tokens=_UpperCamelCase ) for seq in encoding["""input_ids"""]] # fmt: off SCREAMING_SNAKE_CASE__ ={ """input_ids""": [ [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 3_5, 8_3, 2_5_1_9_1, 1_6_3, 1_8_8_5_4, 1_3, 1_2_1_5_6, 1_2, 1_6_1_0_1, 2_5_3_7_6, 1_3_8_0_7, 9, 2_2_2_0_5, 2_7_8_9_3, 1_6_3_5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 2_4_5_3_6, 8_0, 4_3_7_9_7, 4_8_7_8, 7_3_7_3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_3_3, 7_8, 6_5, 1_6, 1_0, 3_7_2_4, 1_5_3_8, 3_3_1_8_3, 1_1_3_0_3, 4_3_7_9_7, 1_9_3_8, 4, 8_7_0, 2_4_1_6_5, 2_9_1_0_5, 5, 7_3_9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 3_6_1_7_3, 8_8, 8_0, 6_5_0, 7_8_2_1, 4_5_9_4_0, 6, 5_2, 2_5_5_9, 5, 1_8_3_6, 9, 5, 7_3_9_7, 1_3_1_7_1, 3_1, 5, 1_8_3_6, 9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on SCREAMING_SNAKE_CASE__ =[ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data ,_UpperCamelCase ) for expected, decoded in zip(_UpperCamelCase ,_UpperCamelCase ): self.assertEqual(_UpperCamelCase ,_UpperCamelCase )
588
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __a ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" _A : Union[str, Any] = KandinskyInpaintPipeline _A : Any = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] _A : Any = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] _A : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _A : int = False @property def __A ( self : Any ) -> Dict: '''simple docstring''' return 3_2 @property def __A ( self : Optional[int] ) -> int: '''simple docstring''' return 3_2 @property def __A ( self : List[Any] ) -> str: '''simple docstring''' return self.time_input_dim @property def __A ( self : Optional[int] ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def __A ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return 1_0_0 @property def __A ( self : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ =XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def __A ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ =MCLIPConfig( numDims=self.cross_attention_dim ,transformerDimensions=self.text_embedder_hidden_size ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=3_7 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=1_0_0_5 ,) SCREAMING_SNAKE_CASE__ =MultilingualCLIP(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =text_encoder.eval() return text_encoder @property def __A ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ ={ """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } SCREAMING_SNAKE_CASE__ =UNetaDConditionModel(**_UpperCamelCase ) return model @property def __A ( self : str ) -> Tuple: '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __A ( self : Dict ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ =VQModel(**self.dummy_movq_kwargs ) return model def __A ( self : int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.dummy_text_encoder SCREAMING_SNAKE_CASE__ =self.dummy_tokenizer SCREAMING_SNAKE_CASE__ =self.dummy_unet SCREAMING_SNAKE_CASE__ =self.dummy_movq SCREAMING_SNAKE_CASE__ =DDIMScheduler( num_train_timesteps=1_0_0_0 ,beta_schedule="""linear""" ,beta_start=0.0_0085 ,beta_end=0.012 ,clip_sample=_UpperCamelCase ,set_alpha_to_one=_UpperCamelCase ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=_UpperCamelCase ,) SCREAMING_SNAKE_CASE__ ={ """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __A ( self : Union[str, Any] ,_UpperCamelCase : Optional[int] ,_UpperCamelCase : Any=0 ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ =floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(seed + 1 ) ).to(_UpperCamelCase ) # create init_image SCREAMING_SNAKE_CASE__ =floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =image.cpu().permute(0 ,2 ,3 ,1 )[0] SCREAMING_SNAKE_CASE__ =Image.fromarray(np.uinta(_UpperCamelCase ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) # create mask SCREAMING_SNAKE_CASE__ =np.ones((6_4, 6_4) ,dtype=np.floataa ) SCREAMING_SNAKE_CASE__ =0 if str(_UpperCamelCase ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ =torch.manual_seed(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE__ =torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ ={ """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def __A ( self : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ ="""cpu""" SCREAMING_SNAKE_CASE__ =self.get_dummy_components() SCREAMING_SNAKE_CASE__ =self.pipeline_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ =output.images SCREAMING_SNAKE_CASE__ =pipe( **self.get_dummy_inputs(_UpperCamelCase ) ,return_dict=_UpperCamelCase ,)[0] SCREAMING_SNAKE_CASE__ =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ =image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) SCREAMING_SNAKE_CASE__ =np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __A ( self : Dict ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __a ( unittest.TestCase ): """simple docstring""" def __A ( self : List[str] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) SCREAMING_SNAKE_CASE__ =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) SCREAMING_SNAKE_CASE__ =np.ones((7_6_8, 7_6_8) ,dtype=np.floataa ) SCREAMING_SNAKE_CASE__ =0 SCREAMING_SNAKE_CASE__ ="""a hat""" SCREAMING_SNAKE_CASE__ =KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" ,torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ =pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =pipe_prior( _UpperCamelCase ,generator=_UpperCamelCase ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() SCREAMING_SNAKE_CASE__ =pipeline( _UpperCamelCase ,image=_UpperCamelCase ,mask_image=_UpperCamelCase ,image_embeds=_UpperCamelCase ,negative_image_embeds=_UpperCamelCase ,generator=_UpperCamelCase ,num_inference_steps=1_0_0 ,height=7_6_8 ,width=7_6_8 ,output_type="""np""" ,) SCREAMING_SNAKE_CASE__ =output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_UpperCamelCase ,_UpperCamelCase )
588
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowercase__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _UpperCAmelCase = '''cvt''' def __init__( self , snake_case=3 , snake_case=[7, 3, 3] , snake_case=[4, 2, 2] , snake_case=[2, 1, 1] , snake_case=[64, 192, 384] , snake_case=[1, 3, 6] , snake_case=[1, 2, 10] , snake_case=[4.0, 4.0, 4.0] , snake_case=[0.0, 0.0, 0.0] , snake_case=[0.0, 0.0, 0.0] , snake_case=[0.0, 0.0, 0.1] , snake_case=[True, True, True] , snake_case=[False, False, True] , snake_case=["dw_bn", "dw_bn", "dw_bn"] , snake_case=[3, 3, 3] , snake_case=[1, 1, 1] , snake_case=[2, 2, 2] , snake_case=[1, 1, 1] , snake_case=[1, 1, 1] , snake_case=0.02 , snake_case=1E-12 , **snake_case , ) -> Union[str, Any]: super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = depth _UpperCAmelCase = mlp_ratio _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = drop_rate _UpperCAmelCase = drop_path_rate _UpperCAmelCase = qkv_bias _UpperCAmelCase = cls_token _UpperCAmelCase = qkv_projection_method _UpperCAmelCase = kernel_qkv _UpperCAmelCase = padding_kv _UpperCAmelCase = stride_kv _UpperCAmelCase = padding_q _UpperCAmelCase = stride_q _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps
573
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu UpperCamelCase =False class A ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase ( self ): return 12 @property def _UpperCAmelCase ( self ): return 12 @property def _UpperCAmelCase ( self ): return 32 @property def _UpperCAmelCase ( self ): torch.manual_seed(0 ) UpperCamelCase_ : Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def _UpperCAmelCase ( self ): UpperCamelCase_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def _UpperCAmelCase ( self ): torch.manual_seed(0 ) UpperCamelCase_ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__lowerCAmelCase ) @property def _UpperCAmelCase ( self ): torch.manual_seed(0 ) UpperCamelCase_ : Optional[Any] = 12 UpperCamelCase_ : Optional[int] = 12 UpperCamelCase_ : Optional[Any] = { """attention_bias""": True, """cross_attention_dim""": 32, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 32, """sample_size""": width, """activation_fn""": """geglu-approximate""", } UpperCamelCase_ : Optional[Any] = TransformeraDModel(**__lowerCAmelCase ) return model def _UpperCAmelCase ( self ): UpperCamelCase_ : Union[str, Any] = """cpu""" UpperCamelCase_ : List[str] = self.dummy_vqvae UpperCamelCase_ : str = self.dummy_text_encoder UpperCamelCase_ : Optional[Any] = self.dummy_tokenizer UpperCamelCase_ : Optional[int] = self.dummy_transformer UpperCamelCase_ : Optional[Any] = VQDiffusionScheduler(self.num_embed ) UpperCamelCase_ : Union[str, Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=__lowerCAmelCase ) UpperCamelCase_ : Tuple = VQDiffusionPipeline( vqvae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , transformer=__lowerCAmelCase , scheduler=__lowerCAmelCase , learned_classifier_free_sampling_embeddings=__lowerCAmelCase , ) UpperCamelCase_ : Union[str, Any] = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCamelCase_ : Optional[int] = """teddy bear playing in the pool""" UpperCamelCase_ : Union[str, Any] = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) UpperCamelCase_ : List[Any] = pipe([prompt] , generator=__lowerCAmelCase , num_inference_steps=2 , output_type="""np""" ) UpperCamelCase_ : Dict = output.images UpperCamelCase_ : List[str] = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) UpperCamelCase_ : Dict = pipe( [prompt] , generator=__lowerCAmelCase , output_type="""np""" , return_dict=__lowerCAmelCase , num_inference_steps=2 )[0] UpperCamelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase_ : List[str] = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase ( self ): UpperCamelCase_ : int = """cpu""" UpperCamelCase_ : List[Any] = self.dummy_vqvae UpperCamelCase_ : Union[str, Any] = self.dummy_text_encoder UpperCamelCase_ : int = self.dummy_tokenizer UpperCamelCase_ : Tuple = self.dummy_transformer UpperCamelCase_ : Tuple = VQDiffusionScheduler(self.num_embed ) UpperCamelCase_ : List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=__lowerCAmelCase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) UpperCamelCase_ : Optional[Any] = VQDiffusionPipeline( vqvae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , transformer=__lowerCAmelCase , scheduler=__lowerCAmelCase , learned_classifier_free_sampling_embeddings=__lowerCAmelCase , ) UpperCamelCase_ : List[Any] = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCamelCase_ : Tuple = """teddy bear playing in the pool""" UpperCamelCase_ : List[str] = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) UpperCamelCase_ : Tuple = pipe([prompt] , generator=__lowerCAmelCase , num_inference_steps=2 , output_type="""np""" ) UpperCamelCase_ : List[str] = output.images UpperCamelCase_ : Optional[int] = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) UpperCamelCase_ : List[str] = pipe( [prompt] , generator=__lowerCAmelCase , output_type="""np""" , return_dict=__lowerCAmelCase , num_inference_steps=2 )[0] UpperCamelCase_ : Dict = image[0, -3:, -3:, -1] UpperCamelCase_ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase_ : List[Any] = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ): UpperCamelCase_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) UpperCamelCase_ : Optional[int] = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) UpperCamelCase_ : str = pipeline.to(__lowerCAmelCase ) pipeline.set_progress_bar_config(disable=__lowerCAmelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase_ : List[Any] = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) UpperCamelCase_ : str = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=__lowerCAmelCase , output_type="""np""" , ) UpperCamelCase_ : Union[str, Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image ).max() < 2.0
208
0
from __future__ import annotations from typing import Any class __SCREAMING_SNAKE_CASE : def __init__( self , __lowerCAmelCase ): UpperCamelCase__ = num_of_nodes UpperCamelCase__ = [] UpperCamelCase__ = {} def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): self.m_edges.append([u_node, v_node, weight] ) def _lowerCamelCase ( self , __lowerCAmelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowerCamelCase ( self , __lowerCAmelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: UpperCamelCase__ = self.find_component(__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if component_size[u_node] <= component_size[v_node]: UpperCamelCase__ = v_node component_size[v_node] += component_size[u_node] self.set_component(__lowerCAmelCase ) elif component_size[u_node] >= component_size[v_node]: UpperCamelCase__ = self.find_component(__lowerCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(__lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = [] UpperCamelCase__ = 0 UpperCamelCase__ = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) UpperCamelCase__ = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edge UpperCamelCase__ = self.m_component[u] UpperCamelCase__ = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): UpperCamelCase__ = [u, v, w] for edge in minimum_weight_edge: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = edge UpperCamelCase__ = self.m_component[u] UpperCamelCase__ = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 UpperCamelCase__ = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _UpperCamelCase (): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
548
import math def _UpperCamelCase (a__ :int ): """simple docstring""" UpperCamelCase__ = [True] * n UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCamelCase__ = i * 2 while index < n: UpperCamelCase__ = False UpperCamelCase__ = index + i UpperCamelCase__ = [2] for i in range(3 , a__ , 2 ): if is_prime[i]: primes.append(a__ ) return primes def _UpperCamelCase (a__ :int = 9999_6666_3333 ): """simple docstring""" UpperCamelCase__ = math.floor(math.sqrt(a__ ) ) + 100 UpperCamelCase__ = prime_sieve(a__ ) UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = primes[prime_index] while (last_prime**2) <= limit: UpperCamelCase__ = primes[prime_index + 1] UpperCamelCase__ = last_prime**2 UpperCamelCase__ = next_prime**2 # Get numbers divisible by lps(current) UpperCamelCase__ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCamelCase__ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCamelCase__ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCamelCase__ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
548
1
def SCREAMING_SNAKE_CASE__ ( _lowercase : list[list[int]] , _lowercase : int , _lowercase : int , _lowercase : set ) -> int: '''simple docstring''' lowercase__ , lowercase__ : Tuple = len(_lowercase ), len(grid[0] ) if ( min(_lowercase , _lowercase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) lowercase__ : int = 0 count += depth_first_search(_lowercase , row + 1 , _lowercase , _lowercase ) count += depth_first_search(_lowercase , row - 1 , _lowercase , _lowercase ) count += depth_first_search(_lowercase , _lowercase , col + 1 , _lowercase ) count += depth_first_search(_lowercase , _lowercase , col - 1 , _lowercase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
266
import enum import shutil import sys __UpperCamelCase, __UpperCamelCase: Optional[int] = shutil.get_terminal_size() __UpperCamelCase: Optional[Any] = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class __lowerCAmelCase ( enum.Enum ): '''simple docstring''' _A = 0 _A = 1 def SCREAMING_SNAKE_CASE__ ( _lowercase : List[Any] , _lowercase : Union[str, Any]="" ) -> int: '''simple docstring''' sys.stdout.write(str(_lowercase ) + end ) sys.stdout.flush() def SCREAMING_SNAKE_CASE__ ( _lowercase : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Optional[int]="" ) -> str: '''simple docstring''' forceWrite(f"""\u001b[{color}m{content}\u001b[0m""" , _lowercase ) def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' forceWrite('\r' ) def SCREAMING_SNAKE_CASE__ ( _lowercase : int , _lowercase : str ) -> List[Any]: '''simple docstring''' forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> Dict: '''simple docstring''' forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: '''simple docstring''' reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
266
1
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ): _UpperCAmelCase = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) _UpperCAmelCase = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above _UpperCAmelCase = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above _UpperCAmelCase = tf_top_k_top_p_filtering(a__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) _UpperCAmelCase = output[output != -float('inf' )] _UpperCAmelCase = tf.cast( tf.where(tf.not_equal(a__ , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(a__ , a__ , rtol=1E-12 ) tf.debugging.assert_equal(a__ , a__ ) @require_tf class lowerCAmelCase ( unittest.TestCase , snake_case ): '''simple docstring''' if is_tf_available(): lowerCAmelCase__ = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def __A ( self ): # TF-only test: tf.saved_model export _UpperCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _UpperCAmelCase = 2 _UpperCAmelCase = 2 class lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self , a__ ): super(a__ , self ).__init__() _UpperCAmelCase = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=a__ , ) def __A ( self , a__ , a__ ): _UpperCAmelCase = self.model.generate( input_ids=a__ , attention_mask=a__ , max_new_tokens=a__ , return_dict_in_generate=a__ , ) return {"sequences": outputs["sequences"]} _UpperCAmelCase = [[2, 0], [1_02, 1_03]] _UpperCAmelCase = [[1, 0], [1, 1]] _UpperCAmelCase = DummyModel(model=a__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a__ , a__ , signatures={'serving_default': dummy_model.serving} ) _UpperCAmelCase = tf.saved_model.load(a__ ).signatures['serving_default'] for batch_size in range(1 , len(a__ ) + 1 ): _UpperCAmelCase = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } _UpperCAmelCase = serving_func(**a__ )['sequences'] _UpperCAmelCase = test_model.generate(**a__ , max_new_tokens=a__ ) tf.debugging.assert_equal(a__ , a__ ) @slow def __A ( self ): # TF-only test: tf.saved_model export _UpperCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _UpperCAmelCase = 1 _UpperCAmelCase = 2 class lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self , a__ ): super(a__ , self ).__init__() _UpperCAmelCase = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=a__ , ) def __A ( self , a__ , a__ ): _UpperCAmelCase = self.model.generate( input_ids=a__ , attention_mask=a__ , max_new_tokens=a__ , return_dict_in_generate=a__ , ) return {"sequences": outputs["sequences"]} _UpperCAmelCase = [[2], [1_02, 1_03]] _UpperCAmelCase = [[1], [1, 1]] _UpperCAmelCase = DummyModel(model=a__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a__ , a__ , signatures={'serving_default': dummy_model.serving} ) _UpperCAmelCase = tf.saved_model.load(a__ ).signatures['serving_default'] for input_row in range(len(a__ ) ): _UpperCAmelCase = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } _UpperCAmelCase = serving_func(**a__ )['sequences'] _UpperCAmelCase = test_model.generate(**a__ , max_new_tokens=a__ ) tf.debugging.assert_equal(a__ , a__ ) @slow @require_tensorflow_text def __A ( self ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=a__ ) class lowerCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self ): super().__init__() _UpperCAmelCase = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(a__ , 'spiece.model' ) , 'rb' ).read() ) _UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def __A ( self , a__ , *a__ , **a__ ): _UpperCAmelCase = self.tokenizer.tokenize(a__ ) _UpperCAmelCase , _UpperCAmelCase = text.pad_model_inputs( a__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) _UpperCAmelCase = self.model.generate(input_ids=a__ , attention_mask=a__ ) return self.tokenizer.detokenize(a__ ) _UpperCAmelCase = CompleteSentenceTransformer() _UpperCAmelCase = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) _UpperCAmelCase = complete_model(a__ ) _UpperCAmelCase = tf.keras.Model(a__ , a__ ) keras_model.save(a__ ) def __A ( self ): # Has PT equivalent: this test relies on random sampling _UpperCAmelCase = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } _UpperCAmelCase = 14 _UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _UpperCAmelCase = 'Hello, my dog is cute and' _UpperCAmelCase = tokenizer(a__ , return_tensors='tf' ) _UpperCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _UpperCAmelCase = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) _UpperCAmelCase = model.generate(**a__ , eos_token_id=a__ , **a__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) _UpperCAmelCase = [6_38, 1_98] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) _UpperCAmelCase = model.generate(**a__ , eos_token_id=a__ , **a__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def __A ( self ): # Has PT equivalent: ample use of framework-specific code _UpperCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) _UpperCAmelCase = 'Hugging Face is a technology company based in New York and Paris.' _UpperCAmelCase = bart_tokenizer(a__ , return_tensors='tf' ).input_ids _UpperCAmelCase = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) _UpperCAmelCase = bart_model.generate(a__ ).numpy() class lowerCAmelCase ( snake_case ): '''simple docstring''' def __A ( self , a__ , a__=None , **a__ ): return super().call(a__ , **a__ ) _UpperCAmelCase = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) _UpperCAmelCase = bart_model.generate(a__ , foo='bar' ).numpy() self.assertTrue(np.array_equal(a__ , a__ ) ) class lowerCAmelCase ( bart_model.model.encoder.__class__ ): '''simple docstring''' def __A ( self , a__ , **a__ ): return super().call(a__ , **a__ ) _UpperCAmelCase = FakeEncoder(bart_model.config , bart_model.model.shared ) _UpperCAmelCase = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) _UpperCAmelCase = bart_model.generate(a__ ).numpy() with self.assertRaises(a__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(a__ , foo='bar' )
709
"""simple docstring""" from itertools import product def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(SCREAMING_SNAKE_CASE,max_face_number + 1 ) for dice_numbers in product(SCREAMING_SNAKE_CASE,repeat=SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(SCREAMING_SNAKE_CASE ) totals_frequencies[total] += 1 return totals_frequencies def __lowerCamelCase ( ) -> float: """simple docstring""" _UpperCAmelCase = total_frequency_distribution( sides_number=4,dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6,dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(SCREAMING_SNAKE_CASE,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(SCREAMING_SNAKE_CASE,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
494
0
from __future__ import annotations def lowercase__ ( A_: list[int] ) -> bool: """simple docstring""" return len(set(A_ ) ) == len(A_ ) if __name__ == "__main__": import doctest doctest.testmod()
68
"""simple docstring""" import datasets A_ = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" A_ = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" A_ = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n" def _UpperCamelCase ( A , A ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self: Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def UpperCamelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] ): return {"accuracy": simple_accuracy(UpperCamelCase_ , UpperCamelCase_ )}
391
0
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( __A : int ) -> list[int]: """simple docstring""" a_ : Tuple = [True] * limit a_ : str = False a_ : int = False a_ : int = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): a_ : Optional[Any] = i * 2 while index < limit: a_ : Optional[int] = False a_ : Any = index + i a_ : Dict = [2] for i in range(3 , __A , 2 ): if is_prime[i]: primes.append(__A ) return primes def SCREAMING_SNAKE_CASE_ ( __A : int = 1_00_00_00 ) -> int: """simple docstring""" a_ : int = prime_sieve(__A ) a_ : List[str] = 0 a_ : Dict = 0 for i in range(len(__A ) ): for j in range(i + length , len(__A ) ): a_ : Optional[int] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: a_ : List[Any] = j - i a_ : Any = sol return largest if __name__ == "__main__": print(F'{solution() = }')
443
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] , __A : Tuple , __A : Tuple=8 ) -> Dict: """simple docstring""" a_ : Optional[int] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a_ : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : str , SCREAMING_SNAKE_CASE__ : UNetaDConditionModel , SCREAMING_SNAKE_CASE__ : DDPMScheduler , SCREAMING_SNAKE_CASE__ : VQModel , ) -> Any: super().__init__() self.register_modules( unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , movq=SCREAMING_SNAKE_CASE__ , ) a_ : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str: if latents is None: a_ : List[str] = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) a_ : Any = latents.to(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 ) -> Dict: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) a_ : Union[str, Any] = torch.device(F"""cuda:{gpu_id}""" ) a_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int]=0 ) -> Dict: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) a_ : Tuple = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=SCREAMING_SNAKE_CASE__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a_ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: a_ , a_ : Optional[Any] = cpu_offload_with_hook(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , prev_module_hook=SCREAMING_SNAKE_CASE__ ) # We'll offload the last model manually. a_ : str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE__ ) def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , SCREAMING_SNAKE_CASE__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : int = 5_1_2 , SCREAMING_SNAKE_CASE__ : int = 5_1_2 , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 4.0 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , ) -> int: a_ : Dict = self._execution_device a_ : int = guidance_scale > 1.0 if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Union[str, Any] = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Optional[Any] = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Optional[int] = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) a_ : Dict = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: a_ : Optional[Any] = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) a_ : Optional[Any] = negative_image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) a_ : int = hint.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) a_ : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=SCREAMING_SNAKE_CASE__ ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = self.scheduler.timesteps a_ : Optional[int] = self.movq.config.latent_channels a_ , a_ : Dict = downscale_height_and_width(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.movq_scale_factor ) # create initial latent a_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE__ ) ): # expand the latents if we are doing classifier free guidance a_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a_ : int = {'image_embeds': image_embeds, 'hint': hint} a_ : str = self.unet( sample=SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , added_cond_kwargs=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , )[0] if do_classifier_free_guidance: a_ , a_ : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) a_ , a_ : str = noise_pred.chunk(2 ) a_ , a_ : Union[str, Any] = variance_pred.chunk(2 ) a_ : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a_ , a_ : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a_ : str = self.scheduler.step( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , )[0] # post-processing a_ : str = self.movq.decode(SCREAMING_SNAKE_CASE__ , force_not_quantize=SCREAMING_SNAKE_CASE__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: a_ : str = image * 0.5 + 0.5 a_ : Union[str, Any] = image.clamp(0 , 1 ) a_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a_ : List[str] = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ )
443
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a__ : def __init__( self : List[Any] ,a__ : Dict=2 ,a__ : int=3 ,a__ : int=64 ,a__ : str=None) -> str: """simple docstring""" _lowerCAmelCase:int = np.random.default_rng(a__) _lowerCAmelCase:Optional[int] = length _lowerCAmelCase:List[Any] = rng.normal(size=(length,)).astype(np.floataa) _lowerCAmelCase:Optional[Any] = a * self.x + b + rng.normal(scale=0.1 ,size=(length,)).astype(np.floataa) def __len__( self : List[str]) -> Tuple: """simple docstring""" return self.length def __getitem__( self : Dict ,a__ : int) -> str: """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class a__ ( torch.nn.Module ): def __init__( self : List[Any] ,a__ : Dict=0 ,a__ : Any=0 ,a__ : Any=False) -> List[str]: """simple docstring""" super().__init__() _lowerCAmelCase:Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3]).float()) _lowerCAmelCase:Optional[int] = torch.nn.Parameter(torch.tensor([2, 3]).float()) _lowerCAmelCase:Dict = True def __UpperCamelCase ( self : Optional[int] ,a__ : Optional[int]=None) -> Any: """simple docstring""" if self.first_batch: print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}') _lowerCAmelCase:List[str] = False return x * self.a[0] + self.b[0] class a__ ( torch.nn.Module ): def __init__( self : Union[str, Any] ,a__ : Dict=0 ,a__ : int=0 ,a__ : Tuple=False) -> int: """simple docstring""" super().__init__() _lowerCAmelCase:Tuple = torch.nn.Parameter(torch.tensor(a__).float()) _lowerCAmelCase:str = torch.nn.Parameter(torch.tensor(a__).float()) _lowerCAmelCase:List[str] = True def __UpperCamelCase ( self : Dict ,a__ : Union[str, Any]=None) -> List[Any]: """simple docstring""" if self.first_batch: print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}') _lowerCAmelCase:Any = False return x * self.a + self.b def UpperCAmelCase ( snake_case : Tuple , snake_case : int = 16 ): from datasets import load_dataset from transformers import AutoTokenizer _lowerCAmelCase:Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _lowerCAmelCase:Any = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} _lowerCAmelCase:Dict = load_dataset('''csv''' , data_files=snake_case ) _lowerCAmelCase:Dict = datasets['''train'''].unique('''label''' ) _lowerCAmelCase:List[Any] = {v: i for i, v in enumerate(snake_case )} def tokenize_function(snake_case : List[str] ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase:Optional[Any] = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case , padding='''max_length''' ) if "label" in examples: _lowerCAmelCase:Optional[int] = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCAmelCase:Tuple = datasets.map( snake_case , batched=snake_case , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(snake_case : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(snake_case , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. _lowerCAmelCase:Union[str, Any] = DataLoader(tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=2 ) _lowerCAmelCase:Any = DataLoader(tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=1 ) return train_dataloader, eval_dataloader
227
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup UpperCamelCase__ = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def UpperCAmelCase ( snake_case : str = "dhaka" , snake_case : int = 5 ): _lowerCAmelCase:Tuple = min(snake_case , 50 ) # Prevent abuse! _lowerCAmelCase:Dict = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } _lowerCAmelCase:List[Any] = requests.get('''https://www.google.com/search''' , params=snake_case , headers=snake_case ) _lowerCAmelCase:int = BeautifulSoup(html.text , '''html.parser''' ) _lowerCAmelCase:Tuple = ''''''.join( re.findall(R'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) _lowerCAmelCase:str = json.dumps(snake_case ) _lowerCAmelCase:Optional[Any] = json.loads(snake_case ) _lowerCAmelCase:int = re.findall( R'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , snake_case , ) if not matched_google_image_data: return 0 _lowerCAmelCase:Tuple = re.sub( R'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(snake_case ) , ) _lowerCAmelCase:str = re.findall( R'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , snake_case , ) for index, fixed_full_res_image in enumerate(snake_case ): if index >= max_images: return index _lowerCAmelCase:List[str] = bytes(snake_case , '''ascii''' ).decode( '''unicode-escape''' ) _lowerCAmelCase:str = bytes(snake_case , '''ascii''' ).decode( '''unicode-escape''' ) _lowerCAmelCase:Dict = urllib.request.build_opener() _lowerCAmelCase:int = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(snake_case ) _lowerCAmelCase:str = F'query_{query.replace(" " , "_" )}' if not os.path.exists(snake_case ): os.makedirs(snake_case ) urllib.request.urlretrieve( # noqa: S310 snake_case , F'{path_name}/original_size_img_{index}.jpg' ) return index if __name__ == "__main__": try: UpperCamelCase__ = download_images_from_google_query(sys.argv[1]) print(F"{image_count} images were downloaded to disk.") except IndexError: print('''Please provide a search term.''') raise
227
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( __a , unittest.TestCase ): """simple docstring""" lowercase__ = KandinskyVaaControlnetImgaImgPipeline lowercase__ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] lowercase__ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] lowercase__ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__ = False @property def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' return 32 @property def UpperCAmelCase_ ( self : str ) -> Optional[int]: '''simple docstring''' return 32 @property def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self : Tuple ) -> Any: '''simple docstring''' return 100 @property def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase ={ '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __UpperCamelCase =UNetaDConditionModel(**UpperCamelCase__ ) return model @property def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self : str ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase =VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self : List[str] ) -> List[str]: '''simple docstring''' __UpperCamelCase =self.dummy_unet __UpperCamelCase =self.dummy_movq __UpperCamelCase ={ '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } __UpperCamelCase =DDIMScheduler(**UpperCamelCase__ ) __UpperCamelCase ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def UpperCAmelCase_ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : str=0 ) -> int: '''simple docstring''' __UpperCamelCase =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) __UpperCamelCase =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase__ ) # create init_image __UpperCamelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) __UpperCamelCase =image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase =Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert('''RGB''' ).resize((256, 256) ) # create hint __UpperCamelCase =floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith('''mps''' ): __UpperCamelCase =torch.manual_seed(UpperCamelCase__ ) else: __UpperCamelCase =torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) __UpperCamelCase ={ '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def UpperCAmelCase_ ( self : int ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase ='''cpu''' __UpperCamelCase =self.get_dummy_components() __UpperCamelCase =self.pipeline_class(**UpperCamelCase__ ) __UpperCamelCase =pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __UpperCamelCase =pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) __UpperCamelCase =output.images __UpperCamelCase =pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase =np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) __UpperCamelCase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __UpperCamelCase =init_image.resize((512, 512) ) __UpperCamelCase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) __UpperCamelCase =torch.from_numpy(np.array(UpperCamelCase__ ) ).float() / 2_55.0 __UpperCamelCase =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __UpperCamelCase ='''A robot, 4k photo''' __UpperCamelCase =KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase__ ) __UpperCamelCase =KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) __UpperCamelCase =pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) __UpperCamelCase =torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCamelCase , __UpperCamelCase =pipe_prior( UpperCamelCase__ , image=UpperCamelCase__ , strength=0.85 , generator=UpperCamelCase__ , negative_prompt='''''' , ).to_tuple() __UpperCamelCase =pipeline( image=UpperCamelCase__ , image_embeds=UpperCamelCase__ , negative_image_embeds=UpperCamelCase__ , hint=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) __UpperCamelCase =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
296
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] ): """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase (__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =features.copy() if features else default_expected_features __UpperCamelCase =( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowerCAmelCase (__UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCamelCase =features.copy() if features else default_expected_features __UpperCamelCase =( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCAmelCase (__UpperCamelCase : Tuple , __UpperCamelCase : List[str] ): """simple docstring""" __UpperCamelCase ={'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCamelCase =features.copy() __UpperCamelCase =( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : str ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , split=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase , __UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple ): """simple docstring""" if issubclass(__UpperCamelCase , __UpperCamelCase ): __UpperCamelCase =jsonl_path elif issubclass(__UpperCamelCase , __UpperCamelCase ): __UpperCamelCase =[jsonl_path] __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict=("train",) ): """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) for split in splits: __UpperCamelCase =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCamelCase =JsonDatasetReader({'''train''': jsonl_path} , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =features.copy() if features else default_expected_features __UpperCamelCase =( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =JsonDatasetReader({'''train''': jsonl_path} , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] ): """simple docstring""" if split: __UpperCamelCase ={split: jsonl_path} else: __UpperCamelCase ='''train''' __UpperCamelCase ={'''train''': jsonl_path, '''test''': jsonl_path} __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase , __UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase (__UpperCamelCase : Dict ): """simple docstring""" return json.load(__UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : Optional[Any] ): """simple docstring""" return [json.loads(__UpperCamelCase ) for line in buffer] class _lowercase : """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ ).write() buffer.seek(0 ) __UpperCamelCase =load_json_function(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert isinstance(exported_content[0] , UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def UpperCAmelCase_ ( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> str: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , orient=UpperCamelCase__ ).write() buffer.seek(0 ) __UpperCamelCase =load_json(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase_ ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ) -> Any: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , num_proc=2 ).write() buffer.seek(0 ) __UpperCamelCase =load_json_function(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert isinstance(exported_content[0] , UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def UpperCAmelCase_ ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str ) -> Any: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , orient=UpperCamelCase__ , num_proc=2 ).write() buffer.seek(0 ) __UpperCamelCase =load_json(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase__ ) == 10 def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : List[Any] ) -> Dict: '''simple docstring''' with pytest.raises(UpperCamelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' __UpperCamelCase =tmp_path_factory.mktemp('''data''' ) / f"""test.json.{extension}""" __UpperCamelCase =str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , compression=UpperCamelCase__ ).write() with fsspec.open(UpperCamelCase__ , '''rb''' , compression='''infer''' ) as f: __UpperCamelCase =f.read() with fsspec.open(UpperCamelCase__ , '''rb''' , compression='''infer''' ) as f: __UpperCamelCase =f.read() assert exported_content == original_content
296
1
"""simple docstring""" A__ : List[Any] = 8.31_4462 # Unit - J mol-1 K-1 def _snake_case ( lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : float ) -> float: if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _snake_case ( lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : float ) -> float: if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
153
"""simple docstring""" import math import qiskit def _snake_case ( lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1 ) -> qiskit.result.counts.Counts: if ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) or isinstance(lowerCamelCase__ , lowerCamelCase__ ) or isinstance(lowerCamelCase__ , lowerCamelCase__ ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(lowerCamelCase__ ) != input_a) or (math.floor(lowerCamelCase__ ) != input_a) or (math.floor(lowerCamelCase__ ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers lowerCamelCase_ : Optional[Any] =qiskit.QuantumRegister(4 , "qr" ) lowerCamelCase_ : List[Any] =qiskit.ClassicalRegister(2 , "cr" ) # list the entries lowerCamelCase_ : Tuple =[input_a, input_a, carry_in] lowerCamelCase_ : Union[str, Any] =qiskit.QuantumCircuit(lowerCamelCase__ , lowerCamelCase__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowerCamelCase__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowerCamelCase__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowerCamelCase__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowerCamelCase__ ) # measure the last two qbits lowerCamelCase_ : Any =qiskit.Aer.get_backend("aer_simulator" ) lowerCamelCase_ : str =qiskit.execute(lowerCamelCase__ , lowerCamelCase__ , shots=1_000 ) return job.result().get_counts(lowerCamelCase__ ) if __name__ == "__main__": print(f'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
153
1
import os import numpy import onnx def __A(lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: """simple docstring""" _UpperCamelCase = a.name _UpperCamelCase = b.name _UpperCamelCase = '''''' _UpperCamelCase = '''''' _UpperCamelCase = a == b _UpperCamelCase = name_a _UpperCamelCase = name_b return res def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> List[str]: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Dict: """simple docstring""" _UpperCamelCase = list(model.graph.initializer ) _UpperCamelCase = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _UpperCamelCase = inits[i].name _UpperCamelCase = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ ) def __A(lowerCAmelCase ) -> Dict: """simple docstring""" _UpperCamelCase = os.path.dirname(lowerCAmelCase_ ) _UpperCamelCase = os.path.basename(lowerCAmelCase_ ) _UpperCamelCase = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _UpperCamelCase = list(model.graph.initializer ) _UpperCamelCase = set() _UpperCamelCase = {} _UpperCamelCase = [] _UpperCamelCase = 0 for i in range(len(lowerCAmelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase_ ) dup_set.add(lowerCAmelCase_ ) _UpperCamelCase = inits[j].data_type _UpperCamelCase = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print("""unexpected data type: """ , lowerCAmelCase_ ) total_reduced_size += mem_size _UpperCamelCase = inits[i].name _UpperCamelCase = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase_ ) else: _UpperCamelCase = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , """GB""" ) _UpperCamelCase = sorted(lowerCAmelCase_ ) _remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCamelCase = '''optimized_''' + model_file_name _UpperCamelCase = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) onnx.save(lowerCAmelCase_ , lowerCAmelCase_ ) return new_model
703
from math import isclose, sqrt def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> tuple[float, float, float]: """simple docstring""" _UpperCamelCase = point_y / 4 / point_x _UpperCamelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _UpperCamelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _UpperCamelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _UpperCamelCase = outgoing_gradient**2 + 4 _UpperCamelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _UpperCamelCase = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0 _UpperCamelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _UpperCamelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _UpperCamelCase = x_minus if isclose(lowerCAmelCase , lowerCAmelCase ) else x_plus _UpperCamelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __A(lowerCAmelCase = 1.4 , lowerCAmelCase = -9.6 ) -> int: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = first_x_coord _UpperCamelCase = first_y_coord _UpperCamelCase = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = next_point(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
202
0
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _snake_case : Union[str, Any] = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=lowerCamelCase_ , cache_dir=lowerCamelCase_ ) _snake_case : int = [t[-1] for t in os.walk(os.path.join(lowerCamelCase_ , os.listdir(lowerCamelCase_ )[0] , 'snapshots' ) )] _snake_case : int = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case , _snake_case : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=lowerCamelCase_ ) _snake_case : List[str] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _snake_case : Any = jax.random.PRNGKey(0 ) _snake_case : str = 4 _snake_case : Optional[int] = jax.device_count() _snake_case : Union[str, Any] = num_samples * [prompt] _snake_case : Union[str, Any] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng _snake_case : Union[str, Any] = replicate(lowerCamelCase_ ) _snake_case : List[Any] = jax.random.split(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Tuple = shard(lowerCamelCase_ ) _snake_case : int = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.151_4745 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase_ , dtype=np.floataa ).sum() - 4_9947.875 ) < 5e-1 _snake_case : Optional[int] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase_ ) == num_samples def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : Any = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=lowerCamelCase_ ) _snake_case : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _snake_case : Optional[int] = jax.random.PRNGKey(0 ) _snake_case : List[Any] = 50 _snake_case : Any = jax.device_count() _snake_case : str = num_samples * [prompt] _snake_case : Dict = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng _snake_case : List[str] = replicate(lowerCamelCase_ ) _snake_case : Optional[int] = jax.random.split(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Any = shard(lowerCamelCase_ ) _snake_case : List[Any] = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0565_2401) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_ , dtype=np.floataa ).sum() - 238_3808.2) ) < 5e-1 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case , _snake_case : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowerCamelCase_ ) _snake_case : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _snake_case : Tuple = jax.random.PRNGKey(0 ) _snake_case : Dict = 50 _snake_case : Any = jax.device_count() _snake_case : List[str] = num_samples * [prompt] _snake_case : Optional[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng _snake_case : Optional[Any] = replicate(lowerCamelCase_ ) _snake_case : Dict = jax.random.split(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[int] = shard(lowerCamelCase_ ) _snake_case : List[Any] = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1 def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) _snake_case : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _snake_case : List[str] = jax.random.PRNGKey(0 ) _snake_case : List[Any] = 50 _snake_case : List[str] = jax.device_count() _snake_case : Optional[int] = num_samples * [prompt] _snake_case : Optional[int] = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng _snake_case : Dict = replicate(lowerCamelCase_ ) _snake_case : List[Any] = jax.random.split(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Dict = shard(lowerCamelCase_ ) _snake_case : List[Any] = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : str = FlaxDDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=lowerCamelCase_ , steps_offset=1 , ) _snake_case , _snake_case : Any = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , ) _snake_case : Optional[int] = scheduler.create_state() _snake_case : Union[str, Any] = scheduler_state _snake_case : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _snake_case : Optional[int] = jax.random.PRNGKey(0 ) _snake_case : List[str] = 50 _snake_case : List[str] = jax.device_count() _snake_case : str = num_samples * [prompt] _snake_case : Tuple = pipeline.prepare_inputs(lowerCamelCase_ ) # shard inputs and rng _snake_case : Optional[int] = replicate(lowerCamelCase_ ) _snake_case : Optional[int] = jax.random.split(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : int = shard(lowerCamelCase_ ) _snake_case : List[Any] = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase_ , dtype=np.floataa ).sum() - 234_7693.5) ) < 5e-1 def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _snake_case : Optional[Any] = jax.device_count() _snake_case : Any = num_samples * [prompt] _snake_case : Tuple = jax.random.split(jax.random.PRNGKey(0 ) , lowerCamelCase_ ) _snake_case , _snake_case : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowerCamelCase_ , ) _snake_case : Optional[Any] = replicate(lowerCamelCase_ ) _snake_case : Optional[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) _snake_case : List[Any] = shard(lowerCamelCase_ ) _snake_case : Dict = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) _snake_case : int = images[2, 0, 2_56, 10:17, 1] # With memory efficient attention _snake_case , _snake_case : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowerCamelCase_ , use_memory_efficient_attention=lowerCamelCase_ , ) _snake_case : List[Any] = replicate(lowerCamelCase_ ) _snake_case : List[Any] = pipeline.prepare_inputs(lowerCamelCase_ ) _snake_case : List[Any] = shard(lowerCamelCase_ ) _snake_case : Optional[int] = pipeline(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , jit=lowerCamelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_12, 5_12, 3) _snake_case : Optional[Any] = images[2, 0, 2_56, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
304
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowercase : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : int=64 , lowerCamelCase_ : List[str]=None ): '''simple docstring''' _snake_case : Tuple = np.random.default_rng(lowerCamelCase_ ) _snake_case : Dict = length _snake_case : Union[str, Any] = rng.normal(size=(length,) ).astype(np.floataa ) _snake_case : Any = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : List[str] ): '''simple docstring''' return self.length def __getitem__( self : Optional[int] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : Any=0 , lowerCamelCase_ : Optional[Any]=0 , lowerCamelCase_ : Tuple=False ): '''simple docstring''' super().__init__() _snake_case : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _snake_case : Union[str, Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _snake_case : List[str] = True def __UpperCAmelCase ( self : Any , lowerCamelCase_ : List[str]=None ): '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) _snake_case : str = False return x * self.a[0] + self.b[0] class lowercase ( torch.nn.Module ): """simple docstring""" def __init__( self : Any , lowerCamelCase_ : List[Any]=0 , lowerCamelCase_ : Optional[int]=0 , lowerCamelCase_ : int=False ): '''simple docstring''' super().__init__() _snake_case : Optional[Any] = torch.nn.Parameter(torch.tensor(lowerCamelCase_ ).float() ) _snake_case : List[str] = torch.nn.Parameter(torch.tensor(lowerCamelCase_ ).float() ) _snake_case : Dict = True def __UpperCAmelCase ( self : int , lowerCamelCase_ : str=None ): '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) _snake_case : Any = False return x * self.a + self.b def A__( __lowerCAmelCase , __lowerCAmelCase = 16 ): from datasets import load_dataset from transformers import AutoTokenizer _snake_case : str = AutoTokenizer.from_pretrained('bert-base-cased' ) _snake_case : List[str] = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} _snake_case : Tuple = load_dataset('csv' , data_files=__lowerCAmelCase ) _snake_case : Any = datasets['train'].unique('label' ) _snake_case : Union[str, Any] = {v: i for i, v in enumerate(__lowerCAmelCase )} def tokenize_function(__lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) _snake_case : Optional[Any] = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , padding='max_length' ) if "label" in examples: _snake_case : Optional[int] = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _snake_case : Any = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(__lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCAmelCase , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return tokenizer.pad(__lowerCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _snake_case : int = DataLoader(tokenized_datasets['train'] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=2 ) _snake_case : List[Any] = DataLoader(tokenized_datasets['validation'] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
304
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''swin''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowercase=2_2_4 , _lowercase=4 , _lowercase=3 , _lowercase=9_6 , _lowercase=[2, 2, 6, 2] , _lowercase=[3, 6, 1_2, 2_4] , _lowercase=7 , _lowercase=4.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=0.02 , _lowercase=1E-5 , _lowercase=3_2 , _lowercase=None , _lowercase=None , **_lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : str = image_size snake_case_ : int = patch_size snake_case_ : Optional[int] = num_channels snake_case_ : Union[str, Any] = embed_dim snake_case_ : Optional[int] = depths snake_case_ : Optional[int] = len(_lowercase ) snake_case_ : Optional[Any] = num_heads snake_case_ : Optional[Any] = window_size snake_case_ : Optional[Any] = mlp_ratio snake_case_ : Optional[Any] = qkv_bias snake_case_ : Optional[Any] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Union[str, Any] = drop_path_rate snake_case_ : List[Any] = hidden_act snake_case_ : str = use_absolute_embeddings snake_case_ : str = layer_norm_eps snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case_ : Tuple = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) snake_case_ : Tuple = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] snake_case_ : Any = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1E-4
711
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : Any = seq_length snake_case_ : Tuple = is_training snake_case_ : Dict = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : str = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : Dict = type_sequence_label_size snake_case_ : Optional[Any] = initializer_range snake_case_ : Tuple = num_choices def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[str] = None if self.use_token_type_ids: snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : Tuple = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = True snake_case_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : List[str] = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : str = model(_lowercase )[0] snake_case_ : int = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , _lowercase ) # compare the actual values for a slice. snake_case_ : Tuple = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Any = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowercase ) snake_case_ : Dict = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) snake_case_ : Any = model(_lowercase )[0] # compare the actual values for a slice. snake_case_ : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): return f"gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy" def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def __UpperCAmelCase ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 4, 64, 64) , _lowerCAmelCase=False ): UpperCAmelCase__ : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa UpperCAmelCase__ : Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase ) return image def __UpperCAmelCase ( self , _lowerCAmelCase=False , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" ): UpperCAmelCase__ : int = jnp.bfloataa if fpaa else jnp.floataa UpperCAmelCase__ : Optional[Any] = """bf16""" if fpaa else None UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = FlaxUNetaDConditionModel.from_pretrained( _lowerCAmelCase , subfolder="""unet""" , dtype=_lowerCAmelCase , revision=_lowerCAmelCase ) return model, params def __UpperCAmelCase ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 77, 768) , _lowerCAmelCase=False ): UpperCAmelCase__ : Optional[int] = jnp.bfloataa if fpaa else jnp.floataa UpperCAmelCase__ : Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1000, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = self.get_latents(_lowerCAmelCase , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Dict = self.get_encoder_hidden_states(_lowerCAmelCase , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = model.apply( {"""params""": params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample assert sample.shape == latents.shape UpperCAmelCase__ : Dict = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCAmelCase__ : List[Any] = jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1000, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = self.get_latents(_lowerCAmelCase , shape=(4, 4, 96, 96) , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Any = self.get_encoder_hidden_states(_lowerCAmelCase , shape=(4, 77, 1024) , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Dict = model.apply( {"""params""": params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample assert sample.shape == latents.shape UpperCAmelCase__ : Any = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCAmelCase__ : Any = jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-2 )
79
def _lowerCamelCase ( __lowerCamelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase__ : Tuple = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
79
1
def lowerCamelCase__ ( A__ : int = 1000 ): '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
720
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : Any = 'maskformer-swin' UpperCAmelCase__ : List[Any] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self: Any , UpperCamelCase_: Any=2_24 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: Optional[int]=96 , UpperCamelCase_: List[str]=[2, 2, 6, 2] , UpperCamelCase_: Optional[Any]=[3, 6, 12, 24] , UpperCamelCase_: str=7 , UpperCamelCase_: int=4.0 , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: Optional[int]=0.0 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Union[str, Any]="gelu" , UpperCamelCase_: int=False , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Optional[Any]=1E-5 , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Union[str, Any] , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = embed_dim __lowerCamelCase = depths __lowerCamelCase = len(UpperCamelCase_ ) __lowerCamelCase = num_heads __lowerCamelCase = window_size __lowerCamelCase = mlp_ratio __lowerCamelCase = qkv_bias __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = drop_path_rate __lowerCamelCase = hidden_act __lowerCamelCase = use_absolute_embeddings __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowerCamelCase = int(embed_dim * 2 ** (len(UpperCamelCase_ ) - 1) ) __lowerCamelCase = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(UpperCamelCase_ ) + 1 )] __lowerCamelCase, __lowerCamelCase = get_aligned_output_features_output_indices( out_features=UpperCamelCase_ , out_indices=UpperCamelCase_ , stage_names=self.stage_names )
80
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) @dataclass class a : """simple docstring""" __lowerCAmelCase = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) @dataclass class a : """simple docstring""" __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Train language if it is different from the evaluation language."""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __lowerCAmelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def UpperCamelCase__ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase: Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_xnli""" , _lowercase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __UpperCAmelCase: Optional[int] = training_args.get_process_log_level() logger.setLevel(_lowercase ) datasets.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __UpperCAmelCase: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase: Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: __UpperCAmelCase: Optional[int] = load_dataset( """xnli""" , model_args.language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: __UpperCAmelCase: Tuple = load_dataset( """xnli""" , model_args.train_language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase: Dict = train_dataset.features["""label"""].names if training_args.do_eval: __UpperCAmelCase: List[str] = load_dataset( """xnli""" , model_args.language , split="""validation""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase: Dict = eval_dataset.features["""label"""].names if training_args.do_predict: __UpperCAmelCase: str = load_dataset( """xnli""" , model_args.language , split="""test""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase: List[str] = predict_dataset.features["""label"""].names # Labels __UpperCAmelCase: List[Any] = len(_lowercase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase: str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , idalabel={str(_lowercase ): label for i, label in enumerate(_lowercase )} , labelaid={label: i for i, label in enumerate(_lowercase )} , finetuning_task="""xnli""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase: Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase: Tuple = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: __UpperCAmelCase: str = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __UpperCAmelCase: str = False def preprocess_function(_lowercase : Any ): # Tokenize the texts return tokenizer( examples["""premise"""] , examples["""hypothesis"""] , padding=_lowercase , max_length=data_args.max_seq_length , truncation=_lowercase , ) if training_args.do_train: if data_args.max_train_samples is not None: __UpperCAmelCase: Union[str, Any] = min(len(_lowercase ) , data_args.max_train_samples ) __UpperCAmelCase: int = train_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): __UpperCAmelCase: int = train_dataset.map( _lowercase , batched=_lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on train dataset""" , ) # Log a few random samples from the training set: for index in random.sample(range(len(_lowercase ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: __UpperCAmelCase: Optional[int] = min(len(_lowercase ) , data_args.max_eval_samples ) __UpperCAmelCase: str = eval_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): __UpperCAmelCase: Any = eval_dataset.map( _lowercase , batched=_lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on validation dataset""" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: __UpperCAmelCase: Optional[int] = min(len(_lowercase ) , data_args.max_predict_samples ) __UpperCAmelCase: str = predict_dataset.select(range(_lowercase ) ) with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ): __UpperCAmelCase: List[Any] = predict_dataset.map( _lowercase , batched=_lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on prediction dataset""" , ) # Get the metric function __UpperCAmelCase: Union[str, Any] = evaluate.load("""xnli""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowercase : EvalPrediction ): __UpperCAmelCase: str = p.predictions[0] if isinstance(p.predictions , _lowercase ) else p.predictions __UpperCAmelCase: Any = np.argmax(_lowercase , axis=1 ) return metric.compute(predictions=_lowercase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __UpperCAmelCase: Tuple = default_data_collator elif training_args.fpaa: __UpperCAmelCase: Optional[Any] = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) else: __UpperCAmelCase: Dict = None # Initialize our Trainer __UpperCAmelCase: Dict = Trainer( model=_lowercase , args=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_lowercase , tokenizer=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: __UpperCAmelCase: Dict = None if training_args.resume_from_checkpoint is not None: __UpperCAmelCase: Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCAmelCase: Optional[int] = last_checkpoint __UpperCAmelCase: Any = trainer.train(resume_from_checkpoint=_lowercase ) __UpperCAmelCase: Optional[Any] = train_result.metrics __UpperCAmelCase: Any = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) __UpperCAmelCase: str = min(_lowercase , len(_lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , _lowercase ) trainer.save_metrics("""train""" , _lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __UpperCAmelCase: int = trainer.evaluate(eval_dataset=_lowercase ) __UpperCAmelCase: str = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowercase ) __UpperCAmelCase: Union[str, Any] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics("""eval""" , _lowercase ) trainer.save_metrics("""eval""" , _lowercase ) # Prediction if training_args.do_predict: logger.info("""*** Predict ***""" ) __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: List[Any] = trainer.predict(_lowercase , metric_key_prefix="""predict""" ) __UpperCAmelCase: List[Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_lowercase ) ) __UpperCAmelCase: List[str] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics("""predict""" , _lowercase ) trainer.save_metrics("""predict""" , _lowercase ) __UpperCAmelCase: int = np.argmax(_lowercase , axis=1 ) __UpperCAmelCase: str = os.path.join(training_args.output_dir , """predictions.txt""" ) if trainer.is_world_process_zero(): with open(_lowercase , """w""" ) as writer: writer.write("""index\tprediction\n""" ) for index, item in enumerate(_lowercase ): __UpperCAmelCase: Union[str, Any] = label_list[item] writer.write(F'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
523
'''simple docstring''' def UpperCamelCase__ ( _lowercase : List[Any] ) -> Dict: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def UpperCamelCase__ ( _lowercase : dict[int, list[int]] ) -> list[tuple[int, int]]: __UpperCAmelCase: Any = 0 __UpperCAmelCase: List[Any] = len(_lowercase ) # No of vertices in graph __UpperCAmelCase: Optional[Any] = [0] * n __UpperCAmelCase: Dict = [False] * n def dfs(_lowercase : Any , _lowercase : List[Any] , _lowercase : int , _lowercase : Optional[int] ): __UpperCAmelCase: List[str] = True __UpperCAmelCase: int = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_lowercase , _lowercase , _lowercase , id_ ) __UpperCAmelCase: Any = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge __UpperCAmelCase: List[str] = min(low[at] , low[to] ) __UpperCAmelCase: list[tuple[int, int]] = [] for i in range(_lowercase ): if not visited[i]: dfs(_lowercase , -1 , _lowercase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
523
1
"""simple docstring""" import math def __lowercase ( a : int ) -> list[int]: __snake_case : Any =[] __snake_case : Tuple =2 __snake_case : str =int(math.sqrt(a ) ) # Size of every segment __snake_case : int =[True] * (end + 1) __snake_case : int =[] while start <= end: if temp[start] is True: in_prime.append(a ) for i in range(start * start , end + 1 , a ): __snake_case : Dict =False start += 1 prime += in_prime __snake_case : str =end + 1 __snake_case : Any =min(2 * end , a ) while low <= n: __snake_case : Optional[Any] =[True] * (high - low + 1) for each in in_prime: __snake_case : Optional[int] =math.floor(low / each ) * each if t < low: t += each for j in range(a , high + 1 , a ): __snake_case : Optional[Any] =False for j in range(len(a ) ): if temp[j] is True: prime.append(j + low ) __snake_case : str =high + 1 __snake_case : List[Any] =min(high + end , a ) return prime print(sieve(10**6))
497
"""simple docstring""" def __lowercase ( a : str , a : str ) -> str: __snake_case : int =len(a ) __snake_case : int =len(a ) __snake_case : int =( first_str_length if first_str_length > second_str_length else second_str_length ) __snake_case : list =[] for char_count in range(a ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(a ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
497
1
'''simple docstring''' import re def lowercase_ ( __A : str ) -> bool: """simple docstring""" lowercase : str =re.compile( R'''^(?:0|94|\+94|0{2}94)''' R'''7(0|1|2|4|5|6|7|8)''' R'''(-| |)''' R'''\d{7}$''' ) return bool(re.search(__A , __A ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = '0094702343221' print(is_sri_lankan_phone_number(phone))
94
def _UpperCamelCase ( snake_case__ ) -> str: __UpperCAmelCase : Tuple = int(snake_case__ ) if decimal in (0, 1): # Exit cases for the recursion return str(snake_case__ ) __UpperCAmelCase , __UpperCAmelCase : List[str] = divmod(snake_case__, 2 ) return binary_recursive(snake_case__ ) + str(snake_case__ ) def _UpperCamelCase ( snake_case__ ) -> str: __UpperCAmelCase : Optional[int] = str(snake_case__ ).strip() if not number: raise ValueError("No input value was provided" ) __UpperCAmelCase : Optional[int] = "-" if number.startswith("-" ) else "" __UpperCAmelCase : Optional[int] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'''{negative}0b{binary_recursive(int(snake_case__ ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
382
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint SCREAMING_SNAKE_CASE = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } SCREAMING_SNAKE_CASE = { '169M': 768, '430M': 1024, '1B5': 2048, '3B': 2560, '7B': 4096, '14B': 5120, } def _lowerCamelCase ( __A : Tuple ) -> Any: _UpperCAmelCase : str = list(state_dict.keys() ) for name in state_dict_keys: _UpperCAmelCase : Dict = state_dict.pop(__A ) # emb -> embedding if name.startswith('''emb.''' ): _UpperCAmelCase : Tuple = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): _UpperCAmelCase : List[Any] = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention _UpperCAmelCase : int = re.sub(r'''blocks\.(\d+)\.att''' , r'''blocks.\1.attention''' , __A ) # ffn -> feed_forward _UpperCAmelCase : Optional[Any] = re.sub(r'''blocks\.(\d+)\.ffn''' , r'''blocks.\1.feed_forward''' , __A ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): _UpperCAmelCase : List[Any] = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): _UpperCAmelCase : Union[str, Any] = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): _UpperCAmelCase : Dict = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": _UpperCAmelCase : Optional[int] = '''rwkv.''' + name _UpperCAmelCase : Union[str, Any] = weight return state_dict def _lowerCamelCase ( __A : int , __A : List[str] , __A : int , __A : str=None , __A : Dict=None , __A : Dict=False , __A : Tuple=None ) -> Dict: # 1. If possible, build the tokenizer. if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) _UpperCAmelCase : int = 50_277 _UpperCAmelCase : str = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: _UpperCAmelCase : Dict = PreTrainedTokenizerFast(tokenizer_file=__A ) _UpperCAmelCase : Union[str, Any] = len(__A ) tokenizer.save_pretrained(__A ) # 2. Build the config _UpperCAmelCase : Union[str, Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _UpperCAmelCase : Tuple = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(f'''`size` should be one of {possible_sizes}, got {size}.''' ) _UpperCAmelCase : Optional[int] = RwkvConfig( vocab_size=__A , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__A ) # 3. Download model file then convert state_dict _UpperCAmelCase : Any = hf_hub_download(__A , __A ) _UpperCAmelCase : str = torch.load(__A , map_location='''cpu''' ) _UpperCAmelCase : List[Any] = convert_state_dict(__A ) # 4. Split in shards and save _UpperCAmelCase : Union[str, Any] = shard_checkpoint(__A ) for shard_file, shard in shards.items(): torch.save(__A , os.path.join(__A , __A ) ) if index is not None: _UpperCAmelCase : Optional[Any] = os.path.join(__A , __A ) # Save the index as well with open(__A , '''w''' , encoding='''utf-8''' ) as f: _UpperCAmelCase : Optional[int] = json.dumps(__A , indent=2 , sort_keys=__A ) + '''\n''' f.write(__A ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) _UpperCAmelCase : Dict = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _UpperCAmelCase : List[str] = torch.load(os.path.join(__A , __A ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__A , __A ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) _UpperCAmelCase : List[str] = AutoModelForCausalLM.from_pretrained(__A ) model.push_to_hub(__A , max_shard_size='''2GB''' ) tokenizer.push_to_hub(__A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
715
from __future__ import annotations def _lowerCamelCase ( __A : int ) -> list[int]: _UpperCAmelCase : List[str] = [True] * limit _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Dict = False _UpperCAmelCase : List[str] = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): _UpperCAmelCase : List[str] = i * 2 while index < limit: _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : int = index + i _UpperCAmelCase : Optional[int] = [2] for i in range(3 , __A , 2 ): if is_prime[i]: primes.append(__A ) return primes def _lowerCamelCase ( __A : int = 1_000_000 ) -> int: _UpperCAmelCase : Any = prime_sieve(__A ) _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : Tuple = 0 for i in range(len(__A ) ): for j in range(i + length , len(__A ) ): _UpperCAmelCase : List[Any] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: _UpperCAmelCase : List[str] = j - i _UpperCAmelCase : Optional[Any] = sol return largest if __name__ == "__main__": print(F'{solution() = }')
186
0
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if isinstance(__UpperCamelCase , torch.Tensor ): return image elif isinstance(__UpperCamelCase , PIL.Image.Image ): UpperCAmelCase__ : List[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase__ : Optional[int] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] UpperCAmelCase__ : Union[str, Any] = np.concatenate(__UpperCamelCase , axis=0 ) UpperCAmelCase__ : str = np.array(__UpperCamelCase ).astype(np.floataa ) / 255.0 UpperCAmelCase__ : List[str] = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase__ : Optional[int] = 2.0 * image - 1.0 UpperCAmelCase__ : List[Any] = torch.from_numpy(__UpperCamelCase ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase__ : List[Any] = torch.cat(__UpperCamelCase , dim=0 ) return image def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=0.9995 ): '''simple docstring''' if not isinstance(__UpperCamelCase , np.ndarray ): UpperCAmelCase__ : Any = True UpperCAmelCase__ : Optional[int] = va.device UpperCAmelCase__ : Tuple = va.cpu().numpy() UpperCAmelCase__ : Optional[int] = va.cpu().numpy() UpperCAmelCase__ : Dict = np.sum(va * va / (np.linalg.norm(__UpperCamelCase ) * np.linalg.norm(__UpperCamelCase )) ) if np.abs(__UpperCamelCase ) > DOT_THRESHOLD: UpperCAmelCase__ : Tuple = (1 - t) * va + t * va else: UpperCAmelCase__ : str = np.arccos(__UpperCamelCase ) UpperCAmelCase__ : int = np.sin(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = theta_a * t UpperCAmelCase__ : int = np.sin(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = np.sin(theta_a - theta_t ) / sin_theta_a UpperCAmelCase__ : Tuple = sin_theta_t / sin_theta_a UpperCAmelCase__ : List[Any] = sa * va + sa * va if inputs_are_torch: UpperCAmelCase__ : Dict = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) return va def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : str = F.normalize(__UpperCamelCase , dim=-1 ) UpperCAmelCase__ : Union[str, Any] = F.normalize(__UpperCamelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' for param in model.parameters(): UpperCAmelCase__ : Any = value class __lowercase ( __lowerCamelCase ): def __init__( self : Tuple ,A : AutoencoderKL ,A : CLIPTextModel ,A : CLIPModel ,A : CLIPTokenizer ,A : UNetaDConditionModel ,A : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] ,A : CLIPFeatureExtractor ,A : Optional[Any]=None ,A : Union[str, Any]=None ,A : str=None ,): '''simple docstring''' super().__init__() self.register_modules( vae=A ,text_encoder=A ,clip_model=A ,tokenizer=A ,unet=A ,scheduler=A ,feature_extractor=A ,coca_model=A ,coca_tokenizer=A ,coca_transform=A ,) UpperCAmelCase__ : List[Any] = ( feature_extractor.size if isinstance(feature_extractor.size ,A ) else feature_extractor.size["""shortest_edge"""] ) UpperCAmelCase__ : str = transforms.Normalize(mean=feature_extractor.image_mean ,std=feature_extractor.image_std ) set_requires_grad(self.text_encoder ,A ) set_requires_grad(self.clip_model ,A ) def __lowercase ( self : Optional[int] ,A : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase__ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def __lowercase ( self : int ): '''simple docstring''' self.enable_attention_slicing(A ) def __lowercase ( self : List[str] ): '''simple docstring''' set_requires_grad(self.vae ,A ) def __lowercase ( self : List[Any] ): '''simple docstring''' set_requires_grad(self.vae ,A ) def __lowercase ( self : List[str] ): '''simple docstring''' set_requires_grad(self.unet ,A ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' set_requires_grad(self.unet ,A ) def __lowercase ( self : Dict ,A : str ,A : List[Any] ,A : int ): '''simple docstring''' # get the original timestep using init_timestep UpperCAmelCase__ : Any = min(int(num_inference_steps * strength ) ,A ) UpperCAmelCase__ : List[Any] = max(num_inference_steps - init_timestep ,0 ) UpperCAmelCase__ : Any = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __lowercase ( self : str ,A : Optional[int] ,A : Dict ,A : int ,A : Optional[int] ,A : Optional[Any] ,A : int=None ): '''simple docstring''' if not isinstance(A ,torch.Tensor ): raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(A )}" ) UpperCAmelCase__ : int = image.to(device=A ,dtype=A ) if isinstance(A ,A ): UpperCAmelCase__ : List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] UpperCAmelCase__ : Union[str, Any] = torch.cat(A ,dim=0 ) else: UpperCAmelCase__ : List[Any] = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase__ : Any = 0.1_8_2_1_5 * init_latents UpperCAmelCase__ : Tuple = init_latents.repeat_interleave(A ,dim=0 ) UpperCAmelCase__ : Any = randn_tensor(init_latents.shape ,generator=A ,device=A ,dtype=A ) # get latents UpperCAmelCase__ : Optional[Any] = self.scheduler.add_noise(A ,A ,A ) UpperCAmelCase__ : Union[str, Any] = init_latents return latents def __lowercase ( self : List[Any] ,A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCAmelCase__ : Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device ,dtype=self.coca_model.dtype ) ) UpperCAmelCase__ : str = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" ,"""""" ).rstrip(""" .,""" ) def __lowercase ( self : str ,A : List[str] ,A : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.feature_extractor.preprocess(A ) UpperCAmelCase__ : List[Any] = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() UpperCAmelCase__ : Optional[Any] = self.clip_model.get_image_features(A ) UpperCAmelCase__ : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=A ) UpperCAmelCase__ : Tuple = image_embeddings_clip.repeat_interleave(A ,dim=0 ) return image_embeddings_clip @torch.enable_grad() def __lowercase ( self : Any ,A : List[Any] ,A : List[Any] ,A : int ,A : int ,A : int ,A : List[str] ,A : Optional[int] ,): '''simple docstring''' UpperCAmelCase__ : Tuple = latents.detach().requires_grad_() UpperCAmelCase__ : Tuple = self.scheduler.scale_model_input(A ,A ) # predict the noise residual UpperCAmelCase__ : List[Any] = self.unet(A ,A ,encoder_hidden_states=A ).sample if isinstance(self.scheduler ,(PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCAmelCase__ : str = self.scheduler.alphas_cumprod[timestep] UpperCAmelCase__ : Any = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase__ : Dict = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCAmelCase__ : int = torch.sqrt(A ) UpperCAmelCase__ : List[Any] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler ,A ): UpperCAmelCase__ : List[Any] = self.scheduler.sigmas[index] UpperCAmelCase__ : Any = latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler )} not supported" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase__ : List[Any] = 1 / 0.1_8_2_1_5 * sample UpperCAmelCase__ : Union[str, Any] = self.vae.decode(A ).sample UpperCAmelCase__ : Optional[int] = (image / 2 + 0.5).clamp(0 ,1 ) UpperCAmelCase__ : Tuple = transforms.Resize(self.feature_extractor_size )(A ) UpperCAmelCase__ : List[Any] = self.normalize(A ).to(latents.dtype ) UpperCAmelCase__ : Union[str, Any] = self.clip_model.get_image_features(A ) UpperCAmelCase__ : Optional[int] = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=A ) UpperCAmelCase__ : Union[str, Any] = spherical_dist_loss(A ,A ).mean() * clip_guidance_scale UpperCAmelCase__ : List[Any] = -torch.autograd.grad(A ,A )[0] if isinstance(self.scheduler ,A ): UpperCAmelCase__ : List[str] = latents.detach() + grads * (sigma**2) UpperCAmelCase__ : Optional[Any] = noise_pred_original else: UpperCAmelCase__ : Tuple = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Dict ,A : Union[torch.FloatTensor, PIL.Image.Image] ,A : Union[torch.FloatTensor, PIL.Image.Image] ,A : Optional[str] = None ,A : Optional[str] = None ,A : Optional[int] = 512 ,A : Optional[int] = 512 ,A : float = 0.6 ,A : Optional[int] = 50 ,A : Optional[float] = 7.5 ,A : Optional[int] = 1 ,A : float = 0.0 ,A : Optional[float] = 100 ,A : Optional[torch.Generator] = None ,A : Optional[str] = "pil" ,A : bool = True ,A : float = 0.8 ,A : float = 0.1 ,A : float = 0.1 ,): '''simple docstring''' if isinstance(A ,A ) and len(A ) != batch_size: raise ValueError(f"You have passed {batch_size} batch_size, but only {len(A )} generators." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if isinstance(A ,torch.Generator ) and batch_size > 1: UpperCAmelCase__ : int = [generator] + [None] * (batch_size - 1) UpperCAmelCase__ : Union[str, Any] = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] UpperCAmelCase__ : str = [x[0] for x in coca_is_none if x[1]] UpperCAmelCase__ : Optional[Any] = """, """.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f"Content prompt is None and CoCa [{coca_is_none_str}] is None." f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) UpperCAmelCase__ : Union[str, Any] = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f"Style prompt is None and CoCa [{coca_is_none_str}] is None." f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) UpperCAmelCase__ : Optional[Any] = self.get_image_description(A ) # get prompt text embeddings for content and style UpperCAmelCase__ : Any = self.tokenizer( A ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,truncation=A ,return_tensors="""pt""" ,) UpperCAmelCase__ : List[Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase__ : List[str] = self.tokenizer( A ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,truncation=A ,return_tensors="""pt""" ,) UpperCAmelCase__ : List[str] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase__ : Tuple = slerp(A ,A ,A ) # duplicate text embeddings for each generation per prompt UpperCAmelCase__ : Any = text_embeddings.repeat_interleave(A ,dim=0 ) # set timesteps UpperCAmelCase__ : List[Any] = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCAmelCase__ : Any = {} if accepts_offset: UpperCAmelCase__ : List[Any] = 1 self.scheduler.set_timesteps(A ,**A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.get_timesteps(A ,A ,self.device ) UpperCAmelCase__ : List[str] = timesteps[:1].repeat(A ) # Preprocess image UpperCAmelCase__ : Tuple = preprocess(A ,A ,A ) UpperCAmelCase__ : str = self.prepare_latents( A ,A ,A ,text_embeddings.dtype ,self.device ,A ) UpperCAmelCase__ : Tuple = preprocess(A ,A ,A ) UpperCAmelCase__ : Dict = self.prepare_latents( A ,A ,A ,text_embeddings.dtype ,self.device ,A ) UpperCAmelCase__ : int = slerp(A ,A ,A ) if clip_guidance_scale > 0: UpperCAmelCase__ : List[Any] = self.get_clip_image_embeddings(A ,A ) UpperCAmelCase__ : Any = self.get_clip_image_embeddings(A ,A ) UpperCAmelCase__ : Optional[Any] = slerp( A ,A ,A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase__ : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase__ : Dict = content_text_input.input_ids.shape[-1] UpperCAmelCase__ : List[Any] = self.tokenizer([""""""] ,padding="""max_length""" ,max_length=A ,return_tensors="""pt""" ) UpperCAmelCase__ : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCAmelCase__ : Optional[int] = uncond_embeddings.repeat_interleave(A ,dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase__ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase__ : Dict = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase__ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCAmelCase__ : Union[str, Any] = torch.randn(A ,generator=A ,device="""cpu""" ,dtype=A ).to( self.device ) else: UpperCAmelCase__ : Optional[int] = torch.randn(A ,generator=A ,device=self.device ,dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCAmelCase__ : List[Any] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase__ : Optional[int] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase__ : Union[str, Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase__ : Optional[int] = {} if accepts_eta: UpperCAmelCase__ : Union[str, Any] = eta # check if the scheduler accepts generator UpperCAmelCase__ : str = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCAmelCase__ : Optional[int] = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ : int = self.scheduler.scale_model_input(A ,A ) # predict the noise residual UpperCAmelCase__ : Tuple = self.unet(A ,A ,encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase__ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCAmelCase__ : Optional[int] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.cond_fn( A ,A ,A ,A ,A ,A ,A ,) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ : List[Any] = self.scheduler.step(A ,A ,A ,**A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase__ : Any = 1 / 0.1_8_2_1_5 * latents UpperCAmelCase__ : int = self.vae.decode(A ).sample UpperCAmelCase__ : Any = (image / 2 + 0.5).clamp(0 ,1 ) UpperCAmelCase__ : Optional[Any] = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": UpperCAmelCase__ : int = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A ,nsfw_content_detected=A )
65
from __future__ import annotations from collections.abc import Sequence from typing import Literal def _lowercase ( __lowerCamelCase : str ,__lowerCamelCase : str ) -> str | Literal[False]: '''simple docstring''' UpperCamelCase__ : Any = list(__lowerCamelCase ) UpperCamelCase__ : str = list(__lowerCamelCase ) UpperCamelCase__ : Dict = 0 for i in range(len(__lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 UpperCamelCase__ : Dict = '''_''' if count > 1: return False else: return "".join(__lowerCamelCase ) def _lowercase ( __lowerCamelCase : list[str] ) -> list[str]: '''simple docstring''' UpperCamelCase__ : str = [] while True: UpperCamelCase__ : Tuple = ['''$'''] * len(__lowerCamelCase ) UpperCamelCase__ : str = [] for i in range(len(__lowerCamelCase ) ): for j in range(i + 1 ,len(__lowerCamelCase ) ): UpperCamelCase__ : Optional[Any] = compare_string(binary[i] ,binary[j] ) if k is False: UpperCamelCase__ : Any = '''*''' UpperCamelCase__ : int = '''*''' temp.append('''X''' ) for i in range(len(__lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__lowerCamelCase ) == 0: return pi UpperCamelCase__ : Tuple = list(set(__lowerCamelCase ) ) def _lowercase ( __lowerCamelCase : int ,__lowerCamelCase : Sequence[float] ) -> list[str]: '''simple docstring''' UpperCamelCase__ : Optional[int] = [] for minterm in minterms: UpperCamelCase__ : Optional[Any] = '''''' for _ in range(__lowerCamelCase ): UpperCamelCase__ : Optional[int] = str(minterm % 2 ) + string minterm //= 2 temp.append(__lowerCamelCase ) return temp def _lowercase ( __lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : int ) -> bool: '''simple docstring''' UpperCamelCase__ : Optional[int] = list(__lowerCamelCase ) UpperCamelCase__ : Optional[Any] = list(__lowerCamelCase ) UpperCamelCase__ : str = 0 for i in range(len(__lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _lowercase ( __lowerCamelCase : list[list[int]] ,__lowerCamelCase : list[str] ) -> list[str]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : Union[str, Any] = [0] * len(__lowerCamelCase ) for i in range(len(chart[0] ) ): UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : int = -1 for j in range(len(__lowerCamelCase ) ): if chart[j][i] == 1: count += 1 UpperCamelCase__ : Dict = j if count == 1: UpperCamelCase__ : int = 1 for i in range(len(__lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__lowerCamelCase ) ): UpperCamelCase__ : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCamelCase__ : Any = 0 UpperCamelCase__ : List[str] = -1 UpperCamelCase__ : Dict = 0 for i in range(len(__lowerCamelCase ) ): UpperCamelCase__ : Any = chart[i].count(1 ) if count_n > max_n: UpperCamelCase__ : Optional[int] = count_n UpperCamelCase__ : str = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__lowerCamelCase ) ): UpperCamelCase__ : List[str] = 0 def _lowercase ( __lowerCamelCase : list[str] ,__lowerCamelCase : list[str] ) -> list[list[int]]: '''simple docstring''' UpperCamelCase__ : List[Any] = [[0 for x in range(len(__lowerCamelCase ) )] for x in range(len(__lowerCamelCase ) )] for i in range(len(__lowerCamelCase ) ): UpperCamelCase__ : Optional[Any] = prime_implicants[i].count('''_''' ) for j in range(len(__lowerCamelCase ) ): if is_for_table(prime_implicants[i] ,binary[j] ,__lowerCamelCase ): UpperCamelCase__ : Optional[int] = 1 return chart def _lowercase ( ) -> None: '''simple docstring''' UpperCamelCase__ : int = int(input('''Enter the no. of variables\n''' ) ) UpperCamelCase__ : Optional[Any] = [ float(__lowerCamelCase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] UpperCamelCase__ : Dict = decimal_to_binary(__lowerCamelCase ,__lowerCamelCase ) UpperCamelCase__ : Any = check(__lowerCamelCase ) print('''Prime Implicants are:''' ) print(__lowerCamelCase ) UpperCamelCase__ : Dict = prime_implicant_chart(__lowerCamelCase ,__lowerCamelCase ) UpperCamelCase__ : Tuple = selection(__lowerCamelCase ,__lowerCamelCase ) print('''Essential Prime Implicants are:''' ) print(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
344
0
from collections.abc import Sequence def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase ) ) def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> float: '''simple docstring''' lowerCamelCase__: Union[str, Any] = 0.0 for coeff in reversed(_UpperCamelCase ): lowerCamelCase__: Tuple = result * x + coeff return result if __name__ == "__main__": _lowercase = (0.0, 0.0, 5.0, 9.3, 7.0) _lowercase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
242
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: int = tempfile.mkdtemp() lowerCamelCase__: Tuple = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] lowerCamelCase__: Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCamelCase__: Optional[int] = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], """do_convert_rgb""": True, } lowerCamelCase__: List[str] = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__a , __a ) def lowerCamelCase_ ( self : List[Any] , **__a : List[str] ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCamelCase_ ( self : int , **__a : str ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def lowerCamelCase_ ( self : str , **__a : Tuple ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__a ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowerCamelCase__: Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase__: Dict = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: Optional[int] = self.get_tokenizer() lowerCamelCase__: List[Any] = self.get_rust_tokenizer() lowerCamelCase__: Dict = self.get_image_processor() lowerCamelCase__: int = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase__: Any = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__a ) lowerCamelCase__: str = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase__: Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __a ) self.assertIsInstance(processor_fast.tokenizer , __a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __a ) self.assertIsInstance(processor_fast.image_processor , __a ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: str = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__: List[str] = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" ) lowerCamelCase__: str = self.get_image_processor(do_normalize=__a ) lowerCamelCase__: List[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=__a ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: str = self.get_image_processor() lowerCamelCase__: Union[str, Any] = self.get_tokenizer() lowerCamelCase__: List[str] = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) lowerCamelCase__: int = self.prepare_image_inputs() lowerCamelCase__: List[str] = image_processor(__a , return_tensors="""np""" ) lowerCamelCase__: Optional[Any] = processor(images=__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: Tuple = self.get_image_processor() lowerCamelCase__: Dict = self.get_tokenizer() lowerCamelCase__: Optional[int] = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) lowerCamelCase__: List[str] = """Alexandra,T-shirt的价格是15便士。""" lowerCamelCase__: Optional[Any] = processor(text=__a ) lowerCamelCase__: Tuple = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: int = self.get_image_processor() lowerCamelCase__: Any = self.get_tokenizer() lowerCamelCase__: Tuple = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) lowerCamelCase__: Dict = """Alexandra,T-shirt的价格是15便士。""" lowerCamelCase__: int = self.prepare_image_inputs() lowerCamelCase__: Union[str, Any] = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: Optional[Any] = self.get_image_processor() lowerCamelCase__: List[Any] = self.get_tokenizer() lowerCamelCase__: Optional[int] = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) lowerCamelCase__: Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__: Union[str, Any] = processor.batch_decode(__a ) lowerCamelCase__: Union[str, Any] = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__: str = self.get_image_processor() lowerCamelCase__: Tuple = self.get_tokenizer() lowerCamelCase__: Union[str, Any] = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) lowerCamelCase__: Optional[int] = """Alexandra,T-shirt的价格是15便士。""" lowerCamelCase__: Tuple = self.prepare_image_inputs() lowerCamelCase__: Optional[int] = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
242
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Optional[int] , _A : Tuple , _A : int=100 , _A : int=13 , _A : Optional[int]=30 , _A : int=2 , _A : Dict=3 , _A : Union[str, Any]=True , _A : Tuple=True , _A : Optional[int]=32 , _A : str=5 , _A : Optional[Any]=4 , _A : int=37 , _A : str="gelu" , _A : Tuple=0.1 , _A : int=0.1 , _A : str=10 , _A : List[Any]=0.0_2 , _A : Any=3 , ): '''simple docstring''' UpperCAmelCase__ : Any = parent UpperCAmelCase__ : Any = vocab_size UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Dict = image_size UpperCAmelCase__ : Union[str, Any] = patch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Dict = is_training UpperCAmelCase__ : Optional[Any] = use_labels UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : Tuple = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : str = intermediate_size UpperCAmelCase__ : Tuple = hidden_act UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Dict = type_sequence_label_size UpperCAmelCase__ : List[Any] = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : str = (image_size // patch_size) ** 2 UpperCAmelCase__ : Tuple = num_patches + 1 def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Tuple = None if self.use_labels: UpperCAmelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : int = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , ) return config, pixel_values, labels def lowercase_ ( self : int , _A : List[str] , _A : Tuple , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = FlaxBeitModel(config=_A ) UpperCAmelCase__ : Tuple = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Optional[Any] , _A : int , _A : List[Any] , _A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = FlaxBeitForMaskedImageModeling(config=_A ) UpperCAmelCase__ : Optional[int] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase_ ( self : List[Any] , _A : int , _A : Any , _A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.type_sequence_label_size UpperCAmelCase__ : Tuple = FlaxBeitForImageClassification(config=_A ) UpperCAmelCase__ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : str = FlaxBeitForImageClassification(_A ) UpperCAmelCase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : List[Any] = model(_A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Any = config_and_inputs UpperCAmelCase__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = FlaxBeitModelTester(self ) UpperCAmelCase__ : Optional[int] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def lowercase_ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : str = model_class(_A ) UpperCAmelCase__ : List[str] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : int = self._prepare_for_class(_A , _A ) UpperCAmelCase__ : Optional[int] = model_class(_A ) @jax.jit def model_jitted(_A : Dict , **_A : Optional[Any] ): return model(pixel_values=_A , **_A ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase__ : int = model_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase__ : Optional[Any] = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : Tuple = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) UpperCAmelCase__ : List[str] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_A ) def a__ ( ) -> Any: UpperCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase_ ( self : Any ): '''simple docstring''' return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) UpperCAmelCase__ : Any = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Optional[Any] = image_processor(images=_A , return_tensors='''np''' ).pixel_values # prepare bool_masked_pos UpperCAmelCase__ : Optional[int] = np.ones((1, 196) , dtype=_A ) # forward pass UpperCAmelCase__ : Any = model(pixel_values=_A , bool_masked_pos=_A ) UpperCAmelCase__ : str = outputs.logits # verify the logits UpperCAmelCase__ : Optional[int] = (1, 196, 8_192) self.assertEqual(logits.shape , _A ) UpperCAmelCase__ : Optional[int] = np.array( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , _A , atol=1e-2 ) ) @slow def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) UpperCAmelCase__ : List[str] = self.default_image_processor UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(images=_A , return_tensors='''np''' ) # forward pass UpperCAmelCase__ : Optional[int] = model(**_A ) UpperCAmelCase__ : int = outputs.logits # verify the logits UpperCAmelCase__ : List[str] = (1, 1_000) self.assertEqual(logits.shape , _A ) UpperCAmelCase__ : List[str] = np.array([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ) self.assertTrue(np.allclose(logits[0, :3] , _A , atol=1e-4 ) ) UpperCAmelCase__ : List[str] = 281 self.assertEqual(logits.argmax(-1 ).item() , _A ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) UpperCAmelCase__ : Any = self.default_image_processor UpperCAmelCase__ : str = prepare_img() UpperCAmelCase__ : Dict = image_processor(images=_A , return_tensors='''np''' ) # forward pass UpperCAmelCase__ : Union[str, Any] = model(**_A ) UpperCAmelCase__ : Union[str, Any] = outputs.logits # verify the logits UpperCAmelCase__ : Optional[Any] = (1, 21_841) self.assertEqual(logits.shape , _A ) UpperCAmelCase__ : str = np.array([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ) self.assertTrue(np.allclose(logits[0, :3] , _A , atol=1e-4 ) ) UpperCAmelCase__ : Dict = 2_396 self.assertEqual(logits.argmax(-1 ).item() , _A )
75
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'torchsde'] def __init__( self : Tuple , *_A : Any , **_A : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''torchsde'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : Tuple , **_A : Tuple ): '''simple docstring''' requires_backends(cls , ['''torch''', '''torchsde'''] ) @classmethod def lowercase_ ( cls : List[str] , *_A : Optional[int] , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''torchsde'''] )
75
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCAmelCase : Tuple = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class A ( unittest.TestCase ): a_ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a_ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a_ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a_ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def snake_case__ ( self : Union[str, Any] ) -> Dict: __UpperCAmelCase = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' ) __UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) __UpperCAmelCase = text_classifier('''This is great !''' , top_k=2 ) self.assertEqual( nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}] ) __UpperCAmelCase = text_classifier(['''This is great !''', '''This is bad'''] , top_k=2 ) self.assertEqual( nested_simplify(__a ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}], [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}], ] , ) __UpperCAmelCase = text_classifier('''This is great !''' , top_k=1 ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) # Legacy behavior __UpperCAmelCase = text_classifier('''This is great !''' , return_all_scores=__a ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) __UpperCAmelCase = text_classifier('''This is great !''' , return_all_scores=__a ) self.assertEqual( nested_simplify(__a ) , [[{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}]] ) __UpperCAmelCase = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=__a ) self.assertEqual( nested_simplify(__a ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}], [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_1''', '''score''': 0.4_9_6}], ] , ) __UpperCAmelCase = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=__a ) self.assertEqual( nested_simplify(__a ) , [ {'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, {'''label''': '''LABEL_0''', '''score''': 0.5_0_4}, ] , ) @require_torch def snake_case__ ( self : Optional[Any] ) -> Tuple: import torch __UpperCAmelCase = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' , device=torch.device('''cpu''' ) , ) __UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) @require_tf def snake_case__ ( self : int ) -> Tuple: __UpperCAmelCase = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''tf''' ) __UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_0_4}] ) @slow @require_torch def snake_case__ ( self : List[Any] ) -> Optional[int]: __UpperCAmelCase = pipeline('''text-classification''' ) __UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) __UpperCAmelCase = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) __UpperCAmelCase = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''POSITIVE''', '''score''': 0.9_8_8}] ) @slow @require_tf def snake_case__ ( self : List[Any] ) -> Dict: __UpperCAmelCase = pipeline('''text-classification''' , framework='''tf''' ) __UpperCAmelCase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) __UpperCAmelCase = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) __UpperCAmelCase = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(__a ) , [{'''label''': '''POSITIVE''', '''score''': 0.9_8_8}] ) def snake_case__ ( self : List[Any] , __a : List[Any] , __a : Optional[int] , __a : Any ) -> List[Any]: __UpperCAmelCase = TextClassificationPipeline(model=__a , tokenizer=__a ) return text_classifier, ["HuggingFace is in", "This is another test"] def snake_case__ ( self : int , __a : List[str] , __a : str ) -> Dict: __UpperCAmelCase = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __UpperCAmelCase = '''HuggingFace is in''' __UpperCAmelCase = text_classifier(__a ) self.assertEqual(nested_simplify(__a ) , [{'''label''': ANY(__a ), '''score''': ANY(__a )}] ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) __UpperCAmelCase = ['''HuggingFace is in ''', '''Paris is in France'''] __UpperCAmelCase = text_classifier(__a ) self.assertEqual( nested_simplify(__a ) , [{'''label''': ANY(__a ), '''score''': ANY(__a )}, {'''label''': ANY(__a ), '''score''': ANY(__a )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __UpperCAmelCase = text_classifier(__a , top_k=__a ) __UpperCAmelCase = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__a ) , [[{'''label''': ANY(__a ), '''score''': ANY(__a )}] * N, [{'''label''': ANY(__a ), '''score''': ANY(__a )}] * N] , ) __UpperCAmelCase = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} __UpperCAmelCase = text_classifier(__a ) self.assertEqual( nested_simplify(__a ) , {'''label''': ANY(__a ), '''score''': ANY(__a )} , ) self.assertTrue(outputs['''label'''] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __UpperCAmelCase = [['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(__a ): text_classifier(__a ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __UpperCAmelCase = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] ) self.assertEqual( nested_simplify(__a ) , [{'''label''': ANY(__a ), '''score''': ANY(__a )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
654
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowerCAmelCase : str = 299_792_458 # Symbols __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = symbols("ct x y z") def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return 1 / sqrt(1 - beta(UpperCamelCase__ ) ** 2 ) def lowerCAmelCase ( UpperCamelCase__ : float ): """simple docstring""" return np.array( [ [gamma(UpperCamelCase__ ), -gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), 0, 0], [-gamma(UpperCamelCase__ ) * beta(UpperCamelCase__ ), gamma(UpperCamelCase__ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : np.ndarray | None = None ): """simple docstring""" # Ensure event is not empty if event is None: __UpperCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase__ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowerCAmelCase : Dict = transform(29_979_245) print("Example of four vector: ") print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __lowerCAmelCase : Union[str, Any] = {ct: c, x: 1, y: 1, z: 1} __lowerCAmelCase : Optional[int] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
654
1
def __a ( __UpperCAmelCase : int = 50000000 ) -> int: """simple docstring""" lowerCamelCase_ : str = set() lowerCamelCase_ : Tuple = int((limit - 24) ** (1 / 2) ) lowerCamelCase_ : List[Any] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , __UpperCAmelCase ) ) ) for primea in primes: lowerCamelCase_ : str = primea * primea for primea in primes: lowerCamelCase_ : str = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCamelCase_ : Tuple = primea * primea * primea * primea lowerCamelCase_ : List[str] = square + cube + tetr if total >= limit: break ret.add(__UpperCAmelCase ) return len(__UpperCAmelCase ) if __name__ == "__main__": print(f"{solution() = }")
488
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , __magic_name__ : List[Any] , __magic_name__ : Tuple=13 , __magic_name__ : int=7 , __magic_name__ : List[str]=True , __magic_name__ : List[Any]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Dict=True , __magic_name__ : List[Any]=99 , __magic_name__ : Tuple=32 , __magic_name__ : Optional[int]=5 , __magic_name__ : Dict=4 , __magic_name__ : List[Any]=37 , __magic_name__ : List[Any]="gelu" , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : int=512 , __magic_name__ : Any=16 , __magic_name__ : Optional[int]=2 , __magic_name__ : Dict=0.02 , __magic_name__ : List[str]=4 , ) -> str: lowerCamelCase_ : Tuple = parent lowerCamelCase_ : List[str] = batch_size lowerCamelCase_ : str = seq_length lowerCamelCase_ : Optional[int] = is_training lowerCamelCase_ : Optional[int] = use_attention_mask lowerCamelCase_ : Optional[int] = use_token_type_ids lowerCamelCase_ : int = use_labels lowerCamelCase_ : Dict = vocab_size lowerCamelCase_ : List[str] = hidden_size lowerCamelCase_ : int = num_hidden_layers lowerCamelCase_ : Any = num_attention_heads lowerCamelCase_ : Optional[Any] = intermediate_size lowerCamelCase_ : Dict = hidden_act lowerCamelCase_ : Optional[int] = hidden_dropout_prob lowerCamelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase_ : Optional[int] = max_position_embeddings lowerCamelCase_ : Optional[int] = type_vocab_size lowerCamelCase_ : int = type_sequence_label_size lowerCamelCase_ : int = initializer_range lowerCamelCase_ : Tuple = num_choices def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: lowerCamelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Optional[int] = None if self.use_attention_mask: lowerCamelCase_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : List[str] = None if self.use_token_type_ids: lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ : List[Any] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: lowerCamelCase_ : str = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[str] = config_and_inputs lowerCamelCase_ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: lowerCamelCase_ : List[Any] = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Tuple = config_and_inputs lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase = True lowerCamelCase = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: lowerCamelCase_ : Dict = FlaxRobertaPreLayerNormModelTester(self ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: for model_class_name in self.all_model_classes: lowerCamelCase_ : Optional[Any] = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=__magic_name__ ) lowerCamelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ ) @require_flax class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: lowerCamelCase_ : List[Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=__magic_name__ ) lowerCamelCase_ : List[Any] = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) lowerCamelCase_ : Optional[int] = model(__magic_name__ )[0] lowerCamelCase_ : Tuple = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , __magic_name__ ) # compare the actual values for a slice. lowerCamelCase_ : List[str] = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __magic_name__ , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: lowerCamelCase_ : Optional[Any] = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=__magic_name__ ) lowerCamelCase_ : List[Any] = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) lowerCamelCase_ : Dict = model(__magic_name__ )[0] # compare the actual values for a slice. lowerCamelCase_ : List[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __magic_name__ , atol=1e-4 ) )
488
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = DiTPipeline UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS UpperCamelCase = False def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=UpperCamelCase_ , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=UpperCamelCase_ , ) lowerCamelCase_ = AutoencoderKL() lowerCamelCase_ = DDIMScheduler() lowerCamelCase_ = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def a__ ( self : Dict , A_ : Optional[Any] , A_ : List[str]=0 ) -> List[str]: """simple docstring""" if str(UpperCamelCase_ ).startswith('mps' ): lowerCamelCase_ = torch.manual_seed(UpperCamelCase_ ) else: lowerCamelCase_ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCamelCase_ = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ = 'cpu' lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCamelCase_ = self.get_dummy_inputs(UpperCamelCase_ ) lowerCamelCase_ = pipe(**UpperCamelCase_ ).images lowerCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) lowerCamelCase_ = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) lowerCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase_ , 1E-3 ) def a__ ( self : Dict ) -> str: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=UpperCamelCase_ , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def a__ ( self : Any ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) lowerCamelCase_ = ['vase', 'umbrella', 'white shark', 'white wolf'] lowerCamelCase_ = pipe.get_label_ids(UpperCamelCase_ ) lowerCamelCase_ = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=40 , output_type='np' ).images for word, image in zip(UpperCamelCase_ , UpperCamelCase_ ): lowerCamelCase_ = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-2 def a__ ( self : Optional[Any] ) -> int: """simple docstring""" lowerCamelCase_ = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) lowerCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) lowerCamelCase_ = ['vase', 'umbrella'] lowerCamelCase_ = pipe.get_label_ids(UpperCamelCase_ ) lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=25 , output_type='np' ).images for word, image in zip(UpperCamelCase_ , UpperCamelCase_ ): lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-1
704
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
158
'''simple docstring''' def A_ ( __SCREAMING_SNAKE_CASE : int ) -> bool: if num < 0: return False __SCREAMING_SNAKE_CASE : int = num __SCREAMING_SNAKE_CASE : int = 0 while num > 0: __SCREAMING_SNAKE_CASE : str = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
158
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Tuple = (DEISMultistepScheduler,) _SCREAMING_SNAKE_CASE :List[Any] = (("""num_inference_steps""", 25),) def _a ( self , **_a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = { """num_train_timesteps""": 1_000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**_a ) return config def _a ( self , _a=0 , **_a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ : Optional[Any] = kwargs.pop("""num_inference_steps""" , _a ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.dummy_sample SCREAMING_SNAKE_CASE__ : str = 0.1 * sample SCREAMING_SNAKE_CASE__ : str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_scheduler_config(**_a ) SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_a ) scheduler.set_timesteps(_a ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__ : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_a ) SCREAMING_SNAKE_CASE__ : Tuple = scheduler_class.from_pretrained(_a ) new_scheduler.set_timesteps(_a ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__ : str = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = sample, sample for t in range(_a , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE__ : str = scheduler.step(_a , _a , _a , **_a ).prev_sample SCREAMING_SNAKE_CASE__ : Any = new_scheduler.step(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _a ( self ) -> Tuple: """simple docstring""" pass def _a ( self , _a=0 , **_a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ : int = kwargs.pop("""num_inference_steps""" , _a ) SCREAMING_SNAKE_CASE__ : Any = self.dummy_sample SCREAMING_SNAKE_CASE__ : Any = 0.1 * sample SCREAMING_SNAKE_CASE__ : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_a ) scheduler.set_timesteps(_a ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE__ : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_a ) SCREAMING_SNAKE_CASE__ : Tuple = scheduler_class.from_pretrained(_a ) # copy over dummy past residuals new_scheduler.set_timesteps(_a ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE__ : Any = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE__ : List[Any] = scheduler.step(_a , _a , _a , **_a ).prev_sample SCREAMING_SNAKE_CASE__ : str = new_scheduler.step(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _a ( self , _a=None , **_a ) -> Union[str, Any]: """simple docstring""" if scheduler is None: SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Any = self.get_scheduler_config(**_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : List[Any] = self.get_scheduler_config(**_a ) SCREAMING_SNAKE_CASE__ : str = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : str = 10 SCREAMING_SNAKE_CASE__ : Optional[int] = self.dummy_model() SCREAMING_SNAKE_CASE__ : Dict = self.dummy_sample_deter scheduler.set_timesteps(_a ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ : str = model(_a , _a ) SCREAMING_SNAKE_CASE__ : Tuple = scheduler.step(_a , _a , _a ).prev_sample return sample def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ : List[str] = kwargs.pop("""num_inference_steps""" , _a ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : str = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.dummy_sample SCREAMING_SNAKE_CASE__ : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(_a , """set_timesteps""" ): scheduler.set_timesteps(_a ) elif num_inference_steps is not None and not hasattr(_a , """set_timesteps""" ): SCREAMING_SNAKE_CASE__ : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE__ : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] SCREAMING_SNAKE_CASE__ : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] SCREAMING_SNAKE_CASE__ : Optional[int] = scheduler.timesteps[5] SCREAMING_SNAKE_CASE__ : Any = scheduler.timesteps[6] SCREAMING_SNAKE_CASE__ : Optional[Any] = scheduler.step(_a , _a , _a , **_a ).prev_sample SCREAMING_SNAKE_CASE__ : str = scheduler.step(_a , _a , _a , **_a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = DEISMultistepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE__ : Tuple = self.full_loop(scheduler=_a ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 SCREAMING_SNAKE_CASE__ : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__ : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__ : Tuple = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__ : str = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE__ : str = self.full_loop(scheduler=_a ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 def _a ( self ) -> List[str]: """simple docstring""" for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def _a ( self ) -> Dict: """simple docstring""" self.check_over_configs(thresholding=_a ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , algorithm_type="""deis""" , solver_order=_a , solver_type=_a , ) def _a ( self ) -> Any: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def _a ( self ) -> Union[str, Any]: """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_a , solver_type=_a , prediction_type=_a , algorithm_type=_a , ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.full_loop( solver_order=_a , solver_type=_a , prediction_type=_a , algorithm_type=_a , ) assert not torch.isnan(_a ).any(), "Samples have nan numbers" def _a ( self ) -> int: """simple docstring""" self.check_over_configs(lower_order_final=_a ) self.check_over_configs(lower_order_final=_a ) def _a ( self ) -> str: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=_a , time_step=0 ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.full_loop() SCREAMING_SNAKE_CASE__ : Dict = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.full_loop(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE__ : List[str] = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : List[Any] = self.get_scheduler_config(thresholding=_a , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 10 SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.dummy_model() SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_sample_deter.half() scheduler.set_timesteps(_a ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__ : List[Any] = model(_a , _a ) SCREAMING_SNAKE_CASE__ : int = scheduler.step(_a , _a , _a ).prev_sample assert sample.dtype == torch.floataa
12
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __a (UpperCamelCase_): '''simple docstring''' def _a ( self , _a ) -> Union[str, Any]: """simple docstring""" with open(_a , encoding="""utf-8""" ) as input_file: SCREAMING_SNAKE_CASE__ : str = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = input_file.read() SCREAMING_SNAKE_CASE__ : str = regexp.search(_a ) return match def _a ( self , _a ) -> Optional[Any]: """simple docstring""" with open(_a , encoding="""utf-8""" ) as input_file: SCREAMING_SNAKE_CASE__ : Tuple = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) SCREAMING_SNAKE_CASE__ : List[Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` SCREAMING_SNAKE_CASE__ : Dict = regexp.finditer(_a ) SCREAMING_SNAKE_CASE__ : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = Path("""./datasets""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_a ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path("""./datasets""" ) SCREAMING_SNAKE_CASE__ : List[str] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(_a ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
12
1
from math import sqrt def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and ( number >= 0 ), "'number' must been an int and positive" SCREAMING_SNAKE_CASE : Any = True # 0 and 1 are none primes. if number <= 1: SCREAMING_SNAKE_CASE : Optional[Any] = False for divisor in range(2 , int(round(sqrt(lowercase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = False break # precondition assert isinstance(lowercase , lowercase ), "'status' must been from type bool" return status def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N SCREAMING_SNAKE_CASE : Union[str, Any] = list(range(2 , n + 1 ) ) SCREAMING_SNAKE_CASE : List[str] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowercase ) ): for j in range(i + 1 , len(lowercase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): SCREAMING_SNAKE_CASE : Dict = 0 # filters actual prime numbers. SCREAMING_SNAKE_CASE : Optional[int] = [x for x in begin_list if x != 0] # precondition assert isinstance(lowercase , lowercase ), "'ans' must been from type list" return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and (n > 2), "'N' must been an int and > 2" SCREAMING_SNAKE_CASE : int = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowercase ): ans.append(lowercase ) # precondition assert isinstance(lowercase , lowercase ), "'ans' must been from type list" return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and number >= 0, "'number' must been an int and >= 0" SCREAMING_SNAKE_CASE : List[Any] = [] # this list will be returns of the function. # potential prime number factors. SCREAMING_SNAKE_CASE : Dict = 2 SCREAMING_SNAKE_CASE : int = number if number == 0 or number == 1: ans.append(lowercase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowercase ): while quotient != 1: if is_prime(lowercase ) and (quotient % factor == 0): ans.append(lowercase ) quotient /= factor else: factor += 1 else: ans.append(lowercase ) # precondition assert isinstance(lowercase , lowercase ), "'ans' must been from type list" return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and ( number >= 0 ), "'number' bust been an int and >= 0" SCREAMING_SNAKE_CASE : List[str] = 0 # prime factorization of 'number' SCREAMING_SNAKE_CASE : Any = prime_factorization(lowercase ) SCREAMING_SNAKE_CASE : List[str] = max(lowercase ) # precondition assert isinstance(lowercase , lowercase ), "'ans' must been from type int" return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and ( number >= 0 ), "'number' bust been an int and >= 0" SCREAMING_SNAKE_CASE : List[str] = 0 # prime factorization of 'number' SCREAMING_SNAKE_CASE : Optional[int] = prime_factorization(lowercase ) SCREAMING_SNAKE_CASE : List[Any] = min(lowercase ) # precondition assert isinstance(lowercase , lowercase ), "'ans' must been from type int" return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowercase ), "compare bust been from type bool" return number % 2 == 0 def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowercase ), "compare bust been from type bool" return number % 2 != 0 def lowerCamelCase__ ( lowercase ): """simple docstring""" assert ( isinstance(lowercase , lowercase ) and (number > 2) and is_even(lowercase ) ), "'number' must been an int, even and > 2" SCREAMING_SNAKE_CASE : List[str] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' SCREAMING_SNAKE_CASE : Tuple = get_prime_numbers(lowercase ) SCREAMING_SNAKE_CASE : Tuple = len(lowercase ) # run variable for while-loops. SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Dict = None # exit variable. for break up the loops SCREAMING_SNAKE_CASE : Any = True while i < len_pn and loop: SCREAMING_SNAKE_CASE : Any = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: SCREAMING_SNAKE_CASE : str = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowercase , lowercase ) and (len(lowercase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." SCREAMING_SNAKE_CASE : List[str] = 0 while numbera != 0: SCREAMING_SNAKE_CASE : List[str] = numbera % numbera SCREAMING_SNAKE_CASE : Dict = numbera SCREAMING_SNAKE_CASE : Optional[Any] = rest # precondition assert isinstance(lowercase , lowercase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." SCREAMING_SNAKE_CASE : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' SCREAMING_SNAKE_CASE : Optional[int] = prime_factorization(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = prime_factorization(lowercase ) elif numbera == 1 or numbera == 1: SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Optional[int] = max(lowercase , lowercase ) SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Any = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: SCREAMING_SNAKE_CASE : Optional[int] = prime_fac_a.count(lowercase ) SCREAMING_SNAKE_CASE : Tuple = prime_fac_a.count(lowercase ) for _ in range(max(lowercase , lowercase ) ): ans *= n else: SCREAMING_SNAKE_CASE : List[Any] = prime_fac_a.count(lowercase ) for _ in range(lowercase ): ans *= n done.append(lowercase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: SCREAMING_SNAKE_CASE : int = prime_fac_a.count(lowercase ) for _ in range(lowercase ): ans *= n done.append(lowercase ) # precondition assert isinstance(lowercase , lowercase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and (n >= 0), "'number' must been a positive int" SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Optional[int] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowercase ): ans += 1 # precondition assert isinstance(lowercase , lowercase ) and is_prime( lowercase ), "'ans' must been a prime number and from type int" return ans def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( is_prime(lowercase ) and is_prime(lowercase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" SCREAMING_SNAKE_CASE : str = p_number_a + 1 # jump to the next number SCREAMING_SNAKE_CASE : Optional[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowercase ): number += 1 while number < p_number_a: ans.append(lowercase ) number += 1 # fetch the next prime number. while not is_prime(lowercase ): number += 1 # precondition assert ( isinstance(lowercase , lowercase ) and ans[0] != p_number_a and ans[len(lowercase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and (n >= 1), "'n' must been int and >= 1" SCREAMING_SNAKE_CASE : Any = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowercase ) # precondition assert ans[0] == 1 and ans[len(lowercase ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and ( number > 1 ), "'number' must been an int and >= 1" SCREAMING_SNAKE_CASE : Optional[int] = get_divisors(lowercase ) # precondition assert ( isinstance(lowercase , lowercase ) and (divisors[0] == 1) and (divisors[len(lowercase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. SCREAMING_SNAKE_CASE : List[str] = gcd(abs(lowercase ) , abs(lowercase ) ) # precondition assert ( isinstance(lowercase , lowercase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and (n >= 0), "'n' must been a int and >= 0" SCREAMING_SNAKE_CASE : Union[str, Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCamelCase__ ( lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) and (n >= 0), "'n' must been an int and >= 0" SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : str = 1 SCREAMING_SNAKE_CASE : int = 1 # this will be return for _ in range(n - 1 ): SCREAMING_SNAKE_CASE : str = ans ans += fiba SCREAMING_SNAKE_CASE : Tuple = tmp return ans
62
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: A__ : Tuple =1 for i in range(1, num + 1 ): fact *= i return fact def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: A__ : Optional[Any] =0 while number > 0: A__ : List[Any] =number % 1_0 sum_of_digits += last_digit A__ : str =number // 1_0 # Removing the last_digit from the given number return sum_of_digits def SCREAMING_SNAKE_CASE__ ( snake_case_ = 1_0_0 ) -> int: A__ : List[str] =factorial(snake_case_ ) A__ : str =split_and_add(snake_case_ ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
416
0
import numpy as np def __lowerCAmelCase ( _UpperCamelCase ) -> np.array: '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
242
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowercase = 'bert-base-cased' _lowercase = 'fp16' _lowercase = 'bf16' _lowercase = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCamelCase__ ( A__ ): def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' super().setUp() lowerCamelCase__: List[str] = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__a ): lowerCamelCase__: Union[str, Any] = self.dist_env.copy() lowerCamelCase__: int = f"""{i + 1}""" lowerCamelCase__: Any = strategy with mockenv_context(**__a ): lowerCamelCase__: Optional[int] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__a ): lowerCamelCase__: List[str] = self.dist_env.copy() lowerCamelCase__: List[str] = prefetch_policy with mockenv_context(**__a ): lowerCamelCase__: Dict = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__a ): lowerCamelCase__: str = self.dist_env.copy() lowerCamelCase__: Tuple = state_dict_type with mockenv_context(**__a ): lowerCamelCase__: int = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowerCamelCase__: str = AutoModel.from_pretrained(__a ) for policy in FSDP_AUTO_WRAP_POLICY: lowerCamelCase__: str = self.dist_env.copy() lowerCamelCase__: Union[str, Any] = policy if policy == "TRANSFORMER_BASED_WRAP": lowerCamelCase__: Union[str, Any] = """BertLayer""" elif policy == "SIZE_BASED_WRAP": lowerCamelCase__: Optional[Any] = """2000""" with mockenv_context(**__a ): lowerCamelCase__: Union[str, Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) lowerCamelCase__: Optional[Any] = self.dist_env.copy() lowerCamelCase__: str = """TRANSFORMER_BASED_WRAP""" lowerCamelCase__: str = """T5Layer""" with mockenv_context(**__a ): lowerCamelCase__: Dict = FullyShardedDataParallelPlugin() with self.assertRaises(__a ) as cm: fsdp_plugin.set_auto_wrap_policy(__a ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) lowerCamelCase__: Union[str, Any] = self.dist_env.copy() lowerCamelCase__: int = """SIZE_BASED_WRAP""" lowerCamelCase__: str = """0""" with mockenv_context(**__a ): lowerCamelCase__: Any = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowerCamelCase__: Dict = self.dist_env.copy() lowerCamelCase__: Union[str, Any] = mp_dtype with mockenv_context(**__a ): lowerCamelCase__: List[str] = Accelerator() if mp_dtype == "fp16": lowerCamelCase__: Any = torch.floataa elif mp_dtype == "bf16": lowerCamelCase__: Dict = torch.bfloataa lowerCamelCase__: str = MixedPrecision(param_dtype=__a , reduce_dtype=__a , buffer_dtype=__a ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __a ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __a ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__a ) def lowerCamelCase_ ( self : str ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowerCamelCase__: List[Any] = self.dist_env.copy() lowerCamelCase__: int = str(__a ).lower() with mockenv_context(**__a ): lowerCamelCase__: int = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__a ) ) @require_fsdp @require_multi_gpu @slow class lowerCamelCase__ ( A__ ): def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' super().setUp() lowerCamelCase__: List[Any] = 0.82 lowerCamelCase__: List[str] = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] lowerCamelCase__: List[str] = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowerCamelCase__: List[str] = 160 lowerCamelCase__: Optional[int] = 160 lowerCamelCase__: Optional[int] = inspect.getfile(accelerate.test_utils ) lowerCamelCase__: Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: List[str] = os.path.join(self.test_scripts_folder , """test_performance.py""" ) lowerCamelCase__: Dict = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: lowerCamelCase__: Dict = cmd.copy() for i, strategy in enumerate(__a ): if strategy.lower() in config: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: str = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) lowerCamelCase__: Optional[Any] = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(__a ): lowerCamelCase__: Optional[Any] = cmd.copy() cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue lowerCamelCase__: Union[str, Any] = len(__a ) for state_dict_type in FSDP_STATE_DICT_TYPE: lowerCamelCase__: Dict = cmd_config[:state_dict_config_index] cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) lowerCamelCase__: Union[str, Any] = cmd_config[:-1] lowerCamelCase__: List[Any] = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__: str = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) lowerCamelCase__: int = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowerCamelCase__: str = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(__a ): if strategy.lower() in spec: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--peak_memory_upper_bound={peak_mem_upper_bound}""", f"""--n_train={self.n_train}""", f"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() )
242
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=2 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_6 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=6 , _lowerCAmelCase=6 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : Optional[Any] = parent _lowercase : Optional[int] = batch_size _lowercase : List[str] = num_channels _lowercase : Tuple = image_size _lowercase : str = patch_size _lowercase : Union[str, Any] = text_seq_length _lowercase : List[str] = is_training _lowercase : Optional[int] = use_input_mask _lowercase : Dict = use_token_type_ids _lowercase : Any = use_labels _lowercase : Optional[int] = vocab_size _lowercase : int = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : List[Any] = intermediate_size _lowercase : Optional[int] = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : List[str] = attention_probs_dropout_prob _lowercase : Union[str, Any] = max_position_embeddings _lowercase : Optional[Any] = type_vocab_size _lowercase : List[str] = type_sequence_label_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[Any] = coordinate_size _lowercase : Tuple = shape_size _lowercase : Any = num_labels _lowercase : List[str] = num_choices _lowercase : Optional[Any] = scope _lowercase : str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowercase : Optional[Any] = text_seq_length _lowercase : Dict = (image_size // patch_size) ** 2 + 1 _lowercase : Union[str, Any] = self.text_seq_length + self.image_seq_length def __a ( self ): _lowercase : str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _lowercase : Dict = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : Optional[int] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : str = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Any = bbox[i, j, 0] _lowercase : int = t _lowercase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : int = None if self.use_input_mask: _lowercase : Union[str, Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _lowercase : List[Any] = None _lowercase : Union[str, Any] = None if self.use_labels: _lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _lowercase : List[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = LayoutLMvaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # text + image _lowercase : str = model(_lowerCAmelCase , pixel_values=_lowerCAmelCase ) _lowercase : Optional[Any] = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowercase : str = model(pixel_values=_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : str = LayoutLMvaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Any = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[Any] = self.num_labels _lowercase : Optional[Any] = LayoutLMvaForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Tuple = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = LayoutLMvaForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Union[str, Any] = model( _lowerCAmelCase , bbox=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : List[Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Union[str, Any] = config_and_inputs _lowercase : Dict = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : List[Any] = False _UpperCamelCase : str = False _UpperCamelCase : Any = False _UpperCamelCase : Dict = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase : Any = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __a ( self ): _lowercase : List[Any] = LayoutLMvaModelTester(self ) _lowercase : Optional[int] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : Optional[int] = copy.deepcopy(_lowerCAmelCase ) if model_class in get_values(_lowerCAmelCase ): _lowercase : Tuple = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_lowerCAmelCase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : Tuple = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in get_values(_lowerCAmelCase ): _lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) _lowercase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in [ *get_values(_lowerCAmelCase ), ]: _lowercase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) elif model_class in [ *get_values(_lowerCAmelCase ), ]: _lowercase : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_lowerCAmelCase , ) return inputs_dict def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Tuple = LayoutLMvaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __magic_name__ ( ) -> Any: _lowercase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def __a ( self ): return LayoutLMvaImageProcessor(apply_ocr=_lowerCAmelCase ) if is_vision_available() else None @slow def __a ( self ): _lowercase : Tuple = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(_lowerCAmelCase ) _lowercase : List[Any] = self.default_image_processor _lowercase : List[str] = prepare_img() _lowercase : Union[str, Any] = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).pixel_values.to(_lowerCAmelCase ) _lowercase : Tuple = torch.tensor([[1, 2]] ) _lowercase : Any = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowercase : int = model( input_ids=input_ids.to(_lowerCAmelCase ) , bbox=bbox.to(_lowerCAmelCase ) , pixel_values=pixel_values.to(_lowerCAmelCase ) , ) # verify the logits _lowercase : Union[str, Any] = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , _lowerCAmelCase ) _lowercase : int = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
66
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( _a ,unittest.TestCase ): lowercase_ = LEDTokenizer lowercase_ = LEDTokenizerFast lowercase_ = True def __lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" super().setUp() _a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _a = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase_ ) ) def __lowerCAmelCase ( self : Union[str, Any] , **lowerCAmelCase_ : int ) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : Any ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> List[str]: """simple docstring""" return "lower newer", "lower newer" @cached_property def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def __lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" _a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _a = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='''pt''' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _a = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def __lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='''pt''' ) self.assertIn('''input_ids''' , lowerCAmelCase_ ) self.assertIn('''attention_mask''' , lowerCAmelCase_ ) self.assertNotIn('''labels''' , lowerCAmelCase_ ) self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase_ ) @require_torch def __lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" _a = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer( ['''I am a small frog''' * 10_24, '''I am a small frog'''] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a = ['''A long paragraph for summarization.'''] _a = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = tokenizer(lowerCAmelCase_ , return_tensors='''pt''' ) _a = tokenizer(text_target=lowerCAmelCase_ , return_tensors='''pt''' ) _a = inputs['''input_ids'''] _a = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a = ['''Summary of the text.''', '''Another summary.'''] _a = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _a = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _a = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['''input_ids''']] _a = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" pass def __lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _a = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _a = '''A, <mask> AllenNLP sentence.''' _a = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _a = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowerCAmelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
22
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=A_ ) class lowerCAmelCase__ ( A_ ): __a = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __a = Features({"""audio""": Audio()} ) __a = Features({"""labels""": ClassLabel} ) __a = """audio""" __a = """labels""" def lowercase ( self : List[str] , _lowerCamelCase : Optional[int] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , _lowerCamelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) _snake_case = copy.deepcopy(self ) _snake_case = self.label_schema.copy() _snake_case = features[self.label_column] _snake_case = label_schema return task_template @property def lowercase ( self : Dict ): return { self.audio_column: "audio", self.label_column: "labels", }
705
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _UpperCAmelCase ( __lowerCamelCase : List[str] ) -> Any: _snake_case = [False] * len(__lowerCamelCase ) _snake_case = [-1] * len(__lowerCamelCase ) def dfs(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): _snake_case = True _snake_case = c for u in graph[v]: if not visited[u]: dfs(__lowerCamelCase , 1 - c ) for i in range(len(__lowerCamelCase ) ): if not visited[i]: dfs(__lowerCamelCase , 0 ) for i in range(len(__lowerCamelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCAmelCase__ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
430
0
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if height >= 1: move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) move_disk(__UpperCamelCase , __UpperCamelCase ) move_tower(height - 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" print("""moving disk from""" , __UpperCamelCase , """to""" , __UpperCamelCase ) def lowerCAmelCase__ ( ): """simple docstring""" __a = int(input("""Height of hanoi: """ ).strip() ) move_tower(__UpperCamelCase , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
225
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCAmelCase : int = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __a ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase__ : str , **lowerCAmelCase__ : List[Any] ) -> None: warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
214
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : snake_case : int snake_case : TreeNode | None = None snake_case : TreeNode | None = None UpperCamelCase__ = namedtuple("CoinsDistribResult", "moves excess") def _UpperCamelCase (a__ :TreeNode | None ): """simple docstring""" if root is None: return 0 # Validation def count_nodes(a__ :TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(a__ :TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(a__ ) != count_coins(a__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(a__ :TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCamelCase__ , UpperCamelCase__ = get_distrib(node.left ) UpperCamelCase__ , UpperCamelCase__ = get_distrib(node.right ) UpperCamelCase__ = 1 - left_distrib_excess UpperCamelCase__ = 1 - right_distrib_excess UpperCamelCase__ = ( left_distrib_moves + right_distrib_moves + abs(a__ ) + abs(a__ ) ) UpperCamelCase__ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(a__ , a__ ) return get_distrib(a__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
700
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case : Union[str, Any] = MODEL_FOR_CAUSAL_LM_MAPPING snake_case : List[str] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output UpperCamelCase__ = text_generator("""This is a test""" , do_sample=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) UpperCamelCase__ = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( __lowerCAmelCase , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) UpperCamelCase__ = text_generator("""This is a test""" , do_sample=__lowerCAmelCase , num_return_sequences=2 , return_tensors=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ {"""generated_token_ids""": ANY(__lowerCAmelCase )}, {"""generated_token_ids""": ANY(__lowerCAmelCase )}, ] , ) UpperCamelCase__ = text_generator.model.config.eos_token_id UpperCamelCase__ = """<pad>""" UpperCamelCase__ = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=__lowerCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=__lowerCAmelCase , ) self.assertEqual( __lowerCAmelCase , [ [ {"""generated_token_ids""": ANY(__lowerCAmelCase )}, {"""generated_token_ids""": ANY(__lowerCAmelCase )}, ], [ {"""generated_token_ids""": ANY(__lowerCAmelCase )}, {"""generated_token_ids""": ANY(__lowerCAmelCase )}, ], ] , ) @require_tf def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output UpperCamelCase__ = text_generator("""This is a test""" , do_sample=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) UpperCamelCase__ = text_generator(["""This is a test""", """This is a second test"""] , do_sample=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = TextGenerationPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) return text_generator, ["This is a test", "Another test"] def _lowerCamelCase ( self ): UpperCamelCase__ = """Hello I believe in""" UpperCamelCase__ = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) UpperCamelCase__ = text_generator(__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) UpperCamelCase__ = text_generator(__lowerCAmelCase , stop_sequence=""" fe""" ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": """Hello I believe in fe"""}] ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = text_generator.model UpperCamelCase__ = text_generator.tokenizer UpperCamelCase__ = text_generator("""This is a test""" ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": ANY(__lowerCAmelCase )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) UpperCamelCase__ = text_generator("""This is a test""" , return_full_text=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": ANY(__lowerCAmelCase )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) UpperCamelCase__ = pipeline(task="""text-generation""" , model=__lowerCAmelCase , tokenizer=__lowerCAmelCase , return_full_text=__lowerCAmelCase ) UpperCamelCase__ = text_generator("""This is a test""" ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": ANY(__lowerCAmelCase )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) UpperCamelCase__ = text_generator("""This is a test""" , return_full_text=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": ANY(__lowerCAmelCase )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) UpperCamelCase__ = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ [{"""generated_text""": ANY(__lowerCAmelCase )}, {"""generated_text""": ANY(__lowerCAmelCase )}], [{"""generated_text""": ANY(__lowerCAmelCase )}, {"""generated_text""": ANY(__lowerCAmelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: UpperCamelCase__ = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ [{"""generated_text""": ANY(__lowerCAmelCase )}, {"""generated_text""": ANY(__lowerCAmelCase )}], [{"""generated_text""": ANY(__lowerCAmelCase )}, {"""generated_text""": ANY(__lowerCAmelCase )}], ] , ) with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = text_generator("""test""" , return_full_text=__lowerCAmelCase , return_text=__lowerCAmelCase ) with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = text_generator("""test""" , return_full_text=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = text_generator("""test""" , return_text=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCamelCase__ = text_generator("""""" ) self.assertEqual(__lowerCAmelCase , [{"""generated_text""": ANY(__lowerCAmelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCamelCase__ = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCamelCase__ = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 500 , max_new_tokens=20 ) UpperCamelCase__ = text_generator("""This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__lowerCAmelCase ): text_generator( """This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _lowerCamelCase ( self ): import torch # Classic `model_kwargs` UpperCamelCase__ = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase__ = pipe("""This is a test""" ) self.assertEqual( __lowerCAmelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCamelCase__ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase__ = pipe("""This is a test""" ) self.assertEqual( __lowerCAmelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCamelCase__ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) UpperCamelCase__ = pipe("""This is a test""" ) self.assertEqual( __lowerCAmelCase , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def _lowerCamelCase ( self ): import torch UpperCamelCase__ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def _lowerCamelCase ( self ): import torch UpperCamelCase__ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=__lowerCAmelCase , top_p=0.5 ) def _lowerCamelCase ( self ): UpperCamelCase__ = """Hello world""" UpperCamelCase__ = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": UpperCamelCase__ = logging.get_logger("""transformers.generation.tf_utils""" ) else: UpperCamelCase__ = logging.get_logger("""transformers.generation.utils""" ) UpperCamelCase__ = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__lowerCAmelCase ) as cl: UpperCamelCase__ = text_generator(__lowerCAmelCase , max_length=10 , max_new_tokens=1 ) self.assertIn(__lowerCAmelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(__lowerCAmelCase ) as cl: UpperCamelCase__ = text_generator(__lowerCAmelCase , max_new_tokens=1 ) self.assertNotIn(__lowerCAmelCase , cl.out ) with CaptureLogger(__lowerCAmelCase ) as cl: UpperCamelCase__ = text_generator(__lowerCAmelCase , max_length=10 ) self.assertNotIn(__lowerCAmelCase , cl.out )
548
0
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _lowercase = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase_ ) class _lowercase ( lowerCAmelCase_ ): def __init__( self , *A__ , **A__ ) -> str: super().__init__(*__snake_case , **__snake_case ) self.check_model_type(__snake_case ) def UpperCamelCase ( self , A__=None , A__=None , A__=None , **A__ ) -> Optional[int]: snake_case , snake_case = {}, {} if padding is not None: snake_case = padding if truncation is not None: snake_case = truncation if top_k is not None: snake_case = top_k return preprocess_params, {}, postprocess_params def __call__( self , A__ , A__ = None , **A__ ) -> int: if isinstance(__snake_case , (Image.Image, str) ) and isinstance(__snake_case , __snake_case ): snake_case = {'''image''': image, '''question''': question} else: snake_case = image snake_case = super().__call__(__snake_case , **__snake_case ) return results def UpperCamelCase ( self , A__ , A__=False , A__=False ) -> List[str]: snake_case = load_image(inputs['''image'''] ) snake_case = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=__snake_case , truncation=__snake_case ) snake_case = self.image_processor(images=__snake_case , return_tensors=self.framework ) model_inputs.update(__snake_case ) return model_inputs def UpperCamelCase ( self , A__ ) -> str: snake_case = self.model(**__snake_case ) return model_outputs def UpperCamelCase ( self , A__ , A__=5 ) -> int: if top_k > self.model.config.num_labels: snake_case = self.model.config.num_labels if self.framework == "pt": snake_case = model_outputs.logits.sigmoid()[0] snake_case , snake_case = probs.topk(__snake_case ) else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) snake_case = scores.tolist() snake_case = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__snake_case , __snake_case )]
342
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'convbert' def __init__( self , __snake_case=3_0522 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=1 , __snake_case=0 , __snake_case=2 , __snake_case=768 , __snake_case=2 , __snake_case=9 , __snake_case=1 , __snake_case=None , **__snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , ) __a =vocab_size __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_vocab_size __a =initializer_range __a =layer_norm_eps __a =embedding_size __a =head_ratio __a =conv_kernel_size __a =num_groups __a =classifier_dropout class __magic_name__ ( lowerCAmelCase_ ): @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __a ={0: 'batch', 1: 'choice', 2: 'sequence'} else: __a ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
242
0
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments a : Optional[int] = logging.getLogger(__name__) @dataclass class a ( _lowerCamelCase ): snake_case_ = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) snake_case_ = field(default=_lowerCamelCase , metadata={"help": "Whether to SortishSamler or not."} ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) snake_case_ = field(default=_lowerCamelCase , metadata={"help": "whether to use adafactor"} ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) snake_case_ = field(default=_lowerCamelCase , metadata={"help": "Dropout probability. Goes into model.config."} ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Attention dropout probability. Goes into model.config."} ) snake_case_ = field( default="linear" , metadata={"help": f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
593
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Optional[Any] = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
593
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class snake_case_ ( _lowerCAmelCase ): def __init__( self : Union[str, Any] , *_snake_case : Dict , **_snake_case : Tuple )->None: '''simple docstring''' warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
504
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : int ) -> int: """simple docstring""" assert ( isinstance(UpperCAmelCase_, UpperCAmelCase_ ) and number_of_steps > 0 ), F"""number_of_steps needs to be positive integer, your input {number_of_steps}""" if number_of_steps == 1: return 1 A__ , A__ = 1, 1 for _ in range(number_of_steps - 1 ): A__ , A__ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
104
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
719
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _snake_case : int = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' _snake_case : Union[str, Any] = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' _snake_case : Dict = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase ( self :int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCamelCase ( self :str , __UpperCamelCase :List[List[List[str]]] , __UpperCamelCase :List[List[str]] , __UpperCamelCase :int = 1 , __UpperCamelCase :int = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__UpperCamelCase , hypotheses=__UpperCamelCase , min_len=__UpperCamelCase , max_len=__UpperCamelCase ) }
524
0
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt') def lowercase (snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : int = 16_000 ) -> List[str]: '''simple docstring''' lowerCAmelCase = int(round(sample_rate * max_length ) ) if len(_UpperCamelCase ) <= sample_length: return wav lowerCAmelCase = randint(0 , len(_UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class SCREAMING_SNAKE_CASE__ : _a = field(default=A__ , metadata={'help': 'Name of a dataset from the datasets package'} ) _a = field( default=A__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _a = field( default=A__ , metadata={'help': 'A file containing the training audio paths and labels.'} ) _a = field( default=A__ , metadata={'help': 'A file containing the validation audio paths and labels.'} ) _a = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _a = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _a = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _a = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} ) _a = field( default=A__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _a = field( default=A__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _a = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class SCREAMING_SNAKE_CASE__ : _a = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _a = field( default=A__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _a = field( default=A__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} ) _a = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _a = field( default=A__ , metadata={'help': 'Name or path of preprocessor config.'} ) _a = field( default=A__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} ) _a = field( default=A__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} ) _a = field( default=A__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _a = field( default=A__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) _a = field( default=A__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def __lowercase ( self : Dict ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , SCREAMING_SNAKE_CASE__ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def lowercase () -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowerCAmelCase = DatasetDict() lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' """Make sure to set `--audio_column_name` to the correct audio column - one of """ f'''{', '.join(raw_datasets['train'].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' """Make sure to set `--label_column_name` to the correct text column - one of """ f'''{', '.join(raw_datasets['train'].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowerCAmelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowerCAmelCase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowerCAmelCase = feature_extractor.model_input_names[0] def train_transforms(snake_case__ : Dict ): lowerCAmelCase = [] for audio in batch[data_args.audio_column_name]: lowerCAmelCase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_UpperCamelCase ) lowerCAmelCase = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) lowerCAmelCase = {model_input_name: inputs.get(_UpperCamelCase )} lowerCAmelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(snake_case__ : Union[str, Any] ): lowerCAmelCase = [audio['''array'''] for audio in batch[data_args.audio_column_name]] lowerCAmelCase = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) lowerCAmelCase = {model_input_name: inputs.get(_UpperCamelCase )} lowerCAmelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowerCAmelCase = raw_datasets['''train'''].features[data_args.label_column_name].names lowerCAmelCase = {}, {} for i, label in enumerate(_UpperCamelCase ): lowerCAmelCase = str(_UpperCamelCase ) lowerCAmelCase = label # Load the accuracy metric from the datasets package lowerCAmelCase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(snake_case__ : Dict ): lowerCAmelCase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=eval_pred.label_ids ) lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) # Initialize our trainer lowerCAmelCase = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # Training if training_args.do_train: lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase = last_checkpoint lowerCAmelCase = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCAmelCase = trainer.evaluate() trainer.log_metrics("""eval""" , _UpperCamelCase ) trainer.save_metrics("""eval""" , _UpperCamelCase ) # Write model card and (optionally) push to hub lowerCAmelCase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
169
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Optional[int]: """simple docstring""" lowercase : str = BertConfig.from_json_file(_UpperCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) lowercase : Any = BertForPreTraining(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict(), _UpperCamelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __a = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
319
0
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __magic_name__ = logging.getLogger(__name__) @dataclass class a__ ( _snake_case ): """simple docstring""" A__ : Optional[float] = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) A__ : bool = field(default=_snake_case , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) A__ : bool = field( default=_snake_case , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) A__ : bool = field(default=_snake_case , metadata={'''help''': '''whether to use adafactor'''} ) A__ : Optional[float] = field( default=_snake_case , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) A__ : Optional[float] = field( default=_snake_case , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) A__ : Optional[float] = field(default=_snake_case , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) A__ : Optional[float] = field( default=_snake_case , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) A__ : Optional[str] = field( default='''linear''' , metadata={'''help''': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
314
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
1
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __snake_case ( _lowercase , _lowercase , _lowercase , unittest.TestCase): snake_case__ : str = StableUnCLIPPipeline snake_case__ : Optional[int] = TEXT_TO_IMAGE_PARAMS snake_case__ : int = TEXT_TO_IMAGE_BATCH_PARAMS snake_case__ : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case__ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false snake_case__ : Dict = False def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : int = 3_2 _lowerCamelCase : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) _lowerCamelCase : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _lowerCamelCase : List[Any] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=__lowerCAmelCase , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) _lowerCamelCase : Dict = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=__lowerCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_0_0_0 , clip_sample=__lowerCAmelCase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _lowerCamelCase : int = StableUnCLIPImageNormalizer(embedding_dim=__lowerCAmelCase ) _lowerCamelCase : List[str] = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _lowerCamelCase : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) _lowerCamelCase : str = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowerCAmelCase , layers_per_block=1 , upcast_attention=__lowerCAmelCase , use_linear_projection=__lowerCAmelCase , ) torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='''v_prediction''' , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) _lowerCamelCase : Optional[Any] = AutoencoderKL() _lowerCamelCase : Dict = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int]=0 ): """simple docstring""" if str(__lowerCAmelCase ).startswith('''mps''' ): _lowerCamelCase : List[Any] = torch.manual_seed(__lowerCAmelCase ) else: _lowerCamelCase : str = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _lowerCamelCase : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Dict = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Tuple = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__lowerCAmelCase ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _lowerCamelCase : Optional[Any] = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCamelCase : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _lowerCamelCase : Tuple = pipe('''anime turle''' , generator=__lowerCAmelCase , output_type='''np''' ) _lowerCamelCase : Dict = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCamelCase : Union[str, Any] = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _lowerCamelCase : Any = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCamelCase : List[str] = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _lowerCamelCase : Dict = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
83
"""simple docstring""" import argparse import struct import unittest class a : def __init__( self : List[str] , lowerCAmelCase : bytes ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =data # Initialize hash values SCREAMING_SNAKE_CASE_: int =[ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants SCREAMING_SNAKE_CASE_: List[Any] =[ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] SCREAMING_SNAKE_CASE_: int =self.preprocessing(self.data ) self.final_hash() @staticmethod def lowerCamelCase__ ( lowerCAmelCase : bytes ) -> bytes: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =B"""\x80""" + (B"""\x00""" * (63 - (len(lowerCAmelCase ) + 8) % 64)) SCREAMING_SNAKE_CASE_: List[Any] =struct.pack(""">Q""" , (len(lowerCAmelCase ) * 8) ) return data + padding + big_endian_integer def lowerCamelCase__ ( self : Optional[Any] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =[ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers SCREAMING_SNAKE_CASE_: Optional[int] =list(struct.unpack(""">16L""" , lowerCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array SCREAMING_SNAKE_CASE_: Any =( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) SCREAMING_SNAKE_CASE_: Tuple =( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) SCREAMING_SNAKE_CASE_: List[str] =( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression SCREAMING_SNAKE_CASE_: Dict =self.ror(lowerCAmelCase , 6 ) ^ self.ror(lowerCAmelCase , 11 ) ^ self.ror(lowerCAmelCase , 25 ) SCREAMING_SNAKE_CASE_: Any =(e & f) ^ ((~e & 0XFF_FFF_FFF) & g) SCREAMING_SNAKE_CASE_: Union[str, Any] =( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 SCREAMING_SNAKE_CASE_: List[Any] =self.ror(lowerCAmelCase , 2 ) ^ self.ror(lowerCAmelCase , 13 ) ^ self.ror(lowerCAmelCase , 22 ) SCREAMING_SNAKE_CASE_: int =(a & b) ^ (a & c) ^ (b & c) SCREAMING_SNAKE_CASE_: Optional[int] =(sa + maj) % 0X100_000_000 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] =( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) SCREAMING_SNAKE_CASE_: Dict =[a, b, c, d, e, f, g, h] # Modify final values SCREAMING_SNAKE_CASE_: List[Any] =[ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes ) ] SCREAMING_SNAKE_CASE_: Tuple ="""""".join([hex(lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : int ) -> int: '''simple docstring''' return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class a ( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] ) -> None: '''simple docstring''' import hashlib SCREAMING_SNAKE_CASE_: Union[str, Any] =bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(lowerCAmelCase ).hash , hashlib.shaaaa(lowerCAmelCase ).hexdigest() ) def __magic_name__ ( ): import doctest doctest.testmod() SCREAMING_SNAKE_CASE_: str =argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) SCREAMING_SNAKE_CASE_: Any =parser.parse_args() SCREAMING_SNAKE_CASE_: List[str] =args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: SCREAMING_SNAKE_CASE_: Optional[Any] =f.read() else: SCREAMING_SNAKE_CASE_: Optional[Any] =bytes(lowercase , """utf-8""" ) print(SHAaaa(lowercase ).hash ) if __name__ == "__main__": main()
409
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class _a ( A_ ): a_ : Optional[int] = '''blip_2_vision_model''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : str=14_08 , SCREAMING_SNAKE_CASE__ : str=61_44 , SCREAMING_SNAKE_CASE__ : int=39 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 , SCREAMING_SNAKE_CASE__ : Optional[int]=2_24 , SCREAMING_SNAKE_CASE__ : Dict=14 , SCREAMING_SNAKE_CASE__ : int="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=0.0_00_01 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : int=1e-10 , SCREAMING_SNAKE_CASE__ : List[str]=True , **SCREAMING_SNAKE_CASE__ : List[str] , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = hidden_size lowerCamelCase__ = intermediate_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = patch_size lowerCamelCase__ = image_size lowerCamelCase__ = initializer_range lowerCamelCase__ = attention_dropout lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = hidden_act lowerCamelCase__ = qkv_bias @classmethod def _UpperCamelCase ( cls : int , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Any ): cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": lowerCamelCase__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class _a ( A_ ): a_ : Any = '''blip_2_qformer''' def __init__( self : int , SCREAMING_SNAKE_CASE__ : Dict=3_05_22 , SCREAMING_SNAKE_CASE__ : List[str]=7_68 , SCREAMING_SNAKE_CASE__ : Optional[int]=12 , SCREAMING_SNAKE_CASE__ : str=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : str=5_12 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE__ : int=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : int="absolute" , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : str=14_08 , **SCREAMING_SNAKE_CASE__ : List[str] , ): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = position_embedding_type lowerCamelCase__ = cross_attention_frequency lowerCamelCase__ = encoder_hidden_size @classmethod def _UpperCamelCase ( cls : int , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[str] ): cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": lowerCamelCase__ = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class _a ( A_ ): a_ : int = '''blip-2''' a_ : Optional[int] = True def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : List[str]=32 , **SCREAMING_SNAKE_CASE__ : int ): super().__init__(**SCREAMING_SNAKE_CASE__ ) if vision_config is None: lowerCamelCase__ = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: lowerCamelCase__ = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: lowerCamelCase__ = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) lowerCamelCase__ = BlipaVisionConfig(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = BlipaQFormerConfig(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowerCamelCase__ = CONFIG_MAPPING[text_model_type](**SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.text_config.tie_word_embeddings lowerCamelCase__ = self.text_config.is_encoder_decoder lowerCamelCase__ = num_query_tokens lowerCamelCase__ = self.vision_config.hidden_size lowerCamelCase__ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase__ = 1.0 lowerCamelCase__ = 0.02 @classmethod def _UpperCamelCase ( cls : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **SCREAMING_SNAKE_CASE__ , ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = copy.deepcopy(self.__dict__ ) lowerCamelCase__ = self.vision_config.to_dict() lowerCamelCase__ = self.qformer_config.to_dict() lowerCamelCase__ = self.text_config.to_dict() lowerCamelCase__ = self.__class__.model_type return output
708
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _snake_case = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Optional[int]=1 ): lowerCamelCase__ = tokenizer lowerCamelCase__ = dataset lowerCamelCase__ = len(SCREAMING_SNAKE_CASE__ ) if n_tasks is None else n_tasks lowerCamelCase__ = n_copies def __iter__( self : Any ): lowerCamelCase__ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) lowerCamelCase__ = self.tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _a ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = start_length lowerCamelCase__ = eof_strings lowerCamelCase__ = tokenizer def __call__( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCamelCase__ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(SCREAMING_SNAKE_CASE__ ) def snake_case ( _a: List[Any] )-> Dict: '''simple docstring''' lowerCamelCase__ = re.split('(%s)' % '|'.join(_a ) , _a ) # last string should be "" return "".join(string_list[:-2] ) def snake_case ( _a: List[Any] , _a: Optional[int] , _a: str , _a: Union[str, Any] , _a: Dict , _a: Optional[int]=20 , **_a: Optional[int] )-> List[str]: '''simple docstring''' lowerCamelCase__ = defaultdict(_a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_a ) ): with torch.no_grad(): lowerCamelCase__ = batch['ids'].shape[-1] lowerCamelCase__ = accelerator.unwrap_model(_a ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_a , **_a ) # each task is generated batch_size times lowerCamelCase__ = batch['task_id'].repeat(_a ) lowerCamelCase__ = accelerator.pad_across_processes( _a , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCamelCase__ , lowerCamelCase__ = accelerator.gather((generated_tokens, generated_tasks) ) lowerCamelCase__ = generated_tokens.cpu().numpy() lowerCamelCase__ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_a , _a ): gen_token_dict[task].append(_a ) lowerCamelCase__ = [[] for _ in range(_a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCamelCase__ = tokenizer.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) code_gens[task].append(remove_last_block(_a ) ) return code_gens def snake_case ( )-> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = HfArgumentParser(_a ) lowerCamelCase__ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCamelCase__ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCamelCase__ = 'false' if args.num_workers is None: lowerCamelCase__ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCamelCase__ = Accelerator() set_seed(args.seed , device_specific=_a ) # Load model and tokenizer lowerCamelCase__ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ = tokenizer.eos_token lowerCamelCase__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCamelCase__ = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _a , _a )] ), } # Load evaluation dataset and metric lowerCamelCase__ = load_dataset('openai_humaneval' ) lowerCamelCase__ = load_metric('code_eval' ) lowerCamelCase__ = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) lowerCamelCase__ = args.n_samples // args.batch_size lowerCamelCase__ = TokenizedDataset(_a , human_eval['test'] , n_copies=_a , n_tasks=_a ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCamelCase__ = DataLoader(_a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCamelCase__ = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(_a , _a ) lowerCamelCase__ = complete_code( _a , _a , _a , _a , n_tasks=_a , batch_size=args.batch_size , **_a , ) if accelerator.is_main_process: lowerCamelCase__ = [] for task in tqdm(range(_a ) ): lowerCamelCase__ = human_eval['test'][task]['test'] lowerCamelCase__ = F'check({human_eval["test"][task]["entry_point"]})' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric lowerCamelCase__ , lowerCamelCase__ = code_eval_metric.compute( references=_a , predictions=_a , num_workers=args.num_workers ) print(F'Results: {pass_at_k}' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_a , _a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
659
0
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ : str = get_tests_dir("""fixtures/test_sentencepiece.model""") UpperCamelCase_ : str = {"""target_lang""": """fi""", """source_lang""": """en"""} UpperCamelCase_ : int = """>>zh<<""" UpperCamelCase_ : Tuple = """Helsinki-NLP/""" if is_torch_available(): UpperCamelCase_ : List[Any] = """pt""" elif is_tf_available(): UpperCamelCase_ : Union[str, Any] = """tf""" else: UpperCamelCase_ : List[str] = """jax""" @require_sentencepiece class lowerCamelCase__ ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase__ = MarianTokenizer UpperCamelCase__ = False UpperCamelCase__ = True def lowerCAmelCase_ ( self : str ): super().setUp() a__ = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] a__ = dict(zip(a__ ,range(len(a__ ) ) ) ) a__ = Path(self.tmpdirname ) save_json(a__ ,save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(a__ ,save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(a__ ,save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(a__ ,save_dir / VOCAB_FILES_NAMES["target_spm"] ) a__ = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : Any ,**a__ : Dict ): return MarianTokenizer.from_pretrained(self.tmpdirname ,**a__ ) def lowerCAmelCase_ ( self : Optional[Any] ,a__ : List[Any] ): return ( "This is a test", "This is a test", ) def lowerCAmelCase_ ( self : Optional[Any] ): a__ = "</s>" a__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) ,a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) ,a__ ) def lowerCAmelCase_ ( self : Any ): a__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"</s>" ) self.assertEqual(vocab_keys[1] ,"<unk>" ) self.assertEqual(vocab_keys[-1] ,"<pad>" ) self.assertEqual(len(a__ ) ,9 ) def lowerCAmelCase_ ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size ,9 ) def lowerCAmelCase_ ( self : Any ): a__ = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) a__ = en_de_tokenizer(["I am a small frog"] ,return_tensors=a__ ) self.assertIsInstance(a__ ,a__ ) a__ = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(a__ ,batch.input_ids[0] ) a__ = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(a__ ) a__ = [x.name for x in Path(a__ ).glob("*" )] self.assertIn("source.spm" ,a__ ) MarianTokenizer.from_pretrained(a__ ) def lowerCAmelCase_ ( self : str ): a__ = self.get_tokenizer() a__ = tok( ["I am a small frog" * 10_00, "I am a small frog"] ,padding=a__ ,truncation=a__ ,return_tensors=a__ ) self.assertIsInstance(a__ ,a__ ) self.assertEqual(batch.input_ids.shape ,(2, 5_12) ) def lowerCAmelCase_ ( self : List[str] ): a__ = self.get_tokenizer() a__ = tok(["I am a tiny frog", "I am a small frog"] ,padding=a__ ,return_tensors=a__ ) self.assertIsInstance(a__ ,a__ ) self.assertEqual(batch_smaller.input_ids.shape ,(2, 10) ) @slow def lowerCAmelCase_ ( self : Tuple ): # fmt: off a__ = {"input_ids": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ ,model_name="Helsinki-NLP/opus-mt-en-de" ,revision="1a8c2263da11e68e50938f97e10cd57820bd504c" ,decode_kwargs={"use_source_tokenizer": True} ,) def lowerCAmelCase_ ( self : Union[str, Any] ): a__ = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) a__ = "Tämä on testi" a__ = "This is a test" a__ = [76, 7, 20_47, 2] a__ = [69, 12, 11, 9_40, 2] a__ = tokenizer(a__ ).input_ids self.assertListEqual(a__ ,a__ ) a__ = tokenizer(text_target=a__ ).input_ids self.assertListEqual(a__ ,a__ ) a__ = tokenizer.decode(a__ ,skip_special_tokens=a__ ) self.assertEqual(a__ ,a__ )
331
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase__ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self : str ,a__ : int ,a__ : int ,a__ : int ,a__ : float ,a__ : int ,a__ : int ,a__ : int ,a__ : int ,a__ : str ,a__ : bool = False ,): super().__init__() a__ = nn.Embedding(a__ ,a__ ) a__ = nn.Embedding(a__ ,a__ ) a__ = False a__ = nn.Dropout(p=a__ ) a__ = TaConfig( vocab_size=a__ ,d_model=a__ ,num_heads=a__ ,d_kv=a__ ,d_ff=a__ ,dropout_rate=a__ ,feed_forward_proj=a__ ,is_decoder=a__ ,is_encoder_decoder=a__ ,) a__ = nn.ModuleList() for lyr_num in range(a__ ): a__ = TaBlock(a__ ) self.encoders.append(a__ ) a__ = TaLayerNorm(a__ ) a__ = nn.Dropout(p=a__ ) def lowerCAmelCase_ ( self : Optional[Any] ,a__ : Tuple ,a__ : Optional[int] ): a__ = self.token_embedder(a__ ) a__ = encoder_input_tokens.shape[1] a__ = torch.arange(a__ ,device=encoder_input_tokens.device ) x += self.position_encoding(a__ ) a__ = self.dropout_pre(a__ ) # inverted the attention mask a__ = encoder_input_tokens.size() a__ = self.get_extended_attention_mask(a__ ,a__ ) for lyr in self.encoders: a__ = lyr(a__ ,a__ )[0] a__ = self.layer_norm(a__ ) return self.dropout_post(a__ ), encoder_inputs_mask
331
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case__ ( self) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = 1 _UpperCAmelCase : Union[str, Any] = 3 _UpperCAmelCase : Any = (32, 32) _UpperCAmelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(__UpperCamelCase) return image @property def snake_case__ ( self) -> int: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def snake_case__ ( self) -> Dict: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def snake_case__ ( self) -> List[Any]: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase : Tuple = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(__UpperCamelCase) @property def snake_case__ ( self) -> str: """simple docstring""" def extract(*_A , **_A): class lowercase : '''simple docstring''' def __init__( self) -> List[str]: """simple docstring""" _UpperCAmelCase : int = torch.ones([0]) def snake_case__ ( self , _A) -> Optional[Any]: """simple docstring""" self.pixel_values.to(__UpperCamelCase) return self return Out() return extract def snake_case__ ( self) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : List[str] = PNDMScheduler(skip_prk_steps=__UpperCamelCase) _UpperCAmelCase : Union[str, Any] = self.dummy_vae _UpperCAmelCase : Optional[Any] = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''') _UpperCAmelCase : Dict = 77 _UpperCAmelCase : int = self.dummy_image.to(__UpperCamelCase) _UpperCAmelCase : Optional[Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _UpperCAmelCase : Any = AltDiffusionImgaImgPipeline( unet=__UpperCamelCase , scheduler=__UpperCamelCase , vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase : str = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__UpperCamelCase) _UpperCAmelCase : Union[str, Any] = alt_pipe.to(__UpperCamelCase) alt_pipe.set_progress_bar_config(disable=__UpperCamelCase) _UpperCAmelCase : Optional[int] = '''A painting of a squirrel eating a burger''' _UpperCAmelCase : str = torch.Generator(device=__UpperCamelCase).manual_seed(0) _UpperCAmelCase : Optional[int] = alt_pipe( [prompt] , generator=__UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=__UpperCamelCase , ) _UpperCAmelCase : Tuple = output.images _UpperCAmelCase : Any = torch.Generator(device=__UpperCamelCase).manual_seed(0) _UpperCAmelCase : Any = alt_pipe( [prompt] , generator=__UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=__UpperCamelCase , return_dict=__UpperCamelCase , )[0] _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase : Tuple = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def snake_case__ ( self) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = self.dummy_cond_unet _UpperCAmelCase : Dict = PNDMScheduler(skip_prk_steps=__UpperCamelCase) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : Union[str, Any] = self.dummy_text_encoder _UpperCAmelCase : Optional[int] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''') _UpperCAmelCase : int = 77 _UpperCAmelCase : List[str] = self.dummy_image.to(__UpperCamelCase) # put models in fp16 _UpperCAmelCase : int = unet.half() _UpperCAmelCase : int = vae.half() _UpperCAmelCase : Tuple = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Optional[int] = AltDiffusionImgaImgPipeline( unet=__UpperCamelCase , scheduler=__UpperCamelCase , vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase : Any = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__UpperCamelCase) _UpperCAmelCase : List[Any] = alt_pipe.to(__UpperCamelCase) alt_pipe.set_progress_bar_config(disable=__UpperCamelCase) _UpperCAmelCase : Union[str, Any] = '''A painting of a squirrel eating a burger''' _UpperCAmelCase : str = torch.manual_seed(0) _UpperCAmelCase : Optional[Any] = alt_pipe( [prompt] , generator=__UpperCamelCase , num_inference_steps=2 , output_type='''np''' , image=__UpperCamelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def snake_case__ ( self) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') # resize to resolution that is divisible by 8 but not 16 or 32 _UpperCAmelCase : int = init_image.resize((760, 504)) _UpperCAmelCase : List[str] = '''BAAI/AltDiffusion''' _UpperCAmelCase : str = AltDiffusionImgaImgPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase) pipe.set_progress_bar_config(disable=__UpperCamelCase) pipe.enable_attention_slicing() _UpperCAmelCase : Optional[int] = '''A fantasy landscape, trending on artstation''' _UpperCAmelCase : Optional[int] = torch.manual_seed(0) _UpperCAmelCase : Union[str, Any] = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__UpperCamelCase , output_type='''np''' , ) _UpperCAmelCase : List[str] = output.images[0] _UpperCAmelCase : str = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) _UpperCAmelCase : Optional[int] = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') _UpperCAmelCase : Optional[Any] = init_image.resize((768, 512)) _UpperCAmelCase : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''') _UpperCAmelCase : Dict = '''BAAI/AltDiffusion''' _UpperCAmelCase : Any = AltDiffusionImgaImgPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase) pipe.set_progress_bar_config(disable=__UpperCamelCase) pipe.enable_attention_slicing() _UpperCAmelCase : int = '''A fantasy landscape, trending on artstation''' _UpperCAmelCase : Union[str, Any] = torch.manual_seed(0) _UpperCAmelCase : Optional[int] = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__UpperCamelCase , output_type='''np''' , ) _UpperCAmelCase : str = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1e-2
702
import unittest from knapsack import knapsack as k class A_ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : List[Any] = [0] _UpperCAmelCase : Optional[Any] = [0] _UpperCAmelCase : Optional[int] = len(_A) self.assertEqual(k.knapsack(_A , _A , _A , _A) , 0) _UpperCAmelCase : Optional[int] = [60] _UpperCAmelCase : List[str] = [10] _UpperCAmelCase : str = len(_A) self.assertEqual(k.knapsack(_A , _A , _A , _A) , 0) def snake_case__ ( self) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = 3 _UpperCAmelCase : int = [1, 2, 3] _UpperCAmelCase : List[str] = [3, 2, 1] _UpperCAmelCase : Union[str, Any] = len(_A) self.assertEqual(k.knapsack(_A , _A , _A , _A) , 5) def snake_case__ ( self) -> Tuple: """simple docstring""" _UpperCAmelCase : List[str] = 50 _UpperCAmelCase : Tuple = [60, 100, 120] _UpperCAmelCase : Optional[int] = [10, 20, 30] _UpperCAmelCase : Optional[Any] = len(_A) self.assertEqual(k.knapsack(_A , _A , _A , _A) , 220) if __name__ == "__main__": unittest.main()
186
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = '''▁''' _lowercase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _lowercase = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } _lowercase = { '''facebook/xglm-564M''': 2_048, } class __a ( snake_case_ ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES _lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Any = ["""input_ids""", """attention_mask"""] def __init__( self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase = None , **_lowerCamelCase , ) -> None: '''simple docstring''' __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __lowercase = 7 __lowercase = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] __lowercase = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCamelCase ) ) __lowercase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowercase = 1 # Mimic fairseq token-to-id alignment for the first 4 token __lowercase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} __lowercase = len(self.sp_model ) __lowercase = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_lowerCamelCase ) __lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Optional[int]: '''simple docstring''' __lowercase = self.__dict__.copy() __lowercase = None __lowercase = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a __lowercase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = None ) -> List[int]: '''simple docstring''' __lowercase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowercase = self.sp_model.PieceToId(_lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> str: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = "".join(_lowerCamelCase ).replace(_lowerCamelCase , " " ).strip() return out_string def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowercase = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , "wb" ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
118
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A =logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = ['input_values', 'attention_mask'] def __init__( self , lowercase = 1 , lowercase = 16000 , lowercase = 0.0 , lowercase = False , lowercase = 80 , lowercase = 16 , lowercase = 64 , lowercase = "hann_window" , lowercase = 1.0 , lowercase = 80 , lowercase = 7600 , lowercase = 1e-10 , lowercase = 2 , lowercase = True , **lowercase , ) -> int: super().__init__(feature_size=lowercase , sampling_rate=lowercase , padding_value=lowercase , **lowercase ) lowerCamelCase_ = do_normalize lowerCamelCase_ = return_attention_mask lowerCamelCase_ = num_mel_bins lowerCamelCase_ = hop_length lowerCamelCase_ = win_length lowerCamelCase_ = win_function lowerCamelCase_ = frame_signal_scale lowerCamelCase_ = fmin lowerCamelCase_ = fmax lowerCamelCase_ = mel_floor lowerCamelCase_ = reduction_factor lowerCamelCase_ = win_length * sampling_rate // 1000 lowerCamelCase_ = hop_length * sampling_rate // 1000 lowerCamelCase_ = optimal_fft_length(self.sample_size ) lowerCamelCase_ = (self.n_fft // 2) + 1 lowerCamelCase_ = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowercase ) lowerCamelCase_ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="slaney" , mel_scale="slaney" , ) if frame_signal_scale != 1.0: warnings.warn( "The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers" , lowercase , ) if reduction_factor != 2.0: warnings.warn( "The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers" , lowercase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def SCREAMING_SNAKE_CASE_( lowercase , lowercase , lowercase = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: lowerCamelCase_ = np.array(lowercase , np.intaa ) lowerCamelCase_ = [] for vector, length in zip(lowercase , attention_mask.sum(-1 ) ): lowerCamelCase_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCamelCase_ = padding_value normed_input_values.append(lowercase ) else: lowerCamelCase_ = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def SCREAMING_SNAKE_CASE_( self , lowercase , ) -> np.ndarray: lowerCamelCase_ = spectrogram( lowercase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="log10" , ) return log_mel_spec.T def __call__( self , lowercase = None , lowercase = None , lowercase = False , lowercase = None , lowercase = False , lowercase = None , lowercase = None , lowercase = None , lowercase = None , **lowercase , ) -> BatchFeature: if audio is None and audio_target is None: raise ValueError("You must provide either `audio` or `audio_target` values." ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if audio is not None: lowerCamelCase_ = self._process_audio( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , **lowercase , ) else: lowerCamelCase_ = None if audio_target is not None: lowerCamelCase_ = self._process_audio( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , **lowercase , ) if inputs is None: return inputs_target else: lowerCamelCase_ = inputs_target["input_values"] lowerCamelCase_ = inputs_target.get("attention_mask" ) if decoder_attention_mask is not None: lowerCamelCase_ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = False , lowercase = False , lowercase = None , lowercase = False , lowercase = None , lowercase = None , lowercase = None , **lowercase , ) -> BatchFeature: lowerCamelCase_ = isinstance(lowercase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase_ = is_batched_numpy or ( isinstance(lowercase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase_ = [np.asarray(lowercase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(lowercase , np.ndarray ): lowerCamelCase_ = np.asarray(lowercase , dtype=np.floataa ) elif isinstance(lowercase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowerCamelCase_ = speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase_ = [speech] # needed to make pad() work on spectrogram inputs lowerCamelCase_ = self.feature_size # convert into correct format for padding if is_target: lowerCamelCase_ = [self._extract_mel_features(lowercase ) for waveform in speech] lowerCamelCase_ = BatchFeature({"input_values": features} ) lowerCamelCase_ = self.num_mel_bins else: lowerCamelCase_ = BatchFeature({"input_values": speech} ) lowerCamelCase_ = self.pad( lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , **lowercase , ) lowerCamelCase_ = feature_size_hack # convert input values to correct format lowerCamelCase_ = padded_inputs["input_values"] if not isinstance(input_values[0] , np.ndarray ): lowerCamelCase_ = [np.asarray(lowercase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(lowercase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowerCamelCase_ = [array.astype(np.floataa ) for array in input_values] elif isinstance(lowercase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowerCamelCase_ = input_values.astype(np.floataa ) # convert attention_mask to correct format lowerCamelCase_ = padded_inputs.get("attention_mask" ) if attention_mask is not None: lowerCamelCase_ = [np.asarray(lowercase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowerCamelCase_ = ( attention_mask if self._get_padding_strategies(lowercase , max_length=lowercase ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCamelCase_ = self.zero_mean_unit_var_norm( padded_inputs["input_values"] , attention_mask=lowercase , padding_value=self.padding_value ) if return_tensors is not None: lowerCamelCase_ = padded_inputs.convert_to_tensors(lowercase ) return padded_inputs def SCREAMING_SNAKE_CASE_( self ) -> Dict[str, Any]: lowerCamelCase_ = super().to_dict() # Don't serialize these as they are derived from the other properties. lowerCamelCase_ = ["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] for name in names: if name in output: del output[name] return output
463
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed A_ : Any = logging.getLogger(__name__) def UpperCamelCase (lowercase_: Optional[Any]=2 , lowercase_: Union[str, Any]=3 , lowercase_: int=16 , lowercase_: int = 10 , lowercase_: int = 2 ) -> int: def get_dataset(lowercase_: Optional[int] ): A__ : Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(lowercase_ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) A__ : Dict = get_dataset(lowercase_ ) A__ : Any = get_dataset(lowercase_ ) A__ : Dict = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 ) A__ : Optional[Any] = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 ) return (train_dataloader, valid_dataloader) def UpperCamelCase (lowercase_: Optional[Any] , lowercase_: List[str] , lowercase_: int , lowercase_: int , lowercase_: List[str] , lowercase_: Dict=None ) -> List[Any]: A__ : List[Any] = [] for epoch in range(lowercase_ ): # Train quickly model.train() for batch in dataloader: A__ , A__ : Any = batch A__ : Any = model(lowercase_ ) A__ : Any = torch.nn.functional.mse_loss(lowercase_ , lowercase_ ) accelerator.backward(lowercase_ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class _a (nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() A__ : str = nn.Parameter(torch.randn(1 ) ) A__ : Any = nn.Parameter(torch.randn(1 ) ) def __A ( self , A__ ): return x * self.a + self.b class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Optional[Any] = DummyModel() A__ : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : str = dummy_dataloaders() A__ : Dict = ProjectConfiguration(total_limit=1 , project_dir=A__ , automatic_checkpoint_naming=A__ ) # Train baseline A__ : List[str] = Accelerator(project_config=A__ ) A__ , A__ , A__ , A__ : Any = accelerator.prepare( A__ , A__ , A__ , A__ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __A ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : str = DummyModel() A__ : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : int = dummy_dataloaders() # Train baseline A__ : str = Accelerator() A__ , A__ , A__ , A__ : List[str] = accelerator.prepare( A__ , A__ , A__ , A__ ) # Save initial A__ : List[Any] = os.path.join(A__ , """initial""" ) accelerator.save_state(A__ ) ((A__) , (A__)) : str = model.a.item(), model.b.item() A__ : Dict = optimizer.state_dict() A__ : List[str] = train(3 , A__ , A__ , A__ , A__ ) ((A__) , (A__)) : str = model.a.item(), model.b.item() A__ : Any = optimizer.state_dict() # Train partially set_seed(42 ) A__ : Optional[int] = DummyModel() A__ : Dict = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : Dict = dummy_dataloaders() A__ : List[str] = Accelerator() A__ , A__ , A__ , A__ : Optional[Any] = accelerator.prepare( A__ , A__ , A__ , A__ ) accelerator.load_state(A__ ) ((A__) , (A__)) : Tuple = model.a.item(), model.b.item() A__ : Union[str, Any] = optimizer.state_dict() self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) A__ : List[str] = train(2 , A__ , A__ , A__ , A__ ) # Save everything A__ : Optional[int] = os.path.join(A__ , """checkpoint""" ) accelerator.save_state(A__ ) # Load everything back in and make sure all states work accelerator.load_state(A__ ) test_rands += train(1 , A__ , A__ , A__ , A__ ) ((A__) , (A__)) : Union[str, Any] = model.a.item(), model.b.item() A__ : Optional[int] = optimizer.state_dict() self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) def __A ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : int = DummyModel() A__ : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : List[str] = dummy_dataloaders() A__ : str = ProjectConfiguration(automatic_checkpoint_naming=A__ ) # Train baseline A__ : Any = Accelerator(project_dir=A__ , project_config=A__ ) A__ , A__ , A__ , A__ : str = accelerator.prepare( A__ , A__ , A__ , A__ ) # Save initial accelerator.save_state() ((A__) , (A__)) : Tuple = model.a.item(), model.b.item() A__ : int = optimizer.state_dict() A__ : int = train(3 , A__ , A__ , A__ , A__ ) ((A__) , (A__)) : Optional[Any] = model.a.item(), model.b.item() A__ : Any = optimizer.state_dict() # Train partially set_seed(42 ) A__ : Dict = DummyModel() A__ : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : Union[str, Any] = dummy_dataloaders() A__ : List[Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=A__ ) A__ : Dict = Accelerator(project_dir=A__ , project_config=A__ ) A__ , A__ , A__ , A__ : Union[str, Any] = accelerator.prepare( A__ , A__ , A__ , A__ ) accelerator.load_state(os.path.join(A__ , """checkpoints""" , """checkpoint_0""" ) ) ((A__) , (A__)) : Optional[int] = model.a.item(), model.b.item() A__ : Tuple = optimizer.state_dict() self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) A__ : str = train(2 , A__ , A__ , A__ , A__ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(A__ , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , A__ , A__ , A__ , A__ ) ((A__) , (A__)) : Optional[int] = model.a.item(), model.b.item() A__ : List[Any] = optimizer.state_dict() self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) def __A ( self ): A__ : Union[str, Any] = torch.tensor([1, 2, 3] ) A__ : int = torch.tensor([2, 3, 4] ) A__ : List[Any] = DummyModel() A__ : List[Any] = torch.optim.Adam(net.parameters() ) A__ : Tuple = Accelerator() with self.assertRaises(A__ ) as ve: accelerator.register_for_checkpointing(A__ , A__ , A__ , A__ ) A__ : Any = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def __A ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Any = DummyModel() A__ : Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : Dict = torch.optim.lr_scheduler.StepLR(A__ , step_size=1 , gamma=0.9_9 ) A__ , A__ : List[Any] = dummy_dataloaders() A__ : Tuple = ProjectConfiguration(automatic_checkpoint_naming=A__ ) # Train baseline A__ : Optional[Any] = Accelerator(project_dir=A__ , project_config=A__ ) A__ , A__ , A__ , A__ , A__ : Union[str, Any] = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # Save initial accelerator.save_state() A__ : Tuple = scheduler.state_dict() train(3 , A__ , A__ , A__ , A__ , A__ ) self.assertNotEqual(A__ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(A__ , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(A__ , scheduler.state_dict() ) def __A ( self ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Optional[Any] = DummyModel() A__ : int = ProjectConfiguration(automatic_checkpoint_naming=A__ , total_limit=2 ) # Train baseline A__ : List[str] = Accelerator(project_dir=A__ , project_config=A__ ) A__ : Union[str, Any] = accelerator.prepare(A__ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(A__ , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(A__ , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(A__ , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def __A ( self ): A__ : Dict = ["""torchrun""", F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(A__ , env=os.environ.copy() ) if __name__ == "__main__": A_ : List[str] = '/tmp/accelerate/state_checkpointing' A_ : Optional[Any] = DummyModel() A_ : Union[str, Any] = torch.optim.Adam(params=model.parameters(), lr=1E-3) A_ : str = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) A_ , A_ : List[Any] = dummy_dataloaders() A_ : int = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline A_ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) A_ , A_ , A_ , A_ , A_ : List[Any] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) A_ , A_ : Dict = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: A_ : str = group['params'][0].device break assert param_device.type == accelerator.device.type A_ : Optional[Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: A_ : str = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: A_ : Tuple = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
64
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def UpperCamelCase (*lowercase_: Optional[int] , lowercase_: Optional[Union[Dict, Any]] = None , lowercase_: Dict=True , lowercase_: Tuple=2 ) -> Dict: from .. import __version__ A__ : Dict = take_from A__ : str = () if not isinstance(args[0] , lowercase_ ): A__ : int = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowercase_ ).base_version ) >= version.parse(lowercase_ ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) A__ : Any = None if isinstance(lowercase_ , lowercase_ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowercase_ ),) A__ : List[str] = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(lowercase_ , lowercase_ ): values += (getattr(lowercase_ , lowercase_ ),) A__ : Optional[Any] = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: A__ : int = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: A__ : int = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , lowercase_ , stacklevel=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) > 0: A__ : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] A__ : Optional[Any] = call_frame.filename A__ : Optional[int] = call_frame.lineno A__ : Any = call_frame.function A__ , A__ : List[str] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(lowercase_ ) == 0: return elif len(lowercase_ ) == 1: return values[0] return values
64
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _UpperCamelCase : '''simple docstring''' _A = None def _UpperCAmelCase ( self : int ): _a = self.feature_extraction_class(**self.feat_extract_dict ) _a = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : int ): _a = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a = os.path.join(SCREAMING_SNAKE_CASE_ , 'feat_extract.json' ) feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE_ ) _a = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _UpperCAmelCase ( self : int ): _a = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE_ )[0] check_json_file_has_correct_format(SCREAMING_SNAKE_CASE_ ) _a = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _UpperCAmelCase ( self : int ): _a = self.feature_extraction_class() self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
562
from __future__ import annotations from random import choice def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Dict: return choice(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> int: _a = random_pivot(_UpperCAmelCase ) # partition based on pivot # linear time _a = [e for e in lst if e < pivot] _a = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_UpperCAmelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_UpperCAmelCase ) < k - 1: return kth_number(_UpperCAmelCase , k - len(_UpperCAmelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
562
1
'''simple docstring''' def __lowerCAmelCase ( snake_case__ = 1_000_000 ): __UpperCamelCase : Dict = set(range(3 , snake_case__ , 2 ) ) primes.add(2 ) for p in range(3 , snake_case__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , snake_case__ , snake_case__ ) ) ) __UpperCamelCase : List[Any] = [float(snake_case__ ) for n in range(limit + 1 )] for p in primes: for n in range(snake_case__ , limit + 1 , snake_case__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'{solution() = }')
700
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Union[str, Any] = hex_num.strip() if not hex_num: raise ValueError("No value was passed to the function" ) __UpperCamelCase : List[Any] = hex_num[0] == "-" if is_negative: __UpperCamelCase : str = hex_num[1:] try: __UpperCamelCase : Optional[int] = int(snake_case__ , 16 ) except ValueError: raise ValueError("Invalid value was passed to the function" ) __UpperCamelCase : Tuple = "" while int_num > 0: __UpperCamelCase : Union[str, Any] = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("-" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
399
0
def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : List[Any] = len(__lowerCamelCase ) while cur > 1: # Find the maximum number in arr __snake_case : List[Any] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __snake_case : List[str] = arr[mi::-1] + arr[mi + 1 : len(__lowerCamelCase )] # Reverse whole list __snake_case : List[Any] = arr[cur - 1 :: -1] + arr[cur : len(__lowerCamelCase )] cur -= 1 return arr if __name__ == "__main__": _snake_case : Tuple = input("Enter numbers separated by a comma:\n").strip() _snake_case : List[Any] = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
81
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Tuple ) -> Optional[Any]: __snake_case : Dict = tempfile.mkdtemp() __snake_case : Any = SamImageProcessor() __snake_case : Optional[int] = SamProcessor(lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self : Optional[Any] , **lowerCamelCase : Optional[int] ) -> Optional[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ).image_processor def __snake_case ( self : Optional[Any] ) -> Dict: shutil.rmtree(self.tmpdirname ) def __snake_case ( self : int ) -> List[Any]: __snake_case : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case : int = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self : List[Any] ) -> Dict: __snake_case : int = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case : Dict = self.get_image_processor(do_normalize=lowerCamelCase , padding_value=1.0 ) __snake_case : Optional[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def __snake_case ( self : List[str] ) -> Tuple: __snake_case : int = self.get_image_processor() __snake_case : str = SamProcessor(image_processor=lowerCamelCase ) __snake_case : Optional[int] = self.prepare_image_inputs() __snake_case : List[str] = image_processor(lowerCamelCase , return_tensors="np" ) __snake_case : Dict = processor(images=lowerCamelCase , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def __snake_case ( self : Optional[Any] ) -> Dict: __snake_case : Tuple = self.get_image_processor() __snake_case : List[Any] = SamProcessor(image_processor=lowerCamelCase ) __snake_case : List[str] = [torch.ones((1, 3, 5, 5) )] __snake_case : Tuple = [[1764, 2646]] __snake_case : Optional[int] = [[683, 1024]] __snake_case : int = processor.post_process_masks(lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __snake_case : Optional[Any] = processor.post_process_masks( lowerCamelCase , torch.tensor(lowerCamelCase ) , torch.tensor(lowerCamelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np __snake_case : List[str] = [np.ones((1, 3, 5, 5) )] __snake_case : Optional[int] = processor.post_process_masks(lowerCamelCase , np.array(lowerCamelCase ) , np.array(lowerCamelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __snake_case : str = [[1, 0], [0, 1]] with self.assertRaises(lowerCamelCase ): __snake_case : Optional[int] = processor.post_process_masks(lowerCamelCase , np.array(lowerCamelCase ) , np.array(lowerCamelCase ) ) @require_vision @require_tf class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : List[Any] ) -> Union[str, Any]: __snake_case : int = tempfile.mkdtemp() __snake_case : str = SamImageProcessor() __snake_case : List[Any] = SamProcessor(lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self : str , **lowerCamelCase : Any ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ).image_processor def __snake_case ( self : Optional[int] ) -> Any: shutil.rmtree(self.tmpdirname ) def __snake_case ( self : str ) -> List[Any]: __snake_case : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case : Dict = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self : int ) -> List[str]: __snake_case : List[Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case : Optional[Any] = self.get_image_processor(do_normalize=lowerCamelCase , padding_value=1.0 ) __snake_case : Tuple = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def __snake_case ( self : Union[str, Any] ) -> List[Any]: __snake_case : str = self.get_image_processor() __snake_case : Union[str, Any] = SamProcessor(image_processor=lowerCamelCase ) __snake_case : Dict = self.prepare_image_inputs() __snake_case : int = image_processor(lowerCamelCase , return_tensors="np" ) __snake_case : List[str] = processor(images=lowerCamelCase , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def __snake_case ( self : Any ) -> Optional[int]: __snake_case : List[str] = self.get_image_processor() __snake_case : Dict = SamProcessor(image_processor=lowerCamelCase ) __snake_case : Union[str, Any] = [tf.ones((1, 3, 5, 5) )] __snake_case : List[Any] = [[1764, 2646]] __snake_case : Dict = [[683, 1024]] __snake_case : List[str] = processor.post_process_masks(lowerCamelCase , lowerCamelCase , lowerCamelCase , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __snake_case : Optional[Any] = processor.post_process_masks( lowerCamelCase , tf.convert_to_tensor(lowerCamelCase ) , tf.convert_to_tensor(lowerCamelCase ) , return_tensors="tf" , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np __snake_case : Union[str, Any] = [np.ones((1, 3, 5, 5) )] __snake_case : List[str] = processor.post_process_masks( lowerCamelCase , np.array(lowerCamelCase ) , np.array(lowerCamelCase ) , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) __snake_case : Tuple = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __snake_case : Dict = processor.post_process_masks( lowerCamelCase , np.array(lowerCamelCase ) , np.array(lowerCamelCase ) , return_tensors="tf" ) @require_vision @require_torchvision class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : List[str] ) -> str: __snake_case : Optional[int] = tempfile.mkdtemp() __snake_case : str = SamImageProcessor() __snake_case : List[Any] = SamProcessor(lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self : List[str] , **lowerCamelCase : Any ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ).image_processor def __snake_case ( self : Optional[int] ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def __snake_case ( self : Optional[int] ) -> Optional[int]: __snake_case : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case : List[Any] = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __snake_case ( self : Union[str, Any] ) -> List[str]: __snake_case : str = self.get_image_processor() __snake_case : str = SamProcessor(image_processor=lowerCamelCase ) __snake_case : List[Any] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __snake_case : Dict = [tf.convert_to_tensor(lowerCamelCase )] __snake_case : List[Any] = [torch.tensor(lowerCamelCase )] __snake_case : Optional[Any] = [[1764, 2646]] __snake_case : Optional[int] = [[683, 1024]] __snake_case : Union[str, Any] = processor.post_process_masks( lowerCamelCase , lowerCamelCase , lowerCamelCase , return_tensors="tf" ) __snake_case : Dict = processor.post_process_masks( lowerCamelCase , lowerCamelCase , lowerCamelCase , return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def __snake_case ( self : List[Any] ) -> List[str]: __snake_case : Any = self.get_image_processor() __snake_case : List[Any] = SamProcessor(image_processor=lowerCamelCase ) __snake_case : Dict = self.prepare_image_inputs() __snake_case : Any = image_processor(lowerCamelCase , return_tensors="pt" )["pixel_values"].numpy() __snake_case : Optional[Any] = processor(images=lowerCamelCase , return_tensors="pt" )["pixel_values"].numpy() __snake_case : Tuple = image_processor(lowerCamelCase , return_tensors="tf" )["pixel_values"].numpy() __snake_case : List[Any] = processor(images=lowerCamelCase , return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase ) ) self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase ) ) self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase ) )
81
1
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowercase_ ( _lowerCamelCase: List[str] ) -> List[str]: '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _snake_case ( UpperCamelCase__ ): @staticmethod def lowerCamelCase__ ( UpperCAmelCase : Union[str, Any] ): __lowerCamelCase : Optional[int] = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=UpperCAmelCase , default=UpperCAmelCase , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=UpperCAmelCase , help="Name of the model to download" ) download_parser.set_defaults(func=UpperCAmelCase ) def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple ): __lowerCamelCase : int = model __lowerCamelCase : str = cache __lowerCamelCase : Dict = force __lowerCamelCase : int = trust_remote_code def lowerCamelCase__ ( self : List[Any] ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
717
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __A = (720, 1280) # Height, Width __A = (0.4, 0.6) # if height or width lower than this scale, drop it. __A = 1 / 100 __A = '''''' __A = '''''' __A = '''''' __A = 250 def lowercase_ ( ) -> None: '''simple docstring''' __lowerCamelCase , __lowerCamelCase : List[Any] = get_dataset(_lowerCamelCase , _lowerCamelCase ) for index in range(_lowerCamelCase ): __lowerCamelCase : Optional[Any] = random.sample(range(len(_lowerCamelCase ) ) , 4 ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = update_image_and_anno( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , filter_scale=_lowerCamelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCamelCase : Tuple = random_chars(32 ) __lowerCamelCase : Dict = path.split(os.sep )[-1].rsplit("." , 1 )[0] __lowerCamelCase : List[str] = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , _lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) __lowerCamelCase : List[Any] = [] for anno in new_annos: __lowerCamelCase : Any = anno[3] - anno[1] __lowerCamelCase : Optional[int] = anno[4] - anno[2] __lowerCamelCase : Optional[int] = anno[1] + width / 2 __lowerCamelCase : Union[str, Any] = anno[2] + height / 2 __lowerCamelCase : int = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(_lowerCamelCase ) with open(F"""{file_root}.txt""" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str ) -> tuple[list, list]: '''simple docstring''' __lowerCamelCase : Optional[int] = [] __lowerCamelCase : Any = [] for label_file in glob.glob(os.path.join(_lowerCamelCase , "*.txt" ) ): __lowerCamelCase : List[Any] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(_lowerCamelCase ) as in_file: __lowerCamelCase : Tuple = in_file.readlines() __lowerCamelCase : List[str] = os.path.join(_lowerCamelCase , F"""{label_name}.jpg""" ) __lowerCamelCase : Union[str, Any] = [] for obj_list in obj_lists: __lowerCamelCase : str = obj_list.rstrip("\n" ).split(" " ) __lowerCamelCase : Union[str, Any] = float(obj[1] ) - float(obj[3] ) / 2 __lowerCamelCase : Tuple = float(obj[2] ) - float(obj[4] ) / 2 __lowerCamelCase : Union[str, Any] = float(obj[1] ) + float(obj[3] ) / 2 __lowerCamelCase : Any = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_lowerCamelCase ) labels.append(_lowerCamelCase ) return img_paths, labels def lowercase_ ( _lowerCamelCase: list , _lowerCamelCase: list , _lowerCamelCase: list[int] , _lowerCamelCase: tuple[int, int] , _lowerCamelCase: tuple[float, float] , _lowerCamelCase: float = 0.0 , ) -> tuple[list, list, str]: '''simple docstring''' __lowerCamelCase : Union[str, Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __lowerCamelCase : Optional[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __lowerCamelCase : List[str] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __lowerCamelCase : int = int(scale_x * output_size[1] ) __lowerCamelCase : Optional[Any] = int(scale_y * output_size[0] ) __lowerCamelCase : List[Any] = [] __lowerCamelCase : Optional[Any] = [] for i, index in enumerate(_lowerCamelCase ): __lowerCamelCase : List[str] = all_img_list[index] path_list.append(_lowerCamelCase ) __lowerCamelCase : Optional[Any] = all_annos[index] __lowerCamelCase : List[str] = cva.imread(_lowerCamelCase ) if i == 0: # top-left __lowerCamelCase : List[str] = cva.resize(_lowerCamelCase , (divid_point_x, divid_point_y) ) __lowerCamelCase : Any = img for bbox in img_annos: __lowerCamelCase : str = bbox[1] * scale_x __lowerCamelCase : Union[str, Any] = bbox[2] * scale_y __lowerCamelCase : Optional[int] = bbox[3] * scale_x __lowerCamelCase : Union[str, Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __lowerCamelCase : str = cva.resize(_lowerCamelCase , (output_size[1] - divid_point_x, divid_point_y) ) __lowerCamelCase : Any = img for bbox in img_annos: __lowerCamelCase : List[Any] = scale_x + bbox[1] * (1 - scale_x) __lowerCamelCase : List[Any] = bbox[2] * scale_y __lowerCamelCase : Tuple = scale_x + bbox[3] * (1 - scale_x) __lowerCamelCase : Union[str, Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __lowerCamelCase : Any = cva.resize(_lowerCamelCase , (divid_point_x, output_size[0] - divid_point_y) ) __lowerCamelCase : List[str] = img for bbox in img_annos: __lowerCamelCase : Any = bbox[1] * scale_x __lowerCamelCase : Optional[int] = scale_y + bbox[2] * (1 - scale_y) __lowerCamelCase : Dict = bbox[3] * scale_x __lowerCamelCase : Tuple = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __lowerCamelCase : int = cva.resize( _lowerCamelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __lowerCamelCase : Optional[Any] = img for bbox in img_annos: __lowerCamelCase : Union[str, Any] = scale_x + bbox[1] * (1 - scale_x) __lowerCamelCase : Union[str, Any] = scale_y + bbox[2] * (1 - scale_y) __lowerCamelCase : int = scale_x + bbox[3] * (1 - scale_x) __lowerCamelCase : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __lowerCamelCase : str = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowercase_ ( _lowerCamelCase: int ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __lowerCamelCase : Tuple = ascii_lowercase + digits return "".join(random.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) if __name__ == "__main__": main() print('''DONE ✅''')
366
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowercase__ ( A_: str , A_: int=0.9_9_9 , A_: List[str]="cosine" , ) -> Tuple: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(A_: Tuple ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A_: int ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __UpperCAmelCase =[] for i in range(A_ ): __UpperCAmelCase =i / num_diffusion_timesteps __UpperCAmelCase =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A_ ) / alpha_bar_fn(A_ ) , A_ ) ) return torch.tensor(A_ , dtype=torch.floataa ) class _A ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] lowerCamelCase : Dict = 2 @register_to_config def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : int = 1000 , __SCREAMING_SNAKE_CASE : float = 0.00_085 , __SCREAMING_SNAKE_CASE : float = 0.012 , __SCREAMING_SNAKE_CASE : str = "linear" , __SCREAMING_SNAKE_CASE : Optional[Union[np.ndarray, List[float]]] = None , __SCREAMING_SNAKE_CASE : str = "epsilon" , __SCREAMING_SNAKE_CASE : str = "linspace" , __SCREAMING_SNAKE_CASE : int = 0 , ) -> Optional[Any]: if trained_betas is not None: __UpperCAmelCase =torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.floataa ) elif beta_schedule == "linear": __UpperCAmelCase =torch.linspace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCAmelCase =( torch.linspace(beta_start**0.5 , beta_end**0.5 , __SCREAMING_SNAKE_CASE , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCAmelCase =betas_for_alpha_bar(__SCREAMING_SNAKE_CASE ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __UpperCAmelCase =1.0 - self.betas __UpperCAmelCase =torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str=None ) -> Optional[int]: if schedule_timesteps is None: __UpperCAmelCase =self.timesteps __UpperCAmelCase =(schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __UpperCAmelCase =1 if len(__SCREAMING_SNAKE_CASE ) > 1 else 0 else: __UpperCAmelCase =timestep.cpu().item() if torch.is_tensor(__SCREAMING_SNAKE_CASE ) else timestep __UpperCAmelCase =self._index_counter[timestep_int] return indices[pos].item() @property def _a ( self : List[str] ) -> Any: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _a ( self : int , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: __UpperCAmelCase =self.index_for_timestep(__SCREAMING_SNAKE_CASE ) if self.state_in_first_order: __UpperCAmelCase =self.sigmas[step_index] else: __UpperCAmelCase =self.sigmas_interpol[step_index] __UpperCAmelCase =sample / ((sigma**2 + 1) ** 0.5) return sample def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, torch.device] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , ) -> Optional[Any]: __UpperCAmelCase =num_inference_steps __UpperCAmelCase =num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __UpperCAmelCase =np.linspace(0 , num_train_timesteps - 1 , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )[::-1].copy() elif self.config.timestep_spacing == "leading": __UpperCAmelCase =num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCAmelCase =(np.arange(0 , __SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1].copy().astype(__SCREAMING_SNAKE_CASE ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __UpperCAmelCase =num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCAmelCase =(np.arange(__SCREAMING_SNAKE_CASE , 0 , -step_ratio )).round().copy().astype(__SCREAMING_SNAKE_CASE ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __UpperCAmelCase =np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __UpperCAmelCase =torch.from_numpy(np.log(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =np.interp(__SCREAMING_SNAKE_CASE , np.arange(0 , len(__SCREAMING_SNAKE_CASE ) ) , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __UpperCAmelCase =torch.from_numpy(__SCREAMING_SNAKE_CASE ).to(device=__SCREAMING_SNAKE_CASE ) # interpolate sigmas __UpperCAmelCase =sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __UpperCAmelCase =torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __UpperCAmelCase =torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): # mps does not support float64 __UpperCAmelCase =torch.from_numpy(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE , dtype=torch.floataa ) else: __UpperCAmelCase =torch.from_numpy(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) # interpolate timesteps __UpperCAmelCase =self.sigma_to_t(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE , dtype=timesteps.dtype ) __UpperCAmelCase =torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __UpperCAmelCase =torch.cat([timesteps[:1], interleaved_timesteps] ) __UpperCAmelCase =None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __UpperCAmelCase =defaultdict(__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: # get log sigma __UpperCAmelCase =sigma.log() # get distribution __UpperCAmelCase =log_sigma - self.log_sigmas[:, None] # get sigmas range __UpperCAmelCase =dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __UpperCAmelCase =low_idx + 1 __UpperCAmelCase =self.log_sigmas[low_idx] __UpperCAmelCase =self.log_sigmas[high_idx] # interpolate sigmas __UpperCAmelCase =(low - log_sigma) / (low - high) __UpperCAmelCase =w.clamp(0 , 1 ) # transform interpolation to time range __UpperCAmelCase =(1 - w) * low_idx + w * high_idx __UpperCAmelCase =t.view(sigma.shape ) return t @property def _a ( self : str ) -> Optional[Any]: return self.sample is None def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, np.ndarray] , __SCREAMING_SNAKE_CASE : Union[float, torch.FloatTensor] , __SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, np.ndarray] , __SCREAMING_SNAKE_CASE : bool = True , ) -> Union[SchedulerOutput, Tuple]: __UpperCAmelCase =self.index_for_timestep(__SCREAMING_SNAKE_CASE ) # advance index counter by 1 __UpperCAmelCase =timestep.cpu().item() if torch.is_tensor(__SCREAMING_SNAKE_CASE ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __UpperCAmelCase =self.sigmas[step_index] __UpperCAmelCase =self.sigmas_interpol[step_index + 1] __UpperCAmelCase =self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __UpperCAmelCase =self.sigmas[step_index - 1] __UpperCAmelCase =self.sigmas_interpol[step_index] __UpperCAmelCase =self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __UpperCAmelCase =0 __UpperCAmelCase =sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __UpperCAmelCase =sigma_hat if self.state_in_first_order else sigma_interpol __UpperCAmelCase =sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __UpperCAmelCase =sigma_hat if self.state_in_first_order else sigma_interpol __UpperCAmelCase =model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __UpperCAmelCase =(sample - pred_original_sample) / sigma_hat # 3. delta timestep __UpperCAmelCase =sigma_interpol - sigma_hat # store for 2nd order step __UpperCAmelCase =sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __UpperCAmelCase =(sample - pred_original_sample) / sigma_interpol # 3. delta timestep __UpperCAmelCase =sigma_next - sigma_hat __UpperCAmelCase =self.sample __UpperCAmelCase =None __UpperCAmelCase =sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__SCREAMING_SNAKE_CASE ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __UpperCAmelCase =self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__SCREAMING_SNAKE_CASE ): # mps does not support float64 __UpperCAmelCase =self.timesteps.to(original_samples.device , dtype=torch.floataa ) __UpperCAmelCase =timesteps.to(original_samples.device , dtype=torch.floataa ) else: __UpperCAmelCase =self.timesteps.to(original_samples.device ) __UpperCAmelCase =timesteps.to(original_samples.device ) __UpperCAmelCase =[self.index_for_timestep(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for t in timesteps] __UpperCAmelCase =sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __UpperCAmelCase =sigma.unsqueeze(-1 ) __UpperCAmelCase =original_samples + noise * sigma return noisy_samples def __len__( self : int ) -> List[str]: return self.config.num_train_timesteps
68
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __snake_case ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = SwinConfig(image_size=192 ) if "base" in model_name: _UpperCAmelCase : Tuple = 6 _UpperCAmelCase : Optional[Any] = 128 _UpperCAmelCase : Dict = (2, 2, 18, 2) _UpperCAmelCase : List[Any] = (4, 8, 16, 32) elif "large" in model_name: _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[int] = 192 _UpperCAmelCase : Optional[Any] = (2, 2, 18, 2) _UpperCAmelCase : str = (6, 12, 24, 48) else: raise ValueError("Model not supported, only supports base and large variants" ) _UpperCAmelCase : Optional[int] = window_size _UpperCAmelCase : Optional[int] = embed_dim _UpperCAmelCase : List[Any] = depths _UpperCAmelCase : Any = num_heads return config def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict ) -> str: '''simple docstring''' if "encoder.mask_token" in name: _UpperCAmelCase : Dict = name.replace("encoder.mask_token" , "embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: _UpperCAmelCase : Optional[int] = name.replace("encoder.patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: _UpperCAmelCase : Any = name.replace("encoder.patch_embed.norm" , "embeddings.norm" ) if "attn.proj" in name: _UpperCAmelCase : int = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _UpperCAmelCase : Dict = name.replace("attn" , "attention.self" ) if "norm1" in name: _UpperCAmelCase : List[str] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _UpperCAmelCase : int = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _UpperCAmelCase : List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _UpperCAmelCase : Any = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": _UpperCAmelCase : Any = "layernorm.weight" if name == "encoder.norm.bias": _UpperCAmelCase : List[Any] = "layernorm.bias" if "decoder" in name: pass else: _UpperCAmelCase : Dict = "swin." + name return name def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _UpperCAmelCase : Dict = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "attn_mask" in key: pass elif "qkv" in key: _UpperCAmelCase : int = key.split("." ) _UpperCAmelCase : List[str] = int(key_split[2] ) _UpperCAmelCase : Dict = int(key_split[4] ) _UpperCAmelCase : str = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCAmelCase : Optional[Any] = val[:dim, :] _UpperCAmelCase : List[Any] = val[ dim : dim * 2, : ] _UpperCAmelCase : Optional[Any] = val[-dim:, :] else: _UpperCAmelCase : Optional[int] = val[ :dim ] _UpperCAmelCase : Dict = val[ dim : dim * 2 ] _UpperCAmelCase : Union[str, Any] = val[ -dim: ] else: _UpperCAmelCase : List[Any] = val return orig_state_dict def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Any = torch.load(SCREAMING_SNAKE_CASE__ , map_location="cpu" )["model"] _UpperCAmelCase : Union[str, Any] = get_swin_config(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : str = SwinForMaskedImageModeling(SCREAMING_SNAKE_CASE__ ) model.eval() _UpperCAmelCase : Optional[Any] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = ViTImageProcessor(size={"height": 192, "width": 192} ) _UpperCAmelCase : int = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) _UpperCAmelCase : str = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="pt" ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**SCREAMING_SNAKE_CASE__ ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCAmelCase : str = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
289
0
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , lowerCAmelCase_ : int , ): """simple docstring""" lowercase_ = parent lowercase_ = 1_3 lowercase_ = 7 lowercase_ = 3_0 lowercase_ = self.seq_length + self.mem_len lowercase_ = 1_5 lowercase_ = True lowercase_ = True lowercase_ = 9_9 lowercase_ = [1_0, 5_0, 8_0] lowercase_ = 3_2 lowercase_ = 3_2 lowercase_ = 4 lowercase_ = 8 lowercase_ = 1_2_8 lowercase_ = 2 lowercase_ = 2 lowercase_ = None lowercase_ = 1 lowercase_ = 0 lowercase_ = 3 lowercase_ = self.vocab_size - 1 lowercase_ = 0.01 def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _UpperCAmelCase ( self : Dict): """simple docstring""" random.seed(self.seed) tf.random.set_seed(self.seed) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = TFTransfoXLModel(lowerCAmelCase_) lowercase_ , lowercase_ = model(lowerCAmelCase_).to_tuple() lowercase_ = {"""input_ids""": input_ids_a, """mems""": mems_a} lowercase_ , lowercase_ = model(lowerCAmelCase_).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = TFTransfoXLLMHeadModel(lowerCAmelCase_) lowercase_ , lowercase_ = model(lowerCAmelCase_).to_tuple() lowercase_ = {"""input_ids""": input_ids_a, """labels""": lm_labels} lowercase_ , lowercase_ = model(lowerCAmelCase_).to_tuple() lowercase_ , lowercase_ = model([input_ids_a, mems_a]).to_tuple() lowercase_ = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} lowercase_ , lowercase_ = model(lowerCAmelCase_).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = TFTransfoXLForSequenceClassification(lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() ((lowercase_) , (lowercase_) , (lowercase_) , (lowercase_)) = config_and_inputs lowercase_ = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) lowercase__ = () if is_tf_available() else () lowercase__ = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = TFTransfoXLModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , d_embed=3_7) def _UpperCAmelCase ( self : str): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : str): """simple docstring""" self.model_tester.set_seed() lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" self.model_tester.set_seed() lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowerCAmelCase_) def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowercase_ = model_class(lowerCAmelCase_) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class in list_other_models_with_output_ebd: lowercase_ = model.get_output_embeddings() assert isinstance(lowerCAmelCase_ , tf.keras.layers.Layer) lowercase_ = model.get_bias() assert name is None else: lowercase_ = model.get_output_embeddings() assert x is None lowercase_ = model.get_bias() assert name is None def _UpperCAmelCase ( self : List[Any]): """simple docstring""" pass @slow def _UpperCAmelCase ( self : List[Any]): """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = TFTransfoXLModel.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""") def _UpperCAmelCase ( self : Any): """simple docstring""" pass @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""") @slow def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""") # fmt: off lowercase_ = tf.convert_to_tensor([[3_3,1_2_9_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_2,1_7_0_6,1_7,2_0_0_9_8,5,3_2_1_5,2_1,3_7,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,6_2_2_4,8_3_1,1_6_0_0_2,2,8,6_0_3,7_8_9_6_7,2_9_5_4_6,2_3,8_0_3,2_0,2_5,4_1_6,5,8,2_3_2,4,2_7_7,6,1_8_5_5,4_6_0_1,3,2_9_5_4_6,5_4,8,3_6_0_9,5,5_7_2_1_1,4_9,4,1,2_7_7,1_8,8,1_7_5_5,1_5_6_9_1,3,3_4_1,2_5,4_1_6,6_9_3,4_2_5_7_3,7_1,1_7,4_0_1,9_4,3_1,1_7_9_1_9,2,2_9_5_4_6,7_8_7_3,1_8,1,4_3_5,2_3,1_1_0_1_1,7_5_5,5,5_1_6_7,3,7_9_8_3,9_8,8_4,2,2_9_5_4_6,3_2_6_7,8,3_6_0_9,4,1,4_8_6_5,1_0_7_5,2,6_0_8_7,7_1,6,3_4_6,8,5_8_5_4,3,2_9_5_4_6,8_2_4,1_4_0_0,1_8_6_8,2,1_9,1_6_0,2,3_1_1,8,5_4_9_6,2,2_0_9_2_0,1_7,2_5,1_5_0_9_7,3,2_4,2_4,0]] , dtype=tf.intaa) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowercase_ = [3_3,1_2_9_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_2,1_7_0_6,1_7,2_0_0_9_8,5,3_2_1_5,2_1,3_7,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,6_2_2_4,8_3_1,1_6_0_0_2,2,8,6_0_3,7_8_9_6_7,2_9_5_4_6,2_3,8_0_3,2_0,2_5,4_1_6,5,8,2_3_2,4,2_7_7,6,1_8_5_5,4_6_0_1,3,2_9_5_4_6,5_4,8,3_6_0_9,5,5_7_2_1_1,4_9,4,1,2_7_7,1_8,8,1_7_5_5,1_5_6_9_1,3,3_4_1,2_5,4_1_6,6_9_3,4_2_5_7_3,7_1,1_7,4_0_1,9_4,3_1,1_7_9_1_9,2,2_9_5_4_6,7_8_7_3,1_8,1,4_3_5,2_3,1_1_0_1_1,7_5_5,5,5_1_6_7,3,7_9_8_3,9_8,8_4,2,2_9_5_4_6,3_2_6_7,8,3_6_0_9,4,1,4_8_6_5,1_0_7_5,2,6_0_8_7,7_1,6,3_4_6,8,5_8_5_4,3,2_9_5_4_6,8_2_4,1_4_0_0,1_8_6_8,2,1_9,1_6_0,2,3_1_1,8,5_4_9_6,2,2_0_9_2_0,1_7,2_5,1_5_0_9_7,3,2_4,2_4,0,3_3,1,1_8_5_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_8,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowercase_ = model.generate(lowerCAmelCase_ , max_length=2_0_0 , do_sample=lowerCAmelCase_) self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase_)
100
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list[list[int]]: '''simple docstring''' lowercase_ = [] if len(__lowerCAmelCase ) == 1: return [nums.copy()] for _ in range(len(__lowerCAmelCase ) ): lowercase_ = nums.pop(0 ) lowercase_ = permute(__lowerCAmelCase ) for perm in permutations: perm.append(__lowerCAmelCase ) result.extend(__lowerCAmelCase ) nums.append(__lowerCAmelCase ) return result def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Tuple: '''simple docstring''' def backtrack(__lowerCAmelCase ): if start == len(__lowerCAmelCase ) - 1: output.append(nums[:] ) else: for i in range(__lowerCAmelCase , len(__lowerCAmelCase ) ): lowercase_ , lowercase_ = nums[i], nums[start] backtrack(start + 1 ) lowercase_ , lowercase_ = nums[i], nums[start] # backtrack lowercase_ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function UpperCAmelCase : Optional[Any] = permutea([1, 2, 3]) print(res) doctest.testmod()
100
1
import baseaa def _lowerCamelCase ( __lowerCamelCase ) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("""utf-8""" ) ) def _lowerCamelCase ( __lowerCamelCase ) -> str: '''simple docstring''' return baseaa.baadecode(__lowerCamelCase ).decode("""utf-8""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Dict = """Hello World!""" SCREAMING_SNAKE_CASE__ : int = baseaa_encode(test) print(encoded) SCREAMING_SNAKE_CASE__ : Dict = baseaa_decode(encoded) print(decoded)
79
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class A__: """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=False , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.0_2 , _lowercase=3 , _lowercase=4 , _lowercase=None , ) -> Tuple: a_ : Union[str, Any] = parent a_ : int = batch_size a_ : int = seq_length a_ : int = is_training a_ : List[Any] = use_input_mask a_ : str = use_token_type_ids a_ : List[str] = use_labels a_ : List[Any] = vocab_size a_ : Dict = hidden_size a_ : List[Any] = num_hidden_layers a_ : str = num_attention_heads a_ : str = intermediate_size a_ : Optional[int] = hidden_act a_ : Optional[int] = hidden_dropout_prob a_ : int = attention_probs_dropout_prob a_ : List[str] = max_position_embeddings a_ : Optional[Any] = type_vocab_size a_ : Any = type_sequence_label_size a_ : List[Any] = initializer_range a_ : List[str] = num_labels a_ : Union[str, Any] = num_choices a_ : Dict = scope def UpperCamelCase__ ( self ) -> Any: a_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Union[str, Any] = None if self.use_input_mask: a_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) a_ : List[Any] = None if self.use_token_type_ids: a_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ : Union[str, Any] = None a_ : Dict = None a_ : Any = None if self.use_labels: a_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : int = ids_tensor([self.batch_size] , self.num_choices ) a_ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ) -> Any: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , use_stable_embedding=_lowercase , ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: a_ : Optional[Any] = OpenLlamaModel(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : List[Any] = model(_lowercase , attention_mask=_lowercase ) a_ : Optional[Any] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Union[str, Any]: a_ : int = True a_ : Union[str, Any] = OpenLlamaModel(_lowercase ) model.to(_lowercase ) model.eval() a_ : Optional[int] = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , ) a_ : Any = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , ) a_ : Optional[int] = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Any: a_ : Dict = OpenLlamaForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : int = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> List[str]: a_ : Dict = True a_ : Optional[int] = True a_ : Dict = OpenLlamaForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() # first forward pass a_ : List[str] = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , use_cache=_lowercase , ) a_ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a_ : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) a_ : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a_ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) a_ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) a_ : Optional[int] = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , output_hidden_states=_lowercase , )["""hidden_states"""][0] a_ : Dict = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )["""hidden_states"""][0] # select random slice a_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() a_ : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() a_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1e-3 ) ) def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : Any = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : Union[str, Any] = config_and_inputs a_ : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A__(a_, a_, a_, unittest.TestCase ): """simple docstring""" _A : Tuple = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) _A : int = (OpenLlamaForCausalLM,) if is_torch_available() else () _A : Optional[int] = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) _A : Tuple = False _A : Any = False def UpperCamelCase__ ( self ) -> List[str]: a_ : Optional[int] = OpenLlamaModelTester(self ) a_ : Optional[int] = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCamelCase__ ( self ) -> Any: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCamelCase__ ( self ) -> Tuple: a_ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ : Dict = type self.model_tester.create_and_check_model(*_lowercase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: a_ , a_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a_ : Any = 3 a_ : List[str] = input_dict["""input_ids"""] a_ : List[str] = input_ids.ne(1 ).to(_lowercase ) a_ : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a_ : int = OpenLlamaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() a_ : Tuple = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ) -> Optional[Any]: a_ , a_ : Any = self.model_tester.prepare_config_and_inputs_for_common() a_ : Union[str, Any] = 3 a_ : List[Any] = """single_label_classification""" a_ : Dict = input_dict["""input_ids"""] a_ : int = input_ids.ne(1 ).to(_lowercase ) a_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a_ : Any = OpenLlamaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() a_ : Any = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ) -> Tuple: a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() a_ : Any = 3 a_ : List[str] = """multi_label_classification""" a_ : Dict = input_dict["""input_ids"""] a_ : Any = input_ids.ne(1 ).to(_lowercase ) a_ : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) a_ : Optional[int] = OpenLlamaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() a_ : int = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCamelCase__ ( self ) -> Tuple: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCamelCase__ ( self , _lowercase ) -> str: a_ , a_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() a_ : List[Any] = ids_tensor([1, 10] , config.vocab_size ) a_ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a_ : Union[str, Any] = OpenLlamaModel(_lowercase ) original_model.to(_lowercase ) original_model.eval() a_ : Union[str, Any] = original_model(_lowercase ).last_hidden_state a_ : str = original_model(_lowercase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a_ : int = {"""type""": scaling_type, """factor""": 1_0.0} a_ : Union[str, Any] = OpenLlamaModel(_lowercase ) scaled_model.to(_lowercase ) scaled_model.eval() a_ : Optional[int] = scaled_model(_lowercase ).last_hidden_state a_ : Tuple = scaled_model(_lowercase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_lowercase , _lowercase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowercase , _lowercase , atol=1e-5 ) )
540
0
'''simple docstring''' import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _UpperCAmelCase : List[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model _UpperCAmelCase : Dict = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.15}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names _UpperCAmelCase : Dict = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _UpperCAmelCase : str = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: _UpperCAmelCase : Dict = """allenai""" def __magic_name__( lowerCamelCase): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(r'''@@$''', '''''', lowerCamelCase), v) if k.endswith('''@@''') else (re.sub(r'''$''', '''</w>''', lowerCamelCase), v) for k, v in d.items()) __lowerCAmelCase = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def __magic_name__( lowerCamelCase, lowerCamelCase): # prep assert os.path.exists(lowerCamelCase) os.makedirs(lowerCamelCase, exist_ok=lowerCamelCase) print(F"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models __lowerCAmelCase = basename(lowerCamelCase) __lowerCAmelCase = dirname(lowerCamelCase) __lowerCAmelCase = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel __lowerCAmelCase = cls.hub_models() __lowerCAmelCase = {'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''} __lowerCAmelCase = '''.''' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F"""using checkpoint {checkpoint_file}""") __lowerCAmelCase = hub_utils.from_pretrained( lowerCamelCase, lowerCamelCase, lowerCamelCase, archive_map=lowerCamelCase, **lowerCamelCase) __lowerCAmelCase = vars(chkpt['''args''']['''model''']) __lowerCAmelCase = args['''source_lang'''] __lowerCAmelCase = args['''target_lang'''] __lowerCAmelCase = dirname(lowerCamelCase) __lowerCAmelCase = basename(lowerCamelCase) # dicts __lowerCAmelCase = os.path.join(lowerCamelCase, F"""dict.{src_lang}.txt""") __lowerCAmelCase = os.path.join(lowerCamelCase, F"""dict.{tgt_lang}.txt""") __lowerCAmelCase = Dictionary.load(lowerCamelCase) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices) __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = os.path.join(lowerCamelCase, '''vocab-src.json''') print(F"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""") with open(lowerCamelCase, '''w''', encoding='''utf-8''') as f: f.write(json.dumps(lowerCamelCase, ensure_ascii=lowerCamelCase, indent=lowerCamelCase)) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab __lowerCAmelCase = True for k in src_vocab.keys(): if not k.islower(): __lowerCAmelCase = False break __lowerCAmelCase = Dictionary.load(lowerCamelCase) __lowerCAmelCase = rewrite_dict_keys(tgt_dict.indices) __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = os.path.join(lowerCamelCase, '''vocab-tgt.json''') print(F"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""") with open(lowerCamelCase, '''w''', encoding='''utf-8''') as f: f.write(json.dumps(lowerCamelCase, ensure_ascii=lowerCamelCase, indent=lowerCamelCase)) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCamelCase, VOCAB_FILES_NAMES['''merges_file''']) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" __lowerCAmelCase = os.path.join(lowerCamelCase, lowerCamelCase) if os.path.exists(lowerCamelCase): break with open(lowerCamelCase, encoding='''utf-8''') as fin: __lowerCAmelCase = fin.read() __lowerCAmelCase = re.sub(r''' \d+$''', '''''', lowerCamelCase, 0, re.M) # remove frequency number print(F"""Generating {merges_file}""") with open(lowerCamelCase, '''w''', encoding='''utf-8''') as fout: fout.write(lowerCamelCase) # model config __lowerCAmelCase = os.path.join(lowerCamelCase, '''config.json''') # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F"""need to extend tokenizer to support bpe={args["bpe"]}""" assert args["tokenizer"] == "moses", F"""need to extend tokenizer to support bpe={args["tokenizer"]}""" __lowerCAmelCase = { '''architectures''': ['''FSMTForConditionalGeneration'''], '''model_type''': '''fsmt''', '''activation_dropout''': args['''activation_dropout'''], '''activation_function''': '''relu''', '''attention_dropout''': args['''attention_dropout'''], '''d_model''': args['''decoder_embed_dim'''], '''dropout''': args['''dropout'''], '''init_std''': 0.02, '''max_position_embeddings''': args['''max_source_positions'''], '''num_hidden_layers''': args['''encoder_layers'''], '''src_vocab_size''': src_vocab_size, '''tgt_vocab_size''': tgt_vocab_size, '''langs''': [src_lang, tgt_lang], '''encoder_attention_heads''': args['''encoder_attention_heads'''], '''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''], '''encoder_layerdrop''': args['''encoder_layerdrop'''], '''encoder_layers''': args['''encoder_layers'''], '''decoder_attention_heads''': args['''decoder_attention_heads'''], '''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''], '''decoder_layerdrop''': args['''decoder_layerdrop'''], '''decoder_layers''': args['''decoder_layers'''], '''bos_token_id''': 0, '''pad_token_id''': 1, '''eos_token_id''': 2, '''is_encoder_decoder''': True, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_all_embeddings'''], } # good hparam defaults to start with __lowerCAmelCase = 5 __lowerCAmelCase = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: __lowerCAmelCase = best_score_hparams[model_dir]['''length_penalty'''] else: __lowerCAmelCase = 1.0 print(F"""Generating {fsmt_model_config_file}""") with open(lowerCamelCase, '''w''', encoding='''utf-8''') as f: f.write(json.dumps(lowerCamelCase, ensure_ascii=lowerCamelCase, indent=lowerCamelCase)) # tokenizer config __lowerCAmelCase = os.path.join(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = { '''langs''': [src_lang, tgt_lang], '''model_max_length''': 1_0_2_4, '''do_lower_case''': do_lower_case, } print(F"""Generating {fsmt_tokenizer_config_file}""") with open(lowerCamelCase, '''w''', encoding='''utf-8''') as f: f.write(json.dumps(lowerCamelCase, ensure_ascii=lowerCamelCase, indent=lowerCamelCase)) # model __lowerCAmelCase = chkpt['''models'''][0] __lowerCAmelCase = model.state_dict() # rename keys to start with 'model.' __lowerCAmelCase = OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items()) # remove unneeded keys __lowerCAmelCase = [ '''model.model''', '''model.encoder.version''', '''model.decoder.version''', '''model.encoder_embed_tokens.weight''', '''model.decoder_embed_tokens.weight''', '''model.encoder.embed_positions._float_tensor''', '''model.decoder.embed_positions._float_tensor''', ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = FSMTConfig.from_pretrained(lowerCamelCase) __lowerCAmelCase = FSMTForConditionalGeneration(lowerCamelCase) # check that it loads ok model_new.load_state_dict(lowerCamelCase, strict=lowerCamelCase) # save __lowerCAmelCase = os.path.join(lowerCamelCase, lowerCamelCase) print(F"""Generating {pytorch_weights_dump_path}""") torch.save(lowerCamelCase, lowerCamelCase) print('''Conversion is done!''') print('''\nLast step is to upload the files to s3''') print(F"""cd {data_root}""") print(F"""transformers-cli upload {model_dir}""") if __name__ == "__main__": _UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
720
'''simple docstring''' from torch import nn def __magic_name__( lowerCamelCase): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""")
474
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class a__ ( __magic_name__ , __magic_name__ ): lowercase_ = "convnextv2" def __init__( self : Any , UpperCamelCase_ : str=3 , UpperCamelCase_ : Any=4 , UpperCamelCase_ : Optional[Any]=4 , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : int=1e-12 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : Dict=224 , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Dict=None , **UpperCamelCase_ : Tuple , ): """simple docstring""" super().__init__(**UpperCamelCase_) __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : Any = patch_size __UpperCAmelCase : Dict = num_stages __UpperCAmelCase : Any = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __UpperCAmelCase : List[Any] = [3, 3, 9, 3] if depths is None else depths __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : Any = layer_norm_eps __UpperCAmelCase : List[str] = drop_path_rate __UpperCAmelCase : List[Any] = image_size __UpperCAmelCase : Optional[Any] = ["stem"] + [F"stage{idx}" for idx in range(1 , len(self.depths) + 1)] __UpperCAmelCase , __UpperCAmelCase : Optional[int] = get_aligned_output_features_output_indices( out_features=UpperCamelCase_ , out_indices=UpperCamelCase_ , stage_names=self.stage_names)
77
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu A = False class _a ( unittest.TestCase): def __lowercase ( self : str ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowercase ( self : List[str] ) -> Any: return 12 @property def __lowercase ( self : List[str] ) -> Dict: return 12 @property def __lowercase ( self : Optional[int] ) -> Union[str, Any]: return 32 @property def __lowercase ( self : int ) -> Dict: torch.manual_seed(0 ) snake_case : List[str] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __lowercase ( self : str ) -> List[Any]: snake_case : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def __lowercase ( self : Union[str, Any] ) -> Any: torch.manual_seed(0 ) snake_case : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_lowercase ) @property def __lowercase ( self : Optional[int] ) -> Optional[int]: torch.manual_seed(0 ) snake_case : List[Any] = 12 snake_case : Dict = 12 snake_case : Tuple = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } snake_case : Dict = TransformeraDModel(**_lowercase ) return model def __lowercase ( self : Optional[int] ) -> Tuple: snake_case : Optional[Any] = "cpu" snake_case : Optional[int] = self.dummy_vqvae snake_case : Dict = self.dummy_text_encoder snake_case : Tuple = self.dummy_tokenizer snake_case : List[Any] = self.dummy_transformer snake_case : List[Any] = VQDiffusionScheduler(self.num_embed ) snake_case : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowercase ) snake_case : Dict = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case : Optional[Any] = "teddy bear playing in the pool" snake_case : Tuple = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case : Tuple = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="np" ) snake_case : Optional[int] = output.images snake_case : int = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case : List[str] = pipe( [prompt] , generator=_lowercase , output_type="np" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case : List[Any] = image[0, -3:, -3:, -1] snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case : str = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self : Union[str, Any] ) -> Optional[int]: snake_case : List[str] = "cpu" snake_case : Dict = self.dummy_vqvae snake_case : List[Any] = self.dummy_text_encoder snake_case : Optional[Any] = self.dummy_tokenizer snake_case : int = self.dummy_transformer snake_case : str = VQDiffusionScheduler(self.num_embed ) snake_case : Optional[int] = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowercase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case : List[str] = VQDiffusionPipeline( vqvae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , transformer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) snake_case : Optional[Any] = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case : Dict = "teddy bear playing in the pool" snake_case : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case : Union[str, Any] = pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type="np" ) snake_case : Optional[Any] = output.images snake_case : Dict = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case : Union[str, Any] = pipe( [prompt] , generator=_lowercase , output_type="np" , return_dict=_lowercase , num_inference_steps=2 )[0] snake_case : Any = image[0, -3:, -3:, -1] snake_case : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case : Optional[Any] = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _a ( unittest.TestCase): def __lowercase ( self : Optional[int] ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Dict ) -> Tuple: snake_case : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) snake_case : Tuple = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" ) snake_case : Union[str, Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case : Tuple = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case : Optional[int] = pipeline( "teddy bear playing in the pool" , num_images_per_prompt=1 , generator=_lowercase , output_type="np" , ) snake_case : List[str] = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
449
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class a__ : _a : Optional[Union[str, Path]] = None _a : bool = False _a : bool = False _a : bool = False _a : Optional[Dict] = None _a : Optional[str] = None _a : bool = False _a : bool = False _a : bool = False _a : bool = True _a : Optional[int] = None _a : int = 1 _a : Optional[Union[str, bool]] = None _a : bool = False _a : Optional[Dict] = None _a : Optional[str] = None def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(_A ) for k, v in self.__dict__.items()} )
552
def _a ( SCREAMING_SNAKE_CASE_ : list[int] ): __lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE_ ): if numbers[j] < numbers[i]: __lowerCAmelCase , __lowerCAmelCase = numbers[j], numbers[i] return numbers if __name__ == "__main__": UpperCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase__ = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
552
1
'''simple docstring''' import collections import importlib.util import os import re from pathlib import Path a__ : Any = 'src/transformers' # Matches is_xxx_available() a__ : Any = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} a__ : List[str] = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a__ : Optional[Any] = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available a__ : Dict = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") a__ : Any = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a__ : List[Any] = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", a__ : Optional[int] = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], a__ : Tuple = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo a__ : Optional[Any] = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: a__ : Dict = re.compile(R'^\s*try:') # Catches a line with else: a__ : Dict = re.compile(R'^\s*else:') def __snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if _re_test_backend.search(SCREAMING_SNAKE_CASE_ ) is None: return None UpperCAmelCase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE_ )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE_ ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: """simple docstring""" with open(SCREAMING_SNAKE_CASE_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() UpperCAmelCase = 0 while line_index < len(SCREAMING_SNAKE_CASE_ ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE_ ): return None # First grab the objects without a specific backend in _import_structure UpperCAmelCase = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: UpperCAmelCase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE_ ).groups()[0] UpperCAmelCase = re.findall('''\[([^\]]+)\]''' , SCREAMING_SNAKE_CASE_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue UpperCAmelCase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: UpperCAmelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(SCREAMING_SNAKE_CASE_ ) > 0] objects.extend(SCREAMING_SNAKE_CASE_ ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 UpperCAmelCase = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): UpperCAmelCase = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE_ ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE_ ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE_ ) is not None: UpperCAmelCase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE_ ).groups()[0].split(''', ''' ) UpperCAmelCase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE_ ) > 0] objects.extend(SCREAMING_SNAKE_CASE_ ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE_ ) is not None: UpperCAmelCase = _re_between_brackets.search(SCREAMING_SNAKE_CASE_ ).groups()[0].split(''', ''' ) UpperCAmelCase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE_ ) > 0] objects.extend(SCREAMING_SNAKE_CASE_ ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE_ ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE_ ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 UpperCAmelCase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCAmelCase = [] while ( line_index < len(SCREAMING_SNAKE_CASE_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): UpperCAmelCase = lines[line_index] UpperCAmelCase = _re_import.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCAmelCase = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE_ ): # If the line is an if is_backend_available, we grab all objects associated. UpperCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): UpperCAmelCase = lines[line_index] UpperCAmelCase = _re_import.search(SCREAMING_SNAKE_CASE_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 UpperCAmelCase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: """simple docstring""" def find_duplicates(SCREAMING_SNAKE_CASE_ : Any ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCAmelCase = [] for key in import_dict_objects.keys(): UpperCAmelCase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"Duplicate _import_structure definitions for: {duplicate_imports}" ) UpperCAmelCase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCAmelCase = '''base imports''' if key == '''none''' else f"{key} backend" errors.append(f"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f" {a} in _import_structure but not in TYPE_HINT." ) return errors def __snake_case ( ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE_ ): if "__init__.py" in files: UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''__init__.py''' ) UpperCAmelCase = parse_init(SCREAMING_SNAKE_CASE_ ) if objects is not None: UpperCAmelCase = analyze_results(*SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: UpperCAmelCase = f"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) > 0: raise ValueError('''\n\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def __snake_case ( ) -> int: """simple docstring""" UpperCAmelCase = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE_ ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(SCREAMING_SNAKE_CASE_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE_ ) / folder).glob('''*.py''' ) ) ) == 0: continue UpperCAmelCase = str((Path(SCREAMING_SNAKE_CASE_ ) / folder).relative_to(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase = short_path.replace(os.path.sep , '''.''' ) submodules.append(SCREAMING_SNAKE_CASE_ ) for fname in files: if fname == "__init__.py": continue UpperCAmelCase = str((Path(SCREAMING_SNAKE_CASE_ ) / fname).relative_to(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE_ ) return submodules a__ : Dict = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def __snake_case ( ) -> Any: """simple docstring""" UpperCAmelCase = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(SCREAMING_SNAKE_CASE_ , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) UpperCAmelCase = spec.loader.load_module() UpperCAmelCase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE_ ) > 0: UpperCAmelCase = '''\n'''.join(f"- {module}" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f"{list_of_modules}\n" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
51
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json a__ : List[Any] = 'sshleifer/mar_enro_6_3_student' class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __snake_case ( self : Dict ): super().setUp() UpperCAmelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , ) UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def __snake_case ( self : Optional[int] ): MarianMTModel.from_pretrained(a__ ) @slow @require_torch_gpu def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __snake_case ( self : Any ): UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro" UpperCAmelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script UpperCAmelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' ) UpperCAmelCase = 6 UpperCAmelCase = ( ['''distillation.py'''] + bash_script.split() + [ f"--output_dir={output_dir}", '''--gpus=1''', '''--learning_rate=1e-3''', f"--num_train_epochs={epochs}", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu UpperCAmelCase = distill_main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
51
1
"""simple docstring""" import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowercase__ = "sshleifer/bart-tiny-random" lowercase__ = "patrickvonplaten/t5-tiny-random" @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def lowerCAmelCase__(self ): '''simple docstring''' return AutoConfig.from_pretrained(_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a , *__a : Any = create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def lowerCAmelCase__(self ): '''simple docstring''' __a , *__a : Tuple = create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=1 , d=_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a , *__a : Optional[int] = create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=1 , d=_lowercase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def lowerCAmelCase__(self ): '''simple docstring''' __a , *__a : Tuple = create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def lowerCAmelCase__(self ): '''simple docstring''' with self.assertRaises(_lowercase ): create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=_lowercase , d=_lowercase )
63
"""simple docstring""" import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def lowerCAmelCase__(self ): '''simple docstring''' __a : str = 0 __a : Optional[Any] = [0] __a : int = [0] __a : str = len(_lowercase ) self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 0 ) __a : int = [60] __a : Union[str, Any] = [10] __a : Tuple = len(_lowercase ) self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 0 ) def lowerCAmelCase__(self ): '''simple docstring''' __a : int = 3 __a : str = [1, 2, 3] __a : Optional[Any] = [3, 2, 1] __a : int = len(_lowercase ) self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 5 ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Dict = 50 __a : Tuple = [60, 100, 120] __a : List[str] = [10, 20, 30] __a : Union[str, Any] = len(_lowercase ) self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 220 ) if __name__ == "__main__": unittest.main()
63
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __snake_case : Any , __snake_case : int = 13 , __snake_case : int = 64 , __snake_case : int = 2 , __snake_case : int = 3 , __snake_case : int = 3 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : int = 128 , __snake_case : List[Any]=[16, 32, 64, 128] , __snake_case : int = 7 , __snake_case : int = 4 , __snake_case : int = 37 , __snake_case : str = "gelu" , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : int = 10 , __snake_case : float = 0.02 , __snake_case : int = 2 , __snake_case : int = 1 , __snake_case : int = 128 , __snake_case : List[int] = [2, 2, 2, 2] , __snake_case : int = 2 , __snake_case : int = 2 , ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = image_size lowerCamelCase = patch_size lowerCamelCase = num_channels lowerCamelCase = is_training lowerCamelCase = use_labels lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = encoder_stride lowerCamelCase = num_attention_outputs lowerCamelCase = embed_dim lowerCamelCase = embed_dim + 1 lowerCamelCase = resolution lowerCamelCase = depths lowerCamelCase = hidden_sizes lowerCamelCase = dim lowerCamelCase = mlp_expansion_ratio def lowerCamelCase__ ( self : Dict ) -> Any: '''simple docstring''' lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCamelCase__ ( self : Any , __snake_case : Dict , __snake_case : List[Any] , __snake_case : List[str] ) -> str: '''simple docstring''' lowerCamelCase = TFEfficientFormerModel(config=__snake_case ) lowerCamelCase = model(__snake_case , training=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Dict , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Tuple ) -> Any: '''simple docstring''' lowerCamelCase = self.type_sequence_label_size lowerCamelCase = TFEfficientFormerForImageClassification(__snake_case ) lowerCamelCase = model(__snake_case , labels=__snake_case , training=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase = 1 lowerCamelCase = TFEfficientFormerForImageClassification(__snake_case ) lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase = config_and_inputs lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' snake_case = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) snake_case = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) snake_case = False snake_case = False snake_case = False snake_case = False snake_case = False def lowerCamelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = TFEfficientFormerModelTester(self ) lowerCamelCase = ConfigTester( self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def lowerCamelCase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def lowerCamelCase__ ( self : Any ) -> Dict: '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(__snake_case ) lowerCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase = [*signature.parameters.keys()] lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case ) def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' def check_hidden_states_output(__snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Optional[Any] ): lowerCamelCase = model_class(__snake_case ) lowerCamelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) , training=__snake_case ) lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) if hasattr(self.model_tester , 'encoder_seq_length' ): lowerCamelCase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: lowerCamelCase = seq_length * self.model_tester.chunk_length else: lowerCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowerCamelCase = outputs.decoder_hidden_states self.asseretIsInstance(__snake_case , (list, tuple) ) self.assertEqual(len(__snake_case ) , __snake_case ) lowerCamelCase = getattr(self.model_tester , 'seq_length' , __snake_case ) lowerCamelCase = getattr(self.model_tester , 'decoder_seq_length' , __snake_case ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def lowerCamelCase__ ( self : Any , __snake_case : Tuple , __snake_case : int , __snake_case : Dict=False ) -> Optional[int]: '''simple docstring''' lowerCamelCase = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCamelCase__ ( self : Any ) -> int: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def lowerCamelCase__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case ) def lowerCamelCase__ ( self : List[str] ) -> str: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def lowerCamelCase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = TFEfficientFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def lowerCamelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = True lowerCamelCase = getattr(self.model_tester , 'seq_length' , __snake_case ) lowerCamelCase = getattr(self.model_tester , 'encoder_seq_length' , __snake_case ) lowerCamelCase = getattr(self.model_tester , 'key_length' , __snake_case ) lowerCamelCase = getattr(self.model_tester , 'chunk_length' , __snake_case ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): lowerCamelCase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCamelCase = True lowerCamelCase = False lowerCamelCase = True lowerCamelCase = model_class(__snake_case ) lowerCamelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) , training=__snake_case ) lowerCamelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase = True lowerCamelCase = model_class(__snake_case ) lowerCamelCase = model(**self._prepare_for_class(__snake_case , __snake_case ) , training=__snake_case ) lowerCamelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCamelCase = model_class(__snake_case ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCamelCase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=__snake_case ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCamelCase = model(__snake_case ) self.assertTrue(outputs_dict is not None ) def a_ ( ) -> int: """simple docstring""" lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ ( self : int ) -> List[Any]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self : int ) -> Dict: '''simple docstring''' lowerCamelCase = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) lowerCamelCase = self.default_image_processor lowerCamelCase = prepare_img() lowerCamelCase = image_processor(images=__snake_case , return_tensors='tf' ) # forward pass lowerCamelCase = model(**__snake_case , training=__snake_case ) # verify the logits lowerCamelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) ) @slow def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) lowerCamelCase = self.default_image_processor lowerCamelCase = prepare_img() lowerCamelCase = image_processor(images=__snake_case , return_tensors='tf' ) # forward pass lowerCamelCase = model(**__snake_case , training=__snake_case ) # verify the logits lowerCamelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) )
246
from __future__ import annotations _lowerCAmelCase : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __snake_case : dict[str, list[str]] , __snake_case : str ) -> None: '''simple docstring''' lowerCamelCase = graph # mapping node to its parent in resulting breadth first tree lowerCamelCase = {} lowerCamelCase = source_vertex def lowerCamelCase__ ( self : List[Any] ) -> None: '''simple docstring''' lowerCamelCase = {self.source_vertex} lowerCamelCase = None lowerCamelCase = [self.source_vertex] # first in first out queue while queue: lowerCamelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__snake_case ) lowerCamelCase = vertex queue.append(__snake_case ) def lowerCamelCase__ ( self : List[Any] , __snake_case : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase = self.parent.get(__snake_case ) if target_vertex_parent is None: lowerCamelCase = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(__snake_case ) return self.shortest_path(__snake_case ) + F'''->{target_vertex}''' if __name__ == "__main__": _lowerCAmelCase : Optional[int] = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
246
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def lowerCamelCase__ ( lowercase=None ): """simple docstring""" if subparsers is not None: SCREAMING_SNAKE_CASE : Dict = subparsers.add_parser("test" ) else: SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=lowercase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=lowercase ) return parser def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: SCREAMING_SNAKE_CASE : List[Any] = script_name else: SCREAMING_SNAKE_CASE : List[Any] = F'''--config_file={args.config_file} {script_name}''' SCREAMING_SNAKE_CASE : str = ["accelerate-launch"] + test_args.split() SCREAMING_SNAKE_CASE : List[Any] = execute_subprocess_async(lowercase , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = test_command_parser() SCREAMING_SNAKE_CASE : str = parser.parse_args() test_command(lowercase ) if __name__ == "__main__": main()
708
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = '''markuplm''' def __init__( self : int , UpperCAmelCase_ : List[str]=3_0522 , UpperCAmelCase_ : Optional[Any]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : Union[str, Any]=3072 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Dict=512 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Dict=1E-12 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : str=256 , UpperCAmelCase_ : str=1024 , UpperCAmelCase_ : List[str]=216 , UpperCAmelCase_ : List[Any]=1001 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : Dict=50 , UpperCAmelCase_ : Optional[int]="absolute" , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : Any , ): super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : int = position_embedding_type SCREAMING_SNAKE_CASE : List[str] = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout # additional properties SCREAMING_SNAKE_CASE : Any = max_depth SCREAMING_SNAKE_CASE : int = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE : List[str] = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE : Optional[int] = tag_pad_id SCREAMING_SNAKE_CASE : Optional[Any] = subs_pad_id SCREAMING_SNAKE_CASE : List[Any] = xpath_unit_hidden_size
488
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" UpperCAmelCase_ : Optional[Any] = original_name.split("." )[0] UpperCAmelCase_ : List[str] = key.split("." ) UpperCAmelCase_ : Any = int(key_list[key_list.index(_SCREAMING_SNAKE_CASE ) - 2] ) UpperCAmelCase_ : Dict = int(key_list[key_list.index(_SCREAMING_SNAKE_CASE ) - 1] ) UpperCAmelCase_ : Optional[int] = orig_block_num - offset UpperCAmelCase_ : Tuple = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def a__ ( _SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : str = OrderedDict() UpperCAmelCase_ , UpperCAmelCase_ : Any = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): UpperCAmelCase_ : Dict = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 UpperCAmelCase_ : List[str] = key[: key.find("proj" )] UpperCAmelCase_ : List[Any] = key.replace(_SCREAMING_SNAKE_CASE , F'''patch_embeddings.{total_embed_found}.''' ) UpperCAmelCase_ : List[str] = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: UpperCAmelCase_ : str = "poolformer.encoder." + key if "mlp.fc1" in key: UpperCAmelCase_ : Dict = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: UpperCAmelCase_ : int = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "mlp.fc2" , "output.conv2" ) if "norm1" in key: UpperCAmelCase_ : Optional[Any] = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "norm1" , "before_norm" ) if "norm2" in key: UpperCAmelCase_ : Optional[Any] = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "norm2" , "after_norm" ) if "layer_scale_1" in key: UpperCAmelCase_ : List[Any] = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: UpperCAmelCase_ : List[Any] = replace_key_with_offset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "layer_scale_2" , "layer_scale_2" ) if "head" in key: UpperCAmelCase_ : List[Any] = key.replace("head" , "classifier" ) UpperCAmelCase_ : Any = value return new_state_dict def a__ ( ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : Union[str, Any] = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Dict = PoolFormerConfig() # set attributes based on model_name UpperCAmelCase_ : Any = "huggingface/label-files" UpperCAmelCase_ : str = model_name[-3:] UpperCAmelCase_ : Union[str, Any] = 10_00 UpperCAmelCase_ : Union[str, Any] = "imagenet-1k-id2label.json" UpperCAmelCase_ : Tuple = (1, 10_00) # set config attributes UpperCAmelCase_ : int = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ : str = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()} if size == "s12": UpperCAmelCase_ : Tuple = [2, 2, 6, 2] UpperCAmelCase_ : int = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : int = 4.0 UpperCAmelCase_ : Optional[int] = 0.9 elif size == "s24": UpperCAmelCase_ : str = [4, 4, 12, 4] UpperCAmelCase_ : Union[str, Any] = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : List[Any] = 4.0 UpperCAmelCase_ : Optional[Any] = 0.9 elif size == "s36": UpperCAmelCase_ : str = [6, 6, 18, 6] UpperCAmelCase_ : str = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : Union[str, Any] = 4.0 UpperCAmelCase_ : Any = 1E-6 UpperCAmelCase_ : Any = 0.9 elif size == "m36": UpperCAmelCase_ : int = [6, 6, 18, 6] UpperCAmelCase_ : Any = [96, 1_92, 3_84, 7_68] UpperCAmelCase_ : Union[str, Any] = 4.0 UpperCAmelCase_ : int = 1E-6 UpperCAmelCase_ : Optional[Any] = 0.95 elif size == "m48": UpperCAmelCase_ : str = [8, 8, 24, 8] UpperCAmelCase_ : Optional[int] = [96, 1_92, 3_84, 7_68] UpperCAmelCase_ : str = 4.0 UpperCAmelCase_ : List[str] = 1E-6 UpperCAmelCase_ : Optional[int] = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor UpperCAmelCase_ : Dict = PoolFormerImageProcessor(crop_pct=_SCREAMING_SNAKE_CASE ) # Prepare image UpperCAmelCase_ : Optional[Any] = prepare_img() UpperCAmelCase_ : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict UpperCAmelCase_ : Optional[int] = torch.load(_SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) ) # rename keys UpperCAmelCase_ : Tuple = rename_keys(_SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict UpperCAmelCase_ : Optional[int] = PoolFormerForImageClassification(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # Define image processor UpperCAmelCase_ : List[str] = PoolFormerImageProcessor(crop_pct=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass UpperCAmelCase_ : Any = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = outputs.logits # define expected logit slices for different models if size == "s12": UpperCAmelCase_ : Any = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": UpperCAmelCase_ : str = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": UpperCAmelCase_ : Dict = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": UpperCAmelCase_ : Optional[Any] = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": UpperCAmelCase_ : Any = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _lowerCamelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
71
import qiskit def lowercase ( SCREAMING_SNAKE_CASE = 2 ) -> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE_ = qubits # Using Aer's simulator SCREAMING_SNAKE_CASE_ = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , SCREAMING_SNAKE_CASE ): # Adding CX (CNOT) gate circuit.cx(i - 1 , SCREAMING_SNAKE_CASE ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(SCREAMING_SNAKE_CASE ) ) , list(range(SCREAMING_SNAKE_CASE ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator SCREAMING_SNAKE_CASE_ = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_00 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"""Total count for various states are: {quantum_entanglement(3)}""")
205
0
'''simple docstring''' def __A ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' import math def __A ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = [True] * n __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): __SCREAMING_SNAKE_CASE : List[Any] = i * 2 while index < n: __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[str] = index + i __SCREAMING_SNAKE_CASE : Optional[Any] = [2] for i in range(3 , _SCREAMING_SNAKE_CASE , 2 ): if is_prime[i]: primes.append(_SCREAMING_SNAKE_CASE ) return primes def __A ( _SCREAMING_SNAKE_CASE : int = 9_9_9_9_6_6_6_6_3_3_3_3 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = math.floor(math.sqrt(_SCREAMING_SNAKE_CASE ) ) + 1_0_0 __SCREAMING_SNAKE_CASE : Dict = prime_sieve(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = primes[prime_index] while (last_prime**2) <= limit: __SCREAMING_SNAKE_CASE : Dict = primes[prime_index + 1] __SCREAMING_SNAKE_CASE : Tuple = last_prime**2 __SCREAMING_SNAKE_CASE : Optional[Any] = next_prime**2 # Get numbers divisible by lps(current) __SCREAMING_SNAKE_CASE : Optional[int] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) __SCREAMING_SNAKE_CASE : Optional[int] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps __SCREAMING_SNAKE_CASE : Any = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair __SCREAMING_SNAKE_CASE : List[Any] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
564
0
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa a : str = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = """summarization""" __SCREAMING_SNAKE_CASE = ["""loss"""] __SCREAMING_SNAKE_CASE = ROUGE_KEYS __SCREAMING_SNAKE_CASE = """rouge2""" def __init__( self : Any , a_ : List[Any] , **a_ : Union[str, Any] ): """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: __snake_case = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training" ) if hparams.sortish_sampler: raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously" ) super().__init__(_UpperCAmelCase , num_labels=_UpperCAmelCase , mode=self.mode , **_UpperCAmelCase ) use_task_specific_params(self.model , "summarization" ) save_git_info(self.hparams.output_dir ) __snake_case = Path(self.output_dir ) / "metrics.json" __snake_case = Path(self.output_dir ) / "hparams.pkl" pickle_save(self.hparams , self.hparams_save_path ) __snake_case = 0 __snake_case = defaultdict(_UpperCAmelCase ) __snake_case = self.config.model_type __snake_case = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size __snake_case = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } __snake_case = { "train": self.hparams.n_train, "val": self.hparams.n_val, "test": self.hparams.n_test, } __snake_case = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} __snake_case = { "train": self.hparams.max_target_length, "val": self.hparams.val_max_target_length, "test": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) __snake_case = get_git_info()["repo_sha"] __snake_case = hparams.num_workers __snake_case = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _UpperCAmelCase ): __snake_case = self.tokenizer.lang_code_to_id[hparams.tgt_lang] __snake_case = self.decoder_start_token_id __snake_case = ( SeqaSeqDataset if hasattr(self.tokenizer , "prepare_seq2seq_batch" ) else LegacySeqaSeqDataset ) __snake_case = False __snake_case = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: __snake_case = self.hparams.eval_max_gen_length else: __snake_case = self.model.config.max_length __snake_case = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def A ( self : Dict , a_ : Tuple ): """simple docstring""" __snake_case = { k: self.tokenizer.batch_decode(v.tolist() ) if "mask" not in k else v.shape for k, v in batch.items() } save_json(_UpperCAmelCase , Path(self.output_dir ) / "text_batch.json" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / "tok_batch.json" ) __snake_case = True return readable_batch def A ( self : Optional[Any] , a_ : Optional[Any] , **a_ : int ): """simple docstring""" return self.model(_UpperCAmelCase , **_UpperCAmelCase ) def A ( self : Union[str, Any] , a_ : Any ): """simple docstring""" __snake_case = self.tokenizer.batch_decode( _UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return lmap(str.strip , _UpperCAmelCase ) def A ( self : Tuple , a_ : str ): """simple docstring""" __snake_case = self.tokenizer.pad_token_id __snake_case , __snake_case = batch["input_ids"], batch["attention_mask"] __snake_case = batch["labels"] if isinstance(self.model , _UpperCAmelCase ): __snake_case = self.model._shift_right(_UpperCAmelCase ) else: __snake_case = shift_tokens_right(_UpperCAmelCase , _UpperCAmelCase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero __snake_case = decoder_input_ids self.save_readable_batch(_UpperCAmelCase ) __snake_case = self(_UpperCAmelCase , attention_mask=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , use_cache=_UpperCAmelCase ) __snake_case = outputs["logits"] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id __snake_case = nn.CrossEntropyLoss(ignore_index=_UpperCAmelCase ) assert lm_logits.shape[-1] == self.vocab_size __snake_case = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: __snake_case = nn.functional.log_softmax(_UpperCAmelCase , dim=-1 ) __snake_case , __snake_case = label_smoothed_nll_loss( _UpperCAmelCase , _UpperCAmelCase , self.hparams.label_smoothing , ignore_index=_UpperCAmelCase ) return (loss,) @property def A ( self : Union[str, Any] ): """simple docstring""" return self.tokenizer.pad_token_id def A ( self : Optional[int] , a_ : str , a_ : Any ): """simple docstring""" __snake_case = self._step(_UpperCAmelCase ) __snake_case = dict(zip(self.loss_names , _UpperCAmelCase ) ) # tokens per batch __snake_case = batch["input_ids"].ne(self.pad ).sum() + batch["labels"].ne(self.pad ).sum() __snake_case = batch["input_ids"].shape[0] __snake_case = batch["input_ids"].eq(self.pad ).sum() __snake_case = batch["input_ids"].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def A ( self : List[str] , a_ : Optional[Any] , a_ : str ): """simple docstring""" return self._generative_step(_UpperCAmelCase ) def A ( self : int , a_ : Tuple , a_ : List[Any]="val" ): """simple docstring""" self.step_count += 1 __snake_case = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} __snake_case = losses["loss"] __snake_case = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["gen_time", "gen_len"] } __snake_case = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) __snake_case = torch.tensor(_UpperCAmelCase ).type_as(_UpperCAmelCase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_UpperCAmelCase ) __snake_case = {f'''{prefix}_avg_{k}''': x for k, x in losses.items()} __snake_case = self.step_count self.metrics[prefix].append(_UpperCAmelCase ) # callback writes this to self.metrics_save_path __snake_case = flatten_list([x["preds"] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def A ( self : Union[str, Any] , a_ : int , a_ : int ): """simple docstring""" return calculate_rouge(_UpperCAmelCase , _UpperCAmelCase ) def A ( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') __snake_case = self.model.generate( batch["input_ids"] , attention_mask=batch["attention_mask"] , use_cache=_UpperCAmelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) __snake_case = (time.time() - ta) / batch["input_ids"].shape[0] __snake_case = self.ids_to_clean_text(_UpperCAmelCase ) __snake_case = self.ids_to_clean_text(batch["labels"] ) __snake_case = self._step(_UpperCAmelCase ) __snake_case = dict(zip(self.loss_names , _UpperCAmelCase ) ) __snake_case = self.calc_generative_metrics(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.mean(lmap(_UpperCAmelCase , _UpperCAmelCase ) ) base_metrics.update(gen_time=_UpperCAmelCase , gen_len=_UpperCAmelCase , preds=_UpperCAmelCase , target=_UpperCAmelCase , **_UpperCAmelCase ) return base_metrics def A ( self : List[str] , a_ : Optional[Any] , a_ : Any ): """simple docstring""" return self._generative_step(_UpperCAmelCase ) def A ( self : Dict , a_ : str ): """simple docstring""" return self.validation_epoch_end(_UpperCAmelCase , prefix="test" ) def A ( self : int , a_ : str ): """simple docstring""" __snake_case = self.n_obs[type_path] __snake_case = self.target_lens[type_path] __snake_case = self.dataset_class( self.tokenizer , type_path=_UpperCAmelCase , n_obs=_UpperCAmelCase , max_target_length=_UpperCAmelCase , **self.dataset_kwargs , ) return dataset def A ( self : List[str] , a_ : Tuple , a_ : List[Any] , a_ : Tuple = False ): """simple docstring""" __snake_case = self.get_dataset(_UpperCAmelCase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": __snake_case = dataset.make_sortish_sampler(_UpperCAmelCase , distributed=self.hparams.gpus > 1 ) return DataLoader( _UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=dataset.collate_fn , shuffle=_UpperCAmelCase , num_workers=self.num_workers , sampler=_UpperCAmelCase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": __snake_case = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _UpperCAmelCase , batch_sampler=_UpperCAmelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=dataset.collate_fn , shuffle=_UpperCAmelCase , num_workers=self.num_workers , sampler=_UpperCAmelCase , ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.get_dataloader("train" , batch_size=self.hparams.train_batch_size , shuffle=_UpperCAmelCase ) return dataloader def A ( self : Optional[int] ): """simple docstring""" return self.get_dataloader("val" , batch_size=self.hparams.eval_batch_size ) def A ( self : int ): """simple docstring""" return self.get_dataloader("test" , batch_size=self.hparams.eval_batch_size ) @staticmethod def A ( a_ : int , a_ : Optional[int] ): """simple docstring""" BaseTransformer.add_model_specific_args(_UpperCAmelCase , _UpperCAmelCase ) add_generic_args(_UpperCAmelCase , _UpperCAmelCase ) parser.add_argument( "--max_source_length" , default=1_024 , type=_UpperCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--max_target_length" , default=56 , type=_UpperCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--val_max_target_length" , default=142 , type=_UpperCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--test_max_target_length" , default=142 , type=_UpperCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument("--freeze_encoder" , action="store_true" ) parser.add_argument("--freeze_embeds" , action="store_true" ) parser.add_argument("--sortish_sampler" , action="store_true" , default=_UpperCAmelCase ) parser.add_argument("--overwrite_output_dir" , action="store_true" , default=_UpperCAmelCase ) parser.add_argument("--max_tokens_per_batch" , type=_UpperCAmelCase , default=_UpperCAmelCase ) parser.add_argument("--logger_name" , type=_UpperCAmelCase , choices=["default", "wandb", "wandb_shared"] , default="default" ) parser.add_argument("--n_train" , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help="# examples. -1 means use all." ) parser.add_argument("--n_val" , type=_UpperCAmelCase , default=500 , required=_UpperCAmelCase , help="# examples. -1 means use all." ) parser.add_argument("--n_test" , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help="# examples. -1 means use all." ) parser.add_argument( "--task" , type=_UpperCAmelCase , default="summarization" , required=_UpperCAmelCase , help="# examples. -1 means use all." ) parser.add_argument("--label_smoothing" , type=_UpperCAmelCase , default=0.0 , required=_UpperCAmelCase ) parser.add_argument("--src_lang" , type=_UpperCAmelCase , default="" , required=_UpperCAmelCase ) parser.add_argument("--tgt_lang" , type=_UpperCAmelCase , default="" , required=_UpperCAmelCase ) parser.add_argument("--eval_beams" , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase ) parser.add_argument( "--val_metric" , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , choices=["bleu", "rouge2", "loss", None] ) parser.add_argument("--eval_max_gen_length" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="never generate more than n tokens" ) parser.add_argument("--save_top_k" , type=_UpperCAmelCase , default=1 , required=_UpperCAmelCase , help="How many checkpoints to save" ) parser.add_argument( "--early_stopping_patience" , type=_UpperCAmelCase , default=-1 , required=_UpperCAmelCase , help=( "-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So" " val_check_interval will effect it." ) , ) return parser class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = """translation""" __SCREAMING_SNAKE_CASE = ["""loss"""] __SCREAMING_SNAKE_CASE = ["""bleu"""] __SCREAMING_SNAKE_CASE = """bleu""" def __init__( self : str , a_ : Tuple , **a_ : Union[str, Any] ): """simple docstring""" super().__init__(_UpperCAmelCase , **_UpperCAmelCase ) __snake_case = hparams.src_lang __snake_case = hparams.tgt_lang def A ( self : Tuple , a_ : Union[str, Any] , a_ : int ): """simple docstring""" return calculate_bleu(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple=None ) -> Dict: Path(args.output_dir ).mkdir(exist_ok=__lowercase ) check_output_dir(__lowercase , expected_items=3 ) if model is None: if "summarization" in args.task: __snake_case = SummarizationModule(__lowercase ) else: __snake_case = TranslationModule(__lowercase ) __snake_case = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("/tmp" ) or str(args.output_dir ).startswith("/var" ) ): __snake_case = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger __snake_case = os.environ.get("WANDB_PROJECT" , __lowercase ) __snake_case = WandbLogger(name=model.output_dir.name , project=__lowercase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger __snake_case = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: __snake_case = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: __snake_case = False __snake_case = args.val_metric == "loss" __snake_case = generic_train( __lowercase , __lowercase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __lowercase ) , early_stopping_callback=__lowercase , logger=__lowercase , ) pickle_save(model.hparams , model.output_dir / "hparams.pkl" ) if not args.do_predict: return model __snake_case = "" __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "*.ckpt" ) , recursive=__lowercase ) ) if checkpoints: __snake_case = checkpoints[-1] __snake_case = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() a : Dict = pl.Trainer.add_argparse_args(parser) a : List[str] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) a : Optional[Any] = parser.parse_args() main(args)
69
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _a ( unittest.TestCase ): """simple docstring""" A_ = MODEL_FOR_MASKED_LM_MAPPING A_ = TF_MODEL_FOR_MASKED_LM_MAPPING def _UpperCAmelCase ( self ) -> List[str]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is grouped', 'score': 2.1e-05, 'token': 38015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1e-05, 'token': 25506, 'token_str': ' accuser', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9e-05, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' ) UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ { 'sequence': 'The largest city in France is Maul', 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ {'sequence': 'My name is Patrick', 'score': 2.1e-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2e-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2e-05, 'token': 13606, 'token_str': ' Clara'}, ] , ) UpperCamelCase_ = unmasker('My name is <mask> <mask>' , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=6 ) , [ [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2e-05, 'token': 35676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2e-05, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] , ) @require_torch_gpu def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' ) # convert model to fp16 pipe.model.half() UpperCamelCase_ = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' ) self.run_large_test(_UpperCAmelCase ) @slow @require_tf def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' ) self.run_large_test(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'}, ] , ) UpperCamelCase_ = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_5_1, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_1_4, 'token': 12790, 'token_str': ' Lyon', }, ] , ) UpperCamelCase_ = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 13606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) @require_tf def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' ) UpperCamelCase_ = None UpperCamelCase_ = None self.run_pipeline_test(_UpperCAmelCase , [] ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = fill_masker.tokenizer UpperCamelCase_ = fill_masker.model UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , ) with self.assertRaises(_UpperCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_UpperCAmelCase ): fill_masker('This is' ) self.run_test_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_targets(_UpperCAmelCase , _UpperCAmelCase ) self.run_test_top_k_targets(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_UpperCAmelCase , _UpperCAmelCase ) self.fill_mask_with_multiple_masks(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , targets=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Call argument UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} , _UpperCAmelCase ) UpperCamelCase_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} , set(_UpperCAmelCase ) ) # Score equivalence UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['token_str'] for top_mask in outputs] UpperCamelCase_ = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ) == set(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=_UpperCAmelCase ) UpperCamelCase_ = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) # Raises with invalid with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''] ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='' ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , top_k=2 ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ] , ) self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = tokenizer.get_vocab() UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) # top_k=2, ntargets=3 UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_UpperCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase_ = [el['token_str'] for el in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_UpperCAmelCase ).issubset(_UpperCAmelCase ): UpperCamelCase_ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_UpperCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_UpperCAmelCase ) , nested_simplify(_UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase_ = sorted(vocab.keys() )[:3] UpperCamelCase_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase_ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=_UpperCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_UpperCAmelCase ) , 3 ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = FillMaskPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) UpperCamelCase_ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], [ {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, {'sequence': ANY(_UpperCAmelCase ), 'score': ANY(_UpperCAmelCase ), 'token': ANY(_UpperCAmelCase ), 'token_str': ANY(_UpperCAmelCase )}, ], ] , )
23
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : Tuple = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} snake_case_ : Union[str, Any] = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } snake_case_ : Union[str, Any] = { 'abeja/gpt-neox-japanese-2.7b': 2_0_4_8, } def __UpperCAmelCase ( snake_case_ : Any , snake_case_ : List[str] ): '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase: Optional[Any] = json.loads(f.read() ) UpperCAmelCase: List[Any] = collections.OrderedDict() UpperCAmelCase: List[str] = collections.OrderedDict() UpperCAmelCase: Any = collections.OrderedDict() with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase: Optional[Any] = f.readlines() UpperCAmelCase: int = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(snake_case_ ): UpperCAmelCase: Optional[int] = b UpperCAmelCase: int = idx for wd in b: UpperCAmelCase: str = idx return vocab, raw_vocab, ids_to_tokens, emoji class __lowerCamelCase ( lowercase ): lowerCamelCase__: Dict = VOCAB_FILES_NAMES lowerCamelCase__: List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ['''input_ids''', '''attention_mask'''] def __init__( self , __snake_case , __snake_case , __snake_case="<|endoftext|>" , __snake_case="<|endoftext|>" , __snake_case="<|startoftext|>" , __snake_case="<|endoftext|>" , __snake_case=False , **__snake_case , ) -> int: """simple docstring""" super().__init__( unk_token=__snake_case , pad_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , do_clean_text=__snake_case , **__snake_case , ) if not os.path.isfile(__snake_case ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(__snake_case ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) UpperCAmelCase: Optional[int] = do_clean_text UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase: str = load_vocab_and_emoji(__snake_case , __snake_case ) UpperCAmelCase: Optional[int] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def A__ ( self ) -> Tuple: """simple docstring""" return len(self.raw_vocab ) def A__ ( self ) -> Optional[int]: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def A__ ( self , __snake_case ) -> int: """simple docstring""" return self.subword_tokenizer.tokenize(__snake_case , clean=self.do_clean_text ) def A__ ( self , __snake_case ) -> Any: """simple docstring""" return self.vocab.get(__snake_case , self.vocab.get(self.unk_token ) ) def A__ ( self , __snake_case ) -> Optional[int]: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(__snake_case ) def A__ ( self , __snake_case ) -> Tuple: """simple docstring""" UpperCAmelCase: Any = "".join(__snake_case ).strip() return out_string def A__ ( self , __snake_case ) -> List[int]: """simple docstring""" UpperCAmelCase: Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__snake_case , add_special_tokens=__snake_case ) + [self.eos_token_id] ) if len(__snake_case ) > self.model_max_length: UpperCAmelCase: List[Any] = input_ids[-self.model_max_length :] return input_ids def A__ ( self , __snake_case , __snake_case = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase: Tuple = 0 if os.path.isdir(__snake_case ): UpperCAmelCase: Optional[Any] = os.path.join( __snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase: Union[str, Any] = os.path.join( __snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: UpperCAmelCase: Optional[int] = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase: Any = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(__snake_case , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase: Any = token_index writer.write(",".join(__snake_case ) + "\n" ) index += 1 with open(__snake_case , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , __snake_case ) return vocab_file, emoji_file class __lowerCamelCase ( lowercase ): def __init__( self , __snake_case , __snake_case , __snake_case ) -> str: """simple docstring""" UpperCAmelCase: List[Any] = vocab # same as swe UpperCAmelCase: Optional[Any] = ids_to_tokens # same as bpe UpperCAmelCase: Union[str, Any] = emoji UpperCAmelCase: Dict = np.max([len(__snake_case ) for w in self.vocab.keys()] ) UpperCAmelCase: Any = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) UpperCAmelCase: Tuple = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) UpperCAmelCase: List[Any] = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) UpperCAmelCase: List[Any] = re.compile( R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase: Any = re.compile( R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase: List[str] = re.compile( R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) UpperCAmelCase: str = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" UpperCAmelCase: Any = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" UpperCAmelCase: str = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self ) -> List[Any]: """simple docstring""" return len(self.ids_to_tokens ) def A__ ( self , __snake_case ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase: Optional[Any] = self.content_repattera.sub("<URL>" , __snake_case ) UpperCAmelCase: str = self.content_repattera.sub("<EMAIL>" , __snake_case ) UpperCAmelCase: List[Any] = self.content_repattera.sub("<TEL>" , __snake_case ) UpperCAmelCase: Optional[int] = self.content_repattera.sub("<DATE>" , __snake_case ) UpperCAmelCase: str = self.content_repattera.sub("<DATE>" , __snake_case ) UpperCAmelCase: List[str] = self.content_repattera.sub("<PRICE>" , __snake_case ) UpperCAmelCase: Tuple = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase: Union[str, Any] = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def A__ ( self , __snake_case , __snake_case=False ) -> List[str]: """simple docstring""" UpperCAmelCase: List[Any] = text.replace(" " , "<SP>" ) UpperCAmelCase: Tuple = text.replace(" " , "<SP>" ) UpperCAmelCase: Any = text.replace("\r\n" , "<BR>" ) UpperCAmelCase: Union[str, Any] = text.replace("\n" , "<BR>" ) UpperCAmelCase: Optional[int] = text.replace("\r" , "<BR>" ) UpperCAmelCase: int = text.replace("\t" , "<TAB>" ) UpperCAmelCase: Optional[Any] = text.replace("—" , "ー" ) UpperCAmelCase: Any = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase: Dict = text.replace(__snake_case , __snake_case ) if clean: UpperCAmelCase: Optional[Any] = self.clean_text(__snake_case ) def check_simbol(__snake_case ): UpperCAmelCase: str = x.encode() if len(__snake_case ) == 1 and len(__snake_case ) == 2: UpperCAmelCase: str = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xC2A1 and c <= 0xC2BF) or (c >= 0xC780 and c <= 0xC783) or (c >= 0xCAB9 and c <= 0xCBBF) or (c >= 0xCC80 and c <= 0xCDA2) ): return True return False def checkuae(__snake_case ): UpperCAmelCase: int = x.encode() if len(__snake_case ) == 1 and len(__snake_case ) == 3: UpperCAmelCase: Dict = (int(e[0] ) << 1_6) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xE2_8080 and c <= 0xE2_B07F: return True return False UpperCAmelCase: int = 0 UpperCAmelCase: List[Any] = [] while pos < len(__snake_case ): UpperCAmelCase: List[str] = min(len(__snake_case ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 UpperCAmelCase: Tuple = [] # (token_id, token, pos) for e in range(__snake_case , __snake_case , -1 ): UpperCAmelCase: Any = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__snake_case ) > 2: UpperCAmelCase: Optional[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__snake_case ) > 0: # the smallest token_id is adopted UpperCAmelCase , UpperCAmelCase , UpperCAmelCase: Tuple = sorted(__snake_case , key=lambda __snake_case : x[0] )[0] result.append(__snake_case ) UpperCAmelCase: Dict = e else: UpperCAmelCase: Union[str, Any] = pos + 1 UpperCAmelCase: int = text[pos:end] if check_simbol(__snake_case ): result.append("<KIGOU>" ) elif checkuae(__snake_case ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) UpperCAmelCase: List[Any] = end return result def A__ ( self , __snake_case , __snake_case="\n" ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase: int = [] UpperCAmelCase: int = [] UpperCAmelCase: str = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__snake_case ) > 0: words.append(bytearray(__snake_case ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase: Optional[Any] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(__snake_case ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(__snake_case ) if len(__snake_case ) > 0: words.append(bytearray(__snake_case ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase: Tuple = "".join(__snake_case ) return text
166
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig snake_case_ : Optional[int] = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } snake_case_ : Optional[int] = logging.get_logger(__name__) class __lowerCamelCase ( lowercase ): lowerCamelCase__: Union[str, Any] = '''maskformer''' lowerCamelCase__: Optional[int] = {'''hidden_size''': '''mask_feature_size'''} lowerCamelCase__: Optional[int] = ['''resnet''', '''swin'''] lowerCamelCase__: Optional[int] = ['''detr'''] def __init__( self , __snake_case = 2_5_6 , __snake_case = 2_5_6 , __snake_case = 0.1 , __snake_case = False , __snake_case = None , __snake_case = None , __snake_case = 0.02 , __snake_case = 1.0 , __snake_case = 1.0 , __snake_case = 1.0 , __snake_case = 20.0 , __snake_case = None , **__snake_case , ) -> List[Any]: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCAmelCase: str = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase: Union[str, Any] = backbone_config.pop("model_type" ) UpperCAmelCase: List[str] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase: Any = config_class.from_dict(__snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' F'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCAmelCase: Tuple = DetrConfig() else: # verify that the decoder is supported UpperCAmelCase: Dict = ( decoder_config.pop("model_type" ) if isinstance(__snake_case , __snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'Transformer Decoder {decoder_type} not supported, please use one of' F' {",".join(self.decoders_supported )}' ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase: Union[str, Any] = CONFIG_MAPPING[decoder_type] UpperCAmelCase: Optional[Any] = config_class.from_dict(__snake_case ) UpperCAmelCase: Any = backbone_config UpperCAmelCase: Dict = decoder_config # main feature dimension for the model UpperCAmelCase: Optional[int] = fpn_feature_size UpperCAmelCase: Union[str, Any] = mask_feature_size # initializer UpperCAmelCase: Tuple = init_std UpperCAmelCase: Union[str, Any] = init_xavier_std # Hungarian matcher && loss UpperCAmelCase: Optional[int] = cross_entropy_weight UpperCAmelCase: List[str] = dice_weight UpperCAmelCase: List[Any] = mask_weight UpperCAmelCase: List[str] = use_auxiliary_loss UpperCAmelCase: List[str] = no_object_weight UpperCAmelCase: int = output_auxiliary_logits UpperCAmelCase: int = self.decoder_config.encoder_attention_heads UpperCAmelCase: Dict = self.decoder_config.num_hidden_layers super().__init__(**__snake_case ) @classmethod def A__ ( cls , __snake_case , __snake_case , **__snake_case ) -> Tuple: """simple docstring""" return cls( backbone_config=__snake_case , decoder_config=__snake_case , **__snake_case , ) def A__ ( self ) -> Dict[str, any]: """simple docstring""" UpperCAmelCase: Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase: Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase: List[Any] = self.decoder_config.to_dict() UpperCAmelCase: Dict = self.__class__.model_type return output
166
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCAmelCase_ : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') lowerCAmelCase_ : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ) -> Any: _a = cn.convert_to_negative(lowercase ) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ) -> Optional[int]: with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def _lowerCamelCase ( ) -> str: _a = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ) -> Optional[Any]: _a = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() _a = canny.canny(lowercase ) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ) -> Union[str, Any]: assert gg.gaussian_filter(lowercase , 5 , sigma=0.9 ).all() def _lowerCamelCase ( ) -> int: # laplace diagonals _a = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _a = conv.img_convolve(lowercase , lowercase ).astype(lowercase ) assert res.any() def _lowerCamelCase ( ) -> Union[str, Any]: assert med.median_filter(lowercase , 3 ).any() def _lowerCamelCase ( ) -> Union[str, Any]: _a , _a = sob.sobel_filter(lowercase ) assert grad.any() and theta.any() def _lowerCamelCase ( ) -> Union[str, Any]: _a = sp.make_sepia(lowercase , 20 ) assert sepia.all() def _lowerCamelCase ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" ) -> Union[str, Any]: _a = bs.Burkes(imread(lowercase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( lowercase : str = "digital_image_processing/image_data/lena_small.jpg" , ) -> Optional[Any]: _a = rs.NearestNeighbour(imread(lowercase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def _lowerCamelCase ( ) -> Optional[int]: _a = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. _a = imread(lowercase , 0 ) # Test for get_neighbors_pixel function() return not None _a = 0 _a = 0 _a = image[x_coordinate][y_coordinate] _a = lbp.get_neighbors_pixel( lowercase , lowercase , lowercase , lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _a = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _a = lbp.local_binary_value(lowercase , lowercase , lowercase ) assert lbp_image.any()
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : List[Any] = {"vocab_file": "spiece.model"} snake_case_ : List[str] = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 snake_case_ : Dict = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } snake_case_ : Any = "▁" class __snake_case ( a ): UpperCAmelCase__ : Tuple = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : str = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , _snake_case : Tuple , _snake_case : Any="</s>" , _snake_case : Union[str, Any]="<unk>" , _snake_case : List[str]="<pad>" , _snake_case : Optional[Any]=100 , _snake_case : str=None , _snake_case : Optional[Dict[str, Any]] = None , _snake_case : List[str]=True , **_snake_case : Tuple , ): """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ = [F"""<extra_id_{i}>""" for i in range(_snake_case)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCAmelCase_ = len(set(filter(lambda _snake_case: bool('''extra_id''' in str(_snake_case)) , _snake_case))) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''') if legacy: logger.warning_once( F"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''') UpperCAmelCase_ = legacy UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , extra_ids=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , legacy=_snake_case , **_snake_case , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = extra_ids UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_snake_case) @staticmethod def lowerCamelCase ( _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : Optional[int]): """simple docstring""" if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: UpperCAmelCase_ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _snake_case , ) return max_model_length @property def lowerCamelCase ( self : Optional[int]): """simple docstring""" return self.sp_model.get_piece_size() + self._extra_ids def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = {self.convert_ids_to_tokens(_snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def lowerCamelCase ( self : Any , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_snake_case)) + [1] return ([0] * len(_snake_case)) + [1] + ([0] * len(_snake_case)) + [1] def lowerCamelCase ( self : Optional[int]): """simple docstring""" return list( set(filter(lambda _snake_case: bool(re.search(r'''<extra_id_\d+>''' , _snake_case)) is not None , self.additional_special_tokens))) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" return [self._convert_token_to_id(_snake_case) for token in self.get_sentinel_tokens()] def lowerCamelCase ( self : str , _snake_case : List[int]): """simple docstring""" if len(_snake_case) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ''' eos tokens being added.''') return token_ids else: return token_ids + [self.eos_token_id] def lowerCamelCase ( self : List[Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None): """simple docstring""" UpperCAmelCase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def lowerCamelCase ( self : Tuple , _snake_case : List[int] , _snake_case : Optional[List[int]] = None): """simple docstring""" UpperCAmelCase_ = self._add_eos_if_not_present(_snake_case) if token_ids_a is None: return token_ids_a else: UpperCAmelCase_ = self._add_eos_if_not_present(_snake_case) return token_ids_a + token_ids_a def __getstate__( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self : Optional[Any] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def lowerCamelCase ( self : List[Any] , _snake_case : "TextInput" , **_snake_case : Any): """simple docstring""" if not self.legacy: UpperCAmelCase_ = SPIECE_UNDERLINE + text.replace(_snake_case , ''' ''') return super().tokenize(_snake_case , **_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : int , **_snake_case : Dict): """simple docstring""" if not self.legacy: UpperCAmelCase_ = text.startswith(_snake_case) if is_first: UpperCAmelCase_ = text[1:] UpperCAmelCase_ = self.sp_model.encode(_snake_case , out_type=_snake_case) if not self.legacy and not is_first and not text.startswith(''' ''') and tokens[0].startswith(_snake_case): UpperCAmelCase_ = ([tokens[0][1:]] if len(tokens[0]) > 1 else []) + tokens[1:] return tokens def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" if token.startswith('''<extra_id_'''): UpperCAmelCase_ = re.match(r'''<extra_id_(\d+)>''' , _snake_case) UpperCAmelCase_ = int(match.group(1)) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_snake_case) def lowerCamelCase ( self : str , _snake_case : Tuple): """simple docstring""" if index < self.sp_model.get_piece_size(): UpperCAmelCase_ = self.sp_model.IdToPiece(_snake_case) else: UpperCAmelCase_ = F"""<extra_id_{self.vocab_size - 1 - index}>""" return token def lowerCamelCase ( self : str , _snake_case : Any): """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = '''''' UpperCAmelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_snake_case) + token UpperCAmelCase_ = True UpperCAmelCase_ = [] else: current_sub_tokens.append(_snake_case) UpperCAmelCase_ = False out_string += self.sp_model.decode(_snake_case) return out_string.strip() def lowerCamelCase ( self : int , _snake_case : str , _snake_case : Optional[str] = None): """simple docstring""" if not os.path.isdir(_snake_case): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return UpperCAmelCase_ = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _snake_case) elif not os.path.isfile(self.vocab_file): with open(_snake_case , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_snake_case) return (out_vocab_file,)
169
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A (__A : int ) -> bool: """simple docstring""" UpperCAmelCase_ = int(number**0.5 ) return number == sq * sq def A (__A : int , __A : int , __A : int , __A : int , __A : int , __A : int ) -> tuple[int, int]: """simple docstring""" UpperCAmelCase_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCAmelCase_ = x_den * y_den * z_den UpperCAmelCase_ = gcd(__A , __A ) top //= hcf bottom //= hcf return top, bottom def A (__A : int = 35 ) -> int: """simple docstring""" UpperCAmelCase_ = set() UpperCAmelCase_ = 42 UpperCAmelCase_ = Fraction(0 ) UpperCAmelCase_ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCAmelCase_ = x_num * y_den + x_den * y_num UpperCAmelCase_ = x_den * y_den UpperCAmelCase_ = gcd(__A , __A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( __A , __A , __A , __A , __A , __A ) unique_s.add(__A ) # n=2 UpperCAmelCase_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCAmelCase_ = x_den * x_den * y_den * y_den if is_sq(__A ) and is_sq(__A ): UpperCAmelCase_ = int(sqrt(__A ) ) UpperCAmelCase_ = int(sqrt(__A ) ) UpperCAmelCase_ = gcd(__A , __A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( __A , __A , __A , __A , __A , __A ) unique_s.add(__A ) # n=-1 UpperCAmelCase_ = x_num * y_num UpperCAmelCase_ = x_den * y_num + x_num * y_den UpperCAmelCase_ = gcd(__A , __A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( __A , __A , __A , __A , __A , __A ) unique_s.add(__A ) # n=2 UpperCAmelCase_ = x_num * x_num * y_num * y_num UpperCAmelCase_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__A ) and is_sq(__A ): UpperCAmelCase_ = int(sqrt(__A ) ) UpperCAmelCase_ = int(sqrt(__A ) ) UpperCAmelCase_ = gcd(__A , __A ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ = add_three( __A , __A , __A , __A , __A , __A ) unique_s.add(__A ) for num, den in unique_s: total += Fraction(__A , __A ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
169
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _A : Dict = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = BartphoTokenizer lowerCamelCase__ : Tuple = False lowerCamelCase__ : Dict = True def lowercase_ ( self ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE__ = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] SCREAMING_SNAKE_CASE__ = dict(zip(A_ , range(len(A_ ) ) ) ) SCREAMING_SNAKE_CASE__ = {'''unk_token''': '''<unk>'''} SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) SCREAMING_SNAKE_CASE__ = BartphoTokenizer(A_ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self , **A_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **A_ ) def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''This is a là test''' SCREAMING_SNAKE_CASE__ = '''This is a<unk><unk> test''' return input_text, output_text def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = BartphoTokenizer(A_ , self.monolingual_vocab_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE__ = '''This is a là test''' SCREAMING_SNAKE_CASE__ = '''▁This ▁is ▁a ▁l à ▁t est'''.split() SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ )
100
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) __snake_case : Any = _symbol_database.Default() __snake_case : Dict = _descriptor_pool.Default().AddSerializedFile( B'''\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03''' ) __snake_case : Union[str, Any] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '''sentencepiece_model_pb2''', _globals) if _descriptor._USE_C_DESCRIPTORS is False: __snake_case : Any = None __snake_case : Dict = B'''H\003''' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" __snake_case : Union[str, Any] = 45 __snake_case : str = 15_81 __snake_case : Optional[int] = 15_17 __snake_case : Optional[Any] = 15_70 __snake_case : Union[str, Any] = 15_84 __snake_case : Any = 17_93 __snake_case : Optional[int] = 17_95 __snake_case : Tuple = 19_16 __snake_case : int = 18_64 __snake_case : Any = 19_05 __snake_case : Optional[int] = 19_19 __snake_case : str = 24_29 __snake_case : Tuple = 22_08 __snake_case : str = 24_18 __snake_case : Tuple = 23_23 __snake_case : Optional[int] = 24_07 # @@protoc_insertion_point(module_scope)
660
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self :Union[str, Any], snake_case :List[Any], snake_case :int=2, snake_case :str=True, snake_case :Any=False, snake_case :Optional[int]=10, snake_case :List[str]=3, snake_case :Optional[Any]=32 * 8, snake_case :int=32 * 8, snake_case :str=4, snake_case :Union[str, Any]=64, ): """simple docstring""" _lowercase =parent _lowercase =batch_size _lowercase =is_training _lowercase =use_auxiliary_loss _lowercase =num_queries _lowercase =num_channels _lowercase =min_size _lowercase =max_size _lowercase =num_labels _lowercase =hidden_dim _lowercase =hidden_dim def UpperCamelCase__ ( self :Tuple): """simple docstring""" _lowercase =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( snake_case) _lowercase =torch.ones([self.batch_size, self.min_size, self.max_size], device=snake_case) _lowercase =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=snake_case) > 0.5 ).float() _lowercase =(torch.rand((self.batch_size, self.num_labels), device=snake_case) > 0.5).long() _lowercase =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCamelCase__ ( self :str): """simple docstring""" _lowercase =MaskaFormerConfig( hidden_size=self.hidden_dim, ) _lowercase =self.num_queries _lowercase =self.num_labels _lowercase =[1, 1, 1, 1] _lowercase =self.num_channels _lowercase =64 _lowercase =128 _lowercase =self.hidden_dim _lowercase =self.hidden_dim _lowercase =self.hidden_dim return config def UpperCamelCase__ ( self :int): """simple docstring""" _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =self.prepare_config_and_inputs() _lowercase ={'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def UpperCamelCase__ ( self :Tuple, snake_case :Optional[int], snake_case :Any): """simple docstring""" _lowercase =output.encoder_hidden_states _lowercase =output.pixel_decoder_hidden_states _lowercase =output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case), len(config.backbone_config.depths)) self.parent.assertTrue(len(snake_case), len(config.backbone_config.depths)) self.parent.assertTrue(len(snake_case), config.decoder_layers) def UpperCamelCase__ ( self :Tuple, snake_case :Union[str, Any], snake_case :List[Any], snake_case :Optional[int], snake_case :Tuple=False): """simple docstring""" with torch.no_grad(): _lowercase =MaskaFormerModel(config=snake_case) model.to(snake_case) model.eval() _lowercase =model(pixel_values=snake_case, pixel_mask=snake_case) _lowercase =model(snake_case, output_hidden_states=snake_case) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_dim), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(snake_case, snake_case) def UpperCamelCase__ ( self :List[str], snake_case :Tuple, snake_case :Union[str, Any], snake_case :str, snake_case :str, snake_case :Optional[Any]): """simple docstring""" _lowercase =MaskaFormerForUniversalSegmentation(config=snake_case) model.to(snake_case) model.eval() def comm_check_on_output(snake_case :str): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): _lowercase =model(pixel_values=snake_case, pixel_mask=snake_case) _lowercase =model(snake_case) comm_check_on_output(snake_case) _lowercase =model( pixel_values=snake_case, pixel_mask=snake_case, mask_labels=snake_case, class_labels=snake_case) comm_check_on_output(snake_case) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape, torch.Size([1])) @require_torch class SCREAMING_SNAKE_CASE_ ( _a , _a , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : List[Any] =(MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __lowerCAmelCase : str ={'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} __lowerCAmelCase : Optional[int] =False __lowerCAmelCase : Tuple =False __lowerCAmelCase : Optional[Any] =False __lowerCAmelCase : Optional[Any] =False def UpperCamelCase__ ( self :str): """simple docstring""" _lowercase =MaskaFormerModelTester(self) _lowercase =ConfigTester(self, config_class=snake_case, has_text_modality=snake_case) def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self :List[Any]): """simple docstring""" _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case, **snake_case, output_hidden_states=snake_case) def UpperCamelCase__ ( self :List[str]): """simple docstring""" _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*snake_case) @unittest.skip(reason='Mask2Former does not use inputs_embeds') def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method') def UpperCamelCase__ ( self :List[str]): """simple docstring""" pass @unittest.skip(reason='Mask2Former is not a generative model') def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" pass @unittest.skip(reason='Mask2Former does not use token embeddings') def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def UpperCamelCase__ ( self :Tuple): """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def UpperCamelCase__ ( self :int): """simple docstring""" pass def UpperCamelCase__ ( self :Any): """simple docstring""" _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(snake_case) _lowercase =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase =[*signature.parameters.keys()] _lowercase =['pixel_values'] self.assertListEqual(arg_names[:1], snake_case) @slow def UpperCamelCase__ ( self :Dict): """simple docstring""" for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _lowercase =MaskaFormerModel.from_pretrained(snake_case) self.assertIsNotNone(snake_case) def UpperCamelCase__ ( self :Any): """simple docstring""" _lowercase =(self.model_tester.min_size,) * 2 _lowercase ={ 'pixel_values': torch.randn((2, 3, *size), device=snake_case), 'mask_labels': torch.randn((2, 10, *size), device=snake_case), 'class_labels': torch.zeros(2, 10, device=snake_case).long(), } _lowercase =self.model_tester.get_config() _lowercase =MaskaFormerForUniversalSegmentation(snake_case).to(snake_case) _lowercase =model(**snake_case) self.assertTrue(outputs.loss is not None) def UpperCamelCase__ ( self :Tuple): """simple docstring""" _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case, **snake_case, output_hidden_states=snake_case) def UpperCamelCase__ ( self :List[Any]): """simple docstring""" _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(snake_case).to(snake_case) _lowercase =model(**snake_case, output_attentions=snake_case) self.assertTrue(outputs.attentions is not None) def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" if not self.model_tester.is_training: return _lowercase =self.all_model_classes[1] _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs() _lowercase =model_class(snake_case) model.to(snake_case) model.train() _lowercase =model(snake_case, mask_labels=snake_case, class_labels=snake_case).loss loss.backward() def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" _lowercase =self.all_model_classes[1] _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs() _lowercase =True _lowercase =True _lowercase =model_class(snake_case).to(snake_case) model.train() _lowercase =model(snake_case, mask_labels=snake_case, class_labels=snake_case) _lowercase =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowercase =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _lowercase =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowercase =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) _SCREAMING_SNAKE_CASE = 1e-4 def _snake_case () -> List[str]: _lowercase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_vision @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCamelCase__ ( self :List[str]): """simple docstring""" return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def UpperCamelCase__ ( self :List[str]): """simple docstring""" _lowercase =MaskaFormerModel.from_pretrained(self.model_checkpoints).to(snake_case) _lowercase =self.default_image_processor _lowercase =prepare_img() _lowercase =image_processor(snake_case, return_tensors='pt').to(snake_case) _lowercase =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(snake_case, (1, 3, 384, 384)) with torch.no_grad(): _lowercase =model(**snake_case) _lowercase =torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]]).to(snake_case) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], snake_case, atol=snake_case)) _lowercase =torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]]).to(snake_case) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], snake_case, atol=snake_case)) _lowercase =torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]]).to(snake_case) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], snake_case, atol=snake_case)) def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" _lowercase =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(snake_case).eval() _lowercase =self.default_image_processor _lowercase =prepare_img() _lowercase =image_processor(snake_case, return_tensors='pt').to(snake_case) _lowercase =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(snake_case, (1, 3, 384, 384)) with torch.no_grad(): _lowercase =model(**snake_case) # masks_queries_logits _lowercase =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4)) _lowercase =[ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] _lowercase =torch.tensor(snake_case).to(snake_case) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], snake_case, atol=snake_case)) # class_queries_logits _lowercase =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape, (1, model.config.num_queries, model.config.num_labels + 1)) _lowercase =torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ]).to(snake_case) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], snake_case, atol=snake_case)) def UpperCamelCase__ ( self :int): """simple docstring""" _lowercase =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(snake_case).eval() _lowercase =self.default_image_processor _lowercase =image_processor( [np.zeros((3, 800, 1333)), np.zeros((3, 800, 1333))], segmentation_maps=[np.zeros((384, 384)).astype(np.floataa), np.zeros((384, 384)).astype(np.floataa)], return_tensors='pt', ) _lowercase =inputs['pixel_values'].to(snake_case) _lowercase =[el.to(snake_case) for el in inputs['mask_labels']] _lowercase =[el.to(snake_case) for el in inputs['class_labels']] with torch.no_grad(): _lowercase =model(**snake_case) self.assertTrue(outputs.loss is not None)
557
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _SCREAMING_SNAKE_CASE = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _SCREAMING_SNAKE_CASE = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _SCREAMING_SNAKE_CASE = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def _snake_case (_snake_case : str , _snake_case : str) -> tuple[str, float]: _lowercase =len([g for position, g in enumerate(_snake_case) if g == main_target[position]]) return (item, float(_snake_case)) def _snake_case (_snake_case : str , _snake_case : str) -> tuple[str, str]: _lowercase =random.randint(0 , len(_snake_case) - 1) _lowercase =parent_a[:random_slice] + parent_a[random_slice:] _lowercase =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _snake_case (_snake_case : str , _snake_case : list[str]) -> str: _lowercase =list(_snake_case) if random.uniform(0 , 1) < MUTATION_PROBABILITY: _lowercase =random.choice(_snake_case) return "".join(_snake_case) def _snake_case (_snake_case : tuple[str, float] , _snake_case : list[tuple[str, float]] , _snake_case : list[str] , ) -> list[str]: _lowercase =[] # Generate more children proportionally to the fitness score. _lowercase =int(parent_a[1] * 100) + 1 _lowercase =10 if child_n >= 10 else child_n for _ in range(_snake_case): _lowercase =population_score[random.randint(0 , _snake_case)][0] _lowercase , _lowercase =crossover(parent_a[0] , _snake_case) # Append new string to the population list. pop.append(mutate(_snake_case , _snake_case)) pop.append(mutate(_snake_case , _snake_case)) return pop def _snake_case (_snake_case : str , _snake_case : list[str] , _snake_case : bool = True) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: _lowercase =f'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(_snake_case) # Verify that the target contains no genes besides the ones inside genes variable. _lowercase =sorted({c for c in target if c not in genes}) if not_in_genes_list: _lowercase =f'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(_snake_case) # Generate random starting population. _lowercase =[] for _ in range(_snake_case): population.append(''.join([random.choice(_snake_case) for i in range(len(_snake_case))])) # Just some logs to know what the algorithms is doing. _lowercase , _lowercase =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_snake_case) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _lowercase =[evaluate(_snake_case , _snake_case) for item in population] # Check if there is a matching evolution. _lowercase =sorted(_snake_case , key=lambda _snake_case: x[1] , reverse=_snake_case) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'''\nGeneration: {generation}''' f'''\nTotal Population:{total_population}''' f'''\nBest score: {population_score[0][1]}''' f'''\nBest string: {population_score[0][0]}''') # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _lowercase =population[: int(N_POPULATION / 3)] population.clear() population.extend(_snake_case) # Normalize population score to be between 0 and 1. _lowercase =[ (item, score / len(_snake_case)) for item, score in population_score ] # This is selection for i in range(_snake_case): population.extend(select(population_score[int(_snake_case)] , _snake_case , _snake_case)) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_snake_case) > N_POPULATION: break if __name__ == "__main__": _SCREAMING_SNAKE_CASE = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _SCREAMING_SNAKE_CASE = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
557
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase ): a_ : Union[str, Any] = '''resnet''' a_ : Optional[Any] = ['''basic''', '''bottleneck'''] def __init__(self , UpperCAmelCase=3 , UpperCAmelCase=6_4 , UpperCAmelCase=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , UpperCAmelCase=[3, 4, 6, 3] , UpperCAmelCase="bottleneck" , UpperCAmelCase="relu" , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ): '''simple docstring''' super().__init__(**UpperCAmelCase) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {','.join(self.layer_types)}""") __UpperCAmelCase =num_channels __UpperCAmelCase =embedding_size __UpperCAmelCase =hidden_sizes __UpperCAmelCase =depths __UpperCAmelCase =layer_type __UpperCAmelCase =hidden_act __UpperCAmelCase =downsample_in_first_stage __UpperCAmelCase =['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase) + 1)] __UpperCAmelCase , __UpperCAmelCase =get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names) class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : str = version.parse('''1.11''' ) @property def A__ (self): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def A__ (self): '''simple docstring''' return 1e-3
132
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : Union[str, Any] = '''roc_bert''' def __init__(self , UpperCAmelCase=3_0_5_2_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=True , UpperCAmelCase=0 , UpperCAmelCase="absolute" , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=7_6_8 , UpperCAmelCase=9_1_0 , UpperCAmelCase=5_1_2 , UpperCAmelCase=2_4_8_5_8 , UpperCAmelCase=True , **UpperCAmelCase , ): '''simple docstring''' __UpperCAmelCase =vocab_size __UpperCAmelCase =max_position_embeddings __UpperCAmelCase =hidden_size __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =num_attention_heads __UpperCAmelCase =intermediate_size __UpperCAmelCase =hidden_act __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =initializer_range __UpperCAmelCase =type_vocab_size __UpperCAmelCase =layer_norm_eps __UpperCAmelCase =use_cache __UpperCAmelCase =enable_pronunciation __UpperCAmelCase =enable_shape __UpperCAmelCase =pronunciation_embed_dim __UpperCAmelCase =pronunciation_vocab_size __UpperCAmelCase =shape_embed_dim __UpperCAmelCase =shape_vocab_size __UpperCAmelCase =concat_input __UpperCAmelCase =position_embedding_type __UpperCAmelCase =classifier_dropout super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase)
132
1
"""simple docstring""" def _snake_case ( snake_case__ : int ): if num <= 0: raise ValueError('Input must be a positive integer' ) A = [True] * (num + 1) A = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case__ ): A = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _lowercase = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
22
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Optional[Any] ,) -> Optional[int]: A = parent A = 13 A = 7 A = True A = True A = True A = 99 A = 32 A = 2 A = 4 A = 37 A = 'gelu' A = 0.1 A = 0.1 A = 512 A = 16 A = 2 A = 0.02 A = 3 A = 4 A = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.prepare_config_and_inputs() A = True A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : List[str] ,A_ : Optional[int] ,A_ : List[Any] ,A_ : Any ,A_ : Any ) -> Dict: A = TFEsmModel(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : List[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,) -> Optional[int]: A = True A = TFEsmModel(config=A_ ) A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A = model(A_ ) A = [input_ids, input_mask] A = model(A_ ,encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[Any] ,A_ : List[Any] ) -> Dict: A = TFEsmForMaskedLM(config=A_ ) A = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = self.num_labels A = TFEsmForTokenClassification(config=A_ ) A = {'input_ids': input_ids, 'attention_mask': input_mask} A = model(A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: List[str] = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase: Union[str, Any] = False _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: A = TFEsmModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip('Protein models do not support embedding resizing.' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A = model.get_bias() assert isinstance(A_ ,A_ ) for k, v in name.items(): assert isinstance(A_ ,tf.Variable ) else: A = model.get_output_embeddings() assert x is None A = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 1, 2, 3, 4, 5]] ) A = model(A_ )[0] A = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,A_ ) # compare the actual values for a slice. A = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A = model(A_ )[0] # compare the actual values for a slice. A = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
22
1