code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class _snake_case ( snake_case_ ): '''simple docstring''' __snake_case = "xlnet" __snake_case = ["mems"] __snake_case = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self: Tuple , __UpperCamelCase: Optional[int]=3_2000 , __UpperCamelCase: List[str]=1024 , __UpperCamelCase: List[str]=24 , __UpperCamelCase: List[str]=16 , __UpperCamelCase: Any=4096 , __UpperCamelCase: Optional[Any]="gelu" , __UpperCamelCase: Any=True , __UpperCamelCase: int="bi" , __UpperCamelCase: Optional[Any]=0.0_2 , __UpperCamelCase: Optional[Any]=1E-12 , __UpperCamelCase: List[str]=0.1 , __UpperCamelCase: Optional[Any]=512 , __UpperCamelCase: List[str]=None , __UpperCamelCase: str=True , __UpperCamelCase: List[str]=False , __UpperCamelCase: Any=False , __UpperCamelCase: Any=-1 , __UpperCamelCase: List[Any]=False , __UpperCamelCase: Tuple="last" , __UpperCamelCase: Union[str, Any]=True , __UpperCamelCase: Optional[Any]="tanh" , __UpperCamelCase: List[Any]=0.1 , __UpperCamelCase: str=5 , __UpperCamelCase: List[Any]=5 , __UpperCamelCase: Optional[int]=5 , __UpperCamelCase: int=1 , __UpperCamelCase: int=2 , **__UpperCamelCase: List[str] , ) -> Tuple: __magic_name__ : Any = vocab_size __magic_name__ : str = d_model __magic_name__ : List[Any] = n_layer __magic_name__ : List[Any] = n_head if d_model % n_head != 0: raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) __magic_name__ : Tuple = d_model // n_head __magic_name__ : Optional[int] = ff_activation __magic_name__ : List[Any] = d_inner __magic_name__ : str = untie_r __magic_name__ : Dict = attn_type __magic_name__ : List[Any] = initializer_range __magic_name__ : Any = layer_norm_eps __magic_name__ : Any = dropout __magic_name__ : Any = mem_len __magic_name__ : int = reuse_len __magic_name__ : List[Any] = bi_data __magic_name__ : Tuple = clamp_len __magic_name__ : int = same_length __magic_name__ : Union[str, Any] = summary_type __magic_name__ : str = summary_use_proj __magic_name__ : Optional[int] = summary_activation __magic_name__ : Any = summary_last_dropout __magic_name__ : str = start_n_top __magic_name__ : str = end_n_top __magic_name__ : Optional[int] = bos_token_id __magic_name__ : Any = pad_token_id __magic_name__ : Dict = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __UpperCamelCase , ) __magic_name__ : List[Any] = kwargs["use_cache"] __magic_name__ : int = use_mems_eval __magic_name__ : Union[str, Any] = use_mems_train super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) @property def lowerCAmelCase__ ( self: Tuple ) -> List[str]: logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def lowerCAmelCase__ ( self: str , __UpperCamelCase: str ) -> Optional[int]: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
436
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class _snake_case ( snake_case_ , snake_case_ ): '''simple docstring''' __snake_case = "resnet" __snake_case = ["basic", "bottleneck"] def __init__( self: List[Any] , __UpperCamelCase: Tuple=3 , __UpperCamelCase: List[str]=64 , __UpperCamelCase: int=[256, 512, 1024, 2048] , __UpperCamelCase: Union[str, Any]=[3, 4, 6, 3] , __UpperCamelCase: str="bottleneck" , __UpperCamelCase: List[Any]="relu" , __UpperCamelCase: List[str]=False , __UpperCamelCase: List[str]=None , __UpperCamelCase: Tuple=None , **__UpperCamelCase: Dict , ) -> Union[str, Any]: super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) __magic_name__ : int = num_channels __magic_name__ : Optional[Any] = embedding_size __magic_name__ : str = hidden_sizes __magic_name__ : Any = depths __magic_name__ : int = layer_type __magic_name__ : Any = hidden_act __magic_name__ : Optional[int] = downsample_in_first_stage __magic_name__ : List[Any] = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(__UpperCamelCase ) + 1 )] __magic_name__ , __magic_name__ : int = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names ) class _snake_case ( snake_case_ ): '''simple docstring''' __snake_case = version.parse("1.11" ) @property def lowerCAmelCase__ ( self: Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self: Any ) -> float: return 1E-3
436
1
from __future__ import annotations def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int | float: if len(_lowercase ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(_lowercase ) or left < -len(_lowercase ) or right >= len(_lowercase ) or right < -len(_lowercase ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] UpperCamelCase = (left + right) >> 1 # the middle UpperCamelCase = find_max(_lowercase , _lowercase , _lowercase ) # find max in range[left, mid] UpperCamelCase = find_max(_lowercase , mid + 1 , _lowercase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
170
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] =DanceDiffusionPipeline SCREAMING_SNAKE_CASE_ : str =UNCONDITIONAL_AUDIO_GENERATION_PARAMS SCREAMING_SNAKE_CASE_ : int =PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } SCREAMING_SNAKE_CASE_ : Optional[int] =UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE_ : Optional[int] =False SCREAMING_SNAKE_CASE_ : Union[str, Any] =False def __lowerCAmelCase ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=SCREAMING_SNAKE_CASE__ , use_timestep_embedding=SCREAMING_SNAKE_CASE__ , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) UpperCamelCase = IPNDMScheduler() UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str=0 ): """simple docstring""" if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): UpperCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCAmelCase ( self : Dict ): """simple docstring""" UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = DanceDiffusionPipeline(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = pipe(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = output.audios UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) UpperCamelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __lowerCAmelCase ( self : List[Any] ): """simple docstring""" return super().test_save_load_local() @skip_mps def __lowerCAmelCase ( self : Any ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def __lowerCAmelCase ( self : Any ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def __lowerCAmelCase ( self : Any ): """simple docstring""" return super().test_attention_slicing_forward_pass() def __lowerCAmelCase ( self : List[str] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : List[str] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : str ): """simple docstring""" UpperCamelCase = torch_device UpperCamelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) UpperCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pipe(generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) UpperCamelCase = output.audios UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Tuple ): """simple docstring""" UpperCamelCase = torch_device UpperCamelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) UpperCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pipe(generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) UpperCamelCase = output.audios UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
170
1
from __future__ import annotations class _SCREAMING_SNAKE_CASE : def __init__( self : Any , snake_case_ : Optional[int]=None ): """simple docstring""" A : Optional[Any] = data A : List[Any] = None def __repr__( self : Optional[int] ): """simple docstring""" A : Tuple = [] A : Any = self while temp: string_rep.append(f"""{temp.data}""" ) A : Union[str, Any] = temp.next return "->".join(snake_case_ ) def _lowerCamelCase ( lowerCamelCase_: list ): '''simple docstring''' if not elements_list: raise Exception('''The Elements List is empty''' ) A : List[Any] = Node(elements_list[0] ) for i in range(1 , len(lowerCamelCase_ ) ): A : Dict = Node(elements_list[i] ) A : List[Any] = current.next return head def _lowerCamelCase ( lowerCamelCase_: Node ): '''simple docstring''' if head_node is not None and isinstance(lowerCamelCase_ , lowerCamelCase_ ): print_reverse(head_node.next ) print(head_node.data ) def _lowerCamelCase ( ): '''simple docstring''' from doctest import testmod testmod() A : List[str] = make_linked_list([14, 52, 14, 12, 43] ) print('''Linked List:''' ) print(lowerCamelCase_ ) print('''Elements in Reverse:''' ) print_reverse(lowerCamelCase_ ) if __name__ == "__main__": main()
256
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _SCREAMING_SNAKE_CASE : lowerCamelCase_ = 42 lowerCamelCase_ = 42 class _SCREAMING_SNAKE_CASE : def __init__( self : List[str] , snake_case_ : int ): """simple docstring""" A : list[list[Edge]] = [[] for _ in range(snake_case_ )] A : Union[str, Any] = size def __getitem__( self : Any , snake_case_ : int ): """simple docstring""" return iter(self._graph[vertex] ) @property def _UpperCAmelCase ( self : str ): """simple docstring""" return self._size def _UpperCAmelCase ( self : Tuple , snake_case_ : int , snake_case_ : int , snake_case_ : int ): """simple docstring""" if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(snake_case_ , snake_case_ ) ) def _UpperCAmelCase ( self : str , snake_case_ : int , snake_case_ : int ): """simple docstring""" A : Tuple = deque([start_vertex] ) A : list[int | None] = [None] * self.size A : str = 0 while queue: A : Optional[Any] = queue.popleft() A : List[str] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: A : Tuple = current_distance + edge.weight A : Dict = distances[edge.destination_vertex] if ( isinstance(snake_case_ , snake_case_ ) and new_distance >= dest_vertex_distance ): continue A : Optional[int] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
256
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ : str = '''CLIPImageProcessor''' UpperCamelCase_ : Any = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self : Any , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : int = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : int , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : Dict ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if images is not None: SCREAMING_SNAKE_CASE : Dict = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and images is not None: SCREAMING_SNAKE_CASE : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _A ( self : List[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str] ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _A ( self : Any ): SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
488
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
488
1
"""simple docstring""" import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin _snake_case = logging.get_logger(__name__) enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Any = UNetaDModel a_ : str = 'sample' @property def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = 4 lowerCamelCase__ = 3 lowerCamelCase__ = (32, 32) lowerCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.tensor([10] ).to(SCREAMING_SNAKE_CASE__ ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self : int ): return (3, 32, 32) @property def _UpperCamelCase ( self : Any ): return (3, 32, 32) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } lowerCamelCase__ = self.dummy_input return init_dict, inputs_dict class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Any = UNetaDModel a_ : Dict = 'sample' @property def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = 4 lowerCamelCase__ = 4 lowerCamelCase__ = (32, 32) lowerCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.tensor([10] ).to(SCREAMING_SNAKE_CASE__ ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self : Dict ): return (4, 32, 32) @property def _UpperCamelCase ( self : List[str] ): return (4, 32, 32) def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } lowerCamelCase__ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ , lowerCamelCase__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ , lowerCamelCase__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def _UpperCamelCase ( self : Tuple ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` lowerCamelCase__ , lowerCamelCase__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=SCREAMING_SNAKE_CASE__ ) model_accelerate.to(SCREAMING_SNAKE_CASE__ ) model_accelerate.eval() lowerCamelCase__ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCamelCase__ = noise.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.tensor([10] * noise.shape[0] ).to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model_accelerate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCamelCase__ , lowerCamelCase__ = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=SCREAMING_SNAKE_CASE__ , low_cpu_mem_usage=SCREAMING_SNAKE_CASE__ ) model_normal_load.to(SCREAMING_SNAKE_CASE__ ) model_normal_load.eval() lowerCamelCase__ = model_normal_load(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )['sample'] assert torch_all_close(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1e-3 ) def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCamelCase__ = noise.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.tensor([10] * noise.shape[0] ).to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample lowerCamelCase__ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase__ = torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1e-3 ) ) class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : int = UNetaDModel a_ : int = 'sample' @property def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple=(32, 32) ): lowerCamelCase__ = 4 lowerCamelCase__ = 3 lowerCamelCase__ = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ ) return {"sample": noise, "timestep": time_step} @property def _UpperCamelCase ( self : Tuple ): return (3, 32, 32) @property def _UpperCamelCase ( self : Any ): return (3, 32, 32) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1e-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } lowerCamelCase__ = self.dummy_input return init_dict, inputs_dict @slow def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ , lowerCamelCase__ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.dummy_input lowerCamelCase__ = floats_tensor((4, 3) + (2_56, 2_56) ).to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = noise lowerCamelCase__ = model(**SCREAMING_SNAKE_CASE__ ) assert image is not None, "Make sure output is not None" @slow def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 4 lowerCamelCase__ = 3 lowerCamelCase__ = (2_56, 2_56) lowerCamelCase__ = torch.ones((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.tensor(batch_size * [1e-4] ).to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample lowerCamelCase__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase__ = torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1e-2 ) ) def _UpperCamelCase ( self : Tuple ): lowerCamelCase__ = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 4 lowerCamelCase__ = 3 lowerCamelCase__ = (32, 32) lowerCamelCase__ = torch.ones((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.tensor(batch_size * [1e-4] ).to(SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample lowerCamelCase__ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase__ = torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1e-2 ) ) def _UpperCamelCase ( self : int ): # not required for this model pass
510
"""simple docstring""" _snake_case = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
510
1
'''simple docstring''' from __future__ import annotations UpperCamelCase__: Tuple = 10 def snake_case_ ( _lowerCAmelCase : list[int] ) -> list[int]: UpperCAmelCase : Dict = 1 UpperCAmelCase : Any = max(_lowerCAmelCase ) while placement <= max_digit: # declare and initialize empty buckets UpperCAmelCase : list[list] = [[] for _ in range(_lowerCAmelCase )] # split list_of_ints between the buckets for i in list_of_ints: UpperCAmelCase : str = int((i / placement) % RADIX ) buckets[tmp].append(_lowerCAmelCase ) # put each buckets' contents into list_of_ints UpperCAmelCase : Optional[int] = 0 for b in range(_lowerCAmelCase ): for i in buckets[b]: UpperCAmelCase : str = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
528
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__: Optional[Any] = logging.get_logger(__name__) UpperCamelCase__: Tuple = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """time_series_transformer""" lowerCamelCase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : str , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : str = "student_t" , __snake_case : str = "nll" , __snake_case : int = 1 , __snake_case : List[int] = [1, 2, 3, 4, 5, 6, 7] , __snake_case : Optional[Union[str, bool]] = "mean" , __snake_case : int = 0 , __snake_case : int = 0 , __snake_case : int = 0 , __snake_case : int = 0 , __snake_case : Optional[List[int]] = None , __snake_case : Optional[List[int]] = None , __snake_case : int = 32 , __snake_case : int = 32 , __snake_case : int = 2 , __snake_case : int = 2 , __snake_case : int = 2 , __snake_case : int = 2 , __snake_case : bool = True , __snake_case : str = "gelu" , __snake_case : int = 64 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : int = 100 , __snake_case : float = 0.02 , __snake_case : Optional[Any]=True , **__snake_case : List[Any] , ) -> List[str]: # time series specific configuration UpperCAmelCase : List[Any] = prediction_length UpperCAmelCase : List[Any] = context_length or prediction_length UpperCAmelCase : Tuple = distribution_output UpperCAmelCase : Optional[Any] = loss UpperCAmelCase : Tuple = input_size UpperCAmelCase : Optional[int] = num_time_features UpperCAmelCase : Dict = lags_sequence UpperCAmelCase : Any = scaling UpperCAmelCase : Tuple = num_dynamic_real_features UpperCAmelCase : Any = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) UpperCAmelCase : Any = cardinality else: UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) UpperCAmelCase : Optional[int] = embedding_dimension else: UpperCAmelCase : Optional[Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : List[Any] = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : int = input_size * len(__snake_case ) + self._number_of_features UpperCAmelCase : int = d_model UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : str = decoder_attention_heads UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : Any = decoder_ffn_dim UpperCAmelCase : Any = encoder_layers UpperCAmelCase : str = decoder_layers UpperCAmelCase : Optional[int] = dropout UpperCAmelCase : Union[str, Any] = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Optional[int] = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Optional[int] = use_cache super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def A ( self : Union[str, Any] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
528
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
174
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase = { """configuration_layoutlmv3""": [ """LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv3Config""", """LayoutLMv3OnnxConfig""", ], """processing_layoutlmv3""": ["""LayoutLMv3Processor"""], """tokenization_layoutlmv3""": ["""LayoutLMv3Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""LayoutLMv3TokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv3ForQuestionAnswering""", """LayoutLMv3ForSequenceClassification""", """LayoutLMv3ForTokenClassification""", """LayoutLMv3Model""", """LayoutLMv3PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLayoutLMv3ForQuestionAnswering""", """TFLayoutLMv3ForSequenceClassification""", """TFLayoutLMv3ForTokenClassification""", """TFLayoutLMv3Model""", """TFLayoutLMv3PreTrainedModel""", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""LayoutLMv3FeatureExtractor"""] lowerCAmelCase = ["""LayoutLMv3ImageProcessor"""] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
174
1
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( lowercase__ ): """simple docstring""" def __init__( self , snake_case , snake_case=7_6_8 ): '''simple docstring''' super().__init__(snake_case ) UpperCAmelCase : List[str] = proj_size UpperCAmelCase : Union[str, Any] = CLIPVisionModel(snake_case ) UpperCAmelCase : Union[str, Any] = PaintByExampleMapper(snake_case ) UpperCAmelCase : List[Any] = nn.LayerNorm(config.hidden_size ) UpperCAmelCase : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling UpperCAmelCase : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def A_ ( self , snake_case , snake_case=False ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self.model(pixel_values=snake_case ) UpperCAmelCase : Optional[Any] = clip_output.pooler_output UpperCAmelCase : Optional[int] = self.mapper(latent_states[:, None] ) UpperCAmelCase : Tuple = self.final_layer_norm(snake_case ) UpperCAmelCase : int = self.proj_out(snake_case ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' super().__init__() UpperCAmelCase : List[Any] = (config.num_hidden_layers + 1) // 5 UpperCAmelCase : Optional[int] = config.hidden_size UpperCAmelCase : Dict = 1 UpperCAmelCase : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(snake_case , snake_case , snake_case , activation_fn="gelu" , attention_bias=snake_case ) for _ in range(snake_case ) ] ) def A_ ( self , snake_case ): '''simple docstring''' for block in self.blocks: UpperCAmelCase : str = block(snake_case ) return hidden_states
609
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : Optional[Any] = logging.get_logger(__name__) a : str = "▁" a : Union[str, Any] = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} a : Tuple = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } a : List[str] = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } a : List[str] = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } a : Optional[int] = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = ["input_ids"] SCREAMING_SNAKE_CASE__ : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : str = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = RESOURCE_FILES_NAMES def __init__( self , snake_case , snake_case=None , snake_case=False , snake_case="utf8" , snake_case="[UNK]" , snake_case="[SEP]" , snake_case="[PAD]" , snake_case="[CLS]" , snake_case="[MASK]" , snake_case = None , **snake_case , ): '''simple docstring''' UpperCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , vocab_file=snake_case , encoding=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) UpperCAmelCase : Tuple = do_lower_case UpperCAmelCase : str = sentencepiece_model_ckpt UpperCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCAmelCase : Optional[int] = self.load_vocab(filepath=snake_case ) else: UpperCAmelCase : Optional[Any] = {self.sp_model.id_to_piece(snake_case ): id for id in range(self.sp_model.get_piece_size() )} UpperCAmelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} def A_ ( self , snake_case ): '''simple docstring''' if text is None: return None UpperCAmelCase : List[str] = self.tokenize(snake_case ) UpperCAmelCase , UpperCAmelCase : str = "", [] for i, ch in enumerate(snake_case ): if ch in self.SP_CHAR_MAPPING: UpperCAmelCase : Tuple = self.SP_CHAR_MAPPING.get(snake_case ) else: UpperCAmelCase : Optional[Any] = unicodedata.normalize("NFKC" , snake_case ) if self.is_whitespace(snake_case ): continue normalized_text += ch char_mapping.extend([i] * len(snake_case ) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = normalized_text, [], 0 if self.do_lower_case: UpperCAmelCase : List[str] = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCAmelCase : Optional[Any] = token[1:] UpperCAmelCase : List[str] = text[offset:].index(snake_case ) + offset UpperCAmelCase : Optional[int] = start + len(snake_case ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCAmelCase : List[Any] = end return token_mapping @property def A_ ( self ): '''simple docstring''' return len(self.vocab ) def A_ ( self ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): '''simple docstring''' UpperCAmelCase : int = self.__dict__.copy() UpperCAmelCase : List[str] = None return state def __setstate__( self , snake_case ): '''simple docstring''' UpperCAmelCase : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase : int = {} UpperCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def A_ ( self , snake_case ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(snake_case , snake_case ) for c in text) ) def A_ ( self , snake_case , snake_case=False , snake_case=6_4 , snake_case=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get("enable_sampling" ) is True: UpperCAmelCase : Any = True if self.sp_model_kwargs.get("alpha" ) is not None: UpperCAmelCase : List[str] = self.sp_model_kwargs.get("alpha" ) if self.sp_model_kwargs.get("nbest_size" ) is not None: UpperCAmelCase : Optional[int] = self.sp_model_kwargs.get("nbest_size" ) if not enable_sampling: UpperCAmelCase : Dict = self.sp_model.EncodeAsPieces(snake_case ) else: UpperCAmelCase : List[str] = self.sp_model.SampleEncodeAsPieces(snake_case , snake_case , snake_case ) UpperCAmelCase : Dict = [] for pi, piece in enumerate(snake_case ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(snake_case ) and pi != 0: new_pieces.append(snake_case ) continue else: continue UpperCAmelCase : Optional[int] = 0 for i, chunk in enumerate(snake_case ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(snake_case ) or self.is_punct(snake_case ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(snake_case ) UpperCAmelCase : Optional[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase : Dict = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase : int = i if len(snake_case ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[Any] = "".join(snake_case ).replace(snake_case , " " ).strip() return out_string def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : str = self.convert_ids_to_tokens(snake_case ) UpperCAmelCase : List[Any] = "".join(snake_case ).replace(snake_case , " " ).strip() return out_string def A_ ( self , snake_case ): '''simple docstring''' return self.vocab.get(snake_case , self.vocab.get(self.unk_token ) ) def A_ ( self , snake_case ): '''simple docstring''' return self.reverse_vocab.get(snake_case , self.unk_token ) def A_ ( self , snake_case , snake_case=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : str = [self.cls_token_id] UpperCAmelCase : Optional[int] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def A_ ( self , snake_case , snake_case=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def A_ ( self , snake_case , snake_case=None , snake_case=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1] def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(snake_case ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(snake_case ) + 1) + [1] * (len(snake_case ) + 3) def A_ ( self , snake_case ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def A_ ( self , snake_case ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def A_ ( self , snake_case ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def A_ ( self , snake_case ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(snake_case ) == 1: UpperCAmelCase : List[str] = unicodedata.category(snake_case ) if cat == "Zs": return True return False def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : List[str] = {} with io.open(snake_case , "r" , encoding="utf-8" ) as f: for index, line in enumerate(snake_case ): UpperCAmelCase : Union[str, Any] = line.rstrip("\n" ) UpperCAmelCase : Tuple = int(snake_case ) return token_to_idx def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCAmelCase : Any = 0 if os.path.isdir(snake_case ): UpperCAmelCase : int = os.path.join( snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: UpperCAmelCase : List[str] = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(snake_case , "w" , encoding="utf-8" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda snake_case : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase : Optional[Any] = token_index writer.write(token + "\n" ) index += 1 UpperCAmelCase : List[str] = os.path.join(snake_case , "sentencepiece.bpe.model" ) with open(snake_case , "wb" ) as fi: UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (vocab_file,)
609
1
import unittest import numpy as np def _lowerCamelCase( __snake_case , __snake_case , __snake_case , __snake_case = None , ) -> np.ndarray: __snake_case = np.shape(__snake_case ) __snake_case = np.shape(__snake_case ) __snake_case = np.shape(__snake_case ) if shape_a[0] != shape_b[0]: __snake_case = ( "Expected the same number of rows for A and B. " f"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(__snake_case ) if shape_b[1] != shape_c[1]: __snake_case = ( "Expected the same number of columns for B and C. " f"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(__snake_case ) __snake_case = pseudo_inv if a_inv is None: try: __snake_case = np.linalg.inv(__snake_case ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self : Tuple ): """simple docstring""" __snake_case = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __snake_case = np.array([[0, 3], [3, 0], [2, 3]] ) __snake_case = np.array([[2, 1], [6, 3]] ) __snake_case = schur_complement(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) __snake_case = np.block([[a, b], [b.T, c]] ) __snake_case = np.linalg.det(_lowerCAmelCase ) __snake_case = np.linalg.det(_lowerCAmelCase ) __snake_case = np.linalg.det(_lowerCAmelCase ) self.assertAlmostEqual(_lowerCAmelCase ,det_a * det_s ) def UpperCamelCase_ ( self : str ): """simple docstring""" __snake_case = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __snake_case = np.array([[0, 3], [3, 0], [2, 3]] ) __snake_case = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_lowerCAmelCase ): schur_complement(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self : List[str] ): """simple docstring""" __snake_case = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __snake_case = np.array([[0, 3], [3, 0], [2, 3]] ) __snake_case = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_lowerCAmelCase ): schur_complement(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
524
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def _lowerCamelCase( __snake_case , __snake_case ) -> Dict: __snake_case = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def _lowerCamelCase( __snake_case , __snake_case ) -> Dict: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __snake_case = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __snake_case = in_proj_weight[ : encoder_config.hidden_size, : ] __snake_case = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __snake_case = in_proj_weight[ -encoder_config.hidden_size :, : ] def _lowerCamelCase( __snake_case , __snake_case , __snake_case ) -> List[Any]: __snake_case = dct.pop(__snake_case ) __snake_case = val def _lowerCamelCase( __snake_case ) -> str: if "handwritten" in checkpoint_url: __snake_case = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __snake_case = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" __snake_case = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert("RGB" ) return im @torch.no_grad() def _lowerCamelCase( __snake_case , __snake_case ) -> int: __snake_case = ViTConfig(image_size=384 , qkv_bias=__snake_case ) __snake_case = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __snake_case = 768 elif "large" in checkpoint_url: # use ViT-large encoder __snake_case = 1024 __snake_case = 4096 __snake_case = 24 __snake_case = 16 __snake_case = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __snake_case = False __snake_case = "relu" __snake_case = 1024 __snake_case = True __snake_case = False __snake_case = False # load HuggingFace model __snake_case = ViTModel(__snake_case , add_pooling_layer=__snake_case ) __snake_case = TrOCRForCausalLM(__snake_case ) __snake_case = VisionEncoderDecoderModel(encoder=__snake_case , decoder=__snake_case ) model.eval() # load state_dict of original model, rename some keys __snake_case = torch.hub.load_state_dict_from_url(__snake_case , map_location="cpu" , check_hash=__snake_case )["model"] __snake_case = create_rename_keys(__snake_case , __snake_case ) for src, dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) read_in_q_k_v(__snake_case , __snake_case ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __snake_case = state_dict.pop(__snake_case ) if key.startswith("decoder" ) and "output_projection" not in key: __snake_case = val else: __snake_case = val # load state dict model.load_state_dict(__snake_case ) # Check outputs on an image __snake_case = ViTImageProcessor(size=encoder_config.image_size ) __snake_case = RobertaTokenizer.from_pretrained("roberta-large" ) __snake_case = TrOCRProcessor(__snake_case , __snake_case ) __snake_case = processor(images=prepare_img(__snake_case ) , return_tensors="pt" ).pixel_values # verify logits __snake_case = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __snake_case = model(pixel_values=__snake_case , decoder_input_ids=__snake_case ) __snake_case = outputs.logits __snake_case = torch.Size([1, 1, 5_0265] ) if "trocr-base-handwritten" in checkpoint_url: __snake_case = torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: __snake_case = torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: __snake_case = torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: __snake_case = torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , __snake_case , atol=1e-3 ), "First elements of logits not as expected" Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__snake_case ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__snake_case ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCamelCase__ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
524
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowerCamelCase : Tuple = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : int = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError("""Unsupported Group""" ) __lowercase : Tuple = primes[group]["""prime"""] __lowercase : str = primes[group]["""generator"""] __lowercase : Union[str, Any] = int(hexlify(urandom(32 ) ) , base=16 ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : Dict = pow(self.generator , self.__private_key , self.prime ) return hex(__a )[2:] def lowerCAmelCase ( self : Optional[int] , __a : int ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(__a , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowerCAmelCase ( self : List[str] , __a : str ) -> str: """simple docstring""" __lowercase : Dict = int(__a , base=16 ) if not self.is_valid_public_key(__a ): raise ValueError("""Invalid public key""" ) __lowercase : Dict = pow(__a , self.__private_key , self.prime ) return shaaaa(str(__a ).encode() ).hexdigest() @staticmethod def lowerCAmelCase ( __a : int , __a : int ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(__a , (prime - 1) // 2 , __a ) == 1 ) @staticmethod def lowerCAmelCase ( __a : str , __a : str , __a : int = 14 ) -> str: """simple docstring""" __lowercase : str = int(__a , base=16 ) __lowercase : Any = int(__a , base=16 ) __lowercase : str = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(__a , __a ): raise ValueError("""Invalid public key""" ) __lowercase : str = pow(__a , __a , __a ) return shaaaa(str(__a ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
649
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
1
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example _a : Union[str, Any] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example _a : int = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _a (lowercase__ : list[list[int]] ) -> list[list[int]]: """simple docstring""" __snake_case = [] for i in range(len(lowercase__ ) ): __snake_case = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __snake_case = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowercase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowercase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowercase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __snake_case = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowercase__ ) return next_generation def _a (lowercase__ : list[list[int]] , lowercase__ : int ) -> list[Image.Image]: """simple docstring""" __snake_case = [] for _ in range(lowercase__ ): # Create output image __snake_case = Image.new('RGB' , (len(cells[0] ), len(lowercase__ )) ) __snake_case = img.load() # Save cells to image for x in range(len(lowercase__ ) ): for y in range(len(cells[0] ) ): __snake_case = 2_5_5 - cells[y][x] * 2_5_5 __snake_case = (colour, colour, colour) # Save image images.append(lowercase__ ) __snake_case = new_generation(lowercase__ ) return images if __name__ == "__main__": _a : Union[str, Any] = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
56
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCamelCase : def __init__(self : List[str] , _A : Tuple , _A : str=1_3 , _A : Tuple=7 , _A : Optional[int]=True , _A : int=True , _A : Union[str, Any]=True , _A : Dict=True , _A : List[Any]=9_9 , _A : Optional[int]=3_2 , _A : int=2 , _A : str=4 , _A : Optional[Any]=3_7 , _A : str="gelu" , _A : str=0.1 , _A : Union[str, Any]=0.1 , _A : Union[str, Any]=5_1_2 , _A : List[Any]=1_6 , _A : Optional[Any]=2 , _A : Any=0.02 , _A : Any=3 , _A : int=4 , _A : Any=None , ) -> List[str]: snake_case = parent snake_case = 1_3 snake_case = 7 snake_case = True snake_case = True snake_case = True snake_case = True snake_case = 9_9 snake_case = 3_8_4 snake_case = 2 snake_case = 4 snake_case = 3_7 snake_case = '''gelu''' snake_case = 0.1 snake_case = 0.1 snake_case = 5_1_2 snake_case = 1_6 snake_case = 2 snake_case = 0.02 snake_case = 3 snake_case = 4 snake_case = 1_2_8 snake_case = 2 snake_case = 9 snake_case = 1 snake_case = None def UpperCAmelCase(self : List[str] ) -> Optional[Any]: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = ids_tensor([self.batch_size] , self.num_choices ) snake_case = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase(self : Any , _A : Tuple , _A : Union[str, Any] , _A : Any , _A : Optional[Any] , _A : int , _A : Optional[int] , _A : List[Any] ) -> int: snake_case = TFConvBertModel(config=lowerCamelCase__ ) snake_case = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case = [input_ids, input_mask] snake_case = model(lowerCamelCase__ ) snake_case = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase(self : int , _A : Union[str, Any] , _A : Optional[int] , _A : Any , _A : Tuple , _A : Dict , _A : Union[str, Any] , _A : Dict ) -> str: snake_case = TFConvBertForMaskedLM(config=lowerCamelCase__ ) snake_case = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } snake_case = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase(self : Tuple , _A : Optional[int] , _A : str , _A : Union[str, Any] , _A : List[str] , _A : Optional[Any] , _A : Union[str, Any] , _A : List[str] ) -> int: snake_case = self.num_labels snake_case = TFConvBertForSequenceClassification(config=lowerCamelCase__ ) snake_case = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } snake_case = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase(self : Optional[int] , _A : List[str] , _A : Any , _A : str , _A : Any , _A : Optional[Any] , _A : Dict , _A : Union[str, Any] ) -> Optional[Any]: snake_case = self.num_choices snake_case = TFConvBertForMultipleChoice(config=lowerCamelCase__ ) snake_case = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) snake_case = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) snake_case = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) snake_case = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } snake_case = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase(self : Optional[int] , _A : List[str] , _A : Union[str, Any] , _A : int , _A : Optional[int] , _A : Union[str, Any] , _A : Dict , _A : str ) -> Optional[int]: snake_case = self.num_labels snake_case = TFConvBertForTokenClassification(config=lowerCamelCase__ ) snake_case = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } snake_case = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase(self : List[str] , _A : int , _A : List[Any] , _A : List[Any] , _A : List[str] , _A : Optional[int] , _A : Any , _A : Any ) -> str: snake_case = TFConvBertForQuestionAnswering(config=lowerCamelCase__ ) snake_case = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } snake_case = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase(self : int ) -> Optional[Any]: snake_case = self.prepare_config_and_inputs() ( snake_case ) = config_and_inputs snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): UpperCAmelCase__ : Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : List[Any] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = False UpperCAmelCase__ : List[Any] = False def UpperCAmelCase(self : Optional[Any] ) -> Dict: snake_case = TFConvBertModelTester(self ) snake_case = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=3_7 ) def UpperCAmelCase(self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCAmelCase(self : str ) -> str: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCAmelCase(self : Dict ) -> Dict: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def UpperCAmelCase(self : str ) -> int: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase__ ) def UpperCAmelCase(self : Optional[int] ) -> int: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ ) def UpperCAmelCase(self : Union[str, Any] ) -> List[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase__ ) def UpperCAmelCase(self : List[Any] ) -> Union[str, Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase__ ) @slow def UpperCAmelCase(self : Any ) -> Tuple: snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = True snake_case = True if hasattr(lowerCamelCase__ , "use_cache" ): snake_case = True snake_case = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) snake_case = getattr(self.model_tester , "key_length" , lowerCamelCase__ ) for model_class in self.all_model_classes: snake_case = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) snake_case = model_class(lowerCamelCase__ ) snake_case = len(model(lowerCamelCase__ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase__ , saved_model=lowerCamelCase__ ) snake_case = os.path.join(lowerCamelCase__ , "saved_model" , "1" ) snake_case = tf.keras.models.load_model(lowerCamelCase__ ) snake_case = model(lowerCamelCase__ ) if self.is_encoder_decoder: snake_case = outputs['''encoder_hidden_states'''] snake_case = outputs['''encoder_attentions'''] else: snake_case = outputs['''hidden_states'''] snake_case = outputs['''attentions'''] self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) snake_case = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCAmelCase(self : Tuple ) -> Union[str, Any]: snake_case = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCAmelCase(self : int ) -> int: snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = True snake_case = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) snake_case = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) snake_case = getattr(self.model_tester , "key_length" , lowerCamelCase__ ) snake_case = getattr(self.model_tester , "key_length" , lowerCamelCase__ ) def check_decoder_attentions_output(_A : Any ): snake_case = len(lowerCamelCase__ ) self.assertEqual(out_len % 2 , 0 ) snake_case = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_A : Tuple ): snake_case = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: snake_case = True snake_case = False snake_case = model_class(lowerCamelCase__ ) snake_case = model(self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) snake_case = len(lowerCamelCase__ ) self.assertEqual(config.output_hidden_states , lowerCamelCase__ ) check_encoder_attentions_output(lowerCamelCase__ ) if self.is_encoder_decoder: snake_case = model_class(lowerCamelCase__ ) snake_case = model(self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase__ ) check_decoder_attentions_output(lowerCamelCase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case = True snake_case = model_class(lowerCamelCase__ ) snake_case = model(self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase__ ) check_encoder_attentions_output(lowerCamelCase__ ) # Check attention is always last and order is fine snake_case = True snake_case = True snake_case = model_class(lowerCamelCase__ ) snake_case = model(self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase__ ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase__ ) check_encoder_attentions_output(lowerCamelCase__ ) @require_tf class lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase(self : Optional[Any] ) -> Optional[Any]: snake_case = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) snake_case = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case = model(lowerCamelCase__ )[0] snake_case = [1, 6, 7_6_8] self.assertEqual(output.shape , lowerCamelCase__ ) snake_case = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase__ , atol=1E-4 )
718
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase ( unittest.TestCase ): def __init__(self : Optional[Any] , _A : List[str] , _A : Tuple=7 , _A : List[str]=3 , _A : Dict=1_8 , _A : int=3_0 , _A : str=4_0_0 , _A : List[str]=True , _A : Optional[int]=None , _A : Optional[int]=True , ) -> Dict: snake_case = size if size is not None else {"height": 1_8, "width": 1_8} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = apply_ocr def UpperCAmelCase(self : Union[str, Any] ) -> int: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCamelCase ( A_ , unittest.TestCase ): UpperCAmelCase__ : str = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCAmelCase(self : List[str] ) -> Dict: snake_case = LayoutLMvaImageProcessingTester(self ) @property def UpperCAmelCase(self : Union[str, Any] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase(self : Any ) -> Optional[int]: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , "do_resize" ) ) self.assertTrue(hasattr(_A , "size" ) ) self.assertTrue(hasattr(_A , "apply_ocr" ) ) def UpperCAmelCase(self : Union[str, Any] ) -> List[Any]: snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 1_8, "width": 1_8} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2} ) def UpperCAmelCase(self : List[Any] ) -> Optional[Any]: pass def UpperCAmelCase(self : Dict ) -> Optional[int]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , _A ) self.assertIsInstance(encoding.boxes , _A ) # Test batched snake_case = image_processing(_A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase(self : Tuple ) -> List[str]: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched snake_case = image_processing(_A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase(self : Optional[Any] ) -> Tuple: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched snake_case = image_processing(_A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase(self : Any ) -> List[str]: # with apply_OCR = True snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) snake_case = Image.open(ds[0]["file"] ).convert("RGB" ) snake_case = image_processing(_A , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 snake_case = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _A ) self.assertListEqual(encoding.boxes , _A ) # with apply_OCR = False snake_case = LayoutLMvaImageProcessor(apply_ocr=_A ) snake_case = image_processing(_A , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
294
0
"""simple docstring""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : Tuple ) -> Any: # Initialise PyTorch model lowerCamelCase_ = BigBirdConfig.from_json_file(_lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: lowerCamelCase_ = BigBirdForQuestionAnswering(_lowerCamelCase ) else: lowerCamelCase_ = BigBirdForPreTraining(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_lowerCamelCase , _lowerCamelCase , is_trivia_qa=_lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
549
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) class a ( __snake_case ): SCREAMING_SNAKE_CASE : Optional[Any] = """summarization""" SCREAMING_SNAKE_CASE : Any = ["""loss"""] SCREAMING_SNAKE_CASE : Optional[int] = ROUGE_KEYS SCREAMING_SNAKE_CASE : Optional[int] = """rouge2""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]: if hparams.sortish_sampler and hparams.gpus > 1: lowerCamelCase_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(__SCREAMING_SNAKE_CASE , num_labels=__SCREAMING_SNAKE_CASE , mode=self.mode , **__SCREAMING_SNAKE_CASE ) use_task_specific_params(self.model , 'summarization' ) save_git_info(self.hparams.output_dir ) lowerCamelCase_ = Path(self.output_dir ) / 'metrics.json' lowerCamelCase_ = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) lowerCamelCase_ = 0 lowerCamelCase_ = defaultdict(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.config.model_type lowerCamelCase_ = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size lowerCamelCase_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } lowerCamelCase_ = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } lowerCamelCase_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} lowerCamelCase_ = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) lowerCamelCase_ = get_git_info()['repo_sha'] lowerCamelCase_ = hparams.num_workers lowerCamelCase_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __SCREAMING_SNAKE_CASE ): lowerCamelCase_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] lowerCamelCase_ = self.decoder_start_token_id lowerCamelCase_ = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) lowerCamelCase_ = False lowerCamelCase_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: lowerCamelCase_ = self.hparams.eval_max_gen_length else: lowerCamelCase_ = self.model.config.max_length lowerCamelCase_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Dict[str, torch.Tensor] ) -> Dict[str, List[str]]: lowerCamelCase_ = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(__SCREAMING_SNAKE_CASE , Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' ) lowerCamelCase_ = True return readable_batch def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any: return self.model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] ) -> int: lowerCamelCase_ = self.tokenizer.batch_decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE ) return lmap(str.strip , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : dict ) -> Tuple: lowerCamelCase_ = self.tokenizer.pad_token_id lowerCamelCase_ , lowerCamelCase_ = batch['input_ids'], batch['attention_mask'] lowerCamelCase_ = batch['labels'] if isinstance(self.model , __SCREAMING_SNAKE_CASE ): lowerCamelCase_ = self.model._shift_right(__SCREAMING_SNAKE_CASE ) else: lowerCamelCase_ = shift_tokens_right(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero lowerCamelCase_ = decoder_input_ids self.save_readable_batch(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , decoder_input_ids=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id lowerCamelCase_ = nn.CrossEntropyLoss(ignore_index=__SCREAMING_SNAKE_CASE ) assert lm_logits.shape[-1] == self.vocab_size lowerCamelCase_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: lowerCamelCase_ = nn.functional.log_softmax(__SCREAMING_SNAKE_CASE , dim=-1 ) lowerCamelCase_ , lowerCamelCase_ = label_smoothed_nll_loss( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.hparams.label_smoothing , ignore_index=__SCREAMING_SNAKE_CASE ) return (loss,) @property def UpperCamelCase ( self : Optional[Any] ) -> int: return self.tokenizer.pad_token_id def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Dict: lowerCamelCase_ = self._step(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = dict(zip(self.loss_names , __SCREAMING_SNAKE_CASE ) ) # tokens per batch lowerCamelCase_ = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() lowerCamelCase_ = batch['input_ids'].shape[0] lowerCamelCase_ = batch['input_ids'].eq(self.pad ).sum() lowerCamelCase_ = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int ) -> Dict: return self._generative_step(__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]="val" ) -> Dict: self.step_count += 1 lowerCamelCase_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} lowerCamelCase_ = losses['loss'] lowerCamelCase_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } lowerCamelCase_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) lowerCamelCase_ = torch.tensor(__SCREAMING_SNAKE_CASE ).type_as(__SCREAMING_SNAKE_CASE ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} lowerCamelCase_ = self.step_count self.metrics[prefix].append(__SCREAMING_SNAKE_CASE ) # callback writes this to self.metrics_save_path lowerCamelCase_ = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Dict: return calculate_rouge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : dict ) -> dict: lowerCamelCase_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') lowerCamelCase_ = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=__SCREAMING_SNAKE_CASE , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) lowerCamelCase_ = (time.time() - ta) / batch['input_ids'].shape[0] lowerCamelCase_ = self.ids_to_clean_text(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.ids_to_clean_text(batch['labels'] ) lowerCamelCase_ = self._step(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = dict(zip(self.loss_names , __SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ = self.calc_generative_metrics(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = np.mean(lmap(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) base_metrics.update(gen_time=__SCREAMING_SNAKE_CASE , gen_len=__SCREAMING_SNAKE_CASE , preds=__SCREAMING_SNAKE_CASE , target=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return base_metrics def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int ) -> Any: return self._generative_step(__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple: return self.validation_epoch_end(__SCREAMING_SNAKE_CASE , prefix='test' ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] ) -> SeqaSeqDataset: lowerCamelCase_ = self.n_obs[type_path] lowerCamelCase_ = self.target_lens[type_path] lowerCamelCase_ = self.dataset_class( self.tokenizer , type_path=__SCREAMING_SNAKE_CASE , n_obs=__SCREAMING_SNAKE_CASE , max_target_length=__SCREAMING_SNAKE_CASE , **self.dataset_kwargs , ) return dataset def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = False ) -> DataLoader: lowerCamelCase_ = self.get_dataset(__SCREAMING_SNAKE_CASE ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": lowerCamelCase_ = dataset.make_sortish_sampler(__SCREAMING_SNAKE_CASE , distributed=self.hparams.gpus > 1 ) return DataLoader( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=__SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=__SCREAMING_SNAKE_CASE , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": lowerCamelCase_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( __SCREAMING_SNAKE_CASE , batch_sampler=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=__SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=__SCREAMING_SNAKE_CASE , ) def UpperCamelCase ( self : Dict ) -> DataLoader: lowerCamelCase_ = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) return dataloader def UpperCamelCase ( self : int ) -> DataLoader: return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size ) def UpperCamelCase ( self : int ) -> DataLoader: return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCamelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: BaseTransformer.add_model_specific_args(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) add_generic_args(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) parser.add_argument( '--max_source_length' , default=1024 , type=__SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=56 , type=__SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=142 , type=__SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=142 , type=__SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true' ) parser.add_argument('--freeze_embeds' , action='store_true' ) parser.add_argument('--sortish_sampler' , action='store_true' , default=__SCREAMING_SNAKE_CASE ) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=__SCREAMING_SNAKE_CASE ) parser.add_argument('--max_tokens_per_batch' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE ) parser.add_argument('--logger_name' , type=__SCREAMING_SNAKE_CASE , choices=['default', 'wandb', 'wandb_shared'] , default='default' ) parser.add_argument('--n_train' , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument('--n_val' , type=__SCREAMING_SNAKE_CASE , default=500 , required=__SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument('--n_test' , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument( '--task' , type=__SCREAMING_SNAKE_CASE , default='summarization' , required=__SCREAMING_SNAKE_CASE , help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing' , type=__SCREAMING_SNAKE_CASE , default=0.0 , required=__SCREAMING_SNAKE_CASE ) parser.add_argument('--src_lang' , type=__SCREAMING_SNAKE_CASE , default='' , required=__SCREAMING_SNAKE_CASE ) parser.add_argument('--tgt_lang' , type=__SCREAMING_SNAKE_CASE , default='' , required=__SCREAMING_SNAKE_CASE ) parser.add_argument('--eval_beams' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) parser.add_argument( '--val_metric' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , help='never generate more than n tokens' ) parser.add_argument('--save_top_k' , type=__SCREAMING_SNAKE_CASE , default=1 , required=__SCREAMING_SNAKE_CASE , help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience' , type=__SCREAMING_SNAKE_CASE , default=-1 , required=__SCREAMING_SNAKE_CASE , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class a ( __snake_case ): SCREAMING_SNAKE_CASE : Union[str, Any] = """translation""" SCREAMING_SNAKE_CASE : List[str] = ["""loss"""] SCREAMING_SNAKE_CASE : str = ["""bleu"""] SCREAMING_SNAKE_CASE : Optional[int] = """bleu""" def __init__( self : str , __SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: super().__init__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = hparams.src_lang lowerCamelCase_ = hparams.tgt_lang def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> dict: return calculate_bleu(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=_lowerCamelCase ) check_output_dir(_lowerCamelCase , expected_items=3 ) if model is None: if "summarization" in args.task: lowerCamelCase_ = SummarizationModule(_lowerCamelCase ) else: lowerCamelCase_ = TranslationModule(_lowerCamelCase ) lowerCamelCase_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): lowerCamelCase_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger lowerCamelCase_ = os.environ.get('WANDB_PROJECT' , _lowerCamelCase ) lowerCamelCase_ = WandbLogger(name=model.output_dir.name , project=_lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger lowerCamelCase_ = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: lowerCamelCase_ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: lowerCamelCase_ = False lowerCamelCase_ = args.val_metric == 'loss' lowerCamelCase_ = generic_train( _lowerCamelCase , _lowerCamelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _lowerCamelCase ) , early_stopping_callback=_lowerCamelCase , logger=_lowerCamelCase , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model lowerCamelCase_ = '' lowerCamelCase_ = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=_lowerCamelCase ) ) if checkpoints: lowerCamelCase_ = checkpoints[-1] lowerCamelCase_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() _SCREAMING_SNAKE_CASE : Any = pl.Trainer.add_argparse_args(parser) _SCREAMING_SNAKE_CASE : Any = SummarizationModule.add_model_specific_args(parser, os.getcwd()) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() main(args)
549
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _snake_case : str = 16 _snake_case : Optional[int] = 32 def _A ( __snake_case :Tuple ) -> Tuple: """simple docstring""" return int(x / 2**20 ) class __SCREAMING_SNAKE_CASE : def __enter__( self ) -> Dict: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __SCREAMING_SNAKE_CASE = torch.cuda.memory_allocated() return self def __exit__( self, *_a ) -> List[str]: gc.collect() torch.cuda.empty_cache() __SCREAMING_SNAKE_CASE = torch.cuda.memory_allocated() __SCREAMING_SNAKE_CASE = torch.cuda.max_memory_allocated() __SCREAMING_SNAKE_CASE = bamb(self.end - self.begin ) __SCREAMING_SNAKE_CASE = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def _A ( __snake_case :Accelerator , __snake_case :int = 16 , __snake_case :str = "bert-base-cased" , __snake_case :int = 320 , __snake_case :int = 160 , ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(__snake_case ) __SCREAMING_SNAKE_CASE = load_dataset( "glue" , "mrpc" , split={"train": f'''train[:{n_train}]''', "validation": f'''validation[:{n_val}]'''} ) def tokenize_function(__snake_case :Optional[int] ): # max_length=None => use the model max length (it's actually the default) __SCREAMING_SNAKE_CASE = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __SCREAMING_SNAKE_CASE = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case :Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. __SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) __SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def _A ( __snake_case :Tuple , __snake_case :str ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __SCREAMING_SNAKE_CASE = config["lr"] __SCREAMING_SNAKE_CASE = int(config["num_epochs"] ) __SCREAMING_SNAKE_CASE = int(config["seed"] ) __SCREAMING_SNAKE_CASE = int(config["batch_size"] ) __SCREAMING_SNAKE_CASE = args.model_name_or_path set_seed(__snake_case ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_dataloaders(__snake_case , __snake_case , __snake_case , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer __SCREAMING_SNAKE_CASE = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __SCREAMING_SNAKE_CASE = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: __SCREAMING_SNAKE_CASE = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: __SCREAMING_SNAKE_CASE = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over __SCREAMING_SNAKE_CASE = 0 # We also need to keep track of the stating epoch so files are named properly __SCREAMING_SNAKE_CASE = 0 # Now we train the model __SCREAMING_SNAKE_CASE = {} for epoch in range(__snake_case , __snake_case ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(__snake_case ): __SCREAMING_SNAKE_CASE = model(**__snake_case ) __SCREAMING_SNAKE_CASE = outputs.loss __SCREAMING_SNAKE_CASE = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) ) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) ) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) ) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __SCREAMING_SNAKE_CASE = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "peak_memory_utilization.json" ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def _A ( ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--peak_memory_upper_bound" , type=__snake_case , default=__snake_case , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , ) parser.add_argument( "--n_train" , type=__snake_case , default=320 , help="Number of training examples to use." , ) parser.add_argument( "--n_val" , type=__snake_case , default=160 , help="Number of validation examples to use." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=1 , help="Number of train epochs." , ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
214
from typing import List import numpy as np def _A ( __snake_case :dict ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = {key: len(__snake_case ) for key, value in gen_kwargs.items() if isinstance(__snake_case , __snake_case )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) __SCREAMING_SNAKE_CASE = max(lists_lengths.values() , default=0 ) return max(1 , __snake_case ) def _A ( __snake_case :int , __snake_case :int ) -> List[range]: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for group_idx in range(__snake_case ): __SCREAMING_SNAKE_CASE = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break __SCREAMING_SNAKE_CASE = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 __SCREAMING_SNAKE_CASE = range(__snake_case , start + num_shards_to_add ) shards_indices_per_group.append(__snake_case ) return shards_indices_per_group def _A ( __snake_case :dict , __snake_case :int ) -> List[dict]: """simple docstring""" __SCREAMING_SNAKE_CASE = _number_of_shards_in_gen_kwargs(__snake_case ) if num_shards == 1: return [dict(__snake_case )] else: __SCREAMING_SNAKE_CASE = _distribute_shards(num_shards=__snake_case , max_num_jobs=__snake_case ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__snake_case , __snake_case ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__snake_case ) ) ] def _A ( __snake_case :List[dict] ) -> dict: """simple docstring""" return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __snake_case ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _A ( __snake_case :np.random.Generator , __snake_case :dict ) -> dict: """simple docstring""" __SCREAMING_SNAKE_CASE = {len(__snake_case ) for value in gen_kwargs.values() if isinstance(__snake_case , __snake_case )} __SCREAMING_SNAKE_CASE = {} for size in list_sizes: __SCREAMING_SNAKE_CASE = list(range(__snake_case ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes __SCREAMING_SNAKE_CASE = dict(__snake_case ) for key, value in shuffled_kwargs.items(): if isinstance(__snake_case , __snake_case ): __SCREAMING_SNAKE_CASE = [value[i] for i in indices_per_size[len(__snake_case )]] return shuffled_kwargs
214
1
'''simple docstring''' from __future__ import annotations UpperCAmelCase_ : Tuple = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] UpperCAmelCase_ : Any = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = [] _SCREAMING_SNAKE_CASE : List[str] = len(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : float = -1 for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if arr[i] < arr[j]: _SCREAMING_SNAKE_CASE : Union[str, Any] = arr[j] break result.append(SCREAMING_SNAKE_CASE__ ) return result def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = [] for i, outer in enumerate(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : float = -1 for inner in arr[i + 1 :]: if outer < inner: _SCREAMING_SNAKE_CASE : Any = inner break result.append(SCREAMING_SNAKE_CASE__ ) return result def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : list[float] = [] _SCREAMING_SNAKE_CASE : list[float] = [-1] * arr_size for index in reversed(range(SCREAMING_SNAKE_CASE__ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _SCREAMING_SNAKE_CASE : int = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) UpperCAmelCase_ : Optional[Any] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
533
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" return "".join(chr(ord(SCREAMING_SNAKE_CASE__ ) - 32 ) if """a""" <= char <= """z""" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
533
1
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand a = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) a = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) a = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) a = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) a = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 1_4]), ('2H 5D 3C AS 5S', False, [1_4, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) a = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) a = ( ('JH AH TH KH QH', 2_3), ('JH 9H TH KH QH', 2_2), ('JC KH JS JD JH', 2_1), ('KH KC 3S 3H 3D', 2_0), ('8C 9C 5C 3C TC', 1_9), ('JS QS 9H TS KH', 1_8), ('7C 7S KH 2H 7H', 1_7), ('3C KH 5D 5S KH', 1_6), ('QH 8H KD JH 8S', 1_5), ('2D 6D 9D TH 7D', 1_4), ) def UpperCAmelCase_ ( ): lowercase_ , lowercase_ = randrange(len(UpperCAmelCase__ ) ), randrange(len(UpperCAmelCase__ ) ) lowercase_ = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] lowercase_ , lowercase_ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def UpperCAmelCase_ ( UpperCAmelCase__ = 1_0_0 ): return (generate_random_hand() for _ in range(UpperCAmelCase__ )) @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert PokerHand(UpperCAmelCase__ )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert PokerHand(UpperCAmelCase__ )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = PokerHand(UpperCAmelCase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert PokerHand(UpperCAmelCase__ )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): assert PokerHand(UpperCAmelCase__ )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): assert PokerHand(UpperCAmelCase__ ).compare_with(PokerHand(UpperCAmelCase__ ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): assert PokerHand(UpperCAmelCase__ ).compare_with(PokerHand(UpperCAmelCase__ ) ) == expected def UpperCAmelCase_ ( ): lowercase_ = [PokerHand(UpperCAmelCase__ ) for hand in SORTED_HANDS] lowercase_ = poker_hands.copy() shuffle(UpperCAmelCase__ ) lowercase_ = chain(sorted(UpperCAmelCase__ ) ) for index, hand in enumerate(UpperCAmelCase__ ): assert hand == poker_hands[index] def UpperCAmelCase_ ( ): # Test that five high straights are compared correctly. lowercase_ = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=UpperCAmelCase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def UpperCAmelCase_ ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. lowercase_ = PokerHand("""2C 4S AS 3D 5C""" ) lowercase_ = True lowercase_ = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def UpperCAmelCase_ ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file lowercase_ = 0 lowercase_ = os.path.abspath(os.path.dirname(UpperCAmelCase__ ) ) lowercase_ = os.path.join(UpperCAmelCase__ , """poker_hands.txt""" ) with open(UpperCAmelCase__ ) as file_hand: for line in file_hand: lowercase_ = line[:1_4].strip() lowercase_ = line[1_5:].strip() lowercase_ , lowercase_ = PokerHand(UpperCAmelCase__ ), PokerHand(UpperCAmelCase__ ) lowercase_ = player.compare_with(UpperCAmelCase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
650
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : str=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=512 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : int=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' lowercase_ = True lowercase_ = OpenLlamaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , ): '''simple docstring''' lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = True lowercase_ = True lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """single_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """multi_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 10] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = OpenLlamaModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {"""type""": scaling_type, """factor""": 10.0} lowercase_ = OpenLlamaModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) )
650
1
from __future__ import annotations import math def _a ( a :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( a :int ) -> list[int]: a = str(a ) a = [n] for i in range(1 , len(a ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _a ( a :int ) -> bool: if len(str(a ) ) > 3: if not is_prime(int(str(a )[-3:] ) ) or not is_prime(int(str(a )[:3] ) ): return False return True def _a ( a :int = 11 ) -> list[int]: a = [] a = 13 while len(a ) != count: if validate(a ): a = list_truncated_nums(a ) if all(is_prime(a ) for i in list_nums ): list_truncated_primes.append(a ) num += 2 return list_truncated_primes def _a ( ) -> int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f"""{sum(compute_truncated_primes(11)) = }""")
117
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class lowercase_ : '''simple docstring''' pass
117
1
'''simple docstring''' def __a ( A__ , A__ ) -> float: return base * power(A__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') lowercase : Optional[int] = int(input('Enter the base: ').strip()) lowercase : List[Any] = int(input('Enter the exponent: ').strip()) lowercase : str = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents lowercase : Dict = 1 / result print(f"{base} to the power of {exponent} is {result}")
159
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def __a ( A__ , A__=False ) -> str: try: lowerCAmelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowerCAmelCase = default else: # KEY is set, convert it to True or False. try: lowerCAmelCase = strtobool(A__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value lowercase : Any = parse_flag_from_env('RUN_SLOW', default=False) lowercase : Dict = parse_flag_from_env('RUN_REMOTE', default=False) lowercase : Union[str, Any] = parse_flag_from_env('RUN_LOCAL', default=True) lowercase : int = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression lowercase : List[str] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') lowercase : Tuple = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') lowercase : str = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio lowercase : int = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam lowercase : Tuple = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility lowercase : List[str] = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows lowercase : List[str] = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def __a ( A__ ) -> Union[str, Any]: try: import faiss # noqa except ImportError: lowerCAmelCase = unittest.skip("test requires faiss" )(A__ ) return test_case def __a ( A__ ) -> Optional[int]: try: import regex # noqa except ImportError: lowerCAmelCase = unittest.skip("test requires regex" )(A__ ) return test_case def __a ( A__ ) -> Union[str, Any]: try: import elasticsearch # noqa except ImportError: lowerCAmelCase = unittest.skip("test requires elasticsearch" )(A__ ) return test_case def __a ( A__ ) -> str: try: import sqlalchemy # noqa except ImportError: lowerCAmelCase = unittest.skip("test requires sqlalchemy" )(A__ ) return test_case def __a ( A__ ) -> Tuple: if not config.TORCH_AVAILABLE: lowerCAmelCase = unittest.skip("test requires PyTorch" )(A__ ) return test_case def __a ( A__ ) -> Tuple: if not config.TF_AVAILABLE: lowerCAmelCase = unittest.skip("test requires TensorFlow" )(A__ ) return test_case def __a ( A__ ) -> List[str]: if not config.JAX_AVAILABLE: lowerCAmelCase = unittest.skip("test requires JAX" )(A__ ) return test_case def __a ( A__ ) -> Tuple: if not config.PIL_AVAILABLE: lowerCAmelCase = unittest.skip("test requires Pillow" )(A__ ) return test_case def __a ( A__ ) -> List[str]: try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(A__ ) else: return test_case def __a ( A__ ) -> List[str]: try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(A__ ) else: return test_case def __a ( A__ ) -> Dict: try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(A__ ) else: return test_case def __a ( A__ ) -> Dict: def _require_spacy_model(A__ ): try: import spacy # noqa F401 spacy.load(A__ ) except ImportError: return unittest.skip("test requires spacy" )(A__ ) except OSError: return unittest.skip("test requires spacy model '{}'".format(A__ ) )(A__ ) else: return test_case return _require_spacy_model def __a ( A__ ) -> List[Any]: try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(A__ ) else: return test_case def __a ( A__ ) -> str: try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(A__ ) else: return test_case def __a ( A__ ) -> Union[str, Any]: if not _run_slow_tests or _run_slow_tests == 0: lowerCAmelCase = unittest.skip("test is slow" )(A__ ) return test_case def __a ( A__ ) -> int: if not _run_local_tests or _run_local_tests == 0: lowerCAmelCase = unittest.skip("test is local" )(A__ ) return test_case def __a ( A__ ) -> List[Any]: if not _run_packaged_tests or _run_packaged_tests == 0: lowerCAmelCase = unittest.skip("test is packaged" )(A__ ) return test_case def __a ( A__ ) -> int: if not _run_remote_tests or _run_remote_tests == 0: lowerCAmelCase = unittest.skip("test requires remote" )(A__ ) return test_case def __a ( *A__ ) -> Tuple: def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(A__ ) and name.startswith("test" ): for decorator in decorators: lowerCAmelCase = decorator(A__ ) setattr(cls , A__ , A__ ) return cls return decorate class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" pass class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = 0 lowerCAmelCase = 1 lowerCAmelCase = 2 @contextmanager def __a ( A__=OfflineSimulationMode.CONNECTION_FAILS , A__=1e-16 ) -> Tuple: lowerCAmelCase = requests.Session().request def timeout_request(A__ , A__ , A__ , **A__ ): # Change the url to an invalid url so that the connection hangs lowerCAmelCase = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) lowerCAmelCase = timeout try: return online_request(A__ , A__ , **A__ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier lowerCAmelCase = url lowerCAmelCase = e.args[0] lowerCAmelCase = (max_retry_error.args[0].replace("10.255.255.1" , f"OfflineMock[{url}]" ),) lowerCAmelCase = (max_retry_error,) raise def raise_connection_error(A__ , A__ , **A__ ): raise requests.ConnectionError("Offline mode is enabled." , request=A__ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , A__ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , A__ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , A__ ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def __a ( *A__ , **A__ ) -> Optional[Any]: lowerCAmelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*A__ , **A__ ) as tmp_dir: try: os.chdir(A__ ) yield finally: os.chdir(A__ ) @contextmanager def __a ( ) -> List[Any]: import gc gc.collect() lowerCAmelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __a ( ) -> Dict: import gc gc.collect() lowerCAmelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __a ( A__ , A__ ) -> Optional[int]: return deepcopy(A__ ).integers(0 , 100 , 10 ).tolist() == deepcopy(A__ ).integers(0 , 100 , 10 ).tolist() def __a ( A__ ) -> Optional[int]: import decorator from requests.exceptions import HTTPError def _wrapper(A__ , *A__ , **A__ ): try: return func(*A__ , **A__ ) except HTTPError as err: if str(A__ ).startswith("500" ) or str(A__ ).startswith("502" ): pytest.xfail(str(A__ ) ) raise err return decorator.decorator(_wrapper , A__ ) class _lowerCAmelCase : """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = returncode lowerCAmelCase = stdout lowerCAmelCase = stderr async def __a ( A__ , A__ ) -> Union[str, Any]: while True: lowerCAmelCase = await stream.readline() if line: callback(A__ ) else: break async def __a ( A__ , A__=None , A__=None , A__=None , A__=False , A__=False ) -> _RunOutput: if echo: print("\nRunning: " , " ".join(A__ ) ) lowerCAmelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowerCAmelCase = [] lowerCAmelCase = [] def tee(A__ , A__ , A__ , A__="" ): lowerCAmelCase = line.decode("utf-8" ).rstrip() sink.append(A__ ) if not quiet: print(A__ , A__ , file=A__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda A__ : tee(A__ , A__ , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda A__ : tee(A__ , A__ , sys.stderr , label="stderr:" ) ), ] , timeout=A__ , ) return _RunOutput(await p.wait() , A__ , A__ ) def __a ( A__ , A__=None , A__=None , A__=180 , A__=False , A__=True ) -> _RunOutput: lowerCAmelCase = asyncio.get_event_loop() lowerCAmelCase = loop.run_until_complete( _stream_subprocess(A__ , env=A__ , stdin=A__ , timeout=A__ , quiet=A__ , echo=A__ ) ) lowerCAmelCase = " ".join(A__ ) if result.returncode > 0: lowerCAmelCase = "\n".join(result.stderr ) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"'{cmd_str}' produced no output." ) return result def __a ( ) -> str: lowerCAmelCase = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) lowerCAmelCase = re.sub(r"^gw" , "" , A__ , 0 , re.M ) return int(A__ ) def __a ( ) -> int: lowerCAmelCase = 2_9500 lowerCAmelCase = pytest_xdist_worker_id() return port + uniq_delta
159
1
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
568
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Dict = 'openai/whisper-base' A : Optional[Any] = ( 'This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ' 'transcribed text.' ) A : Dict = 'transcriber' A : Any = WhisperProcessor A : Any = WhisperForConditionalGeneration A : Union[str, Any] = ['audio'] A : Optional[int] = ['text'] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: return self.pre_processor(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_features def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: return self.model.generate(inputs=_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Dict: return self.pre_processor.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE )[0]
568
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = Dict[str, Any] lowerCAmelCase_ = List[Prediction] @add_end_docstrings(A__ ) class snake_case_ ( A__ ): """simple docstring""" def __init__( self , *UpperCamelCase , **UpperCamelCase): super().__init__(*UpperCamelCase , **UpperCamelCase) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items())) def __UpperCAmelCase ( self , **UpperCamelCase): lowerCamelCase__ = {} if "threshold" in kwargs: lowerCamelCase__ = kwargs["threshold"] return {}, {}, postprocess_kwargs def __call__( self , *UpperCamelCase , **UpperCamelCase): return super().__call__(*UpperCamelCase , **UpperCamelCase) def __UpperCAmelCase ( self , UpperCamelCase): lowerCamelCase__ = load_image(UpperCamelCase) lowerCamelCase__ = torch.IntTensor([[image.height, image.width]]) lowerCamelCase__ = self.image_processor(images=[image] , return_tensors="pt") if self.tokenizer is not None: lowerCamelCase__ = self.tokenizer(text=inputs["words"] , boxes=inputs["boxes"] , return_tensors="pt") lowerCamelCase__ = target_size return inputs def __UpperCAmelCase ( self , UpperCamelCase): lowerCamelCase__ = model_inputs.pop("target_size") lowerCamelCase__ = self.model(**UpperCamelCase) lowerCamelCase__ = outputs.__class__({"target_size": target_size, **outputs}) if self.tokenizer is not None: lowerCamelCase__ = model_inputs["bbox"] return model_outputs def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase=0.9): lowerCamelCase__ = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowerCamelCase__ , lowerCamelCase__ = target_size[0].tolist() def unnormalize(UpperCamelCase): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ])) lowerCamelCase__ , lowerCamelCase__ = model_outputs["logits"].squeeze(0).softmax(dim=-1).max(dim=-1) lowerCamelCase__ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowerCamelCase__ = [unnormalize(UpperCamelCase) for bbox in model_outputs["bbox"].squeeze(0)] lowerCamelCase__ = ["score", "label", "box"] lowerCamelCase__ = [dict(zip(UpperCamelCase , UpperCamelCase)) for vals in zip(scores.tolist() , UpperCamelCase , UpperCamelCase) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowerCamelCase__ = self.image_processor.post_process_object_detection(UpperCamelCase , UpperCamelCase , UpperCamelCase) lowerCamelCase__ = raw_annotations[0] lowerCamelCase__ = raw_annotation["scores"] lowerCamelCase__ = raw_annotation["labels"] lowerCamelCase__ = raw_annotation["boxes"] lowerCamelCase__ = scores.tolist() lowerCamelCase__ = [self.model.config.idalabel[label.item()] for label in labels] lowerCamelCase__ = [self._get_bounding_box(UpperCamelCase) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowerCamelCase__ = ["score", "label", "box"] lowerCamelCase__ = [ dict(zip(UpperCamelCase , UpperCamelCase)) for vals in zip(raw_annotation["scores"] , raw_annotation["labels"] , raw_annotation["boxes"]) ] return annotation def __UpperCAmelCase ( self , UpperCamelCase): if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = box.int().tolist() lowerCamelCase__ = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
426
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class snake_case_ ( A__ ): """simple docstring""" __lowerCAmelCase : Optional[int] ='''xglm''' __lowerCAmelCase : str =['''past_key_values'''] __lowerCAmelCase : Dict ={ '''num_attention_heads''': '''attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , UpperCamelCase=25_60_08 , UpperCamelCase=20_48 , UpperCamelCase=10_24 , UpperCamelCase=40_96 , UpperCamelCase=24 , UpperCamelCase=16 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=0.0_2 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=2 , UpperCamelCase=1 , UpperCamelCase=0 , UpperCamelCase=2 , **UpperCamelCase , ): lowerCamelCase__ = vocab_size lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = d_model lowerCamelCase__ = ffn_dim lowerCamelCase__ = num_layers lowerCamelCase__ = attention_heads lowerCamelCase__ = activation_function lowerCamelCase__ = dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = activation_dropout lowerCamelCase__ = layerdrop lowerCamelCase__ = init_std lowerCamelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase__ = use_cache super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , decoder_start_token_id=UpperCamelCase , **UpperCamelCase , )
426
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = '''gpt_neo''' SCREAMING_SNAKE_CASE__ : Any = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ : Dict = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Union[str, Any] , snake_case : Tuple=50257 , snake_case : Union[str, Any]=2048 , snake_case : Optional[int]=2048 , snake_case : Optional[Any]=24 , snake_case : List[str]=[[["global", "local"], 12]] , snake_case : int=16 , snake_case : Optional[Any]=None , snake_case : Tuple=256 , snake_case : Optional[int]="gelu_new" , snake_case : Optional[int]=0.0 , snake_case : Dict=0.0 , snake_case : Optional[int]=0.0 , snake_case : Any=0.1 , snake_case : Any=1e-5 , snake_case : Optional[Any]=0.02 , snake_case : Tuple=True , snake_case : List[Any]=50256 , snake_case : Any=50256 , **snake_case : Dict , ): """simple docstring""" _snake_case : Tuple = vocab_size _snake_case : Tuple = max_position_embeddings _snake_case : Tuple = hidden_size _snake_case : List[Any] = num_layers _snake_case : List[Any] = num_heads _snake_case : int = intermediate_size _snake_case : Union[str, Any] = window_size _snake_case : Dict = activation_function _snake_case : Optional[int] = resid_dropout _snake_case : Optional[int] = embed_dropout _snake_case : Optional[int] = attention_dropout _snake_case : List[Any] = classifier_dropout _snake_case : Dict = layer_norm_epsilon _snake_case : Optional[int] = initializer_range _snake_case : Dict = use_cache _snake_case : Tuple = bos_token_id _snake_case : Dict = eos_token_id _snake_case : List[Any] = attention_types _snake_case : List[str] = self.expand_attention_types_params(snake_case ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ F"""`config.num_layers = {self.num_layers}`. """ '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) @staticmethod def __UpperCAmelCase ( snake_case : Optional[Any] ): """simple docstring""" _snake_case : Any = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase__ ( a__ , a__ , a__ , a__) -> Optional[Any]: """simple docstring""" import torch _snake_case : List[Any] = input.size() _snake_case : Optional[Any] = len(a__) _snake_case : List[str] = shape[dimension] _snake_case : int = torch.arange(0 , a__ , a__) _snake_case : Optional[int] = torch.div(sizedim - size , a__ , rounding_mode='floor') + 1 _snake_case : Optional[int] = torch.arange(a__) + low_indices[:min_length][:, None] _snake_case : Optional[int] = [slice(a__)] * rank _snake_case : Optional[Any] = indices _snake_case : int = input[s] _snake_case : str = list(range(0 , rank + 1)) perm.append(perm.pop(dimension + 1)) return sliced.permute(a__) def lowerCamelCase__ ( a__ , a__) -> Optional[Any]: """simple docstring""" import torch _snake_case : Optional[Any] = torch.arange(1 , a__) _snake_case : Dict = torch.remainder(a__ , a__) _snake_case : Any = remainders == 0 _snake_case : Any = candidates[divisor_indices] _snake_case : Tuple = torch.max(a__) return largest_divisor, torch.div(a__ , a__ , rounding_mode='floor') class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' @property def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case : List[Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(snake_case , direction='inputs' ) _snake_case : Optional[int] = {0: 'batch', 1: 'past_sequence + sequence'} else: _snake_case : Union[str, Any] = {0: 'batch', 1: 'sequence'} return common_inputs @property def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" return self._config.num_heads def __UpperCAmelCase ( self : Tuple , snake_case : PreTrainedTokenizer , snake_case : int = -1 , snake_case : int = -1 , snake_case : bool = False , snake_case : Optional[TensorType] = None , ): """simple docstring""" _snake_case : Dict = super(snake_case , self ).generate_dummy_inputs( snake_case , batch_size=snake_case , seq_length=snake_case , is_pair=snake_case , framework=snake_case ) # We need to order the input in the way they appears in the forward() _snake_case : str = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case : List[str] = common_inputs['input_ids'].shape # Not using the same length for past_key_values _snake_case : Optional[Any] = seqlen + 2 _snake_case : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case : Tuple = [ (torch.zeros(snake_case ), torch.zeros(snake_case )) for _ in range(self.num_layers ) ] _snake_case : Optional[int] = common_inputs['attention_mask'] if self.use_past: _snake_case : str = ordered_inputs['attention_mask'].dtype _snake_case : Tuple = torch.cat( [ordered_inputs['attention_mask'], torch.ones(snake_case , snake_case , dtype=snake_case )] , dim=1 ) return ordered_inputs @property def __UpperCAmelCase ( self : Tuple ): """simple docstring""" return 13
517
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
517
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig _SCREAMING_SNAKE_CASE = { """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class __magic_name__ ( lowercase__ ): _SCREAMING_SNAKE_CASE : List[str] = 'tapas' def __init__( self : Any , snake_case_ : List[str]=30522 , snake_case_ : List[Any]=768 , snake_case_ : List[Any]=12 , snake_case_ : Optional[Any]=12 , snake_case_ : Union[str, Any]=3072 , snake_case_ : int="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : int=0.1 , snake_case_ : Union[str, Any]=1024 , snake_case_ : Union[str, Any]=[3, 256, 256, 2, 256, 256, 10] , snake_case_ : List[Any]=0.02 , snake_case_ : Union[str, Any]=1e-12 , snake_case_ : str=0 , snake_case_ : str=10.0 , snake_case_ : Any=0 , snake_case_ : str=1.0 , snake_case_ : Tuple=None , snake_case_ : Optional[Any]=1.0 , snake_case_ : int=False , snake_case_ : Tuple=None , snake_case_ : Tuple=1.0 , snake_case_ : Tuple=1.0 , snake_case_ : int=False , snake_case_ : int=False , snake_case_ : int="ratio" , snake_case_ : Optional[Any]=None , snake_case_ : int=None , snake_case_ : Any=64 , snake_case_ : List[Any]=32 , snake_case_ : Tuple=False , snake_case_ : Tuple=True , snake_case_ : List[str]=False , snake_case_ : Dict=False , snake_case_ : Any=True , snake_case_ : Dict=False , snake_case_ : str=None , snake_case_ : Dict=None , **snake_case_ : int , ): super().__init__(pad_token_id=snake_case_ , **snake_case_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_sizes __snake_case = initializer_range __snake_case = layer_norm_eps # Fine-tuning task hyperparameters __snake_case = positive_label_weight __snake_case = num_aggregation_labels __snake_case = aggregation_loss_weight __snake_case = use_answer_as_supervision __snake_case = answer_loss_importance __snake_case = use_normalized_answer_loss __snake_case = huber_loss_delta __snake_case = temperature __snake_case = aggregation_temperature __snake_case = use_gumbel_for_cells __snake_case = use_gumbel_for_aggregation __snake_case = average_approximation_function __snake_case = cell_selection_preference __snake_case = answer_loss_cutoff __snake_case = max_num_rows __snake_case = max_num_columns __snake_case = average_logits_per_cell __snake_case = select_one_column __snake_case = allow_empty_column_selection __snake_case = init_cell_selection_weights_to_zero __snake_case = reset_position_index_per_cell __snake_case = disable_per_token_loss # Aggregation hyperparameters __snake_case = aggregation_labels __snake_case = no_aggregation_label_index if isinstance(self.aggregation_labels , snake_case_ ): __snake_case = {int(snake_case_ ): v for k, v in aggregation_labels.items()}
614
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class __magic_name__ ( lowercase__ ): def __init__( self : Tuple , **snake_case_ : str ): super().__init__(**snake_case_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[Any] , snake_case_ : Union[str, List[str], "Image", List["Image"]] , **snake_case_ : Optional[int] ): return super().__call__(snake_case_ , **snake_case_ ) def lowerCAmelCase ( self : Tuple , **snake_case_ : Any ): __snake_case = {} if "candidate_labels" in kwargs: __snake_case = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: __snake_case = kwargs["hypothesis_template"] return preprocess_params, {}, {} def lowerCAmelCase ( self : int , snake_case_ : List[str] , snake_case_ : List[str]=None , snake_case_ : int="This is a photo of {}." ): __snake_case = load_image(snake_case_ ) __snake_case = self.image_processor(images=[image] , return_tensors=self.framework ) __snake_case = candidate_labels __snake_case = [hypothesis_template.format(snake_case_ ) for x in candidate_labels] __snake_case = self.tokenizer(snake_case_ , return_tensors=self.framework , padding=snake_case_ ) __snake_case = [text_inputs] return inputs def lowerCAmelCase ( self : Any , snake_case_ : Dict ): __snake_case = model_inputs.pop("candidate_labels" ) __snake_case = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , snake_case_ ): __snake_case = text_inputs[0] else: # Batching case. __snake_case = text_inputs[0][0] __snake_case = self.model(**snake_case_ , **snake_case_ ) __snake_case = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def lowerCAmelCase ( self : Optional[int] , snake_case_ : Any ): __snake_case = model_outputs.pop("candidate_labels" ) __snake_case = model_outputs["logits"][0] if self.framework == "pt": __snake_case = logits.softmax(dim=-1 ).squeeze(-1 ) __snake_case = probs.tolist() if not isinstance(snake_case_ , snake_case_ ): __snake_case = [scores] elif self.framework == "tf": __snake_case = stable_softmax(snake_case_ , axis=-1 ) __snake_case = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) __snake_case = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(snake_case_ , snake_case_ ) , key=lambda snake_case_ : -x[0] ) ] return result
614
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCAmelCase_ = get_tests_dir('''fixtures''') class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Tuple ) ->Optional[int]: # A mock response for an HTTP head request to emulate server down snake_case_ = mock.Mock() snake_case_ = 5_0_0 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Download this model to make sure it's in the cache. snake_case_ = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_UpperCamelCase ) as mock_head: snake_case_ = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def snake_case__( self : Any ) ->str: # This test is for deprecated behavior and can be removed in v5 snake_case_ = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def snake_case__( self : Union[str, Any] ) ->Union[str, Any]: with self.assertRaises(_UpperCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder snake_case_ = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) snake_case_ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_UpperCamelCase ) @is_staging_test class snake_case_ ( unittest.TestCase ): '''simple docstring''' @classmethod def snake_case__( cls : Optional[int] ) ->Tuple: snake_case_ = TOKEN HfFolder.save_token(_UpperCamelCase ) @classmethod def snake_case__( cls : str ) ->List[str]: try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def snake_case__( self : Optional[Any] ) ->Union[str, Any]: snake_case_ = ViTImageProcessor.from_pretrained(_UpperCamelCase ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _UpperCamelCase , repo_id='''test-image-processor''' , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def snake_case__( self : str ) ->List[str]: snake_case_ = ViTImageProcessor.from_pretrained(_UpperCamelCase ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _UpperCamelCase , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Union[str, Any]: CustomImageProcessor.register_for_auto_class() snake_case_ = CustomImageProcessor.from_pretrained(_UpperCamelCase ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) snake_case_ = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=_UpperCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
39
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def A__ ( A : Optional[int]): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def A__ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def A__ ( ): '''simple docstring''' UpperCamelCase : Tuple = "mock-s3-bucket" UpperCamelCase : List[str] = F'''s3://{mock_bucket}''' UpperCamelCase : Optional[Any] = extract_path_from_uri(A) assert dataset_path.startswith("s3://") is False UpperCamelCase : Any = "./local/path" UpperCamelCase : str = extract_path_from_uri(A) assert dataset_path == new_dataset_path def A__ ( A : Optional[Any]): '''simple docstring''' UpperCamelCase : List[Any] = is_remote_filesystem(A) assert is_remote is True UpperCamelCase : Tuple = fsspec.filesystem("file") UpperCamelCase : int = is_remote_filesystem(A) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , A) def A__ ( A : List[Any] , A : Any , A : str , A : Union[str, Any] , A : List[str] , A : List[Any] , A : Optional[Any]): '''simple docstring''' UpperCamelCase : List[str] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} UpperCamelCase : Any = input_paths[compression_fs_class.protocol] if input_path is None: UpperCamelCase : Any = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(A) UpperCamelCase : List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=A) assert isinstance(A , A) UpperCamelCase : List[Any] = os.path.basename(A) UpperCamelCase : Union[str, Any] = expected_filename[: expected_filename.rindex(".")] assert fs.glob("*") == [expected_filename] with fs.open(A , "r" , encoding="utf-8") as f, open(A , encoding="utf-8") as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"]) def A__ ( A : Optional[int] , A : str , A : Optional[Any]): '''simple docstring''' UpperCamelCase : Any = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} UpperCamelCase : str = compressed_file_paths[protocol] UpperCamelCase : Optional[int] = "dataset.jsonl" UpperCamelCase : Tuple = F'''{protocol}://{member_file_path}::{compressed_file_path}''' UpperCamelCase , *UpperCamelCase : Dict = fsspec.get_fs_token_paths(A) assert fs.isfile(A) assert not fs.isfile("non_existing_" + member_file_path) @pytest.mark.integration def A__ ( A : Dict , A : List[str] , A : Dict , A : List[Any]): '''simple docstring''' UpperCamelCase : Optional[int] = hf_api.dataset_info(A , token=A) UpperCamelCase : List[str] = HfFileSystem(repo_info=A , token=A) assert sorted(hffs.glob("*")) == [".gitattributes", "data"] assert hffs.isdir("data") assert hffs.isfile(".gitattributes") and hffs.isfile("data/text_data.txt") with open(A) as f: assert hffs.open("data/text_data.txt" , "r").read() == f.read() def A__ ( ): '''simple docstring''' UpperCamelCase : str = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(A , A , clobber=A) with pytest.warns(A) as warning_info: importlib.reload(datasets.filesystems) assert len(A) == 1 assert ( str(warning_info[0].message) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
173
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() _UpperCAmelCase : List[Any] =logging.get_logger(__name__) _UpperCAmelCase : List[Any] ="""Hello world! cécé herlolip""" def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: lowerCAmelCase_ : Any = FairseqRobertaModel.from_pretrained(A__ ) roberta.eval() # disable dropout lowerCAmelCase_ : List[Any] = roberta.model.encoder.sentence_encoder lowerCAmelCase_ : str = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: lowerCAmelCase_ : Tuple = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , A__ ) lowerCAmelCase_ : Union[str, Any] = XLMRobertaXLForSequenceClassification(A__ ) if classification_head else XLMRobertaXLForMaskedLM(A__ ) model.eval() # Now let's copy all the weights. # Embeddings lowerCAmelCase_ : Optional[Any] = roberta_sent_encoder.embed_tokens.weight lowerCAmelCase_ : List[Any] = roberta_sent_encoder.embed_positions.weight lowerCAmelCase_ : List[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowerCAmelCase_ : str = roberta_sent_encoder.layer_norm.weight lowerCAmelCase_ : Dict = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCAmelCase_ : int = model.roberta.encoder.layer[i] lowerCAmelCase_ : List[str] = roberta_sent_encoder.layers[i] lowerCAmelCase_ : Any = layer.attention lowerCAmelCase_ : Any = roberta_layer.self_attn_layer_norm.weight lowerCAmelCase_ : str = roberta_layer.self_attn_layer_norm.bias # self attention lowerCAmelCase_ : Tuple = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowerCAmelCase_ : Tuple = roberta_layer.self_attn.q_proj.weight lowerCAmelCase_ : Optional[Any] = roberta_layer.self_attn.q_proj.bias lowerCAmelCase_ : Optional[Any] = roberta_layer.self_attn.k_proj.weight lowerCAmelCase_ : Optional[Any] = roberta_layer.self_attn.k_proj.bias lowerCAmelCase_ : List[Any] = roberta_layer.self_attn.v_proj.weight lowerCAmelCase_ : str = roberta_layer.self_attn.v_proj.bias # self-attention output lowerCAmelCase_ : Any = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowerCAmelCase_ : int = roberta_layer.self_attn.out_proj.weight lowerCAmelCase_ : Dict = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowerCAmelCase_ : Tuple = roberta_layer.final_layer_norm.weight lowerCAmelCase_ : List[Any] = roberta_layer.final_layer_norm.bias # intermediate lowerCAmelCase_ : List[str] = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase_ : Optional[Any] = roberta_layer.fca.weight lowerCAmelCase_ : List[str] = roberta_layer.fca.bias # output lowerCAmelCase_ : Tuple = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase_ : Optional[int] = roberta_layer.fca.weight lowerCAmelCase_ : Any = roberta_layer.fca.bias # end of layer if classification_head: lowerCAmelCase_ : Tuple = roberta.model.classification_heads['''mnli'''].dense.weight lowerCAmelCase_ : Optional[int] = roberta.model.classification_heads['''mnli'''].dense.bias lowerCAmelCase_ : Optional[Any] = roberta.model.classification_heads['''mnli'''].out_proj.weight lowerCAmelCase_ : Tuple = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head lowerCAmelCase_ : Tuple = roberta.model.encoder.lm_head.dense.weight lowerCAmelCase_ : Tuple = roberta.model.encoder.lm_head.dense.bias lowerCAmelCase_ : int = roberta.model.encoder.lm_head.layer_norm.weight lowerCAmelCase_ : Tuple = roberta.model.encoder.lm_head.layer_norm.bias lowerCAmelCase_ : Union[str, Any] = roberta.model.encoder.lm_head.weight lowerCAmelCase_ : Optional[Any] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCAmelCase_ : Optional[Any] = roberta.encode(A__ ).unsqueeze(0 ) # batch of size 1 lowerCAmelCase_ : int = model(A__ )[0] if classification_head: lowerCAmelCase_ : Any = roberta.model.classification_heads['''mnli'''](roberta.extract_features(A__ ) ) else: lowerCAmelCase_ : List[Any] = roberta.model(A__ )[0] print(our_output.shape , their_output.shape ) lowerCAmelCase_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 lowerCAmelCase_ : Optional[Any] = torch.allclose(A__ , A__ , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(A__ ).mkdir(parents=A__ , exist_ok=A__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) if __name__ == "__main__": _UpperCAmelCase : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) _UpperCAmelCase : Union[str, Any] =parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
714
from __future__ import annotations def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )-> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
619
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int ) -> None: '''simple docstring''' _UpperCAmelCase = generate_pascal_triangle(__lowercase ) for row_idx in range(__lowercase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def UpperCAmelCase_ ( __lowercase : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _UpperCAmelCase = [] for current_row_idx in range(__lowercase ): _UpperCAmelCase = populate_current_row(__lowercase , __lowercase ) triangle.append(__lowercase ) return triangle def UpperCAmelCase_ ( __lowercase : list[list[int]] , __lowercase : int ) -> list[int]: '''simple docstring''' _UpperCAmelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _UpperCAmelCase , _UpperCAmelCase = 1, 1 for current_col_idx in range(1 , __lowercase ): calculate_current_element( __lowercase , __lowercase , __lowercase , __lowercase ) return current_row def UpperCAmelCase_ ( __lowercase : list[list[int]] , __lowercase : list[int] , __lowercase : int , __lowercase : int , ) -> None: '''simple docstring''' _UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx - 1] _UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx] _UpperCAmelCase = above_to_left_elt + above_to_right_elt def UpperCAmelCase_ ( __lowercase : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _UpperCAmelCase = [[1]] for row_index in range(1 , __lowercase ): _UpperCAmelCase = [0] + result[-1] + [0] _UpperCAmelCase = row_index + 1 # Calculate the number of distinct elements in a row _UpperCAmelCase = sum(divmod(__lowercase , 2 ) ) _UpperCAmelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] _UpperCAmelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _UpperCAmelCase = row_first_half + row_second_half result.append(__lowercase ) return result def UpperCAmelCase_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowercase : Callable , __lowercase : int ) -> None: _UpperCAmelCase = f'{func.__name__}({value})' _UpperCAmelCase = timeit(f'__main__.{call}' , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowercase , __lowercase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
236
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" __a : Tuple = 42 class _UpperCamelCase ( UpperCamelCase__ ,UpperCamelCase__ ): """simple docstring""" @register_to_config def __init__( self , lowerCAmelCase__ = 16 , lowerCAmelCase__ = 88 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 32 , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = "geglu" , lowerCAmelCase__ = True , lowerCAmelCase__ = True , ) -> List[Any]: '''simple docstring''' super().__init__() __lowercase = num_attention_heads __lowercase = attention_head_dim __lowercase = num_attention_heads * attention_head_dim __lowercase = in_channels __lowercase = torch.nn.GroupNorm(num_groups=__A , num_channels=__A , eps=1E-6 , affine=__A ) __lowercase = nn.Linear(__A , __A ) # 3. Define transformers blocks __lowercase = nn.ModuleList( [ BasicTransformerBlock( __A , __A , __A , dropout=__A , cross_attention_dim=__A , activation_fn=__A , attention_bias=__A , double_self_attention=__A , norm_elementwise_affine=__A , ) for d in range(__A ) ] ) __lowercase = nn.Linear(__A , __A ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=1 , lowerCAmelCase__=None , lowerCAmelCase__ = True , ) -> List[str]: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = hidden_states.shape __lowercase = batch_frames // num_frames __lowercase = hidden_states __lowercase = hidden_states[None, :].reshape(__A , __A , __A , __A , __A ) __lowercase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __lowercase = self.norm(__A ) __lowercase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , __A , __A ) __lowercase = self.proj_in(__A ) # 2. Blocks for block in self.transformer_blocks: __lowercase = block( __A , encoder_hidden_states=__A , timestep=__A , cross_attention_kwargs=__A , class_labels=__A , ) # 3. Output __lowercase = self.proj_out(__A ) __lowercase = ( hidden_states[None, None, :] .reshape(__A , __A , __A , __A , __A ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __lowercase = hidden_states.reshape(__A , __A , __A , __A ) __lowercase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=__A )
715
from __future__ import annotations __a : str = """Muhammad Umer Farooq""" __a : Optional[Any] = """MIT""" __a : int = """1.0.0""" __a : Optional[int] = """Muhammad Umer Farooq""" __a : Dict = """[email protected]""" __a : Optional[Any] = """Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ ) -> None: '''simple docstring''' super().__init__() __lowercase = [] __lowercase = domain def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __lowercase = parse.urljoin(self.domain , lowerCAmelCase__ ) self.urls.append(lowerCAmelCase__ ) def UpperCAmelCase ( lowercase ): """simple docstring""" return ".".join(get_sub_domain_name(lowercase ).split('''.''' )[-2:] ) def UpperCAmelCase ( lowercase ): """simple docstring""" return parse.urlparse(lowercase ).netloc def UpperCAmelCase ( lowercase = "https://github.com" ): """simple docstring""" __lowercase = get_domain_name(lowercase ) # Initialize the parser __lowercase = Parser(lowercase ) try: # Open URL __lowercase = requests.get(lowercase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __lowercase = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __lowercase = requests.get(lowercase ) # Get the valid email. __lowercase = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(lowercase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(lowercase ) if __name__ == "__main__": __a : Union[str, Any] = emails_from_url("""https://github.com""") print(F'''{len(emails)} emails found:''') print("""\n""".join(sorted(emails)))
522
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _UpperCamelCase : int = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): lowerCamelCase__ : Optional[Any] = ["pixel_values"] def __init__( self , a = True , a = 3_2 , a=PILImageResampling.BILINEAR , a = True , **a , ) -> None: lowercase__ : Union[str, Any] = do_resize lowercase__ : Dict = do_rescale lowercase__ : Union[str, Any] = size_divisor lowercase__ : int = resample super().__init__(**a ) def _UpperCAmelCase ( self , a , a , a , a = None , **a ) -> np.ndarray: lowercase__ , lowercase__ : Optional[int] = get_image_size(a ) # Rounds the height and width down to the closest multiple of size_divisor lowercase__ : Optional[Any] = height // size_divisor * size_divisor lowercase__ : Any = width // size_divisor * size_divisor lowercase__ : int = resize(a , (new_h, new_w) , resample=a , data_format=a , **a ) return image def _UpperCAmelCase ( self , a , a , a = None , **a ) -> np.ndarray: return rescale(image=a , scale=a , data_format=a , **a ) def _UpperCAmelCase ( self , a , a = None , a = None , a=None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> BatchFeature: lowercase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowercase__ : Any = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Any = size_divisor if size_divisor is not None else self.size_divisor lowercase__ : Dict = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) lowercase__ : Tuple = make_list_of_images(a ) if not valid_images(a ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. lowercase__ : str = [to_numpy_array(a ) for img in images] if do_resize: lowercase__ : Dict = [self.resize(a , size_divisor=a , resample=a ) for image in images] if do_rescale: lowercase__ : str = [self.rescale(a , scale=1 / 2_5_5 ) for image in images] lowercase__ : List[Any] = [to_channel_dimension_format(a , a ) for image in images] lowercase__ : Optional[int] = {'pixel_values': images} return BatchFeature(data=a , tensor_type=a )
599
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _UpperCamelCase : Any = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): def __init__( self , *a , **a ) -> None: warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , a , ) super().__init__(*a , **a )
599
1
"""simple docstring""" import math import unittest def lowercase__ ( lowerCAmelCase : int ) -> bool: """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class _UpperCAmelCase ( unittest.TestCase ): def a_ ( self ) -> int: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def a_ ( self ) -> int: with self.assertRaises(lowercase_ ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
183
"""simple docstring""" def lowercase__ ( lowerCAmelCase : int , lowerCAmelCase : int ) -> int: """simple docstring""" return number | (1 << position) def lowercase__ ( lowerCAmelCase : int , lowerCAmelCase : int ) -> int: """simple docstring""" return number & ~(1 << position) def lowercase__ ( lowerCAmelCase : int , lowerCAmelCase : int ) -> int: """simple docstring""" return number ^ (1 << position) def lowercase__ ( lowerCAmelCase : int , lowerCAmelCase : int ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def lowercase__ ( lowerCAmelCase : int , lowerCAmelCase : int ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
183
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : str = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
683
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase ( self ) -> Dict: torch.manual_seed(0 ) _UpperCamelCase : Any = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def _lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCamelCase : Optional[Any] = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def _lowercase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCamelCase : Optional[int] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) _UpperCamelCase : int = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def _lowercase ( self ) -> Any: _UpperCamelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : Tuple = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _UpperCamelCase : int = DDPMScheduler() _UpperCamelCase : Optional[int] = AudioDiffusionPipeline(vqvae=_snake_case , unet=self.dummy_unet , mel=_snake_case , scheduler=_snake_case ) _UpperCamelCase : List[Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _UpperCamelCase : Tuple = torch.Generator(device=_snake_case ).manual_seed(42 ) _UpperCamelCase : Optional[int] = pipe(generator=_snake_case , steps=4 ) _UpperCamelCase : Union[str, Any] = output.audios[0] _UpperCamelCase : Union[str, Any] = output.images[0] _UpperCamelCase : str = torch.Generator(device=_snake_case ).manual_seed(42 ) _UpperCamelCase : int = pipe(generator=_snake_case , steps=4 , return_dict=_snake_case ) _UpperCamelCase : int = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _UpperCamelCase : List[str] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase : List[str] = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase : int = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _UpperCamelCase : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _UpperCamelCase : Dict = DDIMScheduler() _UpperCamelCase : str = self.dummy_vqvae_and_unet _UpperCamelCase : List[Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_snake_case , scheduler=_snake_case ) _UpperCamelCase : List[Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) np.random.seed(0 ) _UpperCamelCase : Optional[Any] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _UpperCamelCase : Optional[Any] = torch.Generator(device=_snake_case ).manual_seed(42 ) _UpperCamelCase : Tuple = pipe(raw_audio=_snake_case , generator=_snake_case , start_step=5 , steps=10 ) _UpperCamelCase : List[str] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _UpperCamelCase : Any = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase : Tuple = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _UpperCamelCase : Any = self.dummy_unet_condition _UpperCamelCase : List[Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_snake_case , mel=_snake_case , scheduler=_snake_case ) _UpperCamelCase : Union[str, Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) np.random.seed(0 ) _UpperCamelCase : int = torch.rand((1, 1, 10) ) _UpperCamelCase : Optional[Any] = pipe(generator=_snake_case , encoding=_snake_case ) _UpperCamelCase : Dict = output.images[0] _UpperCamelCase : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase : Any = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Any: _UpperCamelCase : Optional[int] = torch_device _UpperCamelCase : int = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) _UpperCamelCase : str = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _UpperCamelCase : Tuple = torch.Generator(device=_snake_case ).manual_seed(42 ) _UpperCamelCase : Optional[int] = pipe(generator=_snake_case ) _UpperCamelCase : List[Any] = output.audios[0] _UpperCamelCase : List[Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _UpperCamelCase : Union[str, Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _UpperCamelCase : Union[str, Any] = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
683
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Tuple = {"""vocab_file""": """sentencepiece.bpe.model"""} snake_case_ : List[str] = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", } } snake_case_ : List[Any] = { """camembert-base""": 5_1_2, } snake_case_ : Any = """▁""" class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowercase : Union[str, Any] , lowercase : str="<s>" , lowercase : str="</s>" , lowercase : Optional[int]="</s>" , lowercase : Dict="<s>" , lowercase : Optional[Any]="<unk>" , lowercase : List[Any]="<pad>" , lowercase : Any="<mask>" , lowercase : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , lowercase : Optional[Dict[str, Any]] = None , **lowercase : Dict , ): '''simple docstring''' UpperCAmelCase : Optional[Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token UpperCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , cls_token=lowercase , pad_token=lowercase , mask_token=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase ) ) UpperCAmelCase : str = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> UpperCAmelCase : Union[str, Any] = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} UpperCAmelCase : Union[str, Any] = len(self.fairseq_tokens_to_ids ) UpperCAmelCase : Dict = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) UpperCAmelCase : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __lowerCAmelCase ( self : Union[str, Any] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Dict = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self : Dict , lowercase : List[int] , lowercase : Optional[List[int]] = None , lowercase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is None: return [1] + ([0] * len(lowercase )) + [1] return [1] + ([0] * len(lowercase )) + [1, 1] + ([0] * len(lowercase )) + [1] def __lowerCAmelCase ( self : Tuple , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [self.sep_token_id] UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase : List[Any] = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : Optional[Any] , lowercase : str ): '''simple docstring''' return self.sp_model.encode(lowercase , out_type=lowercase ) def __lowerCAmelCase ( self : int , lowercase : Optional[Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(lowercase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(lowercase ) def __lowerCAmelCase ( self : Any , lowercase : Dict ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self : Tuple , lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase : Tuple = [] UpperCAmelCase : Tuple = "" UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase ) + token UpperCAmelCase : Optional[int] = True UpperCAmelCase : str = [] else: current_sub_tokens.append(lowercase ) UpperCAmelCase : Any = False out_string += self.sp_model.decode(lowercase ) return out_string.strip() def __getstate__( self : str ): '''simple docstring''' UpperCAmelCase : List[str] = self.__dict__.copy() UpperCAmelCase : Dict = None return state def __setstate__( self : List[str] , lowercase : str ): '''simple docstring''' UpperCAmelCase : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase : Any = {} UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Optional[Any] , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Optional[Any] = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , "wb" ) as fi: UpperCAmelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
292
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class snake_case__ : SCREAMING_SNAKE_CASE__ = BlenderbotSmallConfig SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = '''gelu''' def __init__( self : Tuple , lowercase : Any , lowercase : Optional[Any]=13 , lowercase : Any=7 , lowercase : List[Any]=True , lowercase : List[str]=False , lowercase : Optional[Any]=99 , lowercase : Union[str, Any]=32 , lowercase : List[Any]=2 , lowercase : Tuple=4 , lowercase : Union[str, Any]=37 , lowercase : str=0.1 , lowercase : Optional[Any]=0.1 , lowercase : Optional[Any]=20 , lowercase : str=2 , lowercase : int=1 , lowercase : Optional[int]=0 , ): '''simple docstring''' UpperCAmelCase : Dict = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : Dict = is_training UpperCAmelCase : str = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : Tuple = hidden_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : List[Any] = pad_token_id UpperCAmelCase : Union[str, Any] = bos_token_id def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : Optional[Any] = prepare_blenderbot_small_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def __lowerCAmelCase ( self : int , lowercase : List[Any] , lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase : List[Any] = TFBlenderbotSmallModel(config=lowercase ).get_decoder() UpperCAmelCase : List[Any] = inputs_dict["input_ids"] UpperCAmelCase : int = input_ids[:1, :] UpperCAmelCase : Union[str, Any] = inputs_dict["attention_mask"][:1, :] UpperCAmelCase : Union[str, Any] = inputs_dict["head_mask"] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : Optional[Any] = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) UpperCAmelCase , UpperCAmelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : str = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : Optional[Any] = model(lowercase , attention_mask=lowercase )[0] UpperCAmelCase : List[str] = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def lowercase_ ( _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : Tuple=None , _lowercase : Any=None , _lowercase : str=None , _lowercase : Optional[Any]=None , _lowercase : Dict=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase : List[str] = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ = ( { '''conversational''': TFBlenderbotSmallForConditionalGeneration, '''feature-extraction''': TFBlenderbotSmallModel, '''summarization''': TFBlenderbotSmallForConditionalGeneration, '''text2text-generation''': TFBlenderbotSmallForConditionalGeneration, '''translation''': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : Dict = TFBlenderbotSmallModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self , config_class=lowercase ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_tokenizers @require_tf class snake_case__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE__ = [ '''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ''' ''' i\'m going to throw up.\nand why is that?''' ] SCREAMING_SNAKE_CASE__ = '''facebook/blenderbot_small-90M''' @cached_property def __lowerCAmelCase ( self : Any ): '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def __lowerCAmelCase ( self : Any ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase : List[Any] = self.tokenizer(self.src_text , return_tensors="tf" ) UpperCAmelCase : List[Any] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , ) UpperCAmelCase : Dict = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
292
1
"""simple docstring""" def lowercase_ ( __UpperCAmelCase ) -> list: lowerCAmelCase__ : int = len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: lowerCAmelCase__ , lowerCAmelCase__ : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": _A = list(range(1_0, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
299
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar _A = TypeVar("""T""") _A = TypeVar("""U""") class _lowerCamelCase ( Generic[T, U] ): def __init__( self : List[Any] , UpperCamelCase : T | None , UpperCamelCase : U | None ) -> str: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = key lowerCAmelCase__ : Union[str, Any] = val lowerCAmelCase__ : DoubleLinkedListNode[T, U] | None = None lowerCAmelCase__ : DoubleLinkedListNode[T, U] | None = None def __repr__( self : List[str] ) -> str: """simple docstring""" return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _lowerCamelCase ( Generic[T, U] ): def __init__( self : int ) -> None: """simple docstring""" lowerCAmelCase__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.rear, self.head def __repr__( self : str ) -> str: """simple docstring""" lowerCAmelCase__ : str = ["""DoubleLinkedList"""] lowerCAmelCase__ : int = self.head while node.next is not None: rep.append(str(UpperCamelCase ) ) lowerCAmelCase__ : Optional[Any] = node.next rep.append(str(self.rear ) ) return ",\n ".join(UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : DoubleLinkedListNode[T, U] ) -> None: """simple docstring""" lowerCAmelCase__ : List[str] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None lowerCAmelCase__ : List[str] = node lowerCAmelCase__ : int = previous lowerCAmelCase__ : Optional[int] = node lowerCAmelCase__ : Dict = self.rear def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : DoubleLinkedListNode[T, U] ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None lowerCAmelCase__ : int = node.next lowerCAmelCase__ : str = node.prev lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : List[Any] = None return node class _lowerCamelCase ( Generic[T, U] ): _lowerCamelCase :dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : Dict , UpperCamelCase : int ) -> str: """simple docstring""" lowerCAmelCase__ : DoubleLinkedList[T, U] = DoubleLinkedList() lowerCAmelCase__ : Tuple = capacity lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self : Optional[Any] ) -> str: """simple docstring""" return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Optional[Any] , UpperCamelCase : T ) -> bool: """simple docstring""" return key in self.cache def _lowerCAmelCase ( self : Any , UpperCamelCase : T ) -> U | None: """simple docstring""" # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 lowerCAmelCase__ : DoubleLinkedListNode[T, U] = self.cache[key] lowerCAmelCase__ : Any = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(UpperCamelCase ) return node.val self.miss += 1 return None def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : T , UpperCamelCase : U ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity lowerCAmelCase__ : List[Any] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(UpperCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 lowerCAmelCase__ : Union[str, Any] = DoubleLinkedListNode(UpperCamelCase , UpperCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value lowerCAmelCase__ : Dict = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list lowerCAmelCase__ : Any = value self.list.add(UpperCamelCase ) @classmethod def _lowerCAmelCase ( cls : Any , UpperCamelCase : int = 1_28 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(UpperCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*UpperCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: lowerCAmelCase__ : List[Any] = LRUCache(UpperCamelCase ) lowerCAmelCase__ : Dict = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: lowerCAmelCase__ : str = func(*UpperCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , UpperCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(UpperCamelCase , """cache_info""" , UpperCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
299
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Dict = (DDPMScheduler,) def UpperCAmelCase_ ( self : Optional[Any] , **_A : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_A ) return config def UpperCAmelCase_ ( self : Dict ) -> Any: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def UpperCAmelCase_ ( self : str ) -> List[Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_A ) def UpperCAmelCase_ ( self : str ) -> Any: """simple docstring""" snake_case_ : Optional[int] = self.scheduler_classes[0] snake_case_ : Tuple = self.get_scheduler_config() snake_case_ : Dict = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" snake_case_ : Union[str, Any] = self.scheduler_classes[0] snake_case_ : List[Any] = self.get_scheduler_config() snake_case_ : Any = scheduler_class(**_A ) snake_case_ : int = len(_A ) snake_case_ : Dict = self.dummy_model() snake_case_ : Optional[Any] = self.dummy_sample_deter snake_case_ : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual snake_case_ : Optional[int] = model(_A , _A ) # 2. predict previous mean of sample x_t-1 snake_case_ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case_ : List[str] = pred_prev_sample snake_case_ : int = torch.sum(torch.abs(_A ) ) snake_case_ : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def UpperCAmelCase_ ( self : int ) -> Optional[int]: """simple docstring""" snake_case_ : str = self.scheduler_classes[0] snake_case_ : int = self.get_scheduler_config(prediction_type='v_prediction' ) snake_case_ : Tuple = scheduler_class(**_A ) snake_case_ : Dict = len(_A ) snake_case_ : Dict = self.dummy_model() snake_case_ : Dict = self.dummy_sample_deter snake_case_ : List[str] = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual snake_case_ : List[str] = model(_A , _A ) # 2. predict previous mean of sample x_t-1 snake_case_ : List[Any] = scheduler.step(_A , _A , _A , generator=_A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case_ : Optional[Any] = pred_prev_sample snake_case_ : Any = torch.sum(torch.abs(_A ) ) snake_case_ : List[Any] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def UpperCAmelCase_ ( self : List[str] ) -> int: """simple docstring""" snake_case_ : str = self.scheduler_classes[0] snake_case_ : Union[str, Any] = self.get_scheduler_config() snake_case_ : Any = scheduler_class(**_A ) snake_case_ : str = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_A ) snake_case_ : Tuple = scheduler.timesteps for i, timestep in enumerate(_A ): if i == len(_A ) - 1: snake_case_ : Tuple = -1 else: snake_case_ : Union[str, Any] = timesteps[i + 1] snake_case_ : str = scheduler.previous_timestep(_A ) snake_case_ : Optional[int] = prev_t.item() self.assertEqual(_A , _A ) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = self.scheduler_classes[0] snake_case_ : Union[str, Any] = self.get_scheduler_config() snake_case_ : List[str] = scheduler_class(**_A ) snake_case_ : Tuple = [100, 87, 50, 51, 0] with self.assertRaises(_A , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_A ) def UpperCAmelCase_ ( self : Dict ) -> int: """simple docstring""" snake_case_ : Union[str, Any] = self.scheduler_classes[0] snake_case_ : int = self.get_scheduler_config() snake_case_ : List[str] = scheduler_class(**_A ) snake_case_ : int = [100, 87, 50, 1, 0] snake_case_ : Any = len(_A ) with self.assertRaises(_A , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: """simple docstring""" snake_case_ : str = self.scheduler_classes[0] snake_case_ : List[str] = self.get_scheduler_config() snake_case_ : Optional[Any] = scheduler_class(**_A ) snake_case_ : Union[str, Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_A )
534
import numpy as np def SCREAMING_SNAKE_CASE__ ( __a ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
534
1
def _snake_case ( __snake_case , __snake_case , __snake_case ): def update_area_of_max_square(__snake_case , __snake_case ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _UpperCamelCase = update_area_of_max_square(__snake_case , col + 1 ) _UpperCamelCase = update_area_of_max_square(row + 1 , col + 1 ) _UpperCamelCase = update_area_of_max_square(row + 1 , __snake_case ) if mat[row][col]: _UpperCamelCase = 1 + min([right, diagonal, down] ) _UpperCamelCase = max(largest_square_area[0] , __snake_case ) return sub_problem_sol else: return 0 _UpperCamelCase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _snake_case ( __snake_case , __snake_case , __snake_case ): def update_area_of_max_square_using_dp_array( __snake_case , __snake_case , __snake_case ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _UpperCamelCase = update_area_of_max_square_using_dp_array(__snake_case , col + 1 , __snake_case ) _UpperCamelCase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , __snake_case ) _UpperCamelCase = update_area_of_max_square_using_dp_array(row + 1 , __snake_case , __snake_case ) if mat[row][col]: _UpperCamelCase = 1 + min([right, diagonal, down] ) _UpperCamelCase = max(largest_square_area[0] , __snake_case ) _UpperCamelCase = sub_problem_sol return sub_problem_sol else: return 0 _UpperCamelCase = [0] _UpperCamelCase = [[-1] * cols for _ in range(__snake_case )] update_area_of_max_square_using_dp_array(0 , 0 , __snake_case ) return largest_square_area[0] def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = [[0] * (cols + 1) for _ in range(rows + 1 )] _UpperCamelCase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _UpperCamelCase = dp_array[row][col + 1] _UpperCamelCase = dp_array[row + 1][col + 1] _UpperCamelCase = dp_array[row + 1][col] if mat[row][col] == 1: _UpperCamelCase = 1 + min(__snake_case , __snake_case , __snake_case ) _UpperCamelCase = max(dp_array[row][col] , __snake_case ) else: _UpperCamelCase = 0 return largest_square_area def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = [0] * (cols + 1) _UpperCamelCase = [0] * (cols + 1) _UpperCamelCase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _UpperCamelCase = current_row[col + 1] _UpperCamelCase = next_row[col + 1] _UpperCamelCase = next_row[col] if mat[row][col] == 1: _UpperCamelCase = 1 + min(__snake_case , __snake_case , __snake_case ) _UpperCamelCase = max(current_row[col] , __snake_case ) else: _UpperCamelCase = 0 _UpperCamelCase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
10
"""simple docstring""" import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowerCamelCase__ = yaml.safe_load( "\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n" ) lowerCamelCase__ = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } lowerCamelCase__ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" lowerCamelCase__ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" lowerCamelCase__ = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Extra Ignored Subsection", "text": "", "is_empty_text": True, "subsections": [], } ], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } lowerCamelCase__ = "\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" lowerCamelCase__ = ( "The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README." ) lowerCamelCase__ = "\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" lowerCamelCase__ = ( "The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README." ) lowerCamelCase__ = "\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" lowerCamelCase__ = "The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README." lowerCamelCase__ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" lowerCamelCase__ = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)." lowerCamelCase__ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n" lowerCamelCase__ = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'." lowerCamelCase__ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n" lowerCamelCase__ = "The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`." lowerCamelCase__ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n" lowerCamelCase__ = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty." lowerCamelCase__ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" lowerCamelCase__ = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README." lowerCamelCase__ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n" lowerCamelCase__ = "The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README." lowerCamelCase__ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" lowerCamelCase__ = "The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README." lowerCamelCase__ = "" lowerCamelCase__ = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README." lowerCamelCase__ = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" lowerCamelCase__ = "The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections." @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase : Any , UpperCamelCase : int ): assert ReadMe.from_string(UpperCamelCase , UpperCamelCase ).to_dict() == expected_dict @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase : int , UpperCamelCase : Optional[Any] ): with pytest.raises(UpperCamelCase , match=re.escape(expected_error.format(path="""root""" ) ) ): A__ = ReadMe.from_string(UpperCamelCase , UpperCamelCase ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase : List[str] , UpperCamelCase : str ): with pytest.raises(UpperCamelCase , match=re.escape(expected_error.format(path="""root""" ) ) ): ReadMe.from_string(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase : str ): ReadMe.from_string(UpperCamelCase , UpperCamelCase , suppress_parsing_errors=UpperCamelCase ) @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase : List[str] , UpperCamelCase : Dict ): with tempfile.TemporaryDirectory() as tmp_dir: A__ = Path(UpperCamelCase ) / """README.md""" with open(UpperCamelCase , """w+""" ) as readme_file: readme_file.write(UpperCamelCase ) A__ = ReadMe.from_readme(UpperCamelCase , UpperCamelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase : Any , UpperCamelCase : Optional[int] ): with tempfile.TemporaryDirectory() as tmp_dir: A__ = Path(UpperCamelCase ) / """README.md""" with open(UpperCamelCase , """w+""" ) as readme_file: readme_file.write(UpperCamelCase ) A__ = expected_error.format(path=UpperCamelCase ) with pytest.raises(UpperCamelCase , match=re.escape(UpperCamelCase ) ): A__ = ReadMe.from_readme(UpperCamelCase , UpperCamelCase ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase : Dict , UpperCamelCase : List[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: A__ = Path(UpperCamelCase ) / """README.md""" with open(UpperCamelCase , """w+""" ) as readme_file: readme_file.write(UpperCamelCase ) A__ = expected_error.format(path=UpperCamelCase ) with pytest.raises(UpperCamelCase , match=re.escape(UpperCamelCase ) ): ReadMe.from_readme(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase : Tuple ): with tempfile.TemporaryDirectory() as tmp_dir: A__ = Path(UpperCamelCase ) / """README.md""" with open(UpperCamelCase , """w+""" ) as readme_file: readme_file.write(UpperCamelCase ) ReadMe.from_readme(UpperCamelCase , UpperCamelCase , suppress_parsing_errors=UpperCamelCase )
574
0
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ) ) ) def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: lowerCamelCase__ =( "Wrong input data's dimensions... " F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(__lowerCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: lowerCamelCase__ =( "Wrong input data's shape... " F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(__lowerCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: lowerCamelCase__ =( "Input data have different datatype... " F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(__lowerCAmelCase ) lowerCamelCase__ =[] for value in value_array: lowerCamelCase__ =euclidean(__lowerCAmelCase , dataset[0] ) lowerCamelCase__ =dataset[0].tolist() for dataset_value in dataset[1:]: lowerCamelCase__ =euclidean(__lowerCAmelCase , __lowerCAmelCase ) if dist > temp_dist: lowerCamelCase__ =temp_dist lowerCamelCase__ =dataset_value.tolist() answer.append([vector, dist] ) return answer def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> float: return np.dot(__lowerCAmelCase , __lowerCAmelCase ) / (norm(__lowerCAmelCase ) * norm(__lowerCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin a =1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __UpperCAmelCase : def __init__( self , _lowerCamelCase , _lowerCamelCase=16 , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=14 , _lowerCamelCase=10 , _lowerCamelCase=19 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=True , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=[1, 2, 3, 4, 5] , _lowerCamelCase=25 , _lowerCamelCase=5 , ): lowerCamelCase__ =d_model lowerCamelCase__ =parent lowerCamelCase__ =batch_size lowerCamelCase__ =prediction_length lowerCamelCase__ =context_length lowerCamelCase__ =cardinality lowerCamelCase__ =num_time_features lowerCamelCase__ =lags_sequence lowerCamelCase__ =embedding_dimension lowerCamelCase__ =is_training lowerCamelCase__ =hidden_size lowerCamelCase__ =num_hidden_layers lowerCamelCase__ =num_attention_heads lowerCamelCase__ =intermediate_size lowerCamelCase__ =hidden_act lowerCamelCase__ =hidden_dropout_prob lowerCamelCase__ =attention_probs_dropout_prob lowerCamelCase__ =context_length lowerCamelCase__ =prediction_length + label_length lowerCamelCase__ =label_length lowerCamelCase__ =moving_average lowerCamelCase__ =autocorrelation_factor def _a ( self ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def _a ( self , _lowerCamelCase ): lowerCamelCase__ =config.context_length + max(config.lags_sequence ) lowerCamelCase__ =ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCamelCase__ =floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCamelCase__ =floats_tensor([self.batch_size, _past_length] ) lowerCamelCase__ =floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCamelCase__ =floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCamelCase__ =floats_tensor([self.batch_size, config.prediction_length] ) lowerCamelCase__ ={ "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def _a ( self ): lowerCamelCase__ =self.get_config() lowerCamelCase__ =self.prepare_autoformer_inputs_dict(_lowerCamelCase ) return config, inputs_dict def _a ( self ): lowerCamelCase__ , lowerCamelCase__ =self.prepare_config_and_inputs() return config, inputs_dict def _a ( self , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ =AutoformerModel(config=_lowerCamelCase ).to(_lowerCamelCase ).eval() lowerCamelCase__ =model(**_lowerCamelCase ) lowerCamelCase__ =outputs.encoder_last_hidden_state lowerCamelCase__ =outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ =model.get_encoder() encoder.save_pretrained(_lowerCamelCase ) lowerCamelCase__ =AutoformerEncoder.from_pretrained(_lowerCamelCase ).to(_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ =model.create_network_inputs(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCamelCase__ =torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCamelCase__ =encoder(inputs_embeds=_lowerCamelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) lowerCamelCase__ =( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCamelCase__ =torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCamelCase__ =torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCamelCase__ =torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ =model.get_decoder() decoder.save_pretrained(_lowerCamelCase ) lowerCamelCase__ =AutoformerDecoder.from_pretrained(_lowerCamelCase ).to(_lowerCamelCase ) lowerCamelCase__ =decoder( trend=_lowerCamelCase , inputs_embeds=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __UpperCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): A__ : Any = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () A__ : Union[str, Any] = (AutoformerForPrediction,) if is_torch_available() else () A__ : List[Any] = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} A__ : Optional[Any] = False A__ : Optional[Any] = False A__ : Any = False A__ : List[Any] = False A__ : Union[str, Any] = False A__ : Tuple = False def _a ( self ): lowerCamelCase__ =AutoformerModelTester(self ) lowerCamelCase__ =ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): lowerCamelCase__ , lowerCamelCase__ =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCamelCase__ =model_class(_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =model_class.from_pretrained(_lowerCamelCase , output_loading_info=_lowerCamelCase ) self.assertEqual(info["missing_keys"] , [] ) def _a ( self ): lowerCamelCase__ =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_lowerCamelCase ) @unittest.skip(reason="Model has no tokens embeddings" ) def _a ( self ): pass def _a ( self ): lowerCamelCase__ =inspect.signature(getattr(_lowerCamelCase , "forward" ) ) # The main input is the name of the argument after `self` lowerCamelCase__ =list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , _lowerCamelCase ) def _a ( self ): lowerCamelCase__ , lowerCamelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ =model_class(_lowerCamelCase ) lowerCamelCase__ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ =[*signature.parameters.keys()] lowerCamelCase__ =[ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(_lowerCamelCase )] , _lowerCamelCase ) def _a ( self ): lowerCamelCase__ , lowerCamelCase__ =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ =True lowerCamelCase__ =getattr(self.model_tester , "seq_length" , _lowerCamelCase ) lowerCamelCase__ =getattr(self.model_tester , "decoder_seq_length" , _lowerCamelCase ) lowerCamelCase__ =getattr(self.model_tester , "encoder_seq_length" , _lowerCamelCase ) lowerCamelCase__ =getattr(self.model_tester , "d_model" , _lowerCamelCase ) lowerCamelCase__ =getattr(self.model_tester , "num_attention_heads" , _lowerCamelCase ) lowerCamelCase__ =d_model // num_attention_heads for model_class in self.all_model_classes: lowerCamelCase__ =True lowerCamelCase__ =False lowerCamelCase__ =True lowerCamelCase__ =model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ =model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase__ =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase__ =True lowerCamelCase__ =model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ =model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase__ =outputs.encoder_attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCamelCase__ =len(_lowerCamelCase ) lowerCamelCase__ =7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(_lowerCamelCase , _lowerCamelCase ) # decoder attentions lowerCamelCase__ =outputs.decoder_attentions self.assertIsInstance(_lowerCamelCase , (list, tuple) ) self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCamelCase__ =outputs.cross_attentions self.assertIsInstance(_lowerCamelCase , (list, tuple) ) self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ =model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) self.assertEqual(out_len + 2 , len(_lowerCamelCase ) ) lowerCamelCase__ =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def _a ( self ): super().test_retain_grad_hidden_states_attentions() def lowerCamelCase_ ( __lowerCAmelCase="train-batch.pt" ) -> Tuple: '''simple docstring''' lowerCamelCase__ =hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=__lowerCAmelCase , repo_type="dataset" ) lowerCamelCase__ =torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase ) return batch @require_torch @slow class __UpperCAmelCase ( unittest.TestCase ): def _a ( self ): lowerCamelCase__ =AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(_lowerCamelCase ) lowerCamelCase__ =prepare_batch() with torch.no_grad(): lowerCamelCase__ =model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] lowerCamelCase__ =torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , _lowerCamelCase ) lowerCamelCase__ =torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=_lowerCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def _a ( self ): lowerCamelCase__ =AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(_lowerCamelCase ) lowerCamelCase__ =prepare_batch("val-batch.pt" ) with torch.no_grad(): lowerCamelCase__ =model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state lowerCamelCase__ =torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , _lowerCamelCase ) lowerCamelCase__ =torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=_lowerCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def _a ( self ): lowerCamelCase__ =AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(_lowerCamelCase ) lowerCamelCase__ =prepare_batch("val-batch.pt" ) with torch.no_grad(): lowerCamelCase__ =model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) lowerCamelCase__ =torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , _lowerCamelCase ) lowerCamelCase__ =torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=_lowerCamelCase ) lowerCamelCase__ =outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , _lowerCamelCase , rtol=1E-1 ) )
132
0
import argparse from collections import defaultdict import yaml _lowerCamelCase = 'docs/source/en/_toctree.yml' def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = defaultdict(_snake_case ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(_snake_case ) SCREAMING_SNAKE_CASE__ = new_doc_list SCREAMING_SNAKE_CASE__ = [key for key, value in counts.items() if value > 1] SCREAMING_SNAKE_CASE__ = [] for duplicate_key in duplicates: SCREAMING_SNAKE_CASE__ = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(_snake_case ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) SCREAMING_SNAKE_CASE__ = sorted(_snake_case , key=lambda UpperCamelCase__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_snake_case ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(_snake_case ) # Sort return overview_doc def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str=False ): with open(_snake_case , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE__ = yaml.safe_load(f.read() ) # Get to the API doc SCREAMING_SNAKE_CASE__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 SCREAMING_SNAKE_CASE__ = content[api_idx]["""sections"""] # Then to the model doc SCREAMING_SNAKE_CASE__ = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 SCREAMING_SNAKE_CASE__ = api_doc[scheduler_idx]["""sections"""] SCREAMING_SNAKE_CASE__ = clean_doc_toc(_snake_case ) SCREAMING_SNAKE_CASE__ = False if new_scheduler_doc != scheduler_doc: SCREAMING_SNAKE_CASE__ = True if overwrite: SCREAMING_SNAKE_CASE__ = new_scheduler_doc if diff: if overwrite: SCREAMING_SNAKE_CASE__ = api_doc with open(_snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(_snake_case , allow_unicode=_snake_case ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str]=False ): with open(_snake_case , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE__ = yaml.safe_load(f.read() ) # Get to the API doc SCREAMING_SNAKE_CASE__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 SCREAMING_SNAKE_CASE__ = content[api_idx]["""sections"""] # Then to the model doc SCREAMING_SNAKE_CASE__ = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = api_doc[pipeline_idx]["""sections"""] SCREAMING_SNAKE_CASE__ = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: SCREAMING_SNAKE_CASE__ = pipeline_doc["""section"""] SCREAMING_SNAKE_CASE__ = clean_doc_toc(_snake_case ) if overwrite: SCREAMING_SNAKE_CASE__ = new_sub_pipeline_doc new_pipeline_docs.append(_snake_case ) # sort overall pipeline doc SCREAMING_SNAKE_CASE__ = clean_doc_toc(_snake_case ) if new_pipeline_docs != pipeline_docs: SCREAMING_SNAKE_CASE__ = True if overwrite: SCREAMING_SNAKE_CASE__ = new_pipeline_docs if diff: if overwrite: SCREAMING_SNAKE_CASE__ = api_doc with open(_snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(_snake_case , allow_unicode=_snake_case ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _lowerCamelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
6
"""simple docstring""" class lowerCamelCase__ : def __init__( self ,A ): UpperCAmelCase = n UpperCAmelCase = [None] * self.n UpperCAmelCase = 0 # index of the first element UpperCAmelCase = 0 UpperCAmelCase = 0 def __len__( self ): return self.size def _UpperCamelCase ( self ): return self.size == 0 def _UpperCamelCase ( self ): return False if self.is_empty() else self.array[self.front] def _UpperCamelCase ( self ,A ): if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) UpperCAmelCase = data UpperCAmelCase = (self.rear + 1) % self.n self.size += 1 return self def _UpperCamelCase ( self ): if self.size == 0: raise Exception("""UNDERFLOW""" ) UpperCAmelCase = self.array[self.front] UpperCAmelCase = None UpperCAmelCase = (self.front + 1) % self.n self.size -= 1 return temp
341
0
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a_ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : Tuple = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=8): SCREAMING_SNAKE_CASE = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=512 , _UpperCAmelCase=512): SCREAMING_SNAKE_CASE = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1) SCREAMING_SNAKE_CASE = np.array(pil_image.convert('RGB')) SCREAMING_SNAKE_CASE = arr.astype(np.floataa) / 1_27.5 - 1 SCREAMING_SNAKE_CASE = np.transpose(_UpperCAmelCase , [2, 0, 1]) SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCAmelCase).unsqueeze(0) return image class _snake_case ( A__ ): def __init__( self , a , a , a , ) -> Optional[Any]: super().__init__() self.register_modules( unet=a , scheduler=a , movq=a , ) SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels) - 1) def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any: # get the original timestep using init_timestep SCREAMING_SNAKE_CASE = min(int(num_inference_steps * strength) , a) SCREAMING_SNAKE_CASE = max(num_inference_steps - init_timestep , 0) SCREAMING_SNAKE_CASE = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a=None) -> List[str]: if not isinstance(a , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a)}''') SCREAMING_SNAKE_CASE = image.to(device=a , dtype=a) SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE = image else: if isinstance(a , a) and len(a) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(a)}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') elif isinstance(a , a): SCREAMING_SNAKE_CASE = [ self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(a) ] SCREAMING_SNAKE_CASE = torch.cat(a , dim=0) else: SCREAMING_SNAKE_CASE = self.movq.encode(a).latent_dist.sample(a) SCREAMING_SNAKE_CASE = self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE = torch.cat([init_latents] , dim=0) SCREAMING_SNAKE_CASE = init_latents.shape SCREAMING_SNAKE_CASE = randn_tensor(a , generator=a , device=a , dtype=a) # get latents SCREAMING_SNAKE_CASE = self.scheduler.add_noise(a , a , a) SCREAMING_SNAKE_CASE = init_latents return latents def SCREAMING_SNAKE_CASE__ ( self , a=0) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`') SCREAMING_SNAKE_CASE = torch.device(f'''cuda:{gpu_id}''') SCREAMING_SNAKE_CASE = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a) def SCREAMING_SNAKE_CASE__ ( self , a=0) -> Optional[Any]: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0'): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.') SCREAMING_SNAKE_CASE = torch.device(f'''cuda:{gpu_id}''') if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=a) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cpu_offload_with_hook(a , a , prev_module_hook=a) # We'll offload the last model manually. SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE__ ( self) -> str: if not hasattr(self.unet , '_hf_hook'): return self.device for module in self.unet.modules(): if ( hasattr(a , '_hf_hook') and hasattr(module._hf_hook , 'execution_device') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(a) def __call__( self , a , a , a , a = 512 , a = 512 , a = 100 , a = 4.0 , a = 0.3 , a = 1 , a = None , a = "pil" , a = True , ) -> Tuple: SCREAMING_SNAKE_CASE = self._execution_device SCREAMING_SNAKE_CASE = guidance_scale > 1.0 if isinstance(a , a): SCREAMING_SNAKE_CASE = torch.cat(a , dim=0) SCREAMING_SNAKE_CASE = image_embeds.shape[0] if isinstance(a , a): SCREAMING_SNAKE_CASE = torch.cat(a , dim=0) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(a , dim=0) SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(a , dim=0) SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=a) if not isinstance(a , a): SCREAMING_SNAKE_CASE = [image] if not all(isinstance(a , (PIL.Image.Image, torch.Tensor)) for i in image): raise ValueError( f'''Input is in incorrect format: {[type(a) for i in image]}. Currently, we only support PIL image and pytorch tensor''') SCREAMING_SNAKE_CASE = torch.cat([prepare_image(a , a , a) for i in image] , dim=0) SCREAMING_SNAKE_CASE = image.to(dtype=image_embeds.dtype , device=a) SCREAMING_SNAKE_CASE = self.movq.encode(a)['latents'] SCREAMING_SNAKE_CASE = latents.repeat_interleave(a , dim=0) self.scheduler.set_timesteps(a , device=a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_timesteps(a , a , a) SCREAMING_SNAKE_CASE = timesteps[:1].repeat(batch_size * num_images_per_prompt) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = downscale_height_and_width(a , a , self.movq_scale_factor) SCREAMING_SNAKE_CASE = self.prepare_latents( a , a , a , a , image_embeds.dtype , a , a) for i, t in enumerate(self.progress_bar(a)): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE = torch.cat([latents] * 2) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE = {'image_embeds': image_embeds} SCREAMING_SNAKE_CASE = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.chunk(2) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = variance_pred.chunk(2) SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , 'variance_type') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step( a , a , a , generator=a , )[0] # post-processing SCREAMING_SNAKE_CASE = self.movq.decode(a , force_not_quantize=a)['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''') if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE = image.clamp(0 , 1) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(a) if not return_dict: return (image,) return ImagePipelineOutput(images=a)
444
import os from collections.abc import Iterator def lowerCamelCase__ (_UpperCAmelCase = "."): for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase): SCREAMING_SNAKE_CASE = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCAmelCase)[1] in (".py", ".ipynb"): yield os.path.join(_UpperCAmelCase , _UpperCAmelCase).lstrip('./') def lowerCamelCase__ (_UpperCAmelCase): return F'''{i * ' '}*''' if i else "\n##" def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = old_path.split(os.sep) for i, new_part in enumerate(new_path.split(os.sep)): if (i + 1 > len(_UpperCAmelCase) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(_UpperCAmelCase)} {new_part.replace('_' , ' ').title()}''') return new_path def lowerCamelCase__ (_UpperCAmelCase = "."): SCREAMING_SNAKE_CASE = '' for filepath in sorted(good_file_paths(_UpperCAmelCase)): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = os.path.split(_UpperCAmelCase) if filepath != old_path: SCREAMING_SNAKE_CASE = print_path(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = (filepath.count(os.sep) + 1) if filepath else 0 SCREAMING_SNAKE_CASE = F'''{filepath}/{filename}'''.replace(' ' , '%20') SCREAMING_SNAKE_CASE = os.path.splitext(filename.replace('_' , ' ').title())[0] print(F'''{md_prefix(_UpperCAmelCase)} [{filename}]({url})''') if __name__ == "__main__": print_directory_md('.')
444
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Any = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class a_ ( _a , unittest.TestCase ): a : Any = PegasusTokenizer a : Optional[Any] = PegasusTokenizerFast a : Tuple = True a : Optional[Any] = True def UpperCamelCase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowercase = PegasusTokenizer(__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self ): return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def UpperCamelCase_ ( self , **__UpperCamelCase ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def UpperCamelCase_ ( self , __UpperCamelCase ): return ("This is a test", "This is a test") def UpperCamelCase_ ( self ): _lowercase = """</s>""" _lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def UpperCamelCase_ ( self ): _lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(__UpperCamelCase ) , 1_103 ) def UpperCamelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_103 ) def UpperCamelCase_ ( self ): _lowercase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _lowercase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _lowercase = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _lowercase = rust_tokenizer([raw_input_str] , return_tensors=__UpperCamelCase , add_special_tokens=__UpperCamelCase ).input_ids[0] _lowercase = py_tokenizer([raw_input_str] , return_tensors=__UpperCamelCase , add_special_tokens=__UpperCamelCase ).input_ids[0] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCamelCase_ ( self ): _lowercase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _lowercase = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _lowercase = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] _lowercase = tokenizer([raw_input_str] , return_tensors=__UpperCamelCase ).input_ids[0] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCamelCase_ ( self ): _lowercase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 _lowercase = """To ensure a smooth flow of bank resolutions.""" _lowercase = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] _lowercase = tokenizer([raw_input_str] , return_tensors=__UpperCamelCase ).input_ids[0] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCamelCase_ ( self ): _lowercase = ["""This is going to be way too long.""" * 150, """short example"""] _lowercase = ["""not super long but more than 5 tokens""", """tiny"""] _lowercase = self._large_tokenizer(__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" ) _lowercase = self._large_tokenizer( text_target=__UpperCamelCase , max_length=5 , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(__UpperCamelCase ) == 2 # input_ids, attention_mask. @slow def UpperCamelCase_ ( self ): # fmt: off _lowercase = {"""input_ids""": [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class a_ ( _a , unittest.TestCase ): a : Dict = PegasusTokenizer a : Tuple = PegasusTokenizerFast a : Optional[Any] = True a : List[str] = True def UpperCamelCase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowercase = PegasusTokenizer(__UpperCamelCase , offset=0 , mask_token_sent=__UpperCamelCase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase_ ( self ): return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def UpperCamelCase_ ( self , **__UpperCamelCase ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def UpperCamelCase_ ( self , __UpperCamelCase ): return ("This is a test", "This is a test") def UpperCamelCase_ ( self ): _lowercase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _lowercase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _lowercase = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _lowercase = rust_tokenizer([raw_input_str] , return_tensors=__UpperCamelCase , add_special_tokens=__UpperCamelCase ).input_ids[0] _lowercase = py_tokenizer([raw_input_str] , return_tensors=__UpperCamelCase , add_special_tokens=__UpperCamelCase ).input_ids[0] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) @require_torch def UpperCamelCase_ ( self ): _lowercase = ["""This is going to be way too long.""" * 1_000, """short example"""] _lowercase = ["""not super long but more than 5 tokens""", """tiny"""] _lowercase = self._large_tokenizer(__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" ) _lowercase = self._large_tokenizer( text_target=__UpperCamelCase , max_length=5 , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(__UpperCamelCase ) == 2 # input_ids, attention_mask. def UpperCamelCase_ ( self ): _lowercase = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _lowercase = self._large_tokenizer(__UpperCamelCase ).input_ids self.assertListEqual( __UpperCamelCase , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
287
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging A : int = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] A : Any = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() A : Optional[int] = logging.get_logger(__name__) A : int = ''' Hello world! cécé herlolip''' A : List[Any] = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: _lowercase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[str]: _lowercase = dct.pop(SCREAMING_SNAKE_CASE_ ) _lowercase = val def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : Any ) -> Any: _lowercase = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" ) _lowercase = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: _lowercase , _lowercase = emb.weight.shape _lowercase = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) _lowercase = emb.weight.data return lin_layer @torch.no_grad() def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int=None ) -> int: if not os.path.exists(SCREAMING_SNAKE_CASE_ ): _lowercase = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE_ ).eval() else: _lowercase = load_xsum_checkpoint(SCREAMING_SNAKE_CASE_ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _lowercase = checkpoint_path.replace(""".""" , """-""" ) _lowercase = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) _lowercase = bart.encode(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) _lowercase = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ).encode(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).all(): raise ValueError( f"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": _lowercase = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) _lowercase = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowercase = BartForSequenceClassification(SCREAMING_SNAKE_CASE_ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) _lowercase = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE_ , return_logits=SCREAMING_SNAKE_CASE_ ) _lowercase = model(SCREAMING_SNAKE_CASE_ )[0] # logits else: # no classification heads to worry about _lowercase = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) _lowercase = state_dict["""decoder.embed_tokens.weight"""] _lowercase = bart.extract_features(SCREAMING_SNAKE_CASE_ ) if hf_checkpoint_name == "facebook/bart-large": _lowercase = BartModel(SCREAMING_SNAKE_CASE_ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) _lowercase = model(SCREAMING_SNAKE_CASE_ ).model[0] else: _lowercase = BartForConditionalGeneration(SCREAMING_SNAKE_CASE_ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE_ ) if hasattr(SCREAMING_SNAKE_CASE_ , """lm_head""" ): _lowercase = make_linear_from_emb(model.model.shared ) _lowercase = model.model(SCREAMING_SNAKE_CASE_ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) A : Any = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
287
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _lowerCamelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE (UpperCamelCase ): def __init__( self : int , *UpperCamelCase : Optional[Any] , **UpperCamelCase : List[Any] )->None: warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
447
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): _lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCamelCase = 128022 _lowerCamelCase = 128028 @require_sentencepiece class _SCREAMING_SNAKE_CASE (UpperCamelCase , unittest.TestCase ): lowerCAmelCase = MaMaaaTokenizer lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = True def __snake_case ( self : Union[str, Any] )->Optional[Any]: super().setUp() __SCREAMING_SNAKE_CASE : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] __SCREAMING_SNAKE_CASE : List[str] = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __SCREAMING_SNAKE_CASE : int = Path(self.tmpdirname ) save_json(UpperCamelCase , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(UpperCamelCase , save_dir / VOCAB_FILES_NAMES["spm_file"] ) __SCREAMING_SNAKE_CASE : Any = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : Optional[int] , **UpperCamelCase : Any )->Dict: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def __snake_case ( self : Dict , UpperCamelCase : List[str] )->int: return ( "This is a test", "This is a test", ) def __snake_case ( self : str )->Tuple: __SCREAMING_SNAKE_CASE : List[Any] = "</s>" __SCREAMING_SNAKE_CASE : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def __snake_case ( self : Tuple )->Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(UpperCamelCase ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __snake_case ( self : Dict )->Dict: pass def __snake_case ( self : Union[str, Any] )->Union[str, Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [2, 3, 4, 5, 6] , ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) __SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_string(UpperCamelCase ) self.assertEqual(UpperCamelCase , "This is a test" ) @slow def __snake_case ( self : Any )->Union[str, Any]: # fmt: off __SCREAMING_SNAKE_CASE : Tuple = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE (unittest.TestCase ): lowerCAmelCase = """facebook/m2m100_418M""" lowerCAmelCase = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] lowerCAmelCase = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off lowerCAmelCase = [EN_CODE, 593, 1949, 11_5781, 4, 7_1586, 4234, 6_0633, 12_6233, 432, 12_3808, 1_5592, 1197, 11_7132, 12_0618, 5, 2] @classmethod def __snake_case ( cls : List[Any] )->Union[str, Any]: __SCREAMING_SNAKE_CASE : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) __SCREAMING_SNAKE_CASE : Optional[Any] = 1 return cls def __snake_case ( self : Dict )->Any: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __snake_case ( self : Any )->Union[str, Any]: __SCREAMING_SNAKE_CASE : str = self.tokenizer.get_vocab() self.assertEqual(len(UpperCamelCase ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , UpperCamelCase ) def __snake_case ( self : List[Any] )->str: __SCREAMING_SNAKE_CASE : Union[str, Any] = "en" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase ) def __snake_case ( self : Union[str, Any] )->List[Any]: self.assertIn(UpperCamelCase , self.tokenizer.all_special_ids ) # fmt: off __SCREAMING_SNAKE_CASE : Dict = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on __SCREAMING_SNAKE_CASE : int = self.tokenizer.decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase ) def __snake_case ( self : Any )->List[Any]: __SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(UpperCamelCase ) __SCREAMING_SNAKE_CASE : Any = MaMaaaTokenizer.from_pretrained(UpperCamelCase ) self.assertDictEqual(new_tok.lang_token_to_id , UpperCamelCase ) @require_torch def __snake_case ( self : Any )->int: __SCREAMING_SNAKE_CASE : List[str] = "en" __SCREAMING_SNAKE_CASE : Dict = "fr" __SCREAMING_SNAKE_CASE : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase , return_tensors="pt" ) __SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __SCREAMING_SNAKE_CASE : Union[str, Any] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __snake_case ( self : str )->int: __SCREAMING_SNAKE_CASE : Optional[Any] = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __SCREAMING_SNAKE_CASE : Optional[int] = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __snake_case ( self : Optional[Any] )->List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __SCREAMING_SNAKE_CASE : Optional[int] = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __snake_case ( self : Tuple )->Optional[int]: __SCREAMING_SNAKE_CASE : Any = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(UpperCamelCase ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
447
1
lowercase_ = "Tobias Carryer" from time import time class SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , a : Tuple , a : Any , a : List[str] , a : int=int(time() ) )-> List[Any]: # noqa: B008 """simple docstring""" lowercase__ = multiplier lowercase__ = increment lowercase__ = modulo lowercase__ = seed def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> str: """simple docstring""" lowercase__ = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. lowercase_ = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
235
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path A: Optional[int] = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def _snake_case ( UpperCamelCase : List[str]=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=UpperCAmelCase__ ) ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Tuple = None def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' with TemporaryDirectory() as tmp_dir: UpperCAmelCase : str = dataset_module_factory(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = import_main_class(dataset_module.module_path , dataset=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE , hash=dataset_module.hash , ) UpperCAmelCase : Optional[int] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_SCREAMING_SNAKE_CASE ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) UpperCAmelCase : Tuple = cached_path(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ) self.assertTrue(os.path.exists(_SCREAMING_SNAKE_CASE ) ) @pytest.mark.integration def _snake_case ( UpperCamelCase : int ): UpperCAmelCase : str = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" UpperCAmelCase : Optional[int] = dataset_module_factory("""wikipedia""" , cache_dir=UpperCamelCase ) UpperCAmelCase : List[Any] = import_main_class(dataset_module.module_path ) UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=UpperCamelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam UpperCAmelCase : List[str] = None builder_instance.download_and_prepare() UpperCAmelCase : List[Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : List[str] = dataset_module_factory("""wikipedia""" , cache_dir=UpperCamelCase ) UpperCAmelCase : Optional[Any] = import_main_class(dataset_module.module_path , dataset=UpperCamelCase ) UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=UpperCamelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) UpperCAmelCase : Any = builder_instance.as_streaming_dataset() assert ds assert isinstance(UpperCamelCase , UpperCamelCase ) assert "train" in ds assert isinstance(ds["""train"""] , UpperCamelCase ) assert next(iter(ds["""train"""] ) )
160
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowercase : Optional[int] = logging.getLogger() def snake_case__ ( ): A : str = argparse.ArgumentParser() parser.add_argument('''-f''' ) A : str = parser.parse_args() return args.f class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def snake_case ( self ) -> None: A : List[str] = logging.StreamHandler(sys.stdout ) logger.addHandler(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ) -> Any: A : List[str] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , '''run_glue_deebert.py''' ) with patch.object(__UpperCAmelCase , '''argv''' , __UpperCAmelCase ): A : Optional[int] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__UpperCAmelCase , 0.6_6_6 ) @slow @require_torch_non_multi_gpu def snake_case ( self ) -> Optional[Any]: A : Optional[int] = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(__UpperCAmelCase ) A : Union[str, Any] = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__UpperCAmelCase ) A : int = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__UpperCAmelCase )
423
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowercase : List[Any] = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowercase : Any = "https://storage.googleapis.com/cvdf-datasets/mnist/" def snake_case__ ( lowerCamelCase_ ): A : int = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=lowerCamelCase_ )[0] @deprecated(lowerCamelCase_ , '''Please use tf.data to implement this functionality.''' ) def snake_case__ ( lowerCamelCase_ ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=lowerCamelCase_ ) as bytestream: A : int = _readaa(lowerCamelCase_ ) if magic != 2051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) A : Tuple = _readaa(lowerCamelCase_ ) A : Union[str, Any] = _readaa(lowerCamelCase_ ) A : Tuple = _readaa(lowerCamelCase_ ) A : Tuple = bytestream.read(rows * cols * num_images ) A : List[str] = numpy.frombuffer(lowerCamelCase_ , dtype=numpy.uinta ) A : Dict = data.reshape(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , 1 ) return data @deprecated(lowerCamelCase_ , '''Please use tf.one_hot on tensors.''' ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): A : List[str] = labels_dense.shape[0] A : List[Any] = numpy.arange(lowerCamelCase_ ) * num_classes A : Any = numpy.zeros((num_labels, num_classes) ) A : Optional[Any] = 1 return labels_one_hot @deprecated(lowerCamelCase_ , '''Please use tf.data to implement this functionality.''' ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=10 ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=lowerCamelCase_ ) as bytestream: A : Optional[int] = _readaa(lowerCamelCase_ ) if magic != 2049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) A : List[str] = _readaa(lowerCamelCase_ ) A : Optional[Any] = bytestream.read(lowerCamelCase_ ) A : List[str] = numpy.frombuffer(lowerCamelCase_ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(lowerCamelCase_ , lowerCamelCase_ ) return labels class __lowercase : """simple docstring""" @deprecated( __UpperCAmelCase , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=dtypes.floataa , __UpperCAmelCase=True , __UpperCAmelCase=None , ) -> Optional[Any]: A , A : Any = random_seed.get_seed(__UpperCAmelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) A : Optional[int] = dtypes.as_dtype(__UpperCAmelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: A : int = 1_00_00 A : Union[str, Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'images.shape: {images.shape} labels.shape: {labels.shape}' A : int = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 A : Dict = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. A : Dict = images.astype(numpy.floataa ) A : Optional[Any] = numpy.multiply(__UpperCAmelCase , 1.0 / 2_5_5.0 ) A : Optional[Any] = images A : int = labels A : Tuple = 0 A : int = 0 @property def snake_case ( self ) -> Optional[Any]: return self._images @property def snake_case ( self ) -> List[str]: return self._labels @property def snake_case ( self ) -> Tuple: return self._num_examples @property def snake_case ( self ) -> List[str]: return self._epochs_completed def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ) -> Optional[int]: if fake_data: A : int = [1] * 7_84 A : List[Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__UpperCAmelCase )], [fake_label for _ in range(__UpperCAmelCase )], ) A : Optional[int] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: A : Any = numpy.arange(self._num_examples ) numpy.random.shuffle(__UpperCAmelCase ) A : Dict = self.images[perma] A : Tuple = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch A : Union[str, Any] = self._num_examples - start A : str = self._images[start : self._num_examples] A : Union[str, Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: A : Dict = numpy.arange(self._num_examples ) numpy.random.shuffle(__UpperCAmelCase ) A : str = self.images[perm] A : Dict = self.labels[perm] # Start next epoch A : Dict = 0 A : List[Any] = batch_size - rest_num_examples A : int = self._index_in_epoch A : Dict = self._images[start:end] A : Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size A : Union[str, Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(lowerCamelCase_ , '''Please write your own downloading logic.''' ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): if not gfile.Exists(lowerCamelCase_ ): gfile.MakeDirs(lowerCamelCase_ ) A : List[str] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if not gfile.Exists(lowerCamelCase_ ): urllib.request.urlretrieve(lowerCamelCase_ , lowerCamelCase_ ) # noqa: S310 with gfile.GFile(lowerCamelCase_ ) as f: A : int = f.size() print('''Successfully downloaded''' , lowerCamelCase_ , lowerCamelCase_ , '''bytes.''' ) return filepath @deprecated( lowerCamelCase_ , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=dtypes.floataa , lowerCamelCase_=True , lowerCamelCase_=5000 , lowerCamelCase_=None , lowerCamelCase_=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=lowerCamelCase_ , one_hot=lowerCamelCase_ , dtype=lowerCamelCase_ , seed=lowerCamelCase_ ) A : List[str] = fake() A : int = fake() A : Optional[int] = fake() return _Datasets(train=lowerCamelCase_ , validation=lowerCamelCase_ , test=lowerCamelCase_ ) if not source_url: # empty string check A : str = DEFAULT_SOURCE_URL A : List[Any] = '''train-images-idx3-ubyte.gz''' A : Dict = '''train-labels-idx1-ubyte.gz''' A : List[Any] = '''t10k-images-idx3-ubyte.gz''' A : Optional[Any] = '''t10k-labels-idx1-ubyte.gz''' A : Tuple = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + train_images_file ) with gfile.Open(lowerCamelCase_ , '''rb''' ) as f: A : Tuple = _extract_images(lowerCamelCase_ ) A : List[str] = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + train_labels_file ) with gfile.Open(lowerCamelCase_ , '''rb''' ) as f: A : Tuple = _extract_labels(lowerCamelCase_ , one_hot=lowerCamelCase_ ) A : Any = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + test_images_file ) with gfile.Open(lowerCamelCase_ , '''rb''' ) as f: A : Union[str, Any] = _extract_images(lowerCamelCase_ ) A : List[Any] = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + test_labels_file ) with gfile.Open(lowerCamelCase_ , '''rb''' ) as f: A : str = _extract_labels(lowerCamelCase_ , one_hot=lowerCamelCase_ ) if not 0 <= validation_size <= len(lowerCamelCase_ ): A : Union[str, Any] = ( '''Validation size should be between 0 and ''' F'{len(lowerCamelCase_ )}. Received: {validation_size}.' ) raise ValueError(lowerCamelCase_ ) A : Tuple = train_images[:validation_size] A : str = train_labels[:validation_size] A : int = train_images[validation_size:] A : Optional[Any] = train_labels[validation_size:] A : List[Any] = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} A : Optional[int] = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) A : Any = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) A : Union[str, Any] = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) return _Datasets(train=lowerCamelCase_ , validation=lowerCamelCase_ , test=lowerCamelCase_ )
423
1
'''simple docstring''' from __future__ import annotations import math def __lowerCAmelCase ( a_ , a_ ) -> float: '''simple docstring''' SCREAMING_SNAKE_CASE : str = u for i in range(1 , a_ ): SCREAMING_SNAKE_CASE : Dict = temp * (u - i) return temp def __lowerCAmelCase ( ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = int(input('enter the numbers of values: ' ) ) SCREAMING_SNAKE_CASE : list[list[float]] = [] for _ in range(a_ ): y.append([] ) for i in range(a_ ): for j in range(a_ ): y[i].append(a_ ) SCREAMING_SNAKE_CASE : int = 0 print('enter the values of parameters in a list: ' ) SCREAMING_SNAKE_CASE : Tuple = list(map(a_ , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(a_ ): SCREAMING_SNAKE_CASE : int = float(input() ) SCREAMING_SNAKE_CASE : Optional[Any] = int(input('enter the value to interpolate: ' ) ) SCREAMING_SNAKE_CASE : int = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , a_ ): for j in range(n - i ): SCREAMING_SNAKE_CASE : Optional[Any] = y[j + 1][i - 1] - y[j][i - 1] SCREAMING_SNAKE_CASE : str = y[0][0] for i in range(1 , a_ ): summ += (ucal(a_ , a_ ) * y[0][i]) / math.factorial(a_ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
251
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
251
1
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = HfArgumentParser(lowerCamelCase_ ) _lowerCamelCase : List[str] = parser.parse_args_into_dataclasses()[0] _lowerCamelCase : Union[str, Any] = TensorFlowBenchmark(args=lowerCamelCase_ ) try: _lowerCamelCase : Any = parser.parse_args_into_dataclasses()[0] except ValueError as e: _lowerCamelCase : Optional[int] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' _lowerCamelCase : List[Any] = ''' '''.join(str(lowerCamelCase_ ).split(''' ''' )[:-1] ) _lowerCamelCase : Optional[Any] = '''''' _lowerCamelCase : List[Any] = eval(str(lowerCamelCase_ ).split(''' ''' )[-1] ) _lowerCamelCase : List[Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: _lowerCamelCase : Any = full_error_msg + begin_error_msg + str(lowerCamelCase_ ) raise ValueError(lowerCamelCase_ ) benchmark.run() if __name__ == "__main__": main()
702
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __snake_case ( _lowercase): snake_case__ : Dict = "blenderbot-small" snake_case__ : Optional[int] = ["past_key_values"] snake_case__ : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , __lowerCAmelCase : Dict=5_0_2_6_5 , __lowerCAmelCase : str=5_1_2 , __lowerCAmelCase : Any=8 , __lowerCAmelCase : Any=2_0_4_8 , __lowerCAmelCase : List[str]=1_6 , __lowerCAmelCase : Dict=8 , __lowerCAmelCase : int=2_0_4_8 , __lowerCAmelCase : List[str]=1_6 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : int=0.0 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : Union[str, Any]=5_1_2 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : str=0.02 , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : int=0 , __lowerCAmelCase : Optional[int]=1 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Union[str, Any]=2 , **__lowerCAmelCase : Optional[int] , ): """simple docstring""" _lowerCamelCase : Dict = vocab_size _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : Tuple = d_model _lowerCamelCase : Optional[Any] = encoder_ffn_dim _lowerCamelCase : Optional[int] = encoder_layers _lowerCamelCase : Any = encoder_attention_heads _lowerCamelCase : int = decoder_ffn_dim _lowerCamelCase : str = decoder_layers _lowerCamelCase : str = decoder_attention_heads _lowerCamelCase : int = dropout _lowerCamelCase : Optional[Any] = attention_dropout _lowerCamelCase : Optional[int] = activation_dropout _lowerCamelCase : str = activation_function _lowerCamelCase : Dict = init_std _lowerCamelCase : Optional[int] = encoder_layerdrop _lowerCamelCase : List[str] = decoder_layerdrop _lowerCamelCase : Optional[int] = use_cache _lowerCamelCase : Dict = encoder_layers _lowerCamelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , forced_eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) class __snake_case ( _lowercase): @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : List[str] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _lowerCamelCase : List[Any] = {0: '''batch'''} _lowerCamelCase : int = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _lowerCamelCase : Union[str, Any] = {0: '''batch''', 1: '''decoder_sequence'''} _lowerCamelCase : Any = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__lowerCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCamelCase : Any = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _lowerCamelCase , _lowerCamelCase : str = self.num_layers for i in range(__lowerCAmelCase ): _lowerCamelCase : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} _lowerCamelCase : Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _lowerCamelCase : int = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : List[str] = super().outputs else: _lowerCamelCase : int = super(__lowerCAmelCase , self ).outputs if self.use_past: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.num_layers for i in range(__lowerCAmelCase ): _lowerCamelCase : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} _lowerCamelCase : Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[TensorType] = None , ): """simple docstring""" _lowerCamelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Generate decoder inputs _lowerCamelCase : Dict = seq_length if not self.use_past else 1 _lowerCamelCase : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowerCamelCase : str = dict(**__lowerCAmelCase , **__lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _lowerCamelCase , _lowerCamelCase : Optional[Any] = common_inputs['''input_ids'''].shape _lowerCamelCase : str = common_inputs['''decoder_input_ids'''].shape[1] _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.num_attention_heads _lowerCamelCase : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase : Any = decoder_seq_length + 3 _lowerCamelCase : List[str] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCamelCase : int = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__lowerCAmelCase , __lowerCAmelCase )] , dim=1 ) _lowerCamelCase : Optional[int] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCamelCase , _lowerCamelCase : int = self.num_layers _lowerCamelCase : Union[str, Any] = min(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Tuple = max(__lowerCAmelCase , __lowerCAmelCase ) - min_num_layers _lowerCamelCase : Tuple = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase ), ) ) # TODO: test this. _lowerCamelCase : Optional[int] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__lowerCAmelCase , __lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[TensorType] = None , ): """simple docstring""" _lowerCamelCase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _lowerCamelCase , _lowerCamelCase : List[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _lowerCamelCase : Dict = seqlen + 2 _lowerCamelCase , _lowerCamelCase : Tuple = self.num_layers _lowerCamelCase , _lowerCamelCase : List[Any] = self.num_attention_heads _lowerCamelCase : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase : Tuple = common_inputs['''attention_mask'''].dtype _lowerCamelCase : Union[str, Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__lowerCAmelCase , __lowerCAmelCase , dtype=__lowerCAmelCase )] , dim=1 ) _lowerCamelCase : List[Any] = [ (torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) for _ in range(__lowerCAmelCase ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[TensorType] = None , ): """simple docstring""" _lowerCamelCase : Optional[Any] = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCamelCase : Optional[int] = tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _lowerCamelCase : Union[str, Any] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCamelCase : Optional[Any] = dict(tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : str = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) elif self.task == "causal-lm": _lowerCamelCase : Dict = self._generate_dummy_inputs_for_causal_lm( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) else: _lowerCamelCase : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) return common_inputs def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Any = super()._flatten_past_key_values_(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: _lowerCamelCase : Dict = super(__lowerCAmelCase , self )._flatten_past_key_values_( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
598
0
'''simple docstring''' import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def __A ( self : Union[str, Any] ) -> int: """simple docstring""" lowerCAmelCase , lowerCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2" , revision="bf16" , dtype=jnp.bfloataa , ) lowerCAmelCase = "A painting of a squirrel eating a burger" lowerCAmelCase = jax.device_count() lowerCAmelCase = num_samples * [prompt] lowerCAmelCase = sd_pipe.prepare_inputs(SCREAMING_SNAKE_CASE ) lowerCAmelCase = replicate(SCREAMING_SNAKE_CASE ) lowerCAmelCase = shard(SCREAMING_SNAKE_CASE ) lowerCAmelCase = jax.random.PRNGKey(0 ) lowerCAmelCase = jax.random.split(SCREAMING_SNAKE_CASE , jax.device_count() ) lowerCAmelCase = sd_pipe(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_inference_steps=2_5 , jit=SCREAMING_SNAKE_CASE )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) lowerCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase = jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __A ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase = "stabilityai/stable-diffusion-2" lowerCAmelCase , lowerCAmelCase = FlaxDPMSolverMultistepScheduler.from_pretrained(SCREAMING_SNAKE_CASE , subfolder="scheduler" ) lowerCAmelCase , lowerCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , revision="bf16" , dtype=jnp.bfloataa , ) lowerCAmelCase = scheduler_params lowerCAmelCase = "A painting of a squirrel eating a burger" lowerCAmelCase = jax.device_count() lowerCAmelCase = num_samples * [prompt] lowerCAmelCase = sd_pipe.prepare_inputs(SCREAMING_SNAKE_CASE ) lowerCAmelCase = replicate(SCREAMING_SNAKE_CASE ) lowerCAmelCase = shard(SCREAMING_SNAKE_CASE ) lowerCAmelCase = jax.random.PRNGKey(0 ) lowerCAmelCase = jax.random.split(SCREAMING_SNAKE_CASE , jax.device_count() ) lowerCAmelCase = sd_pipe(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_inference_steps=2_5 , jit=SCREAMING_SNAKE_CASE )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) lowerCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase = jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
649
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) lowercase : Dict = None lowercase : Union[str, Any] = { '7B': 1_1_0_0_8, '13B': 1_3_8_2_4, '30B': 1_7_9_2_0, '65B': 2_2_0_1_6, '70B': 2_8_6_7_2, } lowercase : Tuple = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def __a ( A__ , A__=1 , A__=256 ) -> List[str]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def __a ( A__ ) -> Optional[int]: with open(A__ , "r" ) as f: return json.load(A__ ) def __a ( A__ , A__ ) -> Any: with open(A__ , "w" ) as f: json.dump(A__ , A__ ) def __a ( A__ , A__ , A__ , A__=True ) -> Union[str, Any]: os.makedirs(A__ , exist_ok=A__ ) lowerCAmelCase = os.path.join(A__ , "tmp" ) os.makedirs(A__ , exist_ok=A__ ) lowerCAmelCase = read_json(os.path.join(A__ , "params.json" ) ) lowerCAmelCase = NUM_SHARDS[model_size] lowerCAmelCase = params["n_layers"] lowerCAmelCase = params["n_heads"] lowerCAmelCase = n_heads // num_shards lowerCAmelCase = params["dim"] lowerCAmelCase = dim // n_heads lowerCAmelCase = 10_000.0 lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , A__ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: lowerCAmelCase = params["n_kv_heads"] # for GQA / MQA lowerCAmelCase = n_heads_per_shard // num_key_value_heads lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints lowerCAmelCase = n_heads lowerCAmelCase = n_heads_per_shard lowerCAmelCase = dim # permute for sliced rotary def permute(A__ , A__=n_heads , A__=dim , A__=dim ): return w.view(A__ , dima // n_heads // 2 , 2 , A__ ).transpose(1 , 2 ).reshape(A__ , A__ ) print(f"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) lowerCAmelCase = torch.load(os.path.join(A__ , "consolidated.00.pth" ) , map_location="cpu" ) else: # Sharded lowerCAmelCase = [ torch.load(os.path.join(A__ , f"consolidated.{i:02d}.pth" ) , map_location="cpu" ) for i in range(A__ ) ] lowerCAmelCase = 0 lowerCAmelCase = {"weight_map": {}} for layer_i in range(A__ ): lowerCAmelCase = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded lowerCAmelCase = { f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wq.weight"] ), f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wk.weight"] ), f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. lowerCAmelCase = { f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ f"layers.{layer_i}.attention_norm.weight" ].clone(), f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ f"layers.{layer_i}.ffn_norm.weight" ].clone(), } lowerCAmelCase = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(A__ , A__ , A__ ) for i in range(A__ ) ] , dim=0 , ).reshape(A__ , A__ ) ) lowerCAmelCase = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( A__ , A__ , A__ ) for i in range(A__ ) ] , dim=0 , ).reshape(A__ , A__ ) , A__ , A__ , A__ , ) lowerCAmelCase = torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view( A__ , A__ , A__ ) for i in range(A__ ) ] , dim=0 , ).reshape(A__ , A__ ) lowerCAmelCase = torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(A__ )] , dim=1 ) lowerCAmelCase = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(A__ )] , dim=0 ) lowerCAmelCase = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(A__ )] , dim=1 ) lowerCAmelCase = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(A__ )] , dim=0 ) lowerCAmelCase = inv_freq for k, v in state_dict.items(): lowerCAmelCase = filename param_count += v.numel() torch.save(A__ , os.path.join(A__ , A__ ) ) lowerCAmelCase = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded lowerCAmelCase = { "model.embed_tokens.weight": loaded["tok_embeddings.weight"], "model.norm.weight": loaded["norm.weight"], "lm_head.weight": loaded["output.weight"], } else: lowerCAmelCase = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat( [loaded[i]["tok_embeddings.weight"] for i in range(A__ )] , dim=1 ), "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(A__ )] , dim=0 ), } for k, v in state_dict.items(): lowerCAmelCase = filename param_count += v.numel() torch.save(A__ , os.path.join(A__ , A__ ) ) # Write configs lowerCAmelCase = {"total_size": param_count * 2} write_json(A__ , os.path.join(A__ , "pytorch_model.bin.index.json" ) ) lowerCAmelCase = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 lowerCAmelCase = params["multiple_of"] if "multiple_of" in params else 256 lowerCAmelCase = LlamaConfig( hidden_size=A__ , intermediate_size=compute_intermediate_size(A__ , A__ , A__ ) , num_attention_heads=params["n_heads"] , num_hidden_layers=params["n_layers"] , rms_norm_eps=params["norm_eps"] , num_key_value_heads=A__ , ) config.save_pretrained(A__ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("Loading the checkpoint in a Llama model." ) lowerCAmelCase = LlamaForCausalLM.from_pretrained(A__ , torch_dtype=torch.floataa , low_cpu_mem_usage=A__ ) # Avoid saving this as part of the config. del model.config._name_or_path print("Saving in the Transformers format." ) model.save_pretrained(A__ , safe_serialization=A__ ) shutil.rmtree(A__ ) def __a ( A__ , A__ ) -> Any: # Initialize the tokenizer based on the `spm` model lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) lowerCAmelCase = tokenizer_class(A__ ) tokenizer.save_pretrained(A__ ) def __a ( ) -> Any: lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--input_dir" , help="Location of LLaMA weights, which contains tokenizer.model and model folders" , ) parser.add_argument( "--model_size" , choices=["7B", "7Bf", "13B", "13Bf", "30B", "65B", "70B", "70Bf", "tokenizer_only"] , ) parser.add_argument( "--output_dir" , help="Location to write HF model and tokenizer" , ) parser.add_argument("--safe_serialization" , type=A__ , help="Whether or not to save using `safetensors`." ) lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) lowerCAmelCase = os.path.join(args.input_dir , "tokenizer.model" ) write_tokenizer(args.output_dir , A__ ) if __name__ == "__main__": main()
649
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowercase : Optional[int] = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ) -> Optional[int]: """simple docstring""" A = b.T A = np.sum(np.square(UpperCamelCase__ ) , axis=1 ) A = np.sum(np.square(UpperCamelCase__ ) , axis=0 ) A = np.matmul(UpperCamelCase__ , UpperCamelCase__ ) A = aa[:, None] - 2 * ab + ba[None, :] return d def _lowerCAmelCase ( UpperCamelCase__: str , UpperCamelCase__: Optional[Any] ) -> Optional[Any]: """simple docstring""" A = x.reshape(-1 , 3 ) A = squared_euclidean_distance(UpperCamelCase__ , UpperCamelCase__ ) return np.argmin(UpperCamelCase__ , axis=1 ) class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = ['pixel_values'] def __init__( self , a__ = None , a__ = True , a__ = None , a__ = PILImageResampling.BILINEAR , a__ = True , a__ = True , **a__ , ) -> None: super().__init__(**a__ ) A = size if size is not None else {"""height""": 256, """width""": 256} A = get_size_dict(a__ ) A = np.array(a__ ) if clusters is not None else None A = do_resize A = size A = resample A = do_normalize A = do_color_quantize def _UpperCAmelCase ( self , a__ , a__ , a__ = PILImageResampling.BILINEAR , a__ = None , **a__ , ) -> np.ndarray: A = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( a__ , size=(size["""height"""], size["""width"""]) , resample=a__ , data_format=a__ , **a__ ) def _UpperCAmelCase ( self , a__ , a__ = None , ) -> np.ndarray: A = rescale(image=a__ , scale=1 / 1_27.5 , data_format=a__ ) A = image - 1 return image def _UpperCAmelCase ( self , a__ , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = ChannelDimension.FIRST , **a__ , ) -> PIL.Image.Image: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(a__ ) A = resample if resample is not None else self.resample A = do_normalize if do_normalize is not None else self.do_normalize A = do_color_quantize if do_color_quantize is not None else self.do_color_quantize A = clusters if clusters is not None else self.clusters A = np.array(a__ ) A = make_list_of_images(a__ ) if not valid_images(a__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. A = [to_numpy_array(a__ ) for image in images] if do_resize: A = [self.resize(image=a__ , size=a__ , resample=a__ ) for image in images] if do_normalize: A = [self.normalize(image=a__ ) for image in images] if do_color_quantize: A = [to_channel_dimension_format(a__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) A = np.array(a__ ) A = color_quantize(a__ , a__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) A = images.shape[0] A = images.reshape(a__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. A = list(a__ ) else: A = [to_channel_dimension_format(a__ , a__ ) for image in images] A = {"""input_ids""": images} return BatchFeature(data=a__ , tensor_type=a__ )
546
def _lowerCAmelCase ( UpperCamelCase__: int ) -> bool: """simple docstring""" return str(UpperCamelCase__ ) == str(UpperCamelCase__ )[::-1] def _lowerCAmelCase ( UpperCamelCase__: int ) -> int: """simple docstring""" return int(UpperCamelCase__ ) + int(str(UpperCamelCase__ )[::-1] ) def _lowerCAmelCase ( UpperCamelCase__: int = 1_00_00 ) -> int: """simple docstring""" A = [] for num in range(1 , UpperCamelCase__ ): A = 0 A = num while iterations < 50: A = sum_reverse(UpperCamelCase__ ) iterations += 1 if is_palindrome(UpperCamelCase__ ): break else: lychrel_nums.append(UpperCamelCase__ ) return len(UpperCamelCase__ ) if __name__ == "__main__": print(f'''{solution() = }''')
546
1
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( __UpperCAmelCase ): a__ : Optional[Any] = (DDPMScheduler,) def a ( self : Any , **_lowercase : List[Any] ): __UpperCAmelCase = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_lowerCamelCase ) return config def a ( self : Union[str, Any] ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def a ( self : List[Any] ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def a ( self : List[Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def a ( self : Any ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCamelCase ) def a ( self : Any ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def a ( self : str ): self.check_over_configs(thresholding=_lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCamelCase , prediction_type=_lowerCamelCase , sample_max_value=_lowerCamelCase , ) def a ( self : Optional[Any] ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def a ( self : List[Any] ): for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=_lowerCamelCase ) def a ( self : List[str] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5 def a ( self : Optional[int] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowerCamelCase ) __UpperCAmelCase = len(_lowerCamelCase ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter __UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCamelCase ) ): # 1. predict noise residual __UpperCAmelCase = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 __UpperCAmelCase = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __UpperCAmelCase = pred_prev_sample __UpperCAmelCase = torch.sum(torch.abs(_lowerCamelCase ) ) __UpperCAmelCase = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 2_58.96_06 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def a ( self : Tuple ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) __UpperCAmelCase = scheduler_class(**_lowerCamelCase ) __UpperCAmelCase = len(_lowerCamelCase ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter __UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCamelCase ) ): # 1. predict noise residual __UpperCAmelCase = model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 __UpperCAmelCase = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __UpperCAmelCase = pred_prev_sample __UpperCAmelCase = torch.sum(torch.abs(_lowerCamelCase ) ) __UpperCAmelCase = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 2_02.02_96 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def a ( self : str ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowerCamelCase ) __UpperCAmelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCamelCase ) __UpperCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowerCamelCase ): if i == len(_lowerCamelCase ) - 1: __UpperCAmelCase = -1 else: __UpperCAmelCase = timesteps[i + 1] __UpperCAmelCase = scheduler.previous_timestep(_lowerCamelCase ) __UpperCAmelCase = prev_t.item() self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def a ( self : Optional[Any] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowerCamelCase ) __UpperCAmelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(_lowerCamelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_lowerCamelCase ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowerCamelCase ) __UpperCAmelCase = [1_00, 87, 50, 1, 0] __UpperCAmelCase = len(_lowerCamelCase ) with self.assertRaises(_lowerCamelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_lowerCamelCase , timesteps=_lowerCamelCase ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**_lowerCamelCase ) __UpperCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCamelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_lowerCamelCase )
49
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = "mask2former" SCREAMING_SNAKE_CASE__ : Any = ["swin"] SCREAMING_SNAKE_CASE__ : int = {"hidden_size": "hidden_dim"} def __init__( self: str , _lowerCamelCase: Optional[Dict] = None , _lowerCamelCase: int = 2_56 , _lowerCamelCase: int = 2_56 , _lowerCamelCase: int = 2_56 , _lowerCamelCase: int = 10_24 , _lowerCamelCase: str = "relu" , _lowerCamelCase: int = 6 , _lowerCamelCase: int = 10 , _lowerCamelCase: int = 8 , _lowerCamelCase: float = 0.0 , _lowerCamelCase: int = 20_48 , _lowerCamelCase: bool = False , _lowerCamelCase: bool = False , _lowerCamelCase: int = 4 , _lowerCamelCase: int = 2_55 , _lowerCamelCase: int = 1_00 , _lowerCamelCase: float = 0.1 , _lowerCamelCase: float = 2.0 , _lowerCamelCase: float = 5.0 , _lowerCamelCase: float = 5.0 , _lowerCamelCase: int = 1_25_44 , _lowerCamelCase: float = 3.0 , _lowerCamelCase: float = 0.75 , _lowerCamelCase: float = 0.02 , _lowerCamelCase: float = 1.0 , _lowerCamelCase: bool = True , _lowerCamelCase: List[int] = [4, 8, 16, 32] , _lowerCamelCase: bool = None , **_lowerCamelCase: Optional[int] , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING['''swin''']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowerCamelCase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE_ = backbone_config.pop('''model_type''' ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ = config_class.from_dict(_lowerCamelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " f"Supported model types: {','.join(self.backbones_supported )}" ) SCREAMING_SNAKE_CASE_ = backbone_config SCREAMING_SNAKE_CASE_ = feature_size SCREAMING_SNAKE_CASE_ = mask_feature_size SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = encoder_feedforward_dim SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = dim_feedforward SCREAMING_SNAKE_CASE_ = pre_norm SCREAMING_SNAKE_CASE_ = enforce_input_projection SCREAMING_SNAKE_CASE_ = common_stride SCREAMING_SNAKE_CASE_ = ignore_value SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = no_object_weight SCREAMING_SNAKE_CASE_ = class_weight SCREAMING_SNAKE_CASE_ = mask_weight SCREAMING_SNAKE_CASE_ = dice_weight SCREAMING_SNAKE_CASE_ = train_num_points SCREAMING_SNAKE_CASE_ = oversample_ratio SCREAMING_SNAKE_CASE_ = importance_sample_ratio SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = init_xavier_std SCREAMING_SNAKE_CASE_ = use_auxiliary_loss SCREAMING_SNAKE_CASE_ = feature_strides SCREAMING_SNAKE_CASE_ = output_auxiliary_logits SCREAMING_SNAKE_CASE_ = decoder_layers super().__init__(**_lowerCamelCase ) @classmethod def _A ( cls: int , _lowerCamelCase: PretrainedConfig , **_lowerCamelCase: Tuple ): return cls( backbone_config=_lowerCamelCase , **_lowerCamelCase , ) def _A ( self: int ): SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
234
0
import os import re import shutil import sys import tempfile import unittest import black __UpperCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __UpperCamelCase : int = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class __UpperCamelCase ( unittest.TestCase ): def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) __lowercase = self.transformer_dir shutil.copy( os.path.join(_lowerCAmelCase , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase = """src/transformers""" shutil.rmtree(self.transformer_dir ) def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=None ) -> str: """simple docstring""" __lowercase = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: __lowercase = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result __lowercase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) __lowercase = black.format_str(_lowerCAmelCase , mode=_lowerCAmelCase ) __lowercase = os.path.join(self.transformer_dir , """new_code.py""" ) with open(_lowerCAmelCase , """w""" , newline="""\n""" ) as f: f.write(_lowerCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_lowerCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_lowerCAmelCase ) with open(_lowerCAmelCase , """r""" ) as f: self.assertTrue(f.read() , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : List[str] ) -> List[str]: """simple docstring""" self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _lowerCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _lowerCAmelCase ) , ) # Copy consistency with a really long name __lowercase = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , F'{long_class_name}LMPredictionHead' , re.sub("""Bert""" , _lowerCAmelCase , _lowerCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _lowerCAmelCase , overwrite_result=re.sub("""Bert""" , """TestModel""" , _lowerCAmelCase ) , ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] __lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) __lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) __lowercase , __lowercase = check_copies.convert_to_localized_md( _lowerCAmelCase , _lowerCAmelCase , localized_readme["""format_model_list"""] ) self.assertFalse(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase , __lowercase = check_copies.convert_to_localized_md( _lowerCAmelCase , _lowerCAmelCase , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_lowerCAmelCase ) __lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) __lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowercase , __lowercase = check_copies.convert_to_localized_md( _lowerCAmelCase , _lowerCAmelCase , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
53
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
1
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class _snake_case( UpperCAmelCase ): def __init__(self : Optional[int] , a : Dict=None , a : int=None , *a : Union[str, Any] , **a : Any ) -> Optional[Any]: """simple docstring""" super().__init__(*a , **a ) if config is None: assert isinstance(self.model , a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f""" {self.model.__class__}""" ) A__ = self.model.config else: A__ = config A__ = data_args A__ = self.config.tgt_vocab_size if isinstance(self.config , a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ' padding..' ) if self.args.label_smoothing == 0: A__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss A__ = label_smoothed_nll_loss def _UpperCamelCase (self : str , a : int ) -> str: """simple docstring""" if self.optimizer is None: A__ = ['bias', 'LayerNorm.weight'] A__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] A__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: A__ = Adafactor A__ = {'scale_parameter': False, 'relative_step': False} else: A__ = AdamW A__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } A__ = self.args.learning_rate if self.sharded_ddp: A__ = OSS( params=a , optim=a , **a , ) else: A__ = optimizer_cls(a , **a ) if self.lr_scheduler is None: A__ = self._get_lr_scheduler(a ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def _UpperCamelCase (self : Tuple , a : List[Any] ) -> str: """simple docstring""" A__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": A__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": A__ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: A__ = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=a ) return scheduler def _UpperCamelCase (self : List[str] ) -> Optional[torch.utils.data.Sampler]: """simple docstring""" if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _UpperCamelCase (self : str , a : List[Any] , a : Optional[Any] , a : Any ) -> str: """simple docstring""" if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token A__ = model(**a , use_cache=a )[0] A__ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models A__ , A__ = model(**a , labels=a , use_cache=a )[:2] else: # compute label smoothed loss A__ = model(**a , use_cache=a )[0] A__ = torch.nn.functional.log_softmax(a , dim=-1 ) A__ , A__ = self.loss_fn(a , a , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _UpperCamelCase (self : int , a : Union[str, Any] , a : List[Any] ) -> int: """simple docstring""" A__ = inputs.pop('labels' ) A__ , A__ = self._compute_loss(a , a , a ) return loss def _UpperCamelCase (self : List[str] , a : nn.Module , a : Dict[str, Union[torch.Tensor, Any]] , a : bool , a : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: """simple docstring""" A__ = self._prepare_inputs(a ) A__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: A__ = self.model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , **a , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: A__ = self._pad_tensors_to_max_len(a , gen_kwargs['max_length'] ) A__ = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data A__ , A__ = self._compute_loss(a , a , a ) A__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) A__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: A__ = self._pad_tensors_to_max_len(a , gen_kwargs['max_length'] ) return (loss, logits, labels) def _UpperCamelCase (self : Tuple , a : Tuple , a : str ) -> Optional[Any]: """simple docstring""" A__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' f""" padded to `max_length`={max_length}""" ) A__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) A__ = tensor return padded_tensor
531
'''simple docstring''' def _A ( UpperCAmelCase = 1 ,UpperCAmelCase = 1000 ): '''simple docstring''' A__ = 1 A__ = 0 for divide_by_number in range(UpperCAmelCase ,digit + 1 ): A__ = [] A__ = numerator for _ in range(1 ,digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(UpperCAmelCase ): A__ = len(UpperCAmelCase ) A__ = divide_by_number else: has_been_divided.append(UpperCAmelCase ) A__ = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
531
1
def a__ ( ): return [ a * b * (10_00 - a - b) for a in range(1 ,9_99 ) for b in range(_UpperCamelCase ,9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"{solution() = }")
706
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a_ = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(PATH_TO_TRANSFORMERS) a_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` a_ = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") a_ = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def a__ ( _UpperCamelCase : Union[str, Any] ): __lowerCamelCase = None # source code of `config_class` __lowerCamelCase = inspect.getsource(_UpperCamelCase ) __lowerCamelCase = _re_checkpoint.findall(_UpperCamelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): __lowerCamelCase = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link __lowerCamelCase = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: __lowerCamelCase = ckpt_name break return checkpoint def a__ ( ): __lowerCamelCase = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue __lowerCamelCase = get_checkpoint_from_config_class(_UpperCamelCase ) __lowerCamelCase = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: __lowerCamelCase = '''\n'''.join(sorted(_UpperCamelCase ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
622
0
from __future__ import annotations class A : '''simple docstring''' def __init__(self : Union[str, Any] , _UpperCAmelCase : int = 0 ) -> List[Any]: """simple docstring""" lowercase__ = key def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> list[str]: """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> list[str]: """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : int = 0 ) -> str: """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowercase__ = """""" for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : int = 0 ) -> str: """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowercase__ = """""" for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : int = 0 ) -> bool: """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCAmelCase , _UpperCAmelCase ) ) except OSError: return False return True def lowerCamelCase__ (self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> bool: """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCAmelCase , _UpperCAmelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
15
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A : List[Any] = None A : Optional[Any] = logging.get_logger(__name__) A : str = '▁' A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A : Optional[int] = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PegasusTokenizer A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" lowercase__ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' f''' {type(_UpperCAmelCase )}''' ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
15
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = LayoutLMTokenizer _lowercase = LayoutLMTokenizerFast _lowercase = True _lowercase = True def _UpperCamelCase( self : Union[str, Any] ): super().setUp() a__ : Dict = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _UpperCamelCase( self : int , **lowerCamelCase__ : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Tuple ): a__ : Optional[Any] = "UNwant\u00E9d,running" a__ : str = "unwanted, running" return input_text, output_text def _UpperCamelCase( self : int ): a__ : Optional[int] = self.tokenizer_class(self.vocab_file ) a__ : Tuple = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCamelCase__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [7, 4, 5, 10, 8, 9] ) def _UpperCamelCase( self : List[str] ): pass
151
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
151
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() snake_case : Optional[int] = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) snake_case : str = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } snake_case : Union[str, Any] = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 16_000, "return_attention_mask": False, "do_normalize": True, } snake_case : Any = tempfile.mkdtemp() snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case : List[Any] = os.path.join(self.tmpdirname , lowerCamelCase_ ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + "\n" ) # load decoder from hub snake_case : Optional[Any] = "hf-internal-testing/ngram-beam-search-decoder" def lowerCamelCase_ ( self , **SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Dict = self.add_kwargs_tokens_map.copy() kwargs.update(lowerCamelCase_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def lowerCamelCase_ ( self , **SCREAMING_SNAKE_CASE ): """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def lowerCamelCase_ ( self , **SCREAMING_SNAKE_CASE ): """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **lowerCamelCase_ ) def lowerCamelCase_ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = self.get_tokenizer() snake_case : Optional[int] = self.get_feature_extractor() snake_case : Any = self.get_decoder() snake_case : Optional[int] = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , decoder=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCamelCase_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , lowerCamelCase_ ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match snake_case : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Dict = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(lowerCamelCase_ , "include" ): WavaVecaProcessorWithLM( tokenizer=lowerCamelCase_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = self.get_feature_extractor() snake_case : List[Any] = self.get_tokenizer() snake_case : Union[str, Any] = self.get_decoder() snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , decoder=lowerCamelCase_ ) snake_case : Union[str, Any] = floats_list((3, 1_000) ) snake_case : Optional[Any] = feature_extractor(lowerCamelCase_ , return_tensors="np" ) snake_case : List[Any] = processor(lowerCamelCase_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = self.get_feature_extractor() snake_case : Optional[Any] = self.get_tokenizer() snake_case : str = self.get_decoder() snake_case : Any = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , decoder=lowerCamelCase_ ) snake_case : int = "This is a test string" snake_case : Any = processor(text=lowerCamelCase_ ) snake_case : int = tokenizer(lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE=(2, 10, 16) , SCREAMING_SNAKE_CASE=77 ): """simple docstring""" np.random.seed(lowerCamelCase_ ) return np.random.rand(*lowerCamelCase_ ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : int = self.get_feature_extractor() snake_case : str = self.get_tokenizer() snake_case : Tuple = self.get_decoder() snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , decoder=lowerCamelCase_ ) snake_case : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) snake_case : str = processor.decode(lowerCamelCase_ ) snake_case : Union[str, Any] = decoder.decode_beams(lowerCamelCase_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Union[str, Any] = self.get_feature_extractor() snake_case : Dict = self.get_tokenizer() snake_case : Dict = self.get_decoder() snake_case : Optional[int] = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , decoder=lowerCamelCase_ ) snake_case : str = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: snake_case : Union[str, Any] = processor.batch_decode(lowerCamelCase_ ) else: with get_context(lowerCamelCase_ ).Pool() as pool: snake_case : List[str] = processor.batch_decode(lowerCamelCase_ , lowerCamelCase_ ) snake_case : Dict = list(lowerCamelCase_ ) with get_context("fork" ).Pool() as p: snake_case : int = decoder.decode_beams_batch(lowerCamelCase_ , lowerCamelCase_ ) snake_case , snake_case , snake_case : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowerCamelCase_ , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(lowerCamelCase_ , decoded_processor.logit_score ) self.assertListEqual(lowerCamelCase_ , decoded_processor.lm_score ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Union[str, Any] = self.get_feature_extractor() snake_case : Any = self.get_tokenizer() snake_case : Optional[int] = self.get_decoder() snake_case : List[Any] = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , decoder=lowerCamelCase_ ) snake_case : Optional[int] = self._get_dummy_logits() snake_case : Any = 15 snake_case : Union[str, Any] = -20.0 snake_case : Optional[Any] = -4.0 snake_case : Tuple = processor.batch_decode( lowerCamelCase_ , beam_width=lowerCamelCase_ , beam_prune_logp=lowerCamelCase_ , token_min_logp=lowerCamelCase_ , ) snake_case : Any = decoded_processor_out.text snake_case : Union[str, Any] = list(lowerCamelCase_ ) with get_context("fork" ).Pool() as pool: snake_case : Tuple = decoder.decode_beams_batch( lowerCamelCase_ , lowerCamelCase_ , beam_width=lowerCamelCase_ , beam_prune_logp=lowerCamelCase_ , token_min_logp=lowerCamelCase_ , ) snake_case : str = [d[0][0] for d in decoded_decoder_out] snake_case : Optional[int] = [d[0][2] for d in decoded_decoder_out] snake_case : Tuple = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , lowerCamelCase_ ) self.assertTrue(np.array_equal(lowerCamelCase_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , lowerCamelCase_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(lowerCamelCase_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , lowerCamelCase_ , atol=1E-3 ) ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Union[str, Any] = self.get_feature_extractor() snake_case : Dict = self.get_tokenizer() snake_case : List[str] = self.get_decoder() snake_case : Any = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , decoder=lowerCamelCase_ ) snake_case : Any = self._get_dummy_logits() snake_case : Union[str, Any] = 2.0 snake_case : int = 5.0 snake_case : List[str] = -20.0 snake_case : Union[str, Any] = True snake_case : Optional[Any] = processor.batch_decode( lowerCamelCase_ , alpha=lowerCamelCase_ , beta=lowerCamelCase_ , unk_score_offset=lowerCamelCase_ , lm_score_boundary=lowerCamelCase_ , ) snake_case : Union[str, Any] = decoded_processor_out.text snake_case : List[str] = list(lowerCamelCase_ ) decoder.reset_params( alpha=lowerCamelCase_ , beta=lowerCamelCase_ , unk_score_offset=lowerCamelCase_ , lm_score_boundary=lowerCamelCase_ , ) with get_context("fork" ).Pool() as pool: snake_case : str = decoder.decode_beams_batch( lowerCamelCase_ , lowerCamelCase_ , ) snake_case : List[str] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , lowerCamelCase_ ) snake_case : List[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , lowerCamelCase_ ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case : List[Any] = processor.decoder.model_container[processor.decoder._model_key] snake_case : int = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() snake_case : List[str] = os.listdir(lowerCamelCase_ ) snake_case : str = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = snapshot_download("hf-internal-testing/processor_with_lm" ) snake_case : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(lowerCamelCase_ ) snake_case : Dict = processor.decoder.model_container[processor.decoder._model_key] snake_case : Union[str, Any] = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() snake_case : int = os.listdir(lowerCamelCase_ ) snake_case : Optional[Any] = os.listdir(lowerCamelCase_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case : Any = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case : str = floats_list((3, 1_000) ) snake_case : Any = processor_wavaveca(lowerCamelCase_ , return_tensors="np" ) snake_case : str = processor_auto(lowerCamelCase_ , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) snake_case : Dict = self._get_dummy_logits() snake_case : str = processor_wavaveca.batch_decode(lowerCamelCase_ ) snake_case : Any = processor_auto.batch_decode(lowerCamelCase_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : int = self.get_feature_extractor() snake_case : Union[str, Any] = self.get_tokenizer() snake_case : str = self.get_decoder() snake_case : Any = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , decoder=lowerCamelCase_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : List[Any] = [d[key] for d in offsets] return retrieved_list def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case : Dict = self._get_dummy_logits()[0] snake_case : List[Any] = processor.decode(lowerCamelCase_ , output_word_offsets=lowerCamelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case : Union[str, Any] = self._get_dummy_logits() snake_case : int = processor.batch_decode(lowerCamelCase_ , output_word_offsets=lowerCamelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertListEqual( [" ".join(self.get_from_offsets(lowerCamelCase_ , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCamelCase_ ( self ): """simple docstring""" import torch snake_case : Union[str, Any] = load_dataset("common_voice" , "en" , split="train" , streaming=lowerCamelCase_ ) snake_case : Dict = ds.cast_column("audio" , datasets.Audio(sampling_rate=16_000 ) ) snake_case : Union[str, Any] = iter(lowerCamelCase_ ) snake_case : List[str] = next(lowerCamelCase_ ) snake_case : Tuple = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) snake_case : int = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train snake_case : List[str] = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): snake_case : Dict = model(lowerCamelCase_ ).logits.cpu().numpy() snake_case : Optional[Any] = processor.decode(logits[0] , output_word_offsets=lowerCamelCase_ ) snake_case : Any = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate snake_case : Any = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] snake_case : Dict = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(lowerCamelCase_ , "word" ) ) , lowerCamelCase_ ) self.assertEqual(" ".join(self.get_from_offsets(lowerCamelCase_ , "word" ) ) , output.text ) # output times snake_case : Dict = torch.tensor(self.get_from_offsets(lowerCamelCase_ , "start_time" ) ) snake_case : Any = torch.tensor(self.get_from_offsets(lowerCamelCase_ , "end_time" ) ) # fmt: off snake_case : Optional[Any] = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) snake_case : Tuple = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=0.01 ) ) self.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=0.01 ) )
134
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase ): @register_to_config def __init__( self : List[Any] , lowerCamelCase_ : int = 128 , lowerCamelCase_ : int = 256 , lowerCamelCase_ : float = 2_0_0_0.0 , lowerCamelCase_ : int = 768 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : int = 64 , lowerCamelCase_ : int = 2048 , lowerCamelCase_ : float = 0.1 , ): """simple docstring""" super().__init__() UpperCamelCase = nn.Sequential( nn.Linear(lowerCamelCase_ , d_model * 4 , bias=lowerCamelCase_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowerCamelCase_ ) , nn.SiLU() , ) UpperCamelCase = nn.Embedding(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = False UpperCamelCase = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_ ) UpperCamelCase = nn.Dropout(p=lowerCamelCase_ ) UpperCamelCase = nn.ModuleList() for lyr_num in range(lowerCamelCase_ ): # FiLM conditional T5 decoder UpperCamelCase = DecoderLayer(d_model=lowerCamelCase_ , d_kv=lowerCamelCase_ , num_heads=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ ) self.decoders.append(lowerCamelCase_ ) UpperCamelCase = TaLayerNorm(lowerCamelCase_ ) UpperCamelCase = nn.Dropout(p=lowerCamelCase_ ) UpperCamelCase = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCamelCase = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCamelCase = self.conditioning_emb(lowerCamelCase_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCamelCase = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCamelCase = torch.broadcast_to( torch.arange(lowerCamelCase_ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCamelCase = self.position_encoding(lowerCamelCase_ ) UpperCamelCase = self.continuous_inputs_projection(lowerCamelCase_ ) inputs += position_encodings UpperCamelCase = self.dropout(lowerCamelCase_ ) # decoder: No padding present. UpperCamelCase = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCamelCase = [(x, self.encoder_decoder_mask(lowerCamelCase_ , lowerCamelCase_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCamelCase = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCamelCase = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCamelCase = lyr( lowerCamelCase_ , conditioning_emb=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , )[0] UpperCamelCase = self.decoder_norm(lowerCamelCase_ ) UpperCamelCase = self.post_dropout(lowerCamelCase_ ) UpperCamelCase = self.spec_out(lowerCamelCase_ ) return spec_out class SCREAMING_SNAKE_CASE_ ( nn.Module ): def __init__( self : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any=1E-6 ): """simple docstring""" super().__init__() UpperCamelCase = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowerCamelCase_ , d_kv=lowerCamelCase_ , num_heads=lowerCamelCase_ , dropout_rate=lowerCamelCase_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowerCamelCase_ , d_kv=lowerCamelCase_ , num_heads=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , layer_norm_epsilon=lowerCamelCase_ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ , layer_norm_epsilon=lowerCamelCase_ ) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : int=None , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Any=None , lowerCamelCase_ : Union[str, Any]=None , ): """simple docstring""" UpperCamelCase = self.layer[0]( lowerCamelCase_ , conditioning_emb=lowerCamelCase_ , attention_mask=lowerCamelCase_ , ) if encoder_hidden_states is not None: UpperCamelCase = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) UpperCamelCase = self.layer[1]( lowerCamelCase_ , key_value_states=lowerCamelCase_ , attention_mask=lowerCamelCase_ , ) # Apply Film Conditional Feed Forward layer UpperCamelCase = self.layer[-1](lowerCamelCase_ , lowerCamelCase_ ) return (hidden_states,) class SCREAMING_SNAKE_CASE_ ( nn.Module ): def __init__( self : Dict , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] ): """simple docstring""" super().__init__() UpperCamelCase = TaLayerNorm(lowerCamelCase_ ) UpperCamelCase = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCamelCase_ ) UpperCamelCase = Attention(query_dim=lowerCamelCase_ , heads=lowerCamelCase_ , dim_head=lowerCamelCase_ , out_bias=lowerCamelCase_ , scale_qk=lowerCamelCase_ ) UpperCamelCase = nn.Dropout(lowerCamelCase_ ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : Optional[Any]=None , ): """simple docstring""" UpperCamelCase = self.layer_norm(lowerCamelCase_ ) if conditioning_emb is not None: UpperCamelCase = self.FiLMLayer(lowerCamelCase_ , lowerCamelCase_ ) # Self-attention block UpperCamelCase = self.attention(lowerCamelCase_ ) UpperCamelCase = hidden_states + self.dropout(lowerCamelCase_ ) return hidden_states class SCREAMING_SNAKE_CASE_ ( nn.Module ): def __init__( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Dict ): """simple docstring""" super().__init__() UpperCamelCase = Attention(query_dim=lowerCamelCase_ , heads=lowerCamelCase_ , dim_head=lowerCamelCase_ , out_bias=lowerCamelCase_ , scale_qk=lowerCamelCase_ ) UpperCamelCase = TaLayerNorm(lowerCamelCase_ , eps=lowerCamelCase_ ) UpperCamelCase = nn.Dropout(lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int=None , ): """simple docstring""" UpperCamelCase = self.layer_norm(lowerCamelCase_ ) UpperCamelCase = self.attention( lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , attention_mask=attention_mask.squeeze(1 ) , ) UpperCamelCase = hidden_states + self.dropout(lowerCamelCase_ ) return layer_output class SCREAMING_SNAKE_CASE_ ( nn.Module ): def __init__( self : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict ): """simple docstring""" super().__init__() UpperCamelCase = TaDenseGatedActDense(d_model=lowerCamelCase_ , d_ff=lowerCamelCase_ , dropout_rate=lowerCamelCase_ ) UpperCamelCase = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCamelCase_ ) UpperCamelCase = TaLayerNorm(lowerCamelCase_ , eps=lowerCamelCase_ ) UpperCamelCase = nn.Dropout(lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int=None ): """simple docstring""" UpperCamelCase = self.layer_norm(lowerCamelCase_ ) if conditioning_emb is not None: UpperCamelCase = self.film(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = self.DenseReluDense(lowerCamelCase_ ) UpperCamelCase = hidden_states + self.dropout(lowerCamelCase_ ) return hidden_states class SCREAMING_SNAKE_CASE_ ( nn.Module ): def __init__( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] ): """simple docstring""" super().__init__() UpperCamelCase = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_ ) UpperCamelCase = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_ ) UpperCamelCase = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_ ) UpperCamelCase = nn.Dropout(lowerCamelCase_ ) UpperCamelCase = NewGELUActivation() def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Optional[int] ): """simple docstring""" UpperCamelCase = self.act(self.wi_a(lowerCamelCase_ ) ) UpperCamelCase = self.wi_a(lowerCamelCase_ ) UpperCamelCase = hidden_gelu * hidden_linear UpperCamelCase = self.dropout(lowerCamelCase_ ) UpperCamelCase = self.wo(lowerCamelCase_ ) return hidden_states class SCREAMING_SNAKE_CASE_ ( nn.Module ): def __init__( self : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict=1E-6 ): """simple docstring""" super().__init__() UpperCamelCase = nn.Parameter(torch.ones(lowerCamelCase_ ) ) UpperCamelCase = eps def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowerCamelCase_ ) UpperCamelCase = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCamelCase = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE_ ( nn.Module ): def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : torch.Tensor ): """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(lowerCamelCase_ , 3.0 )) )) class SCREAMING_SNAKE_CASE_ ( nn.Module ): def __init__( self : Optional[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): """simple docstring""" super().__init__() UpperCamelCase = nn.Linear(lowerCamelCase_ , out_features * 2 , bias=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ): """simple docstring""" UpperCamelCase = self.scale_bias(lowerCamelCase_ ) UpperCamelCase , UpperCamelCase = torch.chunk(lowerCamelCase_ , 2 , -1 ) UpperCamelCase = x * (1 + scale) + shift return x
537
0
"""simple docstring""" import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def A_ ( UpperCAmelCase__ ) -> List[str]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A_ ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: super().__init__() a : Union[str, Any] = module a : Optional[int] = nn.Sequential( nn.Linear(module.in_features , __UpperCAmelCase , bias=__UpperCAmelCase ) , nn.Linear(__UpperCAmelCase , module.out_features , bias=__UpperCAmelCase ) , ) a : str = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase_ ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: return self.module(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) + self.adapter(__UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A_ ( unittest.TestCase ): """simple docstring""" lowercase : Tuple = "bigscience/bloom-1b7" # Constant values lowercase : Union[str, Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowercase : Union[str, Any] = "Hello my name is" lowercase : Union[str, Any] = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowercase : List[str] = 10 def lowercase_ ( self ) -> int: # Models and tokenizer a : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name ) class A_ ( _UpperCAmelCase ): """simple docstring""" def lowercase_ ( self ) -> int: super().setUp() # Models and tokenizer a : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) a : Optional[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) def lowercase_ ( self ) -> Union[str, Any]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> List[Any]: a : int = self.model_abit.config self.assertTrue(hasattr(__UpperCAmelCase , 'quantization_config' ) ) a : Dict = config.to_dict() a : int = config.to_diff_dict() a : Union[str, Any] = config.to_json_string() def lowercase_ ( self ) -> Any: from bitsandbytes.nn import Paramsabit a : Dict = self.model_fpaa.get_memory_footprint() a : Optional[Any] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) a : Any = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase_ ( self ) -> Union[str, Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase_ ( self ) -> Optional[int]: a : List[str] = self.tokenizer(self.input_text , return_tensors='pt' ) a : str = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowercase_ ( self ) -> Tuple: a : str = BitsAndBytesConfig() a : Dict = True a : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , device_map='auto' ) a : int = self.tokenizer(self.input_text , return_tensors='pt' ) a : Optional[int] = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowercase_ ( self ) -> Any: with self.assertRaises(__UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__UpperCAmelCase ) def lowercase_ ( self ) -> Any: a : Optional[Any] = BitsAndBytesConfig() with self.assertRaises(__UpperCAmelCase ): a : Optional[int] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def lowercase_ ( self ) -> List[str]: with self.assertRaises(__UpperCAmelCase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything a : Dict = self.tokenizer(self.input_text , return_tensors='pt' ) a : Tuple = self.model_fpaa.to(torch.floataa ) a : Any = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error a : Any = self.model_fpaa.to('cpu' ) # Check this does not throw an error a : List[str] = self.model_fpaa.half() # Check this does not throw an error a : str = self.model_fpaa.float() def lowercase_ ( self ) -> Dict: a : Tuple = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=__UpperCAmelCase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A_ ( unittest.TestCase ): """simple docstring""" @classmethod def lowercase_ ( cls ) -> int: a : int = 't5-small' a : str = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense a : Union[str, Any] = AutoTokenizer.from_pretrained(cls.model_name ) a : Optional[Any] = 'Translate in German: Hello, my dog is cute' def lowercase_ ( self ) -> List[Any]: gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Dict: from transformers import TaForConditionalGeneration a : List[Any] = TaForConditionalGeneration._keep_in_fpaa_modules a : str = None # test with `t5-small` a : Dict = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) a : Optional[int] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) a : Any = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` a : List[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) a : Dict = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) a : Optional[Any] = model.generate(**__UpperCAmelCase ) a : Tuple = modules def lowercase_ ( self ) -> List[Any]: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` a : Union[str, Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) a : Dict = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) a : Dict = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` a : Optional[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) a : List[str] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) a : Optional[Any] = model.generate(**__UpperCAmelCase ) class A_ ( _UpperCAmelCase ): """simple docstring""" def lowercase_ ( self ) -> Tuple: super().setUp() # model_name a : List[str] = 'bigscience/bloom-560m' a : Union[str, Any] = 't5-small' # Different types of model a : Any = AutoModel.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) # Sequence classification model a : List[Any] = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) # CausalLM model a : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) # Seq2seq model a : str = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) def lowercase_ ( self ) -> str: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> str: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A_ ( _UpperCAmelCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: super().setUp() def lowercase_ ( self ) -> Union[str, Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> List[Any]: a : Union[str, Any] = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass a : Union[str, Any] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A_ ( _UpperCAmelCase ): """simple docstring""" def lowercase_ ( self ) -> Any: super().setUp() def lowercase_ ( self ) -> List[str]: a : str = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model a : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch a : Tuple = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class A_ ( _UpperCAmelCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: a : int = 'facebook/opt-350m' super().setUp() def lowercase_ ( self ) -> str: if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters a : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): a : Any = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability a : Union[str, Any] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__UpperCAmelCase ) ): a : Optional[int] = LoRALayer(module.q_proj , rank=16 ) a : Optional[int] = LoRALayer(module.k_proj , rank=16 ) a : List[str] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch a : List[Any] = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): a : int = model.forward(**__UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A_ ( _UpperCAmelCase ): """simple docstring""" lowercase : List[Any] = "gpt2-xl" lowercase : Any = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
509
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) class A_ ( _UpperCAmelCase ): """simple docstring""" def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
509
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): __a : str = tempfile.mkdtemp() __a : Optional[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] __a : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __a : Optional[Any] = { "do_resize": True, "size": {"height": 224, "width": 224}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], "do_convert_rgb": True, } __a : List[str] = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self , **_UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowerCamelCase ( self , **_UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowerCamelCase ( self , **_UpperCAmelCase ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowerCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self ): __a : Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __a : Union[str, Any] = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self ): __a : Optional[int] = self.get_tokenizer() __a : Optional[Any] = self.get_rust_tokenizer() __a : Any = self.get_image_processor() __a : List[Any] = ChineseCLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) __a : Dict = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) __a : Optional[int] = ChineseCLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) __a : List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __a : Dict = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) __a : List[Any] = self.get_image_processor(do_normalize=_UpperCAmelCase ) __a : Optional[int] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=_UpperCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Tuple = self.get_image_processor() __a : List[str] = self.get_tokenizer() __a : Optional[Any] = ChineseCLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __a : Dict = self.prepare_image_inputs() __a : Tuple = image_processor(_UpperCAmelCase , return_tensors='''np''' ) __a : Dict = processor(images=_UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowerCamelCase ( self ): __a : List[str] = self.get_image_processor() __a : Optional[Any] = self.get_tokenizer() __a : Optional[int] = ChineseCLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __a : Tuple = "Alexandra,T-shirt的价格是15便士。" __a : int = processor(text=_UpperCAmelCase ) __a : Dict = tokenizer(_UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.get_image_processor() __a : Tuple = self.get_tokenizer() __a : Optional[int] = ChineseCLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __a : Union[str, Any] = "Alexandra,T-shirt的价格是15便士。" __a : Optional[Any] = self.prepare_image_inputs() __a : str = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def _lowerCamelCase ( self ): __a : Optional[Any] = self.get_image_processor() __a : int = self.get_tokenizer() __a : str = ChineseCLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __a : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a : List[str] = processor.batch_decode(_UpperCAmelCase ) __a : List[str] = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[Any] = self.get_image_processor() __a : Optional[Any] = self.get_tokenizer() __a : Optional[Any] = ChineseCLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __a : Optional[Any] = "Alexandra,T-shirt的价格是15便士。" __a : Any = self.prepare_image_inputs() __a : Union[str, Any] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : Any = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = '''vivit''' def __init__( self : Union[str, Any] , lowercase : int=2_24 , lowercase : Tuple=32 , lowercase : str=[2, 16, 16] , lowercase : str=3 , lowercase : Dict=7_68 , lowercase : Union[str, Any]=12 , lowercase : List[Any]=12 , lowercase : Dict=30_72 , lowercase : int="gelu_fast" , lowercase : Dict=0.0 , lowercase : Dict=0.0 , lowercase : List[str]=0.0_2 , lowercase : Tuple=1E-06 , lowercase : Any=True , **lowercase : Union[str, Any] , ): '''simple docstring''' UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : Dict = attention_probs_dropout_prob UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : List[Any] = image_size UpperCAmelCase : str = num_frames UpperCAmelCase : str = tubelet_size UpperCAmelCase : int = num_channels UpperCAmelCase : Optional[int] = qkv_bias super().__init__(**lowercase )
595
0
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(a ) , """Tatoeba directory does not exist.""" ) class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> Any: _a = tempfile.mkdtemp() return TatoebaConverter(save_dir=snake_case_ ) @slow def __lowerCAmelCase ( self ) -> List[Any]: self.resolver.convert_models(["heb-eng"] ) @slow def __lowerCAmelCase ( self ) -> List[Any]: _a , _a = self.resolver.write_model_card("opus-mt-he-en" , dry_run=snake_case_ ) assert mmeta["long_pair"] == "heb-eng"
691
'''simple docstring''' __snake_case : Dict = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
691
1
"""simple docstring""" def _snake_case ( _snake_case : int = 1 , _snake_case : int = 10_00 ) -> int: '''simple docstring''' _A = 1 _A = 0 for divide_by_number in range(_snake_case , digit + 1 ): _A = [] _A = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_snake_case ): _A = len(_snake_case ) _A = divide_by_number else: has_been_divided.append(_snake_case ) _A = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
7
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''image_processor''', '''tokenizer'''] UpperCAmelCase : Optional[int] = '''ViTImageProcessor''' UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ): _A = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) _A = kwargs.pop('feature_extractor' ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ): if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: _A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if visual_prompt is not None: _A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: _A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if visual_prompt is not None and images is not None: _A = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _A = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _A = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Dict ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def lowerCAmelCase_ ( self : Tuple ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
7
1
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class UpperCamelCase__( unittest.TestCase ): def a__( self : int )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase ) ) def a__( self : List[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase ) ) def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase ) ) def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase ) ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> int: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : List[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCAmelCase = '''fp16''' self.assertFalse(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : Optional[int] )-> List[str]: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertFalse(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) )
50
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
1
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=3_0 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=1_0 , lowercase_=0.02 , lowercase_=None , ) -> Union[str, Any]: __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def _a ( self) -> int: __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = self.get_config() return config, pixel_values, labels def _a ( self) -> List[Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _a ( self , lowercase_ , lowercase_ , lowercase_) -> List[Any]: __snake_case = ViTMSNModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_) -> Tuple: __snake_case = self.type_sequence_label_size __snake_case = ViTMSNForImageClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , labels=lowercase_) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}') print('Labels: {labels}') self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __snake_case = 1 __snake_case = ViTMSNForImageClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __snake_case = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _a ( self) -> str: __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCAmelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> str: __snake_case = ViTMSNModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=3_7) def _a ( self) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds') def _a ( self) -> str: pass def _a ( self) -> Union[str, Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(lowercase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear)) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(lowercase_) __snake_case = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) def _a ( self) -> List[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> List[str]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) @slow def _a ( self) -> Dict: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ViTMSNModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def A ( ) -> Any: '''simple docstring''' __snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): @cached_property def _a ( self) -> Any: return ViTImageProcessor.from_pretrained('facebook/vit-msn-small') if is_vision_available() else None @slow def _a ( self) -> Optional[int]: torch.manual_seed(2) __snake_case = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small').to(lowercase_) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=lowercase_ , return_tensors='pt').to(lowercase_) # forward pass with torch.no_grad(): __snake_case = model(**lowercase_) # verify the logits __snake_case = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowercase_) __snake_case = torch.tensor([-0.0803, -0.4454, -0.2375]).to(lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4))
313
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCAmelCase__ : Union[str, Any] = logging.getLogger(__name__) class __lowercase ( lowerCamelCase__ ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None) -> List[Any]: super().__init__( lowercase_ , question_encoder_tokenizer=lowercase_ , generator_tokenizer=lowercase_ , index=lowercase_ , init_retrieval=lowercase_ , ) __snake_case = None def _a ( self , lowercase_) -> Union[str, Any]: logger.info('initializing retrieval') # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('dist initialized') # needs to be set manually __snake_case = self._infer_socket_ifname() # avoid clash with the NCCL port __snake_case = str(distributed_port + 1) __snake_case = dist.new_group(ranks=lowercase_ , backend='gloo') # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('dist not initialized / main') self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group) def _a ( self) -> int: return dist.get_rank(group=self.process_group) == 0 def _a ( self , lowercase_ , lowercase_ , lowercase_=torch.floataa) -> Dict: __snake_case = torch.empty(lowercase_ , dtype=lowercase_) dist.scatter(lowercase_ , src=0 , scatter_list=lowercase_ , group=self.process_group) return target_tensor def _a ( self) -> str: __snake_case = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __snake_case = next((addr for addr in addrs if addr.startswith('e')) , lowercase_) return ifname def _a ( self , lowercase_ , lowercase_) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): __snake_case , __snake_case = self._main_retrieve(lowercase_ , lowercase_) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase_) # distributed training __snake_case = dist.get_world_size(group=self.process_group) # gather logic __snake_case = None if self._is_main(): __snake_case = [torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(lowercase_)] dist.gather(torch.tensor(lowercase_) , dst=0 , gather_list=lowercase_ , group=self.process_group) # scatter logic __snake_case = question_hidden_states.shape[0] __snake_case = [] __snake_case = [] if self._is_main(): assert len(lowercase_) == world_size __snake_case , __snake_case = self._main_retrieve(torch.cat(lowercase_).numpy() , lowercase_) __snake_case , __snake_case = torch.tensor(lowercase_), torch.tensor(lowercase_) __snake_case = self._chunk_tensor(lowercase_ , lowercase_) __snake_case = self._chunk_tensor(lowercase_ , lowercase_) __snake_case = self._scattered(lowercase_ , [n_queries, n_docs] , target_type=torch.intaa) __snake_case = self._scattered(lowercase_ , [n_queries, n_docs, question_hidden_states.shape[1]]) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowercase_)
313
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ :Dict = logging.get_logger(__name__) lowercase__ :Optional[int] = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Optional[int] ='''wavlm''' def __init__( self ,A__=3_2 ,A__=7_6_8 ,A__=1_2 ,A__=1_2 ,A__=3_0_7_2 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=0.1 ,A__=0.0 ,A__=0.1 ,A__=0.1 ,A__=0.02 ,A__=1E-5 ,A__="group" ,A__="gelu" ,A__=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) ,A__=(5, 2, 2, 2, 2, 2, 2) ,A__=(1_0, 3, 3, 3, 3, 2, 2) ,A__=False ,A__=1_2_8 ,A__=1_6 ,A__=3_2_0 ,A__=8_0_0 ,A__=False ,A__=True ,A__=0.05 ,A__=1_0 ,A__=2 ,A__=0.0 ,A__=1_0 ,A__=3_2_0 ,A__=2 ,A__=0.1 ,A__=1_0_0 ,A__=2_5_6 ,A__=2_5_6 ,A__=0.1 ,A__="mean" ,A__=False ,A__=False ,A__=2_5_6 ,A__=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) ,A__=(5, 3, 3, 1, 1) ,A__=(1, 2, 3, 1, 1) ,A__=5_1_2 ,A__=8_0 ,A__=0 ,A__=1 ,A__=2 ,A__=False ,A__=3 ,A__=2 ,A__=3 ,A__=None ,**A__ ,): super().__init__(**A__ ,pad_token_id=A__ ,bos_token_id=A__ ,eos_token_id=A__) lowercase = hidden_size lowercase = feat_extract_norm lowercase = feat_extract_activation lowercase = list(A__) lowercase = list(A__) lowercase = list(A__) lowercase = conv_bias lowercase = num_buckets lowercase = max_bucket_distance lowercase = num_conv_pos_embeddings lowercase = num_conv_pos_embedding_groups lowercase = len(self.conv_dim) lowercase = num_hidden_layers lowercase = intermediate_size lowercase = hidden_act lowercase = num_attention_heads lowercase = hidden_dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = feat_proj_dropout lowercase = final_dropout lowercase = layerdrop lowercase = layer_norm_eps lowercase = initializer_range lowercase = num_ctc_classes lowercase = vocab_size lowercase = do_stable_layer_norm lowercase = use_weighted_layer_sum lowercase = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel)}`.') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase = apply_spec_augment lowercase = mask_time_prob lowercase = mask_time_length lowercase = mask_time_min_masks lowercase = mask_feature_prob lowercase = mask_feature_length # parameters for pretraining with codevector quantized representations lowercase = num_codevectors_per_group lowercase = num_codevector_groups lowercase = contrastive_logits_temperature lowercase = num_negatives lowercase = codevector_dim lowercase = proj_codevector_dim lowercase = diversity_loss_weight # ctc loss lowercase = ctc_loss_reduction lowercase = ctc_zero_infinity # adapter lowercase = add_adapter lowercase = adapter_kernel_size lowercase = adapter_stride lowercase = num_adapter_layers lowercase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase = list(A__) lowercase = list(A__) lowercase = list(A__) lowercase = xvector_output_dim @property def A__ ( self): return functools.reduce(operator.mul ,self.conv_stride ,1)
633
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__=False ): '''simple docstring''' try: lowercase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase = default else: # KEY is set, convert it to True or False. try: lowercase = strtobool(lowerCAmelCase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value lowercase__ :Dict = parse_flag_from_env("RUN_SLOW", default=False) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skip('''Test was skipped''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__=None , lowerCAmelCase__=None ): '''simple docstring''' if test_case is None: return partial(lowerCAmelCase__ , version=lowerCAmelCase__ ) return unittest.skipUnless(is_torch_version('''>=''' , lowerCAmelCase__ ) , f'test requires torch version >= {version}' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(lowerCAmelCase__ ) lowercase__ :Dict = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(lowerCAmelCase__ ) class lowercase ( unittest.TestCase ): lowercase_ : int =True @classmethod def A__ ( cls): lowercase = tempfile.mkdtemp() @classmethod def A__ ( cls): if os.path.exists(cls.tmpdir): shutil.rmtree(cls.tmpdir) def A__ ( self): if self.clear_on_setup: for path in Path(self.tmpdir).glob('''**/*'''): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(A__) class lowercase ( unittest.TestCase ): def A__ ( self): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowercase ( unittest.TestCase ): def A__ ( self ,A__): lowercase = mocks if isinstance(A__ ,(tuple, list)) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = AcceleratorState() lowercase = tensor[None].clone().to(state.device ) lowercase = gather(lowerCAmelCase__ ).cpu() lowercase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , lowerCAmelCase__ ): return False return True class lowercase : def __init__( self ,A__ ,A__ ,A__): lowercase = returncode lowercase = stdout lowercase = stderr async def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' while True: lowercase = await stream.readline() if line: callback(lowerCAmelCase__ ) else: break async def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=False , lowerCAmelCase__=False ): '''simple docstring''' if echo: print('''\nRunning: ''' , ''' '''.join(lowerCAmelCase__ ) ) lowercase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCAmelCase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCAmelCase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase = [] lowercase = [] def tee(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="" ): lowercase = line.decode('''utf-8''' ).rstrip() sink.append(lowerCAmelCase__ ) if not quiet: print(lowerCAmelCase__ , lowerCAmelCase__ , file=lowerCAmelCase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowerCAmelCase__ : tee(lowerCAmelCase__ , lowerCAmelCase__ , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowerCAmelCase__ : tee(lowerCAmelCase__ , lowerCAmelCase__ , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=lowerCAmelCase__ , ) return _RunOutput(await p.wait() , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=180 , lowerCAmelCase__=False , lowerCAmelCase__=True ): '''simple docstring''' lowercase = asyncio.get_event_loop() lowercase = loop.run_until_complete( _stream_subprocess(lowerCAmelCase__ , env=lowerCAmelCase__ , stdin=lowerCAmelCase__ , timeout=lowerCAmelCase__ , quiet=lowerCAmelCase__ , echo=lowerCAmelCase__ ) ) lowercase = ''' '''.join(lowerCAmelCase__ ) if result.returncode > 0: lowercase = '''\n'''.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class lowercase ( SCREAMING_SNAKE_CASE__ ): pass def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__=False ): '''simple docstring''' try: lowercase = subprocess.check_output(lowerCAmelCase__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(lowerCAmelCase__ , '''decode''' ): lowercase = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(lowerCAmelCase__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
633
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase_ ( A__ ): """simple docstring""" def __init__( self : Dict, UpperCamelCase__ : WhisperForConditionalGeneration, UpperCamelCase__ : WhisperProcessor, UpperCamelCase__ : AutoencoderKL, UpperCamelCase__ : CLIPTextModel, UpperCamelCase__ : CLIPTokenizer, UpperCamelCase__ : UNetaDConditionModel, UpperCamelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCamelCase__ : StableDiffusionSafetyChecker, UpperCamelCase__ : CLIPImageProcessor, ) -> Dict: super().__init__() if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=_lowerCamelCase, speech_processor=_lowerCamelCase, vae=_lowerCamelCase, text_encoder=_lowerCamelCase, tokenizer=_lowerCamelCase, unet=_lowerCamelCase, scheduler=_lowerCamelCase, feature_extractor=_lowerCamelCase, ) def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : Optional[Union[str, int]] = "auto" ) -> int: if slice_size == "auto": _A = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCamelCase ) def __UpperCAmelCase ( self : str ) -> List[str]: self.enable_attention_slicing(_lowerCamelCase ) @torch.no_grad() def __call__( self : Any, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Dict=1_60_00, UpperCamelCase__ : int = 5_12, UpperCamelCase__ : int = 5_12, UpperCamelCase__ : int = 50, UpperCamelCase__ : float = 7.5, UpperCamelCase__ : Optional[Union[str, List[str]]] = None, UpperCamelCase__ : Optional[int] = 1, UpperCamelCase__ : float = 0.0, UpperCamelCase__ : Optional[torch.Generator] = None, UpperCamelCase__ : Optional[torch.FloatTensor] = None, UpperCamelCase__ : Optional[str] = "pil", UpperCamelCase__ : bool = True, UpperCamelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCamelCase__ : int = 1, **UpperCamelCase__ : int, ) -> Dict: _A = self.speech_processor.feature_extractor( _lowerCamelCase, return_tensors='pt', sampling_rate=_lowerCamelCase ).input_features.to(self.device ) _A = self.speech_model.generate(_lowerCamelCase, max_length=48_00_00 ) _A = self.speech_processor.tokenizer.batch_decode(_lowerCamelCase, skip_special_tokens=_lowerCamelCase, normalize=_lowerCamelCase )[ 0 ] if isinstance(_lowerCamelCase, _lowerCamelCase ): _A = 1 elif isinstance(_lowerCamelCase, _lowerCamelCase ): _A = len(_lowerCamelCase ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(_lowerCamelCase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCamelCase, _lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(_lowerCamelCase )}.' ) # get prompt text embeddings _A = self.tokenizer( _lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, return_tensors='pt', ) _A = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _A = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) _A = text_input_ids[:, : self.tokenizer.model_max_length] _A = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _A = text_embeddings.shape _A = text_embeddings.repeat(1, _lowerCamelCase, 1 ) _A = text_embeddings.view(bs_embed * num_images_per_prompt, _lowerCamelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _A = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _A = 42 if negative_prompt is None: _A = [''] * batch_size elif type(_lowerCamelCase ) is not type(_lowerCamelCase ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(_lowerCamelCase )} !=' f' {type(_lowerCamelCase )}.' ) elif isinstance(_lowerCamelCase, _lowerCamelCase ): _A = [negative_prompt] elif batch_size != len(_lowerCamelCase ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(_lowerCamelCase )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ' the batch size of `prompt`.' ) else: _A = negative_prompt _A = text_input_ids.shape[-1] _A = self.tokenizer( _lowerCamelCase, padding='max_length', max_length=_lowerCamelCase, truncation=_lowerCamelCase, return_tensors='pt', ) _A = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _A = uncond_embeddings.shape[1] _A = uncond_embeddings.repeat(1, _lowerCamelCase, 1 ) _A = uncond_embeddings.view(batch_size * num_images_per_prompt, _lowerCamelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _A = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _A = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _A = torch.randn(_lowerCamelCase, generator=_lowerCamelCase, device='cpu', dtype=_lowerCamelCase ).to( self.device ) else: _A = torch.randn(_lowerCamelCase, generator=_lowerCamelCase, device=self.device, dtype=_lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) _A = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _A = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _A = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _A = {} if accepts_eta: _A = eta for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance _A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A = self.scheduler.scale_model_input(_lowerCamelCase, _lowerCamelCase ) # predict the noise residual _A = self.unet(_lowerCamelCase, _lowerCamelCase, encoder_hidden_states=_lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: _A = noise_pred.chunk(2 ) _A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, **_lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) _A = 1 / 0.18_215 * latents _A = self.vae.decode(_lowerCamelCase ).sample _A = (image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _A = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": _A = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_lowerCamelCase, nsfw_content_detected=_lowerCamelCase )
107
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class a__ ( A__ , A__ ): UpperCAmelCase__ = '''focalnet''' def __init__( self :Any , _lowerCamelCase :List[Any]=224 , _lowerCamelCase :str=4 , _lowerCamelCase :List[str]=3 , _lowerCamelCase :Optional[Any]=96 , _lowerCamelCase :Dict=False , _lowerCamelCase :Optional[Any]=[192, 384, 768, 768] , _lowerCamelCase :Tuple=[2, 2, 6, 2] , _lowerCamelCase :List[Any]=[2, 2, 2, 2] , _lowerCamelCase :Optional[int]=[3, 3, 3, 3] , _lowerCamelCase :Optional[Any]="gelu" , _lowerCamelCase :Tuple=4.0 , _lowerCamelCase :Optional[Any]=0.0 , _lowerCamelCase :int=0.1 , _lowerCamelCase :List[str]=False , _lowerCamelCase :str=1E-4 , _lowerCamelCase :Optional[int]=False , _lowerCamelCase :List[str]=False , _lowerCamelCase :str=False , _lowerCamelCase :Optional[int]=0.02 , _lowerCamelCase :int=1E-5 , _lowerCamelCase :Tuple=32 , _lowerCamelCase :List[str]=None , _lowerCamelCase :Dict=None , **_lowerCamelCase :List[Any] , ): '''simple docstring''' super().__init__(**_lowerCamelCase ) UpperCamelCase_ : Any =image_size UpperCamelCase_ : int =patch_size UpperCamelCase_ : int =num_channels UpperCamelCase_ : Union[str, Any] =embed_dim UpperCamelCase_ : int =use_conv_embed UpperCamelCase_ : Optional[int] =hidden_sizes UpperCamelCase_ : str =depths UpperCamelCase_ : Any =focal_levels UpperCamelCase_ : List[str] =focal_windows UpperCamelCase_ : str =hidden_act UpperCamelCase_ : Dict =mlp_ratio UpperCamelCase_ : List[str] =hidden_dropout_prob UpperCamelCase_ : Optional[int] =drop_path_rate UpperCamelCase_ : str =use_layerscale UpperCamelCase_ : List[Any] =layerscale_value UpperCamelCase_ : Optional[int] =use_post_layernorm UpperCamelCase_ : Dict =use_post_layernorm_in_modulation UpperCamelCase_ : Optional[Any] =normalize_modulator UpperCamelCase_ : List[Any] =initializer_range UpperCamelCase_ : List[str] =layer_norm_eps UpperCamelCase_ : List[Any] =encoder_stride UpperCamelCase_ : str =['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] UpperCamelCase_ , UpperCamelCase_ : int =get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
357
0
import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(SCREAMING_SNAKE_CASE ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
429
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(SCREAMING_SNAKE_CASE , n - 1 , SCREAMING_SNAKE_CASE ) * a) % mod else: lowercase__ = binary_exponentiation(SCREAMING_SNAKE_CASE , n / 2 , SCREAMING_SNAKE_CASE ) return (b * b) % mod # a prime number lowerCAmelCase = 701 lowerCAmelCase = 10_0000_0000 lowerCAmelCase = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
429
1
from ... import PretrainedConfig __lowerCamelCase : Any = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class a ( UpperCamelCase_ ): __lowercase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __lowercase = """nezha""" def __init__( self , __UpperCamelCase=2_11_28 , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=64 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=0.1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , **__UpperCamelCase , )-> str: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) A__ : Dict =vocab_size A__ : Dict =hidden_size A__ : Optional[Any] =num_hidden_layers A__ : Tuple =num_attention_heads A__ : Optional[Any] =hidden_act A__ : Union[str, Any] =intermediate_size A__ : Union[str, Any] =hidden_dropout_prob A__ : List[str] =attention_probs_dropout_prob A__ : Dict =max_position_embeddings A__ : Union[str, Any] =max_relative_position A__ : Optional[Any] =type_vocab_size A__ : Dict =initializer_range A__ : Optional[int] =layer_norm_eps A__ : Dict =classifier_dropout A__ : Dict =use_cache
416
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> None: A__ : Union[str, Any] =generate_pascal_triangle(snake_case_ ) for row_idx in range(snake_case_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx], end=''' ''' ) else: print(triangle[row_idx][col_idx], end='''''' ) print() def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[list[int]]: if not isinstance(snake_case_, snake_case_ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) A__ : list[list[int]] =[] for current_row_idx in range(snake_case_ ): A__ : Optional[int] =populate_current_row(snake_case_, snake_case_ ) triangle.append(snake_case_ ) return triangle def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[int]: A__ : Dict =[-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 A__ , A__ : str =1, 1 for current_col_idx in range(1, snake_case_ ): calculate_current_element( snake_case_, snake_case_, snake_case_, snake_case_ ) return current_row def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, ) -> None: A__ : str =triangle[current_row_idx - 1][current_col_idx - 1] A__ : Optional[Any] =triangle[current_row_idx - 1][current_col_idx] A__ : Any =above_to_left_elt + above_to_right_elt def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[list[int]]: if not isinstance(snake_case_, snake_case_ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) A__ : list[list[int]] =[[1]] for row_index in range(1, snake_case_ ): A__ : str =[0] + result[-1] + [0] A__ : int =row_index + 1 # Calculate the number of distinct elements in a row A__ : Union[str, Any] =sum(divmod(snake_case_, 2 ) ) A__ : List[str] =[ temp_row[i - 1] + temp_row[i] for i in range(1, distinct_elements + 1 ) ] A__ : List[Any] =row_first_half[: (row_index + 1) // 2] row_second_half.reverse() A__ : Dict =row_first_half + row_second_half result.append(snake_case_ ) return result def SCREAMING_SNAKE_CASE__ ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case_, snake_case_ ) -> None: A__ : Any =f'{func.__name__}({value})' A__ : Dict =timeit(f'__main__.{call}', setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'{call:38} -- {timing:.4f} seconds' ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case_, snake_case_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
416
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a__ : @staticmethod def UpperCAmelCase( *lowerCamelCase_ : List[str] , **lowerCamelCase_ : List[str] ): pass @is_pipeline_test @require_vision @require_timm @require_torch class a__ ( unittest.TestCase ): lowerCamelCase__: Tuple = MODEL_FOR_OBJECT_DETECTION_MAPPING def UpperCAmelCase( self : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : str ): a_ : List[str] = ObjectDetectionPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def UpperCAmelCase( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] ): a_ : Optional[Any] = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(__UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __UpperCamelCase , { """score""": ANY(__UpperCamelCase ), """label""": ANY(__UpperCamelCase ), """box""": {"""xmin""": ANY(__UpperCamelCase ), """ymin""": ANY(__UpperCamelCase ), """xmax""": ANY(__UpperCamelCase ), """ymax""": ANY(__UpperCamelCase )}, } , ) import datasets a_ : Any = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) a_ : int = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] a_ : Dict = object_detector(__UpperCamelCase , threshold=0.0 ) self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(__UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __UpperCamelCase , { """score""": ANY(__UpperCamelCase ), """label""": ANY(__UpperCamelCase ), """box""": {"""xmin""": ANY(__UpperCamelCase ), """ymin""": ANY(__UpperCamelCase ), """xmax""": ANY(__UpperCamelCase ), """ymax""": ANY(__UpperCamelCase )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def UpperCAmelCase( self : Optional[Any] ): pass @require_torch def UpperCAmelCase( self : Tuple ): a_ : Dict = """hf-internal-testing/tiny-detr-mobilenetsv3""" a_ : Optional[int] = AutoModelForObjectDetection.from_pretrained(__UpperCamelCase ) a_ : List[str] = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) a_ : Any = ObjectDetectionPipeline(model=__UpperCamelCase , feature_extractor=__UpperCamelCase ) a_ : Tuple = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, ] , ) a_ : int = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, ], [ {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, {"""score""": 0.3_3_7_6, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, ], ] , ) @require_torch @slow def UpperCAmelCase( self : int ): a_ : Union[str, Any] = """facebook/detr-resnet-50""" a_ : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(__UpperCamelCase ) a_ : Optional[int] = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) a_ : Dict = ObjectDetectionPipeline(model=__UpperCamelCase , feature_extractor=__UpperCamelCase ) a_ : int = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ] , ) a_ : Optional[int] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ], [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ], ] , ) @require_torch @slow def UpperCAmelCase( self : Any ): a_ : List[str] = """facebook/detr-resnet-50""" a_ : Any = pipeline("""object-detection""" , model=__UpperCamelCase ) a_ : List[Any] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ] , ) a_ : Dict = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ], [ {"""score""": 0.9_9_8_2, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.9_9_6_0, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.9_9_5_5, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ], ] , ) @require_torch @slow def UpperCAmelCase( self : List[str] ): a_ : Tuple = 0.9_9_8_5 a_ : Tuple = """facebook/detr-resnet-50""" a_ : List[str] = pipeline("""object-detection""" , model=__UpperCamelCase ) a_ : Any = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=__UpperCamelCase ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_8_8, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.9_9_8_7, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ] , ) @require_torch @require_pytesseract @slow def UpperCAmelCase( self : Union[str, Any] ): a_ : int = """Narsil/layoutlmv3-finetuned-funsd""" a_ : Union[str, Any] = 0.9_9_9_3 a_ : str = pipeline("""object-detection""" , model=__UpperCamelCase , threshold=__UpperCamelCase ) a_ : Optional[int] = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9_9_9_3, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_9_4, """ymin""": 2_5_4, """xmax""": 3_4_3, """ymax""": 2_6_4}}, {"""score""": 0.9_9_9_3, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_9_4, """ymin""": 2_5_4, """xmax""": 3_4_3, """ymax""": 2_6_4}}, ] , )
715
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class a__ ( lowerCAmelCase_ , lowerCAmelCase_ ): lowerCamelCase__: str = """convnextv2""" def __init__( self : Tuple , lowerCamelCase_ : str=3 , lowerCamelCase_ : Tuple=4 , lowerCamelCase_ : Any=4 , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Optional[int]="gelu" , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : str=1E-12 , lowerCamelCase_ : Dict=0.0 , lowerCamelCase_ : Union[str, Any]=2_2_4 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Optional[Any]=None , **lowerCamelCase_ : List[Any] , ): super().__init__(**lowerCamelCase_ ) a_ : Dict = num_channels a_ : Optional[int] = patch_size a_ : int = num_stages a_ : Any = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes a_ : Any = [3, 3, 9, 3] if depths is None else depths a_ : Any = hidden_act a_ : Dict = initializer_range a_ : Optional[Any] = layer_norm_eps a_ : int = drop_path_rate a_ : Optional[Any] = image_size a_ : Dict = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] a_ , a_ : int = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
478
0
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __lowerCAmelCase : """simple docstring""" A__ : str = field( metadata={"help": "The output directory where the model will be written."} , ) A__ : str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } , ) A__ : str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } , ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def A ( ) -> Dict: A__ = HfArgumentParser((ModelArguments,) ) ((A__) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: A__ = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: A__ = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: A__ = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: A__ = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed A__ = True A__ = True A__ = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=__UpperCamelCase , decoder_config=__UpperCamelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens A__ = decoder_config.decoder_start_token_id A__ = decoder_config.pad_token_id if decoder_start_token_id is None: A__ = decoder_config.bos_token_id if pad_token_id is None: A__ = decoder_config.eos_token_id # This is necessary to make Flax's generate() work A__ = decoder_config.eos_token_id A__ = decoder_start_token_id A__ = pad_token_id A__ = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) A__ = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) A__ = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
9
from __future__ import annotations from typing import Any def A__( __lowerCAmelCase ): create_state_space_tree(__lowerCAmelCase , [] , 0 ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if index == len(__lowerCAmelCase ): print(__lowerCAmelCase ) return create_state_space_tree(__lowerCAmelCase , __lowerCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__lowerCAmelCase , __lowerCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowercase_ : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
304
0
from __future__ import annotations import math def __lowerCAmelCase ( UpperCamelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCAmelCase_ = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def __lowerCAmelCase ( UpperCamelCase ) -> list[int]: if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) lowerCAmelCase__ : Optional[int] = [] for num in range(len(UpperCamelCase ) ): lowerCAmelCase__ : Tuple = 0 while 2 * i * i <= odd_composites[num]: lowerCAmelCase__ : Tuple = odd_composites[num] - 2 * i * i if is_prime(UpperCamelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCamelCase ) == n: return list_nums return [] def __lowerCAmelCase ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
470
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { """configuration_longformer""": [ """LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongformerConfig""", """LongformerOnnxConfig""", ], """tokenization_longformer""": ["""LongformerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""LongformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongformerForMaskedLM""", """LongformerForMultipleChoice""", """LongformerForQuestionAnswering""", """LongformerForSequenceClassification""", """LongformerForTokenClassification""", """LongformerModel""", """LongformerPreTrainedModel""", """LongformerSelfAttention""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLongformerForMaskedLM""", """TFLongformerForMultipleChoice""", """TFLongformerForQuestionAnswering""", """TFLongformerForSequenceClassification""", """TFLongformerForTokenClassification""", """TFLongformerModel""", """TFLongformerPreTrainedModel""", """TFLongformerSelfAttention""", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
470
1
"""simple docstring""" from __future__ import annotations import math def __A ( a_ : float , a_ : int )-> float: '''simple docstring''' SCREAMING_SNAKE_CASE : int = u for i in range(1 , a_ ): SCREAMING_SNAKE_CASE : List[Any] = temp * (u - i) return temp def __A ( )-> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = int(input('''enter the numbers of values: ''' ) ) SCREAMING_SNAKE_CASE : list[list[float]] = [] for _ in range(a_ ): y.append([] ) for i in range(a_ ): for j in range(a_ ): y[i].append(a_ ) SCREAMING_SNAKE_CASE : Any = 0 print('''enter the values of parameters in a list: ''' ) SCREAMING_SNAKE_CASE : List[Any] = list(map(a_ , input().split() ) ) print('''enter the values of corresponding parameters: ''' ) for i in range(a_ ): SCREAMING_SNAKE_CASE : str = float(input() ) SCREAMING_SNAKE_CASE : int = int(input('''enter the value to interpolate: ''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , a_ ): for j in range(n - i ): SCREAMING_SNAKE_CASE : str = y[j + 1][i - 1] - y[j][i - 1] SCREAMING_SNAKE_CASE : List[str] = y[0][0] for i in range(1 , a_ ): summ += (ucal(a_ , a_ ) * y[0][i]) / math.factorial(a_ ) print(F"the value at {value} is {summ}" ) if __name__ == "__main__": main()
698
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """bert""" def __init__( self :Any , lowerCamelCase_ :List[Any]=3_05_22 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :int=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :int="absolute" , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :List[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
698
1
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCamelCase = { '''facebook/blenderbot_small-90M''': 5_1_2, } class snake_case_ ( _a ): """simple docstring""" __UpperCAmelCase =VOCAB_FILES_NAMES __UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase =BlenderbotSmallTokenizer def __init__( self , _A=None , _A=None , _A="<|endoftext|>" , _A="<|endoftext|>" , _A="<|endoftext|>" , _A=False , _A=True , **_A , ): super().__init__( ByteLevelBPETokenizer( vocab=_A , merges=_A , add_prefix_space=_A , trim_offsets=_A , ) , bos_token=_A , eos_token=_A , unk_token=_A , **_A , ) __lowerCAmelCase = add_prefix_space def A__ ( self , _A , _A=None ): __lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , _A , _A = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
102
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class snake_case_ : """simple docstring""" @staticmethod def A__ ( *_A , **_A ): pass def __lowercase ( UpperCAmelCase__ ): """simple docstring""" __lowerCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class snake_case_ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase =MODEL_FOR_DEPTH_ESTIMATION_MAPPING def A__ ( self , _A , _A , _A ): __lowerCAmelCase = DepthEstimationPipeline(model=_A , image_processor=_A ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def A__ ( self , _A , _A ): __lowerCAmelCase = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , _A ) import datasets __lowerCAmelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __lowerCAmelCase = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , _A , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def A__ ( self ): pass @slow @require_torch def A__ ( self ): __lowerCAmelCase = 'Intel/dpt-large' __lowerCAmelCase = pipeline('depth-estimation' , model=_A ) __lowerCAmelCase = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __lowerCAmelCase = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def A__ ( self ): # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
102
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: UpperCamelCase__: Optional[Any] = None UpperCamelCase__: Optional[int] = logging.get_logger(__name__) UpperCamelCase__: Optional[int] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase__: Any = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } UpperCamelCase__: Optional[int] = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } UpperCamelCase__: Optional[int] = "▁" class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] lowerCamelCase__ = BarthezTokenizer def __init__( self : Optional[Any] , __snake_case : Optional[Any]=None , __snake_case : Dict=None , __snake_case : List[str]="<s>" , __snake_case : Union[str, Any]="</s>" , __snake_case : Union[str, Any]="</s>" , __snake_case : List[Any]="<s>" , __snake_case : int="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : List[Any]="<mask>" , **__snake_case : List[Any] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( __snake_case , tokenizer_file=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , **__snake_case , ) UpperCAmelCase : List[str] = vocab_file UpperCAmelCase : List[Any] = False if not self.vocab_file else True def A ( self : Any , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : str = [self.cls_token_id] UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : int = [self.sep_token_id] UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A ( self : Tuple , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : List[str] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
127
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Any = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__snake_case ) ) def A ( self : Tuple ) -> Tuple: UpperCAmelCase : Optional[Any] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__snake_case ) ) def A ( self : str ) -> str: UpperCAmelCase : int = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__snake_case ) ) def A ( self : str ) -> Tuple: UpperCAmelCase : Optional[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__snake_case ) ) def A ( self : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(__snake_case ) ) def A ( self : int ) -> List[Any]: UpperCAmelCase : Union[str, Any] = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase : List[Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : Union[str, Any] ) -> str: UpperCAmelCase : Optional[int] = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase : int = '''fp16''' self.assertTrue(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : Dict ) -> Tuple: # pass variant but use the non-variant filenames UpperCAmelCase : str = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] UpperCAmelCase : int = '''fp16''' self.assertTrue(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : Optional[int] ) -> List[str]: UpperCAmelCase : str = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCAmelCase : Optional[int] = '''fp16''' self.assertFalse(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : str ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] UpperCAmelCase : List[str] = '''fp16''' self.assertTrue(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : Optional[int] ) -> List[str]: # pass variant but use the non-variant filenames UpperCAmelCase : Optional[int] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] UpperCAmelCase : List[Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : Any = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase : Dict = '''fp16''' self.assertFalse(is_safetensors_compatible(__snake_case , variant=__snake_case ) )
127
1
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort A : Optional[int] = logging.get_logger(__name__) A : Optional[Any] = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class lowerCamelCase : """simple docstring""" def __init__( self : Dict , __magic_name__ : Optional[Any]=None , **__magic_name__ : Optional[int] ) -> Optional[int]: logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) SCREAMING_SNAKE_CASE_ = model SCREAMING_SNAKE_CASE_ = kwargs.get("model_save_dir" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = kwargs.get("latest_model_name" , __magic_name__ ) def __call__( self : str , **__magic_name__ : str ) -> Tuple: SCREAMING_SNAKE_CASE_ = {k: np.array(__magic_name__ ) for k, v in kwargs.items()} return self.model.run(__magic_name__ , __magic_name__ ) @staticmethod def __A ( __magic_name__ : Union[str, Path] , __magic_name__ : Optional[int]=None , __magic_name__ : List[str]=None ) -> Optional[Any]: if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) SCREAMING_SNAKE_CASE_ = "CPUExecutionProvider" return ort.InferenceSession(__magic_name__ , providers=[provider] , sess_options=__magic_name__ ) def __A ( self : Dict , __magic_name__ : Union[str, Path] , __magic_name__ : Optional[str] = None , **__magic_name__ : int ) -> Dict: SCREAMING_SNAKE_CASE_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME SCREAMING_SNAKE_CASE_ = self.model_save_dir.joinpath(self.latest_model_name ) SCREAMING_SNAKE_CASE_ = Path(__magic_name__ ).joinpath(__magic_name__ ) try: shutil.copyfile(__magic_name__ , __magic_name__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) SCREAMING_SNAKE_CASE_ = self.model_save_dir.joinpath(__magic_name__ ) if src_path.exists(): SCREAMING_SNAKE_CASE_ = Path(__magic_name__ ).joinpath(__magic_name__ ) try: shutil.copyfile(__magic_name__ , __magic_name__ ) except shutil.SameFileError: pass def __A ( self : str , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : int , ) -> Any: if os.path.isfile(__magic_name__ ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) # saving model weights/files self._save_pretrained(__magic_name__ , **__magic_name__ ) @classmethod def __A ( cls : Dict , __magic_name__ : Union[str, Path] , __magic_name__ : Optional[Union[bool, str, None]] = None , __magic_name__ : Optional[Union[str, None]] = None , __magic_name__ : bool = False , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = None , __magic_name__ : Optional["ort.SessionOptions"] = None , **__magic_name__ : Any , ) -> Dict: SCREAMING_SNAKE_CASE_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__magic_name__ ): SCREAMING_SNAKE_CASE_ = OnnxRuntimeModel.load_model( os.path.join(__magic_name__ , __magic_name__ ) , provider=__magic_name__ , sess_options=__magic_name__ ) SCREAMING_SNAKE_CASE_ = Path(__magic_name__ ) # load model from hub else: # download model SCREAMING_SNAKE_CASE_ = hf_hub_download( repo_id=__magic_name__ , filename=__magic_name__ , use_auth_token=__magic_name__ , revision=__magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , ) SCREAMING_SNAKE_CASE_ = Path(__magic_name__ ).parent SCREAMING_SNAKE_CASE_ = Path(__magic_name__ ).name SCREAMING_SNAKE_CASE_ = OnnxRuntimeModel.load_model(__magic_name__ , provider=__magic_name__ , sess_options=__magic_name__ ) return cls(model=__magic_name__ , **__magic_name__ ) @classmethod def __A ( cls : Dict , __magic_name__ : Union[str, Path] , __magic_name__ : bool = True , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = None , **__magic_name__ : List[str] , ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = None if len(str(__magic_name__ ).split("@" ) ) == 2: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model_id.split("@" ) return cls._from_pretrained( model_id=__magic_name__ , revision=__magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , use_auth_token=__magic_name__ , **__magic_name__ , )
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : int = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
356
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[str] = { """weiweishi/roc-bert-base-zh""": """https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json""", } class UpperCAmelCase_ ( __lowerCamelCase ): __lowerCamelCase = 'roc_bert' def __init__( self , _lowerCAmelCase=30522 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0_2 , _lowerCAmelCase=1e-12 , _lowerCAmelCase=True , _lowerCAmelCase=0 , _lowerCAmelCase="absolute" , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=768 , _lowerCAmelCase=910 , _lowerCAmelCase=512 , _lowerCAmelCase=24858 , _lowerCAmelCase=True , **_lowerCAmelCase , ): UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : Tuple = max_position_embeddings UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Tuple = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : Tuple = hidden_act UpperCAmelCase__ : List[str] = hidden_dropout_prob UpperCAmelCase__ : Dict = attention_probs_dropout_prob UpperCAmelCase__ : int = initializer_range UpperCAmelCase__ : List[Any] = type_vocab_size UpperCAmelCase__ : List[str] = layer_norm_eps UpperCAmelCase__ : List[str] = use_cache UpperCAmelCase__ : int = enable_pronunciation UpperCAmelCase__ : Tuple = enable_shape UpperCAmelCase__ : str = pronunciation_embed_dim UpperCAmelCase__ : Tuple = pronunciation_vocab_size UpperCAmelCase__ : Optional[Any] = shape_embed_dim UpperCAmelCase__ : Optional[int] = shape_vocab_size UpperCAmelCase__ : List[Any] = concat_input UpperCAmelCase__ : Optional[int] = position_embedding_type UpperCAmelCase__ : Any = classifier_dropout super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase )
79
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __UpperCamelCase : str = 4 __UpperCamelCase : List[str] = 3 class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( A_ ): for shard in shards: for i in range(A_ ): yield {"i": i, "shard": shard} def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = int(os.environ['''RANK'''] ) lowerCAmelCase__ : Union[str, Any] = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase__ : Tuple = ArgumentParser() parser.add_argument('''--streaming''' , type=A_ ) parser.add_argument('''--local_rank''' , type=A_ ) parser.add_argument('''--num_workers''' , type=A_ , default=0 ) lowerCAmelCase__ : Tuple = parser.parse_args() lowerCAmelCase__ : Tuple = args.streaming lowerCAmelCase__ : Any = args.num_workers lowerCAmelCase__ : Dict = {'''shards''': [f'shard_{shard_idx}' for shard_idx in range(A_ )]} lowerCAmelCase__ : Optional[int] = IterableDataset.from_generator(A_ , gen_kwargs=A_ ) if not streaming: lowerCAmelCase__ : Dict = Dataset.from_list(list(A_ ) ) lowerCAmelCase__ : Optional[Any] = split_dataset_by_node(A_ , rank=A_ , world_size=A_ ) lowerCAmelCase__ : List[Any] = torch.utils.data.DataLoader(A_ , num_workers=A_ ) lowerCAmelCase__ : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowerCAmelCase__ : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowerCAmelCase__ : int = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
450
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } __lowercase = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } __lowercase = { 'ctrl': 256, } __lowercase = { 'Pregnancy': 16_8629, 'Christianity': 7675, 'Explain': 10_6423, 'Fitness': 6_3440, 'Saving': 6_3163, 'Ask': 2_7171, 'Ass': 9_5985, 'Joke': 16_3509, 'Questions': 4_5622, 'Thoughts': 4_9605, 'Retail': 5_2342, 'Feminism': 16_4338, 'Writing': 1_1992, 'Atheism': 19_2263, 'Netflix': 4_8616, 'Computing': 3_9639, 'Opinion': 4_3213, 'Alone': 4_4967, 'Funny': 5_8917, 'Gaming': 4_0358, 'Human': 4088, 'India': 1331, 'Joker': 7_7138, 'Diet': 3_6206, 'Legal': 1_1859, 'Norman': 4939, 'Tip': 7_2689, 'Weight': 5_2343, 'Movies': 4_6273, 'Running': 2_3425, 'Science': 2090, 'Horror': 3_7793, 'Confession': 6_0572, 'Finance': 1_2250, 'Politics': 1_6360, 'Scary': 19_1985, 'Support': 1_2654, 'Technologies': 3_2516, 'Teenage': 6_6160, 'Event': 3_2769, 'Learned': 6_7460, 'Notion': 18_2770, 'Wikipedia': 3_7583, 'Books': 6665, 'Extract': 7_6050, 'Confessions': 10_2701, 'Conspiracy': 7_5932, 'Links': 6_3674, 'Narcissus': 15_0425, 'Relationship': 5_4766, 'Relationships': 13_4796, 'Reviews': 4_1671, 'News': 4256, 'Translation': 2_6820, 'multilingual': 12_8406, } def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = set() __UpperCamelCase :List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCamelCase :Tuple = char __UpperCamelCase :Any = set(A_ ) return pairs class lowerCamelCase_ ( _A ): '''simple docstring''' a__ : Tuple = VOCAB_FILES_NAMES a__ : List[str] = PRETRAINED_VOCAB_FILES_MAP a__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = CONTROL_CODES def __init__( self , __lowercase , __lowercase , __lowercase="<unk>" , **__lowercase) -> List[Any]: super().__init__(unk_token=UpperCamelCase__ , **UpperCamelCase__) with open(UpperCamelCase__ , encoding='''utf-8''') as vocab_handle: __UpperCamelCase :List[Any] = json.load(UpperCamelCase__) __UpperCamelCase :Optional[Any] = {v: k for k, v in self.encoder.items()} with open(UpperCamelCase__ , encoding='''utf-8''') as merges_handle: __UpperCamelCase :int = merges_handle.read().split('''\n''')[1:-1] __UpperCamelCase :int = [tuple(merge.split()) for merge in merges] __UpperCamelCase :Any = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__)))) __UpperCamelCase :Union[str, Any] = {} @property def UpperCamelCase__ ( self) -> int: return len(self.encoder) def UpperCamelCase__ ( self) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder) def UpperCamelCase__ ( self , __lowercase) -> Any: if token in self.cache: return self.cache[token] __UpperCamelCase :int = tuple(UpperCamelCase__) __UpperCamelCase :Optional[Any] = tuple(list(word[:-1]) + [word[-1] + '''</w>''']) __UpperCamelCase :str = get_pairs(UpperCamelCase__) if not pairs: return token while True: __UpperCamelCase :Any = min(UpperCamelCase__ , key=lambda __lowercase: self.bpe_ranks.get(UpperCamelCase__ , float('''inf'''))) if bigram not in self.bpe_ranks: break __UpperCamelCase , __UpperCamelCase :Optional[int] = bigram __UpperCamelCase :List[Any] = [] __UpperCamelCase :Optional[Any] = 0 while i < len(UpperCamelCase__): try: __UpperCamelCase :Optional[Any] = word.index(UpperCamelCase__ , UpperCamelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) __UpperCamelCase :str = j if word[i] == first and i < len(UpperCamelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __UpperCamelCase :Tuple = tuple(UpperCamelCase__) __UpperCamelCase :Tuple = new_word if len(UpperCamelCase__) == 1: break else: __UpperCamelCase :Any = get_pairs(UpperCamelCase__) __UpperCamelCase :Union[str, Any] = '''@@ '''.join(UpperCamelCase__) __UpperCamelCase :Dict = word[:-4] __UpperCamelCase :Optional[int] = word return word def UpperCamelCase__ ( self , __lowercase) -> Any: __UpperCamelCase :Any = [] __UpperCamelCase :List[Any] = re.findall(r'''\S+\n?''' , UpperCamelCase__) for token in words: split_tokens.extend(list(self.bpe(UpperCamelCase__).split(''' '''))) return split_tokens def UpperCamelCase__ ( self , __lowercase) -> Dict: return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token)) def UpperCamelCase__ ( self , __lowercase) -> Optional[Any]: return self.decoder.get(UpperCamelCase__ , self.unk_token) def UpperCamelCase__ ( self , __lowercase) -> Dict: __UpperCamelCase :Dict = ''' '''.join(UpperCamelCase__).replace('''@@ ''' , '''''').strip() return out_string def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> Tuple[str]: if not os.path.isdir(UpperCamelCase__): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __UpperCamelCase :Optional[int] = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) __UpperCamelCase :Any = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file''']) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__) + '''\n''') __UpperCamelCase :Dict = 0 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''') as writer: writer.write('''#version: 0.2\n''') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase: kv[1]): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''') __UpperCamelCase :Any = token_index writer.write(''' '''.join(UpperCamelCase__) + '''\n''') index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowercase = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
452
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCamelCase = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __lowerCamelCase = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __lowerCamelCase = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __lowerCamelCase = { "facebook/dpr-ctx_encoder-single-nq-base": 5_12, "facebook/dpr-ctx_encoder-multiset-base": 5_12, } __lowerCamelCase = { "facebook/dpr-question_encoder-single-nq-base": 5_12, "facebook/dpr-question_encoder-multiset-base": 5_12, } __lowerCamelCase = { "facebook/dpr-reader-single-nq-base": 5_12, "facebook/dpr-reader-multiset-base": 5_12, } __lowerCamelCase = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __lowerCamelCase = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __lowerCamelCase = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _snake_case ( A__ ): '''simple docstring''' UpperCamelCase__ =VOCAB_FILES_NAMES UpperCamelCase__ =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ =DPRContextEncoderTokenizer class _snake_case ( A__ ): '''simple docstring''' UpperCamelCase__ =VOCAB_FILES_NAMES UpperCamelCase__ =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ =DPRQuestionEncoderTokenizer __lowerCamelCase = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __lowerCamelCase = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __lowerCamelCase = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(A__ ) class _snake_case : '''simple docstring''' def __call__( self : List[str] , snake_case : Tuple , snake_case : Optional[str] = None , snake_case : Optional[str] = None , snake_case : Union[bool, str] = False , snake_case : Union[bool, str] = False , snake_case : Optional[int] = None , snake_case : Optional[Union[str, TensorType]] = None , snake_case : Optional[bool] = None , **snake_case : Optional[Any] , ): if titles is None and texts is None: return super().__call__( snake_case , padding=snake_case , truncation=snake_case , max_length=snake_case , return_tensors=snake_case , return_attention_mask=snake_case , **snake_case , ) elif titles is None or texts is None: UpperCAmelCase_ :int = titles if texts is None else texts return super().__call__( snake_case , snake_case , padding=snake_case , truncation=snake_case , max_length=snake_case , return_tensors=snake_case , return_attention_mask=snake_case , **snake_case , ) UpperCAmelCase_ :str = titles if not isinstance(snake_case , snake_case ) else [titles] UpperCAmelCase_ :str = texts if not isinstance(snake_case , snake_case ) else [texts] UpperCAmelCase_ :Union[str, Any] = len(snake_case ) UpperCAmelCase_ :Tuple = questions if not isinstance(snake_case , snake_case ) else [questions] * n_passages assert len(snake_case ) == len( snake_case ), f'There should be as many titles than texts but got {len(snake_case )} titles and {len(snake_case )} texts.' UpperCAmelCase_ :Optional[int] = super().__call__(snake_case , snake_case , padding=snake_case , truncation=snake_case )['''input_ids'''] UpperCAmelCase_ :List[Any] = super().__call__(snake_case , add_special_tokens=snake_case , padding=snake_case , truncation=snake_case )['''input_ids'''] UpperCAmelCase_ :Tuple = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(snake_case , snake_case ) ] } if return_attention_mask is not False: UpperCAmelCase_ :Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCAmelCase_ :Union[str, Any] = attention_mask return self.pad(snake_case , padding=snake_case , max_length=snake_case , return_tensors=snake_case ) def snake_case_ ( self : int , snake_case : BatchEncoding , snake_case : DPRReaderOutput , snake_case : int = 16 , snake_case : int = 64 , snake_case : int = 4 , ): UpperCAmelCase_ :str = reader_input['''input_ids'''] UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ :Optional[Any] = reader_output[:3] UpperCAmelCase_ :Optional[int] = len(snake_case ) UpperCAmelCase_ :Tuple = sorted(range(snake_case ) , reverse=snake_case , key=relevance_logits.__getitem__ ) UpperCAmelCase_ :List[DPRReaderOutput] = [] for doc_id in sorted_docs: UpperCAmelCase_ :List[str] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCAmelCase_ :Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCAmelCase_ :Dict = sequence_ids.index(self.pad_token_id ) else: UpperCAmelCase_ :Tuple = len(snake_case ) UpperCAmelCase_ :str = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=snake_case , top_spans=snake_case , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=snake_case , start_index=snake_case , end_index=snake_case , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(snake_case ) >= num_spans: break return nbest_spans_predictions[:num_spans] def snake_case_ ( self : Dict , snake_case : List[int] , snake_case : List[int] , snake_case : int , snake_case : int , ): UpperCAmelCase_ :Optional[int] = [] for start_index, start_score in enumerate(snake_case ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCAmelCase_ :Optional[int] = sorted(snake_case , key=lambda snake_case : x[1] , reverse=snake_case ) UpperCAmelCase_ :Optional[int] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'Wrong span indices: [{start_index}:{end_index}]' UpperCAmelCase_ :Optional[int] = end_index - start_index + 1 assert length <= max_answer_length, f'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(snake_case ) == top_spans: break return chosen_span_intervals @add_end_docstrings(A__ ) class _snake_case ( A__ , A__ ): '''simple docstring''' UpperCamelCase__ =VOCAB_FILES_NAMES UpperCamelCase__ =READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ =READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ =["""input_ids""", """attention_mask"""] UpperCamelCase__ =DPRReaderTokenizer
608
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class _snake_case : '''simple docstring''' def __init__( self : Dict , snake_case : int , snake_case : MutableSequence[float] ): if len(snake_case ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) UpperCAmelCase_ :list[float] = list(snake_case ) UpperCAmelCase_ :str = degree def __add__( self : Any , snake_case : Polynomial ): if self.degree > polynomial_a.degree: UpperCAmelCase_ :int = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , snake_case ) else: UpperCAmelCase_ :Any = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , snake_case ) def __sub__( self : List[str] , snake_case : Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Any , snake_case : Polynomial ): UpperCAmelCase_ :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , snake_case ) def snake_case_ ( self : Optional[Any] , snake_case : int | float ): UpperCAmelCase_ :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : List[Any] ): UpperCAmelCase_ :List[str] = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(snake_case ) return polynomial def __repr__( self : int ): return self.__str__() def snake_case_ ( self : str ): UpperCAmelCase_ :list[float] = [0] * self.degree for i in range(self.degree ): UpperCAmelCase_ :str = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , snake_case ) def snake_case_ ( self : Optional[int] , snake_case : int | float = 0 ): UpperCAmelCase_ :list[float] = [0] * (self.degree + 2) UpperCAmelCase_ :List[str] = constant for i in range(self.degree + 1 ): UpperCAmelCase_ :Optional[int] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , snake_case ) def __eq__( self : int , snake_case : object ): if not isinstance(snake_case , snake_case ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Optional[Any] , snake_case : object ): return not self.__eq__(snake_case )
608
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class a_ ( lowerCamelCase ): lowercase = """mra""" def __init__( self , _SCREAMING_SNAKE_CASE=50265 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE="full" , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , **_SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = type_vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = block_per_row UpperCamelCase = approx_mode UpperCamelCase = initial_prior_first_n_blocks UpperCamelCase = initial_prior_diagonal_n_blocks
707
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-1' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-2' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-3' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-4' class a_ ( lowerCamelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ) -> Any: """simple docstring""" super()._init_() UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , requires_safety_checker=_SCREAMING_SNAKE_CASE , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A__ ( self ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , _SCREAMING_SNAKE_CASE ) for k in self.config.keys() if not k.startswith("""_""" )} def A__ ( self , _SCREAMING_SNAKE_CASE = "auto" ) -> Optional[Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Tuple: """simple docstring""" self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" UpperCamelCase = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(_SCREAMING_SNAKE_CASE ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
35
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class snake_case__ ( unittest.TestCase ): @slow def A ( self ) -> List[Any]: """simple docstring""" a_ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=UpperCamelCase_ ).to(UpperCamelCase_ ) a_ : Dict = AutoTokenizer.from_pretrained("""google/mt5-small""" ) a_ : int = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids a_ : Optional[int] = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids a_ : int = model(input_ids.to(UpperCamelCase_ ) , labels=labels.to(UpperCamelCase_ ) ).loss a_ : Optional[Any] = -(labels.shape[-1] * loss.item()) a_ : Optional[Any] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
419
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class snake_case__ ( __A ): def A ( self ) -> int: """simple docstring""" a_ : Optional[Any] = tempfile.mkdtemp() a_ : Union[str, Any] = 8 # DPR tok a_ : Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] a_ : List[Any] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) a_ : List[Any] = os.path.join(UpperCamelCase_ , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok a_ : str = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] a_ : List[Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) a_ : Dict = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] a_ : Any = {"""unk_token""": """<unk>"""} a_ : List[str] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) a_ : List[str] = os.path.join(UpperCamelCase_ , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) a_ : Union[str, Any] = os.path.join(UpperCamelCase_ , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase_ ) ) def A ( self ) -> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def A ( self ) -> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def A ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def A ( self ) -> Optional[int]: """simple docstring""" a_ : Tuple = os.path.join(self.tmpdirname , """rag_tokenizer""" ) a_ : Any = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) a_ : Optional[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(UpperCamelCase_ ) rag_tokenizer.save_pretrained(UpperCamelCase_ ) a_ : Union[str, Any] = RagTokenizer.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , UpperCamelCase_ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , UpperCamelCase_ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def A ( self ) -> Dict: """simple docstring""" a_ : List[str] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) a_ : int = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] a_ : Optional[int] = tokenizer(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @slow def A ( self ) -> List[Any]: """simple docstring""" a_ : int = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) a_ : Any = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] a_ : Tuple = tokenizer(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ )
419
1
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=5_1_2, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Dict: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"could not parse string as bool {string}" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) snake_case_ = parser.parse_args() snake_case_ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
68
'''simple docstring''' def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def __lowerCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
68
1
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class a : def __init__( self :List[str] ,__lowercase :Dict ,__lowercase :Optional[Any]=1_3 ,__lowercase :str=7 ,__lowercase :List[Any]=True ,__lowercase :Optional[int]=True ,__lowercase :Optional[int]=True ,__lowercase :int=True ,__lowercase :Union[str, Any]=9_9 ,__lowercase :Union[str, Any]=3_2 ,__lowercase :Any=5 ,__lowercase :Any=4 ,__lowercase :Optional[int]=3_7 ,__lowercase :Union[str, Any]="gelu" ,__lowercase :int=0.1 ,__lowercase :Any=0.1 ,__lowercase :str=5_1_2 ,__lowercase :Union[str, Any]=1_6 ,__lowercase :Dict=2 ,__lowercase :Tuple=0.02 ,__lowercase :List[Any]=3 ,__lowercase :Union[str, Any]=4 ,__lowercase :Tuple=None ,): snake_case__ : str = parent snake_case__ : List[Any] = batch_size snake_case__ : Optional[Any] = seq_length snake_case__ : str = is_training snake_case__ : int = use_input_mask snake_case__ : Optional[Any] = use_token_type_ids snake_case__ : Any = use_labels snake_case__ : Optional[Any] = vocab_size snake_case__ : List[Any] = hidden_size snake_case__ : List[str] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : List[str] = hidden_act snake_case__ : Dict = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : int = max_position_embeddings snake_case__ : Any = type_vocab_size snake_case__ : List[Any] = type_sequence_label_size snake_case__ : Dict = initializer_range snake_case__ : Optional[Any] = num_labels snake_case__ : Tuple = num_choices snake_case__ : int = scope def __lowerCamelCase ( self :List[str] ): snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ : str = None if self.use_input_mask: snake_case__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : List[Any] = None if self.use_token_type_ids: snake_case__ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case__ : List[str] = None snake_case__ : str = None snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case__ : Union[str, Any] = ids_tensor([self.batch_size] ,self.num_choices ) snake_case__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self :str ): return NystromformerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowercase ,initializer_range=self.initializer_range ,) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :List[str] ,__lowercase :Optional[Any] ,__lowercase :str ,__lowercase :Any ,__lowercase :Optional[int] ,__lowercase :Union[str, Any] ,__lowercase :List[Any] ): snake_case__ : Optional[int] = NystromformerModel(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Dict = model(__lowercase ,attention_mask=__lowercase ,token_type_ids=__lowercase ) snake_case__ : Optional[Any] = model(__lowercase ,token_type_ids=__lowercase ) snake_case__ : Any = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self :Any ,__lowercase :List[Any] ,__lowercase :int ,__lowercase :List[str] ,__lowercase :int ,__lowercase :int ,__lowercase :int ,__lowercase :List[Any] ): snake_case__ : Dict = NystromformerForMaskedLM(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : Tuple = model(__lowercase ,attention_mask=__lowercase ,token_type_ids=__lowercase ,labels=__lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self :Tuple ,__lowercase :List[str] ,__lowercase :Optional[int] ,__lowercase :str ,__lowercase :Union[str, Any] ,__lowercase :List[Any] ,__lowercase :List[Any] ,__lowercase :List[str] ): snake_case__ : Optional[Any] = NystromformerForQuestionAnswering(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : List[Any] = model( __lowercase ,attention_mask=__lowercase ,token_type_ids=__lowercase ,start_positions=__lowercase ,end_positions=__lowercase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowerCamelCase ( self :List[str] ,__lowercase :Union[str, Any] ,__lowercase :Optional[int] ,__lowercase :Any ,__lowercase :Union[str, Any] ,__lowercase :Optional[int] ,__lowercase :Optional[Any] ,__lowercase :List[Any] ): snake_case__ : List[str] = self.num_labels snake_case__ : Any = NystromformerForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : List[Any] = model(__lowercase ,attention_mask=__lowercase ,token_type_ids=__lowercase ,labels=__lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :List[str] ,__lowercase :Optional[int] ,__lowercase :List[Any] ,__lowercase :Optional[Any] ,__lowercase :Union[str, Any] ,__lowercase :Optional[Any] ,__lowercase :List[str] ): snake_case__ : Any = self.num_labels snake_case__ : List[Any] = NystromformerForTokenClassification(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : List[Any] = model(__lowercase ,attention_mask=__lowercase ,token_type_ids=__lowercase ,labels=__lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Union[str, Any] ,__lowercase :Optional[int] ,__lowercase :List[str] ,__lowercase :Optional[int] ,__lowercase :int ,__lowercase :Optional[int] ,__lowercase :int ): snake_case__ : Any = self.num_choices snake_case__ : Dict = NystromformerForMultipleChoice(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case__ : List[Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() snake_case__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() snake_case__ : List[str] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() snake_case__ : Dict = model( __lowercase ,attention_mask=__lowercase ,token_type_ids=__lowercase ,labels=__lowercase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : int = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : List[str] = config_and_inputs snake_case__ : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : str = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __lowerCAmelCase : List[str] = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase : List[Any] = False __lowerCAmelCase : List[Any] = False def __lowerCamelCase ( self :Tuple ): snake_case__ : Optional[Any] = NystromformerModelTester(self ) snake_case__ : List[str] = ConfigTester(self ,config_class=__lowercase ,hidden_size=3_7 ) def __lowerCamelCase ( self :Optional[Any] ): self.config_tester.run_common_tests() def __lowerCamelCase ( self :Any ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ : int = type self.model_tester.create_and_check_model(*__lowercase ) def __lowerCamelCase ( self :Any ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowercase ) def __lowerCamelCase ( self :Dict ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowercase ) def __lowerCamelCase ( self :int ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowercase ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowercase ) @slow def __lowerCamelCase ( self :List[str] ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Dict = NystromformerModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_torch class a ( unittest.TestCase ): @slow def __lowerCamelCase ( self :str ): snake_case__ : int = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) snake_case__ : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): snake_case__ : List[str] = model(__lowercase )[0] snake_case__ : int = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,__lowercase ) snake_case__ : List[Any] = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__lowercase ,atol=1e-4 ) ) @slow def __lowerCamelCase ( self :int ): snake_case__ : Union[str, Any] = '''the [MASK] of Belgium is Brussels''' snake_case__ : List[Any] = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) snake_case__ : Union[str, Any] = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) snake_case__ : Any = tokenizer(__lowercase ,return_tensors='''pt''' ) with torch.no_grad(): snake_case__ : int = model(encoding.input_ids ).logits snake_case__ : List[str] = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(__lowercase ) ,'''capital''' )
252
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer A__ = logging.get_logger(__name__) A__ = {'''vocab_file''': '''vocab.txt'''} A__ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } A__ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } A__ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class a ( __lowerCamelCase ): __lowerCAmelCase : List[str] = VOCAB_FILES_NAMES __lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[str] = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[Any] = ConvBertTokenizer def __init__( self :Any ,__lowercase :Optional[int]=None ,__lowercase :str=None ,__lowercase :Union[str, Any]=True ,__lowercase :Dict="[UNK]" ,__lowercase :List[Any]="[SEP]" ,__lowercase :int="[PAD]" ,__lowercase :Union[str, Any]="[CLS]" ,__lowercase :List[str]="[MASK]" ,__lowercase :List[Any]=True ,__lowercase :List[str]=None ,**__lowercase :List[str] ,): super().__init__( __lowercase ,tokenizer_file=__lowercase ,do_lower_case=__lowercase ,unk_token=__lowercase ,sep_token=__lowercase ,pad_token=__lowercase ,cls_token=__lowercase ,mask_token=__lowercase ,tokenize_chinese_chars=__lowercase ,strip_accents=__lowercase ,**__lowercase ,) snake_case__ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,__lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' ,__lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,__lowercase ) != tokenize_chinese_chars ): snake_case__ : Union[str, Any] = getattr(__lowercase ,normalizer_state.pop('''type''' ) ) snake_case__ : int = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : List[str] = tokenize_chinese_chars snake_case__ : Tuple = normalizer_class(**__lowercase ) snake_case__ : Any = do_lower_case def __lowerCamelCase ( self :int ,__lowercase :Union[str, Any] ,__lowercase :List[Any]=None ): snake_case__ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self :List[Any] ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ): snake_case__ : str = [self.sep_token_id] snake_case__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self :Optional[Any] ,__lowercase :str ,__lowercase :Optional[str] = None ): snake_case__ : Optional[int] = self._tokenizer.model.save(__lowercase ,name=__lowercase ) return tuple(__lowercase )
252
1
'''simple docstring''' import heapq import sys import numpy as np lowerCamelCase_ : List[str] = tuple[int, int] class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] ) -> Dict: '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ = set() def A ( self : int ) -> List[Any]: '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def A ( self : Dict ) -> Optional[Any]: '''simple docstring''' return len(self.elements ) == 0 def A ( self : str , lowercase : Union[str, Any] , lowercase : Optional[Any] ) -> Dict: '''simple docstring''' if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) UpperCamelCase__ = [] ((UpperCamelCase__) , (UpperCamelCase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((UpperCamelCase__) , (UpperCamelCase__)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def A ( self : List[str] , lowercase : Optional[Any] ) -> Dict: '''simple docstring''' if item in self.set: self.set.remove(_lowerCAmelCase ) UpperCamelCase__ = [] ((UpperCamelCase__) , (UpperCamelCase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((UpperCamelCase__) , (UpperCamelCase__)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def A ( self : Any ) -> List[Any]: '''simple docstring''' return self.elements[0][1] def A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' ((UpperCamelCase__) , (UpperCamelCase__)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def __magic_name__( _A , _A ): '''simple docstring''' UpperCamelCase__ = np.array(_A ) UpperCamelCase__ = np.array(_A ) return np.linalg.norm(a - b ) def __magic_name__( _A , _A ): '''simple docstring''' return consistent_heuristic(_A , _A ) // t def __magic_name__( _A , _A ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __magic_name__( _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase__ = g_function[start] + Wa * heuristics[i](_A , _A ) return ans def __magic_name__( _A , _A , _A ): '''simple docstring''' UpperCamelCase__ = np.chararray((n, n) ) for i in range(_A ): for j in range(_A ): UpperCamelCase__ = """*""" for i in range(_A ): for j in range(_A ): if (j, (n - 1) - i) in blocks: UpperCamelCase__ = """#""" UpperCamelCase__ = """-""" UpperCamelCase__ = back_pointer[goal] while x != start: ((UpperCamelCase__) , (UpperCamelCase__)) = x # print(x) UpperCamelCase__ = """-""" UpperCamelCase__ = back_pointer[x] UpperCamelCase__ = """-""" for i in range(_A ): for j in range(_A ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) UpperCamelCase__ = back_pointer[goal] while x != start: print(_A , end=""" """ ) UpperCamelCase__ = back_pointer[x] print(_A ) sys.exit() def __magic_name__( _A ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __magic_name__( _A , _A , _A , _A , _A , _A , _A , _A , ): '''simple docstring''' for itera in range(_A ): open_list[itera].remove_element(_A ) # print("s", s) # print("j", j) ((UpperCamelCase__) , (UpperCamelCase__)) = s UpperCamelCase__ = (x - 1, y) UpperCamelCase__ = (x + 1, y) UpperCamelCase__ = (x, y + 1) UpperCamelCase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_A ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_A ) UpperCamelCase__ = -1 UpperCamelCase__ = float("""inf""" ) if valid(_A ) and g_function[neighbours] > g_function[s] + 1: UpperCamelCase__ = g_function[s] + 1 UpperCamelCase__ = s if neighbours not in close_list_anchor: open_list[0].put(_A , key(_A , 0 , _A , _A ) ) if neighbours not in close_list_inad: for var in range(1 , _A ): if key(_A , _A , _A , _A ) <= Wa * key( _A , 0 , _A , _A ): open_list[j].put( _A , key(_A , _A , _A , _A ) ) def __magic_name__( ): '''simple docstring''' UpperCamelCase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list lowerCamelCase_ : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} lowerCamelCase_ : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] lowerCamelCase_ : Optional[Any] = make_common_ground() lowerCamelCase_ : Dict = blocks_blk # hyper parameters lowerCamelCase_ : Union[str, Any] = 1 lowerCamelCase_ : Union[str, Any] = 1 lowerCamelCase_ : Optional[int] = 20 lowerCamelCase_ : List[str] = 3 # one consistent and two other inconsistent # start and end destination lowerCamelCase_ : str = (0, 0) lowerCamelCase_ : str = (n - 1, n - 1) lowerCamelCase_ : Optional[Any] = 1 def __magic_name__( _A , _A , _A ): '''simple docstring''' UpperCamelCase__ = {start: 0, goal: float("""inf""" )} UpperCamelCase__ = {start: -1, goal: -1} UpperCamelCase__ = [] UpperCamelCase__ = set() for i in range(_A ): open_list.append(PriorityQueue() ) open_list[i].put(_A , key(_A , _A , _A , _A ) ) UpperCamelCase__ = [] UpperCamelCase__ = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , _A ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(_A , _A , _A ) else: UpperCamelCase__ , UpperCamelCase__ = open_list[i].top_show() visited.add(_A ) expand_state( _A , _A , _A , _A , _A , _A , _A , _A , ) close_list_inad.append(_A ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(_A , _A , _A ) else: UpperCamelCase__ = open_list[0].top_show() visited.add(_A ) expand_state( _A , 0 , _A , _A , _A , _A , _A , _A , ) close_list_anchor.append(_A ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_A ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
709
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _SCREAMING_SNAKE_CASE ( yaml.SafeLoader ): '''simple docstring''' def A ( self : List[str] , lowercase : List[Any] ) -> int: '''simple docstring''' UpperCamelCase__ = [self.constructed_objects[key_node] for key_node, _ in node.value] UpperCamelCase__ = [tuple(lowercase ) if isinstance(lowercase , lowercase ) else key for key in keys] UpperCamelCase__ = Counter(lowercase ) UpperCamelCase__ = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"Got duplicate yaml keys: {duplicate_keys}" ) def A ( self : List[str] , lowercase : int , lowercase : str=False ) -> Any: '''simple docstring''' UpperCamelCase__ = super().construct_mapping(lowercase , deep=lowercase ) self._check_no_duplicates_on_constructed_node(lowercase ) return mapping def __magic_name__( _A ): '''simple docstring''' UpperCamelCase__ = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: UpperCamelCase__ = full_content[1:].index("""---""" ) + 1 UpperCamelCase__ = """\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_A ) class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __a : Tuple = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def A ( cls : int , lowercase : Path ) -> "DatasetMetadata": '''simple docstring''' with open(lowercase , encoding="""utf-8""" ) as readme_file: UpperCamelCase__ , UpperCamelCase__ = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowercase ) else: return cls() def A ( self : int , lowercase : Path ) -> Dict: '''simple docstring''' if path.exists(): with open(lowercase , encoding="""utf-8""" ) as readme_file: UpperCamelCase__ = readme_file.read() else: UpperCamelCase__ = None UpperCamelCase__ = self._to_readme(lowercase ) with open(lowercase , """w""" , encoding="""utf-8""" ) as readme_file: readme_file.write(lowercase ) def A ( self : Any , lowercase : Optional[str] = None ) -> str: '''simple docstring''' if readme_content is not None: UpperCamelCase__ , UpperCamelCase__ = _split_yaml_from_readme(lowercase ) UpperCamelCase__ = """---\n""" + self.to_yaml_string() + """---\n""" + content else: UpperCamelCase__ = """---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def A ( cls : Tuple , lowercase : str ) -> "DatasetMetadata": '''simple docstring''' UpperCamelCase__ = yaml.load(lowercase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields UpperCamelCase__ = { (key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowercase ) def A ( self : Dict ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowercase , allow_unicode=lowercase , encoding="""utf-8""" , ).decode("""utf-8""" ) lowerCamelCase_ : str = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser lowerCamelCase_ : Tuple = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') lowerCamelCase_ : str = ap.parse_args() lowerCamelCase_ : List[str] = Path(args.readme_filepath) lowerCamelCase_ : Tuple = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
265
0
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> None: snake_case__ = len(__lowerCAmelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__lowerCAmelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __lowerCAmelCase , __lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> None: snake_case__ = [] depth_first_search([] , [] , [] , __lowerCAmelCase , __lowerCAmelCase ) # Print all the boards for board in boards: for column in board: print(__lowerCAmelCase ) print('''''' ) print(len(__lowerCAmelCase ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
33
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> int: snake_case__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ = '''''' else: snake_case__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[ : config.hidden_size, : ] snake_case__ = in_proj_bias[: config.hidden_size] snake_case__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ = in_proj_weight[ -config.hidden_size :, : ] snake_case__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: snake_case__ = ViTConfig() snake_case__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case__ = True snake_case__ = int(vit_name[-12:-10] ) snake_case__ = int(vit_name[-9:-6] ) else: snake_case__ = 1000 snake_case__ = '''huggingface/label-files''' snake_case__ = '''imagenet-1k-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = int(vit_name[-6:-4] ) snake_case__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): snake_case__ = 192 snake_case__ = 768 snake_case__ = 12 snake_case__ = 3 elif vit_name[9:].startswith('''small''' ): snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): snake_case__ = 768 snake_case__ = 2304 snake_case__ = 8 snake_case__ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 elif vit_name[4:].startswith('''huge''' ): snake_case__ = 1280 snake_case__ = 5120 snake_case__ = 32 snake_case__ = 16 # load original model from timm snake_case__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) snake_case__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case__ = ViTModel(__lowerCAmelCase ).eval() else: snake_case__ = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case__ = DeiTImageProcessor(size=config.image_size ) else: snake_case__ = ViTImageProcessor(size=config.image_size ) snake_case__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ = encoding['''pixel_values'''] snake_case__ = model(__lowerCAmelCase ) if base_model: snake_case__ = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: snake_case__ = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase__ : str = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
33
1
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __magic_name__ ( _lowerCamelCase : Optional[int]="" ): __a : str = tempfile.mkdtemp() return os.path.join(_lowerCamelCase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = torch.rand(12 , dtype=torch.floataa ) - 0.5 __a : str = AgentAudio(_lowercase ) __a : Optional[int] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_lowercase , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(_lowercase ) ) # Ensure that the file contains the same value as the original tensor __a , __a : str = sf.read(_lowercase ) self.assertTrue(torch.allclose(_lowercase , torch.tensor(_lowercase ) , atol=1e-4 ) ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[int] = torch.rand(12 , dtype=torch.floataa ) - 0.5 __a : Optional[int] = get_new_path(suffix=""".wav""" ) sf.write(_lowercase , _lowercase , 16000 ) __a : Union[str, Any] = AgentAudio(_lowercase ) self.assertTrue(torch.allclose(_lowercase , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , _lowercase ) @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def lowerCAmelCase__(self ): '''simple docstring''' __a : Dict = torch.randint(0 , 256 , (64, 64, 3) ) __a : Dict = AgentImage(_lowercase ) __a : Union[str, Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_lowercase , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_lowercase ) ) def lowerCAmelCase__(self ): '''simple docstring''' __a : List[str] = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" __a : List[str] = Image.open(_lowercase ) __a : Optional[int] = AgentImage(_lowercase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_lowercase ) ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" __a : List[str] = Image.open(_lowercase ) __a : str = AgentImage(_lowercase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_lowercase ) ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def lowerCAmelCase__(self ): '''simple docstring''' __a : List[Any] = """Hey!""" __a : int = AgentText(_lowercase ) self.assertEqual(_lowercase , agent_type.to_string() ) self.assertEqual(_lowercase , agent_type.to_raw() ) self.assertEqual(_lowercase , _lowercase )
63
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowercase__ = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): _lowerCAmelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCAmelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _lowerCAmelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _lowerCAmelCase = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : int = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __a : Tuple = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __a : Optional[Any] = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(_lowercase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) __a : int = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(_lowercase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __a : List[str] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior __a : Optional[int] = text_classifier("""This is great !""" , return_all_scores=_lowercase ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __a : Tuple = text_classifier("""This is great !""" , return_all_scores=_lowercase ) self.assertEqual( nested_simplify(_lowercase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) __a : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=_lowercase ) self.assertEqual( nested_simplify(_lowercase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __a : Union[str, Any] = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=_lowercase ) self.assertEqual( nested_simplify(_lowercase ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' import torch __a : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __a : Optional[int] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def lowerCAmelCase__(self ): '''simple docstring''' __a : List[Any] = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __a : List[str] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = pipeline("""text-classification""" ) __a : Tuple = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __a : Optional[int] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __a : Union[str, Any] = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def lowerCAmelCase__(self ): '''simple docstring''' __a : List[str] = pipeline("""text-classification""" , framework="""tf""" ) __a : str = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __a : Tuple = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __a : str = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : Dict = TextClassificationPipeline(model=_lowercase , tokenizer=_lowercase ) return text_classifier, ["HuggingFace is in", "This is another test"] def lowerCAmelCase__(self , _lowercase , _lowercase ): '''simple docstring''' __a : List[str] = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __a : Union[str, Any] = """HuggingFace is in""" __a : List[str] = text_classifier(_lowercase ) self.assertEqual(nested_simplify(_lowercase ) , [{"""label""": ANY(_lowercase ), """score""": ANY(_lowercase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __a : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] __a : Dict = text_classifier(_lowercase ) self.assertEqual( nested_simplify(_lowercase ) , [{"""label""": ANY(_lowercase ), """score""": ANY(_lowercase )}, {"""label""": ANY(_lowercase ), """score""": ANY(_lowercase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __a : Dict = text_classifier(_lowercase , top_k=_lowercase ) __a : Dict = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(_lowercase ) , [[{"""label""": ANY(_lowercase ), """score""": ANY(_lowercase )}] * N, [{"""label""": ANY(_lowercase ), """score""": ANY(_lowercase )}] * N] , ) __a : Dict = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __a : Any = text_classifier(_lowercase ) self.assertEqual( nested_simplify(_lowercase ) , {"""label""": ANY(_lowercase ), """score""": ANY(_lowercase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __a : Dict = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(_lowercase ): text_classifier(_lowercase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __a : Optional[int] = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(_lowercase ) , [{"""label""": ANY(_lowercase ), """score""": ANY(_lowercase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
63
1
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging _a : List[str] = logging.get_logger(__name__) class a_ ( a ): A__ : Tuple = CLIPConfig A__ : Any = ['CLIPEncoderLayer'] def __init__( self : List[Any] , UpperCAmelCase__ : CLIPConfig ): """simple docstring""" super().__init__(UpperCAmelCase__ ) snake_case : Dict = CLIPVisionModelWithProjection(config.vision_config ) snake_case : Optional[int] = nn.Linear(config.vision_config.projection_dim , 1 ) snake_case : Union[str, Any] = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCAmelCase( self : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str=0.5 , UpperCAmelCase__ : Union[str, Any]=0.5 ): """simple docstring""" snake_case : int = self.vision_model(UpperCAmelCase__ )[0] snake_case : Dict = self.p_head(UpperCAmelCase__ ) snake_case : Union[str, Any] = nsfw_detected.flatten() snake_case : Optional[int] = nsfw_detected > p_threshold snake_case : Union[str, Any] = nsfw_detected.tolist() if any(UpperCAmelCase__ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCAmelCase__ ): if nsfw_detected_: snake_case : Tuple = np.zeros(images[idx].shape ) snake_case : int = self.w_head(UpperCAmelCase__ ) snake_case : str = watermark_detected.flatten() snake_case : int = watermark_detected > w_threshold snake_case : Any = watermark_detected.tolist() if any(UpperCAmelCase__ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCAmelCase__ ): if watermark_detected_: snake_case : str = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
598
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class a_ ( unittest.TestCase ): A__ : Optional[int] = StableDiffusionLDMaDPipeline A__ : int = TEXT_TO_IMAGE_PARAMS A__ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS A__ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) snake_case : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) snake_case : Tuple = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) snake_case : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) snake_case : str = CLIPTextModel(UpperCAmelCase__ ) snake_case : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCAmelCase( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple=0 ): """simple docstring""" if str(UpperCAmelCase__ ).startswith('''mps''' ): snake_case : Tuple = torch.manual_seed(UpperCAmelCase__ ) else: snake_case : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) snake_case : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase( self : int ): """simple docstring""" snake_case : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case : List[str] = self.get_dummy_components() snake_case : Optional[int] = StableDiffusionLDMaDPipeline(**UpperCAmelCase__ ) snake_case : Union[str, Any] = ldmad_pipe.to(UpperCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) snake_case : Any = self.get_dummy_inputs(UpperCAmelCase__ ) snake_case : List[Any] = ldmad_pipe(**UpperCAmelCase__ ) snake_case , snake_case : Optional[int] = output.rgb, output.depth snake_case : Union[str, Any] = rgb[0, -3:, -3:, -1] snake_case : Dict = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) snake_case : List[Any] = np.array( [0.3733_8176, 0.7_0247, 0.7420_3193, 0.5164_3604, 0.5825_6793, 0.6093_2136, 0.418_1095, 0.4835_5877, 0.4653_5262] ) snake_case : Union[str, Any] = np.array([103.4_6727, 85.81_2004, 87.84_9236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def lowerCAmelCase( self : Any ): """simple docstring""" snake_case : int = self.get_dummy_components() snake_case : Optional[int] = StableDiffusionLDMaDPipeline(**UpperCAmelCase__ ) snake_case : Optional[int] = ldmad_pipe.to(UpperCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) snake_case : Tuple = self.get_dummy_inputs(UpperCAmelCase__ ) snake_case : List[Any] = 3 * [inputs['''prompt''']] # forward snake_case : int = ldmad_pipe(**UpperCAmelCase__ ) snake_case , snake_case : List[str] = output.rgb, output.depth snake_case : str = rgb_slice_a[0, -3:, -3:, -1] snake_case : List[str] = depth_slice_a[0, -3:, -1] snake_case : List[Any] = self.get_dummy_inputs(UpperCAmelCase__ ) snake_case : List[Any] = 3 * [inputs.pop('''prompt''' )] snake_case : Union[str, Any] = ldmad_pipe.tokenizer( UpperCAmelCase__ , padding='''max_length''' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=UpperCAmelCase__ , return_tensors='''pt''' , ) snake_case : Optional[Any] = text_inputs['''input_ids'''].to(UpperCAmelCase__ ) snake_case : List[Any] = ldmad_pipe.text_encoder(UpperCAmelCase__ )[0] snake_case : Any = prompt_embeds # forward snake_case : Union[str, Any] = ldmad_pipe(**UpperCAmelCase__ ) snake_case , snake_case : Optional[int] = output.rgb, output.depth snake_case : Dict = rgb_slice_a[0, -3:, -3:, -1] snake_case : Any = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def lowerCAmelCase( self : str ): """simple docstring""" snake_case : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case : Optional[int] = self.get_dummy_components() snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=UpperCAmelCase__ ) snake_case : List[str] = StableDiffusionLDMaDPipeline(**UpperCAmelCase__ ) snake_case : Dict = ldmad_pipe.to(UpperCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) snake_case : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase__ ) snake_case : Dict = '''french fries''' snake_case : Tuple = ldmad_pipe(**UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) snake_case , snake_case : Tuple = output.rgb, output.depth snake_case : Optional[int] = rgb[0, -3:, -3:, -1] snake_case : Any = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) snake_case : List[Any] = np.array( [0.3_7044, 0.7181_1503, 0.722_3251, 0.4860_3675, 0.563_8391, 0.636_4948, 0.4283_3704, 0.490_1315, 0.4792_6217] ) snake_case : List[str] = np.array([107.8_4738, 84.6_2802, 89.96_2135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class a_ ( unittest.TestCase ): def lowerCAmelCase( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]="cpu" , UpperCAmelCase__ : Optional[int]=torch.floataa , UpperCAmelCase__ : Union[str, Any]=0 ): """simple docstring""" snake_case : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) snake_case : Dict = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) snake_case : Optional[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) snake_case : Tuple = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase( self : str ): """simple docstring""" snake_case : List[str] = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ) snake_case : Dict = ldmad_pipe.to(UpperCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) snake_case : Optional[int] = self.get_inputs(UpperCAmelCase__ ) snake_case : Any = ldmad_pipe(**UpperCAmelCase__ ) snake_case , snake_case : Any = output.rgb, output.depth snake_case : List[Any] = rgb[0, -3:, -3:, -1].flatten() snake_case : Tuple = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) snake_case : List[str] = np.array( [0.5380_5465, 0.5670_7305, 0.548_6515, 0.5701_2236, 0.581_4511, 0.5625_3487, 0.5484_3014, 0.5509_2263, 0.645_9706] ) snake_case : List[str] = np.array( [0.926_3781, 0.667_8672, 0.548_6515, 0.9220_2145, 0.6783_1135, 0.5625_3487, 0.924_1694, 0.755_1478, 0.645_9706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class a_ ( unittest.TestCase ): def lowerCAmelCase( self : List[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase( self : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any="cpu" , UpperCAmelCase__ : List[str]=torch.floataa , UpperCAmelCase__ : List[str]=0 ): """simple docstring""" snake_case : Optional[int] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) snake_case : int = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) snake_case : Any = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) snake_case : List[str] = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase( self : int ): """simple docstring""" snake_case : Tuple = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ).to(UpperCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) snake_case : Optional[int] = self.get_inputs(UpperCAmelCase__ ) snake_case : Optional[Any] = ldmad_pipe(**UpperCAmelCase__ ) snake_case , snake_case : Optional[int] = output.rgb, output.depth snake_case : Any = 0.49_5586 snake_case : Optional[Any] = 0.3379_5515 snake_case : List[str] = 112.4_8518 snake_case : List[Any] = 98.48_9746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def lowerCAmelCase( self : Tuple ): """simple docstring""" snake_case : Dict = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d-4c''' ).to(UpperCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) snake_case : Dict = self.get_inputs(UpperCAmelCase__ ) snake_case : Optional[Any] = ldmad_pipe(**UpperCAmelCase__ ) snake_case , snake_case : str = output.rgb, output.depth snake_case : Union[str, Any] = 0.419_4127 snake_case : Union[str, Any] = 0.3537_5586 snake_case : Tuple = 0.563_8502 snake_case : Any = 0.3468_6103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
598
1
"""simple docstring""" from collections.abc import Sequence def _lowerCamelCase ( lowerCamelCase__ : Sequence[int] | None = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) lowercase__ : Tuple = nums[0] for i in range(1 , len(lowerCamelCase__ ) ): lowercase__ : Optional[int] = nums[i] lowercase__ : Any = max(lowerCamelCase__ , ans + num , lowerCamelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user __snake_case = int(input('Enter number of elements : ').strip()) __snake_case = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
128
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" def UpperCAmelCase__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ ) -> Dict: if tokenize_kwargs is None: lowercase__ : List[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) lowercase__ : Dict = truncation lowercase__ : Any = tokenize_kwargs lowercase__ : List[str] = {} if return_tensors is not None: lowercase__ : str = return_tensors return preprocess_params, {}, postprocess_params def UpperCAmelCase__( self , lowerCamelCase__ , **lowerCamelCase__ ) -> Dict[str, GenericTensor]: lowercase__ : Union[str, Any] = self.framework lowercase__ : Optional[Any] = self.tokenizer(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) return model_inputs def UpperCAmelCase__( self , lowerCamelCase__ ) -> List[str]: lowercase__ : str = self.model(**lowerCamelCase__ ) return model_outputs def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__=False ) -> Union[str, Any]: # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: return super().__call__(*lowerCamelCase__ , **lowerCamelCase__ )
128
1
from sklearn.metrics import fa_score import datasets lowerCAmelCase = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' lowerCAmelCase = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' lowerCAmelCase = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def _A (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=1 , lowerCAmelCase="binary" , lowerCAmelCase=None ): __lowercase= fa_score( lowerCAmelCase , lowerCAmelCase , labels=lowerCAmelCase , pos_label=lowerCAmelCase , average=lowerCAmelCase , sample_weight=lowerCAmelCase ) return {"f1": float(lowerCAmelCase ) if score.size == 1 else score}
230
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCamelCase( lowercase__ ) -> List[Any]: '''simple docstring''' if not is_accelerate_available(): return method __lowercase= version.parse(accelerate.__version__ ).base_version if version.parse(lowercase__ ) < version.parse('0.17.0' ): return method def wrapper(self , *lowercase__ , **lowercase__ ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *lowercase__ , **lowercase__ ) return wrapper
230
1
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration A__: Dict = 5_0000 A__: Optional[int] = 5000 A__ , A__: Optional[int] = os.path.split(__file__) A__: Union[str, Any] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : datasets.Dataset ,_UpperCAmelCase : Union[str, Any] ) -> List[str]: for i in range(_UpperCAmelCase ): _a : Union[str, Any] =dataset[i] @get_duration def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : datasets.Dataset ,_UpperCAmelCase : str ,_UpperCAmelCase : List[Any] ) -> str: for i in range(0 ,len(_UpperCAmelCase ) ,_UpperCAmelCase ): _a : int =dataset[i : i + batch_size] @get_duration def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : datasets.Dataset ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> Optional[int]: with dataset.formatted_as(type=_UpperCAmelCase ): for i in range(_UpperCAmelCase ): _a : List[str] =dataset[i] @get_duration def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : datasets.Dataset ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : List[Any] ) -> int: with dataset.formatted_as(type=_UpperCAmelCase ): for i in range(0 ,_UpperCAmelCase ,_UpperCAmelCase ): _a : Optional[int] =dataset[i : i + batch_size] def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: _a : Optional[int] ={"""num examples""": SPEED_TEST_N_EXAMPLES} _a : Tuple =[ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] _a : Union[str, Any] =[ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) _a : List[str] =datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) _a : Optional[Any] =generate_example_dataset( os.path.join(_UpperCAmelCase ,"""dataset.arrow""" ) ,_UpperCAmelCase ,num_examples=_UpperCAmelCase ,seq_shapes={"""list""": (100,)} ,) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ ,str(_UpperCAmelCase ) ) _a : int =func(_UpperCAmelCase ,**_UpperCAmelCase ) print("""shuffling dataset""" ) _a : int =dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ ,func.__name__ ,str(_UpperCAmelCase ) ) _a : Union[str, Any] =func( _UpperCAmelCase ,**_UpperCAmelCase ) with open(_UpperCAmelCase ,"""wb""" ) as f: f.write(json.dumps(_UpperCAmelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
506
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ) -> float: _a : Union[str, Any] =0 while len(_UpperCAmelCase ) > 1: _a : Any =0 # Consider two files with minimum cost to be merged for _ in range(2 ): _a : Optional[int] =files.index(min(_UpperCAmelCase ) ) temp += files[min_index] files.pop(_UpperCAmelCase ) files.append(_UpperCAmelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
506
1
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _lowercase : def __init__( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any=2 , lowerCamelCase__ : int=3_2 , lowerCamelCase__ : int=1_6 , lowerCamelCase__ : Optional[Any]=3 , lowerCamelCase__ : Any=True , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : List[str]=3_2 , lowerCamelCase__ : Union[str, Any]=4 , lowerCamelCase__ : List[str]=[0, 1, 2, 3] , lowerCamelCase__ : int=4 , lowerCamelCase__ : Optional[Any]=3_7 , lowerCamelCase__ : Optional[int]="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : Tuple=0.1 , lowerCamelCase__ : Any=0.02 , lowerCamelCase__ : Dict=3 , lowerCamelCase__ : str=[1, 3_8_4, 2_4, 2_4] , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : int=None , ) -> List[Any]: """simple docstring""" A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = backbone_out_indices A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = num_labels A_ = backbone_featmap_shape A_ = scope A_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self : Any ) -> Dict: """simple docstring""" A_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [9_6, 1_9_2, 3_8_4, 7_6_8], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=lowerCamelCase__ , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCamelCase ( self : Dict , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] ) -> Tuple: """simple docstring""" A_ = DPTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : int , lowerCamelCase__ : Any , lowerCamelCase__ : Dict , lowerCamelCase__ : Any ) -> Any: """simple docstring""" A_ = self.num_labels A_ = DPTForDepthEstimation(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def UpperCamelCase ( self : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : int ) -> Tuple: """simple docstring""" A_ = self.num_labels A_ = DPTForSemanticSegmentation(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A_ = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase ( self : Dict ) -> str: """simple docstring""" A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowercase ( __lowerCamelCase,__lowerCamelCase,unittest.TestCase ): _lowercase : List[str] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () _lowercase : Dict = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase : Any = False _lowercase : Dict = False _lowercase : Dict = False def UpperCamelCase ( self : Dict ) -> List[str]: """simple docstring""" A_ = DPTModelTester(self ) A_ = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=3_7 ) def UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" pass def UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(lowerCamelCase__ ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*lowerCamelCase__ ) def UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase__ ) def UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True if model_class in get_values(lowerCamelCase__ ): continue A_ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() A_ = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) A_ = model(**lowerCamelCase__ ).loss loss.backward() def UpperCamelCase ( self : Dict ) -> int: """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = False A_ = True if model_class in get_values(lowerCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue A_ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.train() A_ = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) A_ = model(**lowerCamelCase__ ).loss loss.backward() def UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: A_ = model_class(config=lowerCamelCase__ ) # Skip the check for the backbone A_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": A_ = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" pass @slow def UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: A_ = DPTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = '''add''' with self.assertRaises(lowerCamelCase__ ): A_ = DPTForDepthEstimation(lowerCamelCase__ ) def _lowerCamelCase ( ): '''simple docstring''' A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class _lowercase ( unittest.TestCase ): def UpperCamelCase ( self : str ) -> Dict: """simple docstring""" A_ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) A_ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(lowerCamelCase__ ) A_ = prepare_img() A_ = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): A_ = model(**lowerCamelCase__ ) A_ = outputs.predicted_depth # verify the predicted depth A_ = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape , lowerCamelCase__ ) A_ = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , lowerCamelCase__ , atol=1e-4 ) )
203
def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = len(SCREAMING_SNAKE_CASE ) A_ = len(SCREAMING_SNAKE_CASE ) A_ = ( first_str_length if first_str_length > second_str_length else second_str_length ) A_ = [] for char_count in range(SCREAMING_SNAKE_CASE ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
203
1
'''simple docstring''' def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) lowercase_ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" lowercase_ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" lowercase_ = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' import argparse __snake_case = """docs/source/_static/js/custom.js""" def A_ ( SCREAMING_SNAKE_CASE_ ) ->Any: with open(SCREAMING_SNAKE_CASE_ , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ = f.readlines() lowercase_ = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 lowercase_ = f"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += f""" \"v{version}\": \"v{version}\",\n""" with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") __snake_case = parser.parse_args() update_custom_js(args.version)
603
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @slow def _snake_case ( self :Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) SCREAMING_SNAKE_CASE__ = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(__A ) from datasets import load_dataset SCREAMING_SNAKE_CASE__ = load_dataset("""nielsr/rvlcdip-demo""" ) SCREAMING_SNAKE_CASE__ = dataset["""train"""][0]["""image"""].convert("""RGB""" ) SCREAMING_SNAKE_CASE__ = image_processor(__A , return_tensors="""pt""" ).to(__A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__A ) SCREAMING_SNAKE_CASE__ = outputs.logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 16) ) self.assertEqual(logits.shape , __A ) SCREAMING_SNAKE_CASE__ = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=__A , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __A , atol=1E-4 ) )
6
import collections import importlib.util import os import re from pathlib import Path _lowercase : List[Any] ='''src/transformers''' # Matches is_xxx_available() _lowercase : List[str] =re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} _lowercase : Any =re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _lowercase : Optional[int] =re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available _lowercase : int =re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") _lowercase : Tuple =re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _lowercase : str =re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", _lowercase : List[Any] =re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], _lowercase : List[Any] =re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo _lowercase : List[str] =re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: _lowercase : Any =re.compile(R'''^\s*try:''') # Catches a line with else: _lowercase : Optional[int] =re.compile(R'''^\s*else:''') def A__ ( lowercase: int ) -> Optional[Any]: if _re_test_backend.search(lowercase ) is None: return None A : List[str] =[b[0] for b in _re_backend.findall(lowercase )] backends.sort() return "_and_".join(lowercase ) def A__ ( lowercase: Tuple ) -> int: with open(lowercase, 'r', encoding='utf-8', newline='\n' ) as f: A : str =f.readlines() A : List[str] =0 while line_index < len(lowercase ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase ): return None # First grab the objects without a specific backend in _import_structure A : Union[str, Any] =[] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: A : Union[str, Any] =lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase ): A : List[str] =_re_one_line_import_struct.search(lowercase ).groups()[0] A : Optional[int] =re.findall('\[([^\]]+)\]', lowercase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue A : int =_re_import_struct_key_value.search(lowercase ) if single_line_import_search is not None: A : List[str] =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase ) > 0] objects.extend(lowercase ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 A : Optional[int] ={'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. A : Dict =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A : int =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A : str =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): A : List[Any] =lines[line_index] if _re_import_struct_add_one.search(lowercase ) is not None: objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase ) is not None: A : List[str] =_re_import_struct_add_many.search(lowercase ).groups()[0].split(', ' ) A : Optional[Any] =[obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_between_brackets.search(lowercase ) is not None: A : int =_re_between_brackets.search(lowercase ).groups()[0].split(', ' ) A : List[str] =[obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_quote_object.search(lowercase ) is not None: objects.append(_re_quote_object.search(lowercase ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 A : Optional[Any] =objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend A : int =[] while ( line_index < len(lowercase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): A : List[str] =lines[line_index] A : Optional[int] =_re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 A : Dict ={'none': objects} # Let's continue with backend-specific objects while line_index < len(lowercase ): # If the line is an if is_backend_available, we grab all objects associated. A : Optional[Any] =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A : str =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A : List[Any] =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): A : List[str] =lines[line_index] A : Optional[Any] =_re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 A : Any =objects else: line_index += 1 return import_dict_objects, type_hint_objects def A__ ( lowercase: Dict, lowercase: str ) -> int: def find_duplicates(lowercase: int ): return [k for k, v in collections.Counter(lowercase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] A : Dict =[] for key in import_dict_objects.keys(): A : Optional[Any] =find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) A : str =find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): A : Tuple ='base imports' if key == 'none' else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def A__ ( ) -> int: A : List[str] =[] for root, _, files in os.walk(lowercase ): if "__init__.py" in files: A : Optional[int] =os.path.join(lowercase, '__init__.py' ) A : str =parse_init(lowercase ) if objects is not None: A : Union[str, Any] =analyze_results(*lowercase ) if len(lowercase ) > 0: A : Optional[int] =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('\n'.join(lowercase ) ) if len(lowercase ) > 0: raise ValueError('\n\n'.join(lowercase ) ) def A__ ( ) -> Dict: A : List[Any] =[] for path, directories, files in os.walk(lowercase ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(lowercase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase ) / folder).glob('*.py' ) ) ) == 0: continue A : List[Any] =str((Path(lowercase ) / folder).relative_to(lowercase ) ) A : Union[str, Any] =short_path.replace(os.path.sep, '.' ) submodules.append(lowercase ) for fname in files: if fname == "__init__.py": continue A : int =str((Path(lowercase ) / fname).relative_to(lowercase ) ) A : str =short_path.replace('.py', '' ).replace(os.path.sep, '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(lowercase ) return submodules _lowercase : Dict =[ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def A__ ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. A : Optional[Any] =importlib.util.spec_from_file_location( 'transformers', os.path.join(lowercase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A : List[Any] =spec.loader.load_module() A : Union[str, Any] =[ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(lowercase ) > 0: A : List[Any] ='\n'.join(F'- {module}' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F'{list_of_modules}\n' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
305
0
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
703
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case__ : str = 1_6 snake_case__ : List[str] = 3_2 def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 16 ) ->Tuple: _UpperCAmelCase =AutoTokenizer.from_pretrained("bert-base-cased" ) _UpperCAmelCase =DatasetDict( { "train": dataset["train"].select(_lowerCamelCase ), "validation": dataset["train"].select(_lowerCamelCase ), "test": dataset["validation"], } ) def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase =tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase =datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase =tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase =16 elif accelerator.mixed_precision != "no": _UpperCAmelCase =8 else: _UpperCAmelCase =None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. _UpperCAmelCase =DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) _UpperCAmelCase =DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) _UpperCAmelCase =DataLoader( tokenized_datasets["test"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader, test_dataloader def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->Optional[int]: # New Code # _UpperCAmelCase =[] # Download the dataset _UpperCAmelCase =load_dataset("glue" , "mrpc" ) # Create our splits _UpperCAmelCase =StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase =config["lr"] _UpperCAmelCase =int(config["num_epochs"] ) _UpperCAmelCase =int(config["seed"] ) _UpperCAmelCase =int(config["batch_size"] ) _UpperCAmelCase =evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase =batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase =MAX_GPU_BATCH_SIZE set_seed(_lowerCamelCase ) # New Code # # Create our folds: _UpperCAmelCase =kfold.split(np.zeros(datasets["train"].num_rows ) , datasets["train"]["label"] ) _UpperCAmelCase =[] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_lowerCamelCase ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =get_fold_dataloaders( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase =AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase =model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase =AdamW(params=model.parameters() , lr=_lowerCamelCase ) # Instantiate scheduler _UpperCAmelCase =get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase =accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase =model(**_lowerCamelCase ) _UpperCAmelCase =outputs.loss _UpperCAmelCase =loss / gradient_accumulation_steps accelerator.backward(_lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase =model(**_lowerCamelCase ) _UpperCAmelCase =outputs.logits.argmax(dim=-1 ) _UpperCAmelCase , _UpperCAmelCase =accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) _UpperCAmelCase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , _lowerCamelCase ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase =[] for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase =model(**_lowerCamelCase ) _UpperCAmelCase =outputs.logits _UpperCAmelCase , _UpperCAmelCase =accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_lowerCamelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase =torch.cat(_lowerCamelCase , dim=0 ) _UpperCAmelCase =torch.stack(_lowerCamelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase =metric.compute(predictions=_lowerCamelCase , references=_lowerCamelCase ) accelerator.print("Average test metrics from all folds:" , _lowerCamelCase ) def lowerCamelCase__ ( ) ->List[Any]: _UpperCAmelCase =argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds" , type=_lowerCamelCase , default=3 , help="The number of splits to perform across the dataset" ) _UpperCAmelCase =parser.parse_args() _UpperCAmelCase ={"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
408
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None ) ->str: if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path _UpperCAmelCase =quote(_lowerCamelCase ) return hfh.hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" , revision=_lowerCamelCase )
408
1
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {'vocab_file': 'vocab.txt'} lowercase_ = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } lowercase_ = { 'facebook/esm2_t6_8M_UR50D': 1_0_2_4, 'facebook/esm2_t12_35M_UR50D': 1_0_2_4, } def a ( A__ : Dict ) -> int: """simple docstring""" with open(A__ , 'r' ) as f: _lowercase =f.read().splitlines() return [l.strip() for l in lines] class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase , lowerCAmelCase="<unk>" , lowerCAmelCase="<cls>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<mask>" , lowerCAmelCase="<eos>" , **lowerCAmelCase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**lowerCAmelCase ) _lowercase =load_vocab_file(lowerCAmelCase ) _lowercase =dict(enumerate(self.all_tokens ) ) _lowercase ={tok: ind for ind, tok in enumerate(self.all_tokens )} _lowercase =unk_token _lowercase =cls_token _lowercase =pad_token _lowercase =mask_token _lowercase =eos_token _lowercase =self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(lowerCAmelCase , self.unk_token ) def A__ ( self , lowerCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , lowerCAmelCase , **lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return text.split() def A__ ( self , lowerCAmelCase=False ) -> Union[str, Any]: '''simple docstring''' return len(self._id_to_token ) def A__ ( self ) -> Tuple: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , lowerCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(lowerCAmelCase , self.unk_token ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> List[int]: '''simple docstring''' _lowercase =[self.cls_token_id] _lowercase =[self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] _lowercase =[1] + ([0] * len(lowerCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(lowerCAmelCase ) + [1] return mask def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> Any: '''simple docstring''' _lowercase =os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(lowerCAmelCase , 'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = False ) -> int: '''simple docstring''' return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase )
380
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _a = OpenAIGPTTokenizer _a = OpenAIGPTTokenizerFast _a = True _a = False def A__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _lowercase =dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) _lowercase =['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(lowerCAmelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(lowerCAmelCase ) ) def A__ ( self , lowerCAmelCase ) -> str: '''simple docstring''' return "lower newer", "lower newer" def A__ ( self ) -> Tuple: '''simple docstring''' _lowercase =OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) _lowercase ='lower' _lowercase =['low', 'er</w>'] _lowercase =tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) _lowercase =tokens + ['<unk>'] _lowercase =[14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase ) def A__ ( self , lowerCAmelCase=15 ) -> Union[str, Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) # Simple input _lowercase ='This is a simple input' _lowercase =['This is a simple input 1', 'This is a simple input 2'] _lowercase =('This is a simple input', 'This is a pair') _lowercase =[ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowerCAmelCase , tokenizer_r.encode , lowerCAmelCase , max_length=lowerCAmelCase , padding='max_length' ) # Simple input self.assertRaises(lowerCAmelCase , tokenizer_r.encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding='max_length' ) # Simple input self.assertRaises( lowerCAmelCase , tokenizer_r.batch_encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding='max_length' , ) # Pair input self.assertRaises(lowerCAmelCase , tokenizer_r.encode , lowerCAmelCase , max_length=lowerCAmelCase , padding='max_length' ) # Pair input self.assertRaises(lowerCAmelCase , tokenizer_r.encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding='max_length' ) # Pair input self.assertRaises( lowerCAmelCase , tokenizer_r.batch_encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding='max_length' , ) def A__ ( self ) -> Dict: '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): pass
380
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : List[str] = KandinskyImgaImgPipeline _UpperCamelCase : List[str] = ["prompt", "image_embeds", "negative_image_embeds", "image"] _UpperCamelCase : Dict = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] _UpperCamelCase : Optional[int] = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _UpperCamelCase : Tuple = False @property def __a ( self ): return 3_2 @property def __a ( self ): return 3_2 @property def __a ( self ): return self.time_input_dim @property def __a ( self ): return self.time_input_dim * 4 @property def __a ( self ): return 1_0_0 @property def __a ( self ): _lowercase : int = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def __a ( self ): torch.manual_seed(0 ) _lowercase : Tuple = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _lowercase : Any = MultilingualCLIP(_lowerCAmelCase ) _lowercase : List[str] = text_encoder.eval() return text_encoder @property def __a ( self ): torch.manual_seed(0 ) _lowercase : Tuple = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowercase : Tuple = UNetaDConditionModel(**_lowerCAmelCase ) return model @property def __a ( self ): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self ): torch.manual_seed(0 ) _lowercase : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self ): _lowercase : Dict = self.dummy_text_encoder _lowercase : Dict = self.dummy_tokenizer _lowercase : Any = self.dummy_unet _lowercase : Optional[int] = self.dummy_movq _lowercase : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _lowercase : int = DDIMScheduler(**_lowerCAmelCase ) _lowercase : Tuple = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __a ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): _lowercase : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) _lowercase : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCAmelCase ) # create init_image _lowercase : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) _lowercase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowercase : Union[str, Any] = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) if str(_lowerCAmelCase ).startswith('mps' ): _lowercase : str = torch.manual_seed(_lowerCAmelCase ) else: _lowercase : Optional[int] = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowercase : Optional[int] = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __a ( self ): _lowercase : List[Any] = 'cpu' _lowercase : Union[str, Any] = self.get_dummy_components() _lowercase : str = self.pipeline_class(**_lowerCAmelCase ) _lowercase : List[str] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowercase : Dict = pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) _lowercase : Tuple = output.images _lowercase : Union[str, Any] = pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] _lowercase : Optional[int] = image[0, -3:, -3:, -1] _lowercase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _lowercase : Union[str, Any] = np.array( [0.61_47_49_43, 0.6_07_35_39, 0.43_30_85_44, 0.5_92_82_69, 0.47_49_35_95, 0.46_75_59_73, 0.4_61_38_38, 0.45_36_87_97, 0.50_11_92_33] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ): _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) _lowercase : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowercase : Optional[int] = 'A red cartoon frog, 4k' _lowercase : Optional[Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) _lowercase : Tuple = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) _lowercase : Tuple = pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) _lowercase : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) _lowercase , _lowercase : Any = pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowercase : Any = pipeline( _lowerCAmelCase , image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='np' , ) _lowercase : Union[str, Any] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
66
from pathlib import Path import fire def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> Optional[int]: """simple docstring""" UpperCamelCase = Path(_UpperCamelCase) UpperCamelCase = Path(_UpperCamelCase) dest_dir.mkdir(exist_ok=_UpperCamelCase) for path in src_dir.iterdir(): UpperCamelCase = [x.rstrip() for x in list(path.open().readlines())][:n] UpperCamelCase = dest_dir.joinpath(path.name) print(_UpperCamelCase) dest_path.open('w').write('\n'.join(_UpperCamelCase)) if __name__ == "__main__": fire.Fire(minify)
280
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""ConvNextFeatureExtractor"""] __UpperCAmelCase = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
721
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'mock-s3-bucket' snake_case: int = f"""s3://{mock_bucket}""" snake_case: Any = extract_path_from_uri(__A ) assert dataset_path.startswith('s3://' ) is False snake_case: Union[str, Any] = './local/path' snake_case: Union[str, Any] = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[str] = is_remote_filesystem(__A ) assert is_remote is True snake_case: int = fsspec.filesystem('file' ) snake_case: int = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , __A ) def lowerCAmelCase_ ( __A : Optional[int] , __A : int , __A : str , __A : Optional[Any] , __A : List[str] , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: Optional[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} snake_case: Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case: str = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) snake_case: Any = os.path.basename(__A ) snake_case: int = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(__A , 'r' , encoding='utf-8' ) as f, open(__A , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def lowerCAmelCase_ ( __A : Any , __A : int , __A : int ): '''simple docstring''' snake_case: List[str] = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} snake_case: str = compressed_file_paths[protocol] snake_case: Dict = 'dataset.jsonl' snake_case: Optional[Any] = f"""{protocol}://{member_file_path}::{compressed_file_path}""" snake_case , *snake_case: List[Any] = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' snake_case: Tuple = hf_api.dataset_info(__A , token=__A ) snake_case: List[str] = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(__A ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
692
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : Union[str, Any] ={'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] =['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] =['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple =[ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] =[ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =[ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _lowercase : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
305
from collections.abc import Callable class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Callable | None = None ) -> None: # Stores actual heap items. A : list =[] # Stores indexes of each item for supporting updates and deletion. A : dict ={} # Stores current size of heap. A : Tuple =0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. A : Any =key or (lambda SCREAMING_SNAKE_CASE__ : x) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> int | None: A : Tuple =int(2 * i + 1 ) return left if 0 < left < self.size else None def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ) -> int | None: A : List[str] =int(2 * i + 2 ) return right if 0 < right < self.size else None def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: A , A : Tuple =( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. A , A : Tuple =self.arr[j], self.arr[i] def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> bool: return self.arr[i][1] < self.arr[j][1] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> int: A : List[Any] =self._left(SCREAMING_SNAKE_CASE__ ) A : int =self._right(SCREAMING_SNAKE_CASE__ ) A : Dict =i if left is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A : Tuple =left if right is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A : Dict =right return valid_parent def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ) -> None: A : Dict =self._parent(SCREAMING_SNAKE_CASE__ ) while parent is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self._swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A , A : int =parent, self._parent(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> None: A : str =self._get_valid_parent(SCREAMING_SNAKE_CASE__ ) while valid_parent != index: self._swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A , A : Optional[int] =valid_parent, self._get_valid_parent(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: if item not in self.pos_map: return A : Any =self.pos_map[item] A : Any =[item, self.key(SCREAMING_SNAKE_CASE__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(SCREAMING_SNAKE_CASE__ ) self._heapify_down(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> None: if item not in self.pos_map: return A : Any =self.pos_map[item] del self.pos_map[item] A : List[Any] =self.arr[self.size - 1] A : int =index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(SCREAMING_SNAKE_CASE__ ) self._heapify_down(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: A : Optional[int] =len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(SCREAMING_SNAKE_CASE__ )] ) else: A : Optional[int] =[item, self.key(SCREAMING_SNAKE_CASE__ )] A : Optional[int] =self.size self.size += 1 self._heapify_up(self.size - 1 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> tuple | None: return self.arr[0] if self.size else None def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> tuple | None: A : Optional[Any] =self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def A__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
305
1
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __lowerCamelCase ( ) -> None: """simple docstring""" print("""Making key files...""" ) make_key_files("""rsa""", 1_024 ) print("""Key files generation successful.""" ) def __lowerCamelCase ( __snake_case : int ) -> tuple[tuple[int, int], tuple[int, int]]: """simple docstring""" print("""Generating prime p...""" ) A__ : Optional[Any] =rabinMiller.generate_large_prime(__snake_case ) print("""Generating prime q...""" ) A__ : Any =rabinMiller.generate_large_prime(__snake_case ) A__ : str =p * q print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" ) while True: A__ : List[Any] =random.randrange(2 ** (key_size - 1), 2 ** (key_size) ) if cryptoMath.gcd(__snake_case, (p - 1) * (q - 1) ) == 1: break print("""Calculating d that is mod inverse of e...""" ) A__ : Tuple =cryptoMath.find_mod_inverse(__snake_case, (p - 1) * (q - 1) ) A__ : int =(n, e) A__ : Optional[Any] =(n, d) return (public_key, private_key) def __lowerCamelCase ( __snake_case : str, __snake_case : int ) -> None: """simple docstring""" if os.path.exists(f"{name}_pubkey.txt" ) or os.path.exists(f"{name}_privkey.txt" ): print("""\nWARNING:""" ) print( f"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" """Use a different name or delete these files and re-run this program.""" ) sys.exit() A__ : Union[str, Any] =generate_key(__snake_case ) print(f"\nWriting public key to file {name}_pubkey.txt..." ) with open(f"{name}_pubkey.txt", """w""" ) as out_file: out_file.write(f"{key_size},{public_key[0]},{public_key[1]}" ) print(f"Writing private key to file {name}_privkey.txt..." ) with open(f"{name}_privkey.txt", """w""" ) as out_file: out_file.write(f"{key_size},{private_key[0]},{private_key[1]}" ) if __name__ == "__main__": main()
706
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __snake_case : str = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int ="""A painting of a squirrel eating a burger """ A__ : Tuple =torch.manual_seed(0 ) A__ : int =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int =generator.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Dict ="""A painting of a squirrel eating a burger """ A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[str] =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
687
0
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py snake_case : Optional[int] = """src/transformers""" snake_case : Dict = """docs/source/en""" snake_case : int = """.""" def A ( __snake_case: List[Any] , __snake_case: int , __snake_case: Optional[int] ) -> str: """simple docstring""" with open(lowerCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: __magic_name__ = f.readlines() # Find the start prompt. __magic_name__ = 0 while not lines[start_index].startswith(lowerCAmelCase__ ): start_index += 1 start_index += 1 __magic_name__ = start_index while not lines[end_index].startswith(lowerCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | snake_case : Dict = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. snake_case : int = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") snake_case : List[Any] = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. snake_case : List[Any] = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. snake_case : Optional[int] = direct_transformers_import(TRANSFORMERS_PATH) def A ( __snake_case: Tuple ) -> Tuple: """simple docstring""" __magic_name__ = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowerCAmelCase__ ) return [m.group(0 ) for m in matches] def A ( __snake_case: int , __snake_case: Optional[int] ) -> List[Any]: """simple docstring""" __magic_name__ = 2 if text == '''✅''' or text == '''❌''' else len(lowerCAmelCase__ ) __magic_name__ = (width - text_length) // 2 __magic_name__ = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def A ( ) -> Dict: """simple docstring""" __magic_name__ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __magic_name__ = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __magic_name__ = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __magic_name__ = collections.defaultdict(lowerCAmelCase__ ) __magic_name__ = collections.defaultdict(lowerCAmelCase__ ) __magic_name__ = collections.defaultdict(lowerCAmelCase__ ) __magic_name__ = collections.defaultdict(lowerCAmelCase__ ) __magic_name__ = collections.defaultdict(lowerCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCAmelCase__ ): __magic_name__ = None if attr_name.endswith('Tokenizer' ): __magic_name__ = slow_tokenizers __magic_name__ = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): __magic_name__ = fast_tokenizers __magic_name__ = attr_name[:-1_3] elif _re_tf_models.match(lowerCAmelCase__ ) is not None: __magic_name__ = tf_models __magic_name__ = _re_tf_models.match(lowerCAmelCase__ ).groups()[0] elif _re_flax_models.match(lowerCAmelCase__ ) is not None: __magic_name__ = flax_models __magic_name__ = _re_flax_models.match(lowerCAmelCase__ ).groups()[0] elif _re_pt_models.match(lowerCAmelCase__ ) is not None: __magic_name__ = pt_models __magic_name__ = _re_pt_models.match(lowerCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): __magic_name__ = True break # Try again after removing the last word in the name __magic_name__ = ''''''.join(camel_case_split(lowerCAmelCase__ )[:-1] ) # Let's build that table! __magic_name__ = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __magic_name__ = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __magic_name__ = [len(lowerCAmelCase__ ) + 2 for c in columns] __magic_name__ = max([len(lowerCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se __magic_name__ = '''|''' + '''|'''.join([_center_text(lowerCAmelCase__ , lowerCAmelCase__ ) for c, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" __magic_name__ = {True: '''✅''', False: '''❌'''} for name in model_names: __magic_name__ = model_name_to_prefix[name] __magic_name__ = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCAmelCase__ , lowerCAmelCase__ ) for l, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] ) + "|\n" return table def A ( __snake_case: str=False ) -> Union[str, Any]: """simple docstring""" __magic_name__ = _find_text_in_file( filename=os.path.join(lowerCAmelCase__ , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) __magic_name__ = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCAmelCase__ , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") snake_case : Union[str, Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
545
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase_ ( __a , __a , __a , unittest.TestCase ): lowerCAmelCase__ = StableDiffusionInpaintPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase__ : int = PNDMScheduler(skip_prk_steps=_A ) torch.manual_seed(0 ) UpperCAmelCase__ : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) UpperCAmelCase__ : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase__ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase__ : str = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase_ ( self : str , _A : Dict , _A : Any=0 ): '''simple docstring''' UpperCAmelCase__ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase__ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Optional[int] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((64, 64) ) UpperCAmelCase__ : int = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_A ).startswith('''mps''' ): UpperCAmelCase__ : List[Any] = torch.manual_seed(_A ) else: UpperCAmelCase__ : str = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase__ : Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Tuple = self.get_dummy_components() UpperCAmelCase__ : str = StableDiffusionInpaintPipeline(**_A ) UpperCAmelCase__ : List[str] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : Dict = self.get_dummy_inputs(_A ) UpperCAmelCase__ : Any = sd_pipe(**_A ).images UpperCAmelCase__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : int = np.array([0.4_7_2_7, 0.5_7_3_5, 0.3_9_4_1, 0.5_4_4_6, 0.5_9_2_6, 0.4_3_9_4, 0.5_0_6_2, 0.4_6_5_4, 0.4_4_7_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Tuple ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) UpperCAmelCase__ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) UpperCAmelCase__ : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) UpperCAmelCase__ : Dict = '''stabilityai/stable-diffusion-2-inpainting''' UpperCAmelCase__ : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained(_A , safety_checker=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase__ : Tuple = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCAmelCase__ : str = torch.manual_seed(0 ) UpperCAmelCase__ : str = pipe( prompt=_A , image=_A , mask_image=_A , generator=_A , output_type='''np''' , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) UpperCAmelCase__ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) UpperCAmelCase__ : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) UpperCAmelCase__ : Tuple = '''stabilityai/stable-diffusion-2-inpainting''' UpperCAmelCase__ : Any = StableDiffusionInpaintPipeline.from_pretrained( _A , torch_dtype=torch.floataa , safety_checker=_A , ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase__ : Tuple = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCAmelCase__ : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = pipe( prompt=_A , image=_A , mask_image=_A , generator=_A , output_type='''np''' , ) UpperCAmelCase__ : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def lowercase_ ( self : Any ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase__ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) UpperCAmelCase__ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) UpperCAmelCase__ : Optional[Any] = '''stabilityai/stable-diffusion-2-inpainting''' UpperCAmelCase__ : str = PNDMScheduler.from_pretrained(_A , subfolder='''scheduler''' ) UpperCAmelCase__ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained( _A , safety_checker=_A , scheduler=_A , torch_dtype=torch.floataa , ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase__ : Optional[int] = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCAmelCase__ : Tuple = torch.manual_seed(0 ) UpperCAmelCase__ : Any = pipe( prompt=_A , image=_A , mask_image=_A , generator=_A , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase__ : int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.6_5 * 10**9
75
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : int = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
527
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np a : Optional[int] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 a : Union[str, Any] = typing.Union[np.floataa, int, float] # noqa: UP007 def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(_UpperCamelCase ) - np.asarray(_UpperCamelCase )) ** 2 ) ) def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(_UpperCamelCase , _UpperCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def lowercase_ ( ): '''simple docstring''' from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_00_00 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_00_00 , globals=globals() , ) ) benchmark()
527
1
import math def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase ): if ( not isinstance(_UpperCAmelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase ): if ( not isinstance(_UpperCAmelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
423
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Optional[int] = logging.get_logger(__name__) lowercase : Optional[Any] = { """microsoft/swinv2-tiny-patch4-window8-256""": ( """https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json""" ), } class a__ ( __SCREAMING_SNAKE_CASE ): _A = "swinv2" _A = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : int , A_ : Optional[Any]=2_24 , A_ : int=4 , A_ : Any=3 , A_ : List[Any]=96 , A_ : Any=[2, 2, 6, 2] , A_ : str=[3, 6, 12, 24] , A_ : Any=7 , A_ : List[Any]=4.0 , A_ : List[str]=True , A_ : int=0.0 , A_ : str=0.0 , A_ : Dict=0.1 , A_ : Any="gelu" , A_ : int=False , A_ : Optional[int]=0.02 , A_ : Dict=1e-5 , A_ : int=32 , **A_ : List[str] , ) -> Optional[int]: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_: str = image_size lowerCamelCase_: Dict = patch_size lowerCamelCase_: int = num_channels lowerCamelCase_: Union[str, Any] = embed_dim lowerCamelCase_: Optional[int] = depths lowerCamelCase_: Optional[int] = len(A_ ) lowerCamelCase_: Dict = num_heads lowerCamelCase_: str = window_size lowerCamelCase_: List[str] = mlp_ratio lowerCamelCase_: Any = qkv_bias lowerCamelCase_: int = hidden_dropout_prob lowerCamelCase_: str = attention_probs_dropout_prob lowerCamelCase_: List[str] = drop_path_rate lowerCamelCase_: Any = hidden_act lowerCamelCase_: List[str] = use_absolute_embeddings lowerCamelCase_: Union[str, Any] = layer_norm_eps lowerCamelCase_: Dict = initializer_range lowerCamelCase_: Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase_: int = int(embed_dim * 2 ** (len(A_ ) - 1) ) lowerCamelCase_: List[str] = (0, 0, 0, 0)
423
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : Tuple = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys _lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Optional[Any] = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) _lowercase : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowercase__ ( snake_case_ :str ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __UpperCAmelCase = model_type_to_module_name(snake_case_ ) __UpperCAmelCase = importlib.import_module(F'''.{module_name}''' , '''transformers.models''' ) try: return getattr(snake_case_ , snake_case_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(snake_case_ , '''__name__''' , snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __UpperCAmelCase = importlib.import_module('''transformers''' ) if hasattr(snake_case_ , snake_case_ ): return getattr(snake_case_ , snake_case_ ) return None def lowercase__ ( snake_case_ :Union[str, os.PathLike] , snake_case_ :Optional[Union[str, os.PathLike]] = None , snake_case_ :bool = False , snake_case_ :bool = False , snake_case_ :Optional[Dict[str, str]] = None , snake_case_ :Optional[Union[bool, str]] = None , snake_case_ :Optional[str] = None , snake_case_ :bool = False , **snake_case_ :Optional[int] , ): __UpperCAmelCase = get_file_from_repo( snake_case_ , snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , resume_download=snake_case_ , proxies=snake_case_ , use_auth_token=snake_case_ , revision=snake_case_ , local_files_only=snake_case_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(snake_case_ , encoding='''utf-8''' ) as reader: return json.load(snake_case_ ) class _UpperCAmelCase : def __init__( self : Optional[int] ): raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_lowercase ) def a ( cls : Optional[Any] , _lowercase : int , **_lowercase : List[str] ): __UpperCAmelCase = kwargs.pop('''config''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''trust_remote_code''' , _lowercase ) __UpperCAmelCase = True __UpperCAmelCase , __UpperCAmelCase = ImageProcessingMixin.get_image_processor_dict(_lowercase , **_lowercase ) __UpperCAmelCase = config_dict.get('''image_processor_type''' , _lowercase ) __UpperCAmelCase = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): __UpperCAmelCase = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __UpperCAmelCase = config_dict.pop('''feature_extractor_type''' , _lowercase ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) __UpperCAmelCase = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): __UpperCAmelCase = config_dict['''auto_map''']['''AutoFeatureExtractor'''] __UpperCAmelCase = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_lowercase , _lowercase ): __UpperCAmelCase = AutoConfig.from_pretrained(_lowercase , **_lowercase ) # It could be in `config.image_processor_type`` __UpperCAmelCase = getattr(_lowercase , '''image_processor_type''' , _lowercase ) if hasattr(_lowercase , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: __UpperCAmelCase = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: __UpperCAmelCase = image_processor_class_from_name(_lowercase ) __UpperCAmelCase = image_processor_auto_map is not None __UpperCAmelCase = image_processor_class is not None or type(_lowercase ) in IMAGE_PROCESSOR_MAPPING __UpperCAmelCase = resolve_trust_remote_code( _lowercase , _lowercase , _lowercase , _lowercase ) if has_remote_code and trust_remote_code: __UpperCAmelCase = get_class_from_dynamic_module( _lowercase , _lowercase , **_lowercase ) __UpperCAmelCase = kwargs.pop('''code_revision''' , _lowercase ) if os.path.isdir(_lowercase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_lowercase , **_lowercase ) elif image_processor_class is not None: return image_processor_class.from_dict(_lowercase , **_lowercase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_lowercase ) in IMAGE_PROCESSOR_MAPPING: __UpperCAmelCase = IMAGE_PROCESSOR_MAPPING[type(_lowercase )] return image_processor_class.from_dict(_lowercase , **_lowercase ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def a ( _lowercase : Union[str, Any] , _lowercase : Tuple ): IMAGE_PROCESSOR_MAPPING.register(_lowercase , _lowercase )
397
0
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowercase : @staticmethod def __UpperCamelCase ( *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int]): pass def __UpperCAmelCase ( lowerCamelCase_) -> str: UpperCamelCase__ : int = hashlib.mda(image.tobytes()) return m.hexdigest()[:10] def __UpperCAmelCase ( lowerCamelCase_) -> Dict: UpperCamelCase__ : int = np.array(lowerCamelCase_) UpperCamelCase__ : str = npimg.shape return {"hash": hashimage(lowerCamelCase_), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowercase (unittest.TestCase ): _lowerCamelCase = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _lowerCamelCase = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str): UpperCamelCase__ : int = MaskGenerationPipeline(model=UpperCAmelCase_ , image_processor=UpperCAmelCase_) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any): pass @require_tf @unittest.skip('Image segmentation not implemented in TF') def __UpperCamelCase ( self : Tuple): pass @slow @require_torch def __UpperCamelCase ( self : int): UpperCamelCase__ : int = pipeline('mask-generation' , model='facebook/sam-vit-huge') UpperCamelCase__ : Any = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=256) # Shortening by hashing UpperCamelCase__ : List[Any] = [] for i, o in enumerate(outputs['masks']): new_outupt += [{"mask": mask_to_test_readable(UpperCAmelCase_), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.04_44}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_21}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.01_67}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.01_32}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.00_53}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.99_67}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.9_93}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.99_09}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.98_79}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.98_34}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.97_16}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.96_12}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.95_99}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.95_52}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.95_32}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.95_16}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.94_99}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.94_83}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.94_64}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.9_43}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.9_43}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.94_08}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.93_35}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.93_26}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.92_62}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.89_99}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.89_86}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.89_84}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.88_73}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.88_71} ] , ) # fmt: on @require_torch @slow def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Dict = 'facebook/sam-vit-huge' UpperCamelCase__ : List[str] = pipeline('mask-generation' , model=UpperCAmelCase_) UpperCamelCase__ : List[Any] = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=256) # Shortening by hashing UpperCamelCase__ : Dict = [] for i, o in enumerate(outputs['masks']): new_outupt += [{"mask": mask_to_test_readable(UpperCAmelCase_), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=4) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.04_44}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.02_10}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.01_67}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.01_32}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.00_53}, ] , )
596
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __lowercase (__lowerCamelCase ): _lowerCamelCase = (DDIMParallelScheduler,) _lowerCamelCase = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def __UpperCamelCase ( self : str , **UpperCAmelCase_ : Union[str, Any]): UpperCamelCase__ : Optional[int] = { 'num_train_timesteps': 1_000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**UpperCAmelCase_) return config def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : List[Any] = self.scheduler_classes[0] UpperCamelCase__ : Optional[Any] = self.get_scheduler_config(**UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = scheduler_class(**UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__ : Dict = 10, 0.0 UpperCamelCase__ : Any = self.dummy_model() UpperCamelCase__ : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase_) for t in scheduler.timesteps: UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Tuple = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_).prev_sample return sample def __UpperCamelCase ( self : Any): for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def __UpperCamelCase ( self : str): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCAmelCase_) UpperCamelCase__ : Any = self.scheduler_classes[0] UpperCamelCase__ : List[Any] = self.get_scheduler_config(steps_offset=1) UpperCamelCase__ : Any = scheduler_class(**UpperCAmelCase_) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1])) def __UpperCamelCase ( self : Any): for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def __UpperCamelCase ( self : Any): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def __UpperCamelCase ( self : Tuple): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=UpperCAmelCase_) def __UpperCamelCase ( self : Dict): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=UpperCAmelCase_) def __UpperCamelCase ( self : int): self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def __UpperCamelCase ( self : Tuple): for t in [1, 10, 49]: self.check_over_forward(time_step=UpperCAmelCase_) def __UpperCamelCase ( self : int): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500]): self.check_over_forward(time_step=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any]): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=UpperCAmelCase_ , eta=UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Any = self.scheduler_classes[0] UpperCamelCase__ : Optional[int] = self.get_scheduler_config() UpperCamelCase__ : Tuple = scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400) - 0.1_47_71)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960) - 0.3_24_60)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486) - 0.0_09_79)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998) - 0.02)) < 1e-5 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Union[str, Any] = self.scheduler_classes[0] UpperCamelCase__ : Optional[Any] = self.get_scheduler_config() UpperCamelCase__ : Optional[Any] = scheduler_class(**UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__ : str = 10, 0.0 scheduler.set_timesteps(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.dummy_model() UpperCamelCase__ : Optional[Any] = self.dummy_sample_deter UpperCamelCase__ : Optional[Any] = self.dummy_sample_deter + 0.1 UpperCamelCase__ : str = self.dummy_sample_deter - 0.1 UpperCamelCase__ : List[Any] = samplea.shape[0] UpperCamelCase__ : List[str] = torch.stack([samplea, samplea, samplea] , dim=0) UpperCamelCase__ : Optional[Any] = torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) UpperCamelCase__ : List[str] = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) UpperCamelCase__ : List[str] = scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , UpperCAmelCase_) UpperCamelCase__ : Any = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : Union[str, Any] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 11_47.79_04) < 1e-2 assert abs(result_mean.item() - 0.49_82) < 1e-3 def __UpperCamelCase ( self : str): UpperCamelCase__ : int = self.full_loop() UpperCamelCase__ : Any = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : List[Any] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1_72.00_67) < 1e-2 assert abs(result_mean.item() - 0.22_39_67) < 1e-3 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Tuple = self.full_loop(prediction_type='v_prediction') UpperCamelCase__ : Union[str, Any] = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : Optional[int] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 52.53_02) < 1e-2 assert abs(result_mean.item() - 0.06_84) < 1e-3 def __UpperCamelCase ( self : Tuple): # We specify different beta, so that the first alpha is 0.99 UpperCamelCase__ : int = self.full_loop(set_alpha_to_one=UpperCAmelCase_ , beta_start=0.01) UpperCamelCase__ : Optional[int] = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : List[Any] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1_49.82_95) < 1e-2 assert abs(result_mean.item() - 0.19_51) < 1e-3 def __UpperCamelCase ( self : str): # We specify different beta, so that the first alpha is 0.99 UpperCamelCase__ : Dict = self.full_loop(set_alpha_to_one=UpperCAmelCase_ , beta_start=0.01) UpperCamelCase__ : Union[str, Any] = torch.sum(torch.abs(UpperCAmelCase_)) UpperCamelCase__ : str = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1_49.07_84) < 1e-2 assert abs(result_mean.item() - 0.19_41) < 1e-3
596
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
715
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class snake_case : def __init__( self :Dict , _lowerCamelCase :List[str] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = str(id_ ) __SCREAMING_SNAKE_CASE : Any = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Optional[Any] = {} # {vertex:distance} def __lt__( self :Any , _lowerCamelCase :Any ): return self.key < other.key def __repr__( self :Any ): return self.id def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , _lowerCamelCase :str ): self.neighbors.append(_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] , _lowerCamelCase :Any , _lowerCamelCase :Tuple ): __SCREAMING_SNAKE_CASE : int = weight def lowerCAmelCase_ ( lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Dict ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowercase_ ) graph[b - 1].add_edge(graph[a - 1] , lowercase_ ) def lowerCAmelCase_ ( lowercase_ : list , lowercase_ : Vertex ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = [] for u in graph: __SCREAMING_SNAKE_CASE : Tuple = math.inf __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Dict = graph[:] while q: __SCREAMING_SNAKE_CASE : Tuple = min(lowercase_ ) q.remove(lowercase_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __SCREAMING_SNAKE_CASE : Tuple = u __SCREAMING_SNAKE_CASE : List[str] = u.edges[v.id] for i in range(1 , len(lowercase_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowerCAmelCase_ ( lowercase_ : list , lowercase_ : Vertex ): '''simple docstring''' for u in graph: __SCREAMING_SNAKE_CASE : Optional[Any] = math.inf __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : List[Any] = 0 __SCREAMING_SNAKE_CASE : Dict = list(lowercase_ ) hq.heapify(lowercase_ ) while h: __SCREAMING_SNAKE_CASE : int = hq.heappop(lowercase_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __SCREAMING_SNAKE_CASE : Union[str, Any] = u __SCREAMING_SNAKE_CASE : int = u.edges[v.id] hq.heapify(lowercase_ ) for i in range(1 , len(lowercase_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowerCAmelCase_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
401
0
'''simple docstring''' from __future__ import annotations _SCREAMING_SNAKE_CASE = list[tuple[int, int]] _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _lowerCAmelCase : """simple docstring""" def __init__( self : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : float , __snake_case : Node | None , )-> Dict: snake_case = pos_x snake_case = pos_y snake_case = (pos_y, pos_x) snake_case = goal_x snake_case = goal_y snake_case = g_cost snake_case = parent snake_case = self.calculate_heuristic() def lowerCAmelCase ( self : Union[str, Any] )-> Any: snake_case = abs(self.pos_x - self.goal_x ) snake_case = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : int , __snake_case : Union[str, Any] )-> Any: return self.f_cost < other.f_cost class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , __snake_case : tuple[int, int] , __snake_case : tuple[int, int] )-> List[Any]: snake_case = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCAmelCase_ ) snake_case = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , UpperCAmelCase_ ) snake_case = [self.start] snake_case = [] snake_case = False def lowerCAmelCase ( self : Any )-> Any: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() snake_case = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: snake_case = True return self.retrace_path(UpperCAmelCase_ ) self.closed_nodes.append(UpperCAmelCase_ ) snake_case = self.get_successors(UpperCAmelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCAmelCase_ ) else: # retrieve the best current path snake_case = self.open_nodes.pop(self.open_nodes.index(UpperCAmelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCAmelCase_ ) else: self.open_nodes.append(UpperCAmelCase_ ) if not self.reached: return [self.start.pos] return None def lowerCAmelCase ( self : List[Any] , __snake_case : Node )-> Union[str, Any]: snake_case = [] for action in delta: snake_case = parent.pos_x + action[1] snake_case = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCAmelCase_ , UpperCAmelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCAmelCase_ , ) ) return successors def lowerCAmelCase ( self : Dict , __snake_case : Node | None )-> Dict: snake_case = node snake_case = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case = current_node.parent path.reverse() return path if __name__ == "__main__": _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") _SCREAMING_SNAKE_CASE = GreedyBestFirst(init, goal) _SCREAMING_SNAKE_CASE = greedy_bf.search() if path: for pos_x, pos_y in path: _SCREAMING_SNAKE_CASE = 2 for elem in grid: print(elem)
369
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase__ : A__ : Optional[str] =field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) A__ : Optional[str] =field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) A__ : Optional[str] =field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) A__ : Optional[str] =field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) A__ : Optional[int] =field(default=2 , metadata={"""help""": """Batch size for training."""} ) A__ : Optional[int] =field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) A__ : Optional[float] =field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) A__ : Optional[int] =field( default=1_0_0_0_0 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) A__ : Optional[float] =field(default=2e-4 , metadata={"""help""": """Learning rate fo training."""} ) A__ : Optional[str] =field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) A__ : Optional[int] =field( default=7_5_0 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) A__ : Optional[int] =field( default=1_6 , metadata={"""help""": """Number of gradient accumulation steps."""} ) A__ : Optional[bool] =field( default=_UpperCAmelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) A__ : Optional[int] =field(default=5_0_0_0_0 , metadata={"""help""": """Maximum number of training steps."""} ) A__ : Optional[int] =field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) A__ : Optional[int] =field(default=1_0_2_4 , metadata={"""help""": """Sequence lengths used for training."""} ) A__ : Optional[int] =field(default=1 , metadata={"""help""": """Training seed."""} ) A__ : Optional[int] =field( default=1_0_2_4 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) A__ : Optional[str] =field( default=_UpperCAmelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) A__ : Optional[bool] =field(default=_UpperCAmelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowercase__ : A__ : Optional[str] =field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) A__ : Optional[str] =field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) A__ : Optional[int] =field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) A__ : Optional[int] =field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) A__ : Optional[int] =field(default=1_0_2_4 , metadata={"""help""": """Length of sequences to be evaluated."""} ) A__ : Optional[int] =field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowercase__ : A__ : Optional[str] =field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) A__ : Optional[int] =field(default=_UpperCAmelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) A__ : Optional[int] =field( default=_UpperCAmelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) A__ : Optional[bool] =field( default=_UpperCAmelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) A__ : Optional[float] =field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) A__ : Optional[int] =field(default=2_5_6 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) A__ : Optional[int] =field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) A__ : Optional[float] =field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) A__ : Optional[int] =field(default=1_0 , metadata={"""help""": """Number of generations to run in parallel."""} ) A__ : Optional[int] =field( default=2_0_0 , metadata={"""help""": """Number of completions to generate for each sample."""} ) A__ : Optional[int] =field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) A__ : Optional[str] =field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) A__ : Optional[str] =field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) A__ : Optional[int] =field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowercase__ : A__ : Optional[int] =field( default=_UpperCAmelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) A__ : Optional[str] =field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) A__ : Optional[str] =field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) A__ : Optional[int] =field( default=1_0_0_0_0_0 , metadata={"""help""": """Number of files to save per JSON output file."""} ) A__ : Optional[str] =field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) A__ : Optional[float] =field( default=1_0_0_0 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) A__ : Optional[float] =field( default=1_0_0 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) A__ : Optional[float] =field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) A__ : Optional[float] =field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) A__ : Optional[float] =field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) A__ : Optional[str] =field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) A__ : Optional[bool] =field( default=_UpperCAmelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) A__ : Optional[float] =field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowercase__ : A__ : Optional[str] =field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) A__ : Optional[str] =field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) A__ : Optional[str] =field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) A__ : Optional[int] =field(default=2_0_0_0_0_0 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) A__ : Optional[int] =field( default=3_2_7_6_8 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) A__ : Optional[str] =field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) A__ : Optional[bool] =field(default=_UpperCAmelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowercase__ : A__ : Optional[str] =field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) A__ : Optional[str] =field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) A__ : Optional[str] =field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) A__ : Optional[int] =field(default=_UpperCAmelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowercase__ : A__ : Optional[str] =field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) A__ : Optional[str] =field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) A__ : Optional[str] =field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) A__ : Optional[bool] =field(default=_UpperCAmelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
472
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _A ( unittest.TestCase ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=13 ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=224 ,SCREAMING_SNAKE_CASE_=30 ,SCREAMING_SNAKE_CASE_=400 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] ,SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] ,): '''simple docstring''' snake_case : Union[str, Any] = size if size is not None else {"""height""": 18, """width""": 18} snake_case : Optional[Any] = parent snake_case : Optional[Any] = batch_size snake_case : List[Any] = num_channels snake_case : List[str] = image_size snake_case : Union[str, Any] = min_resolution snake_case : Any = max_resolution snake_case : Union[str, Any] = do_resize snake_case : Optional[Any] = size snake_case : Any = do_normalize snake_case : Union[str, Any] = image_mean snake_case : Dict = image_std def snake_case_ ( self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _A ( snake_case , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : int = ViTImageProcessor if is_vision_available() else None def snake_case_ ( self ): '''simple docstring''' snake_case : Dict = EfficientFormerImageProcessorTester(self ) @property def snake_case_ ( self ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def snake_case_ ( self ): '''simple docstring''' snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ ,"""image_mean""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ ,"""image_std""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ ,"""do_normalize""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ ,"""do_resize""" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ ,"""size""" ) ) def snake_case_ ( self ): '''simple docstring''' pass def snake_case_ ( self ): '''simple docstring''' snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Any = prepare_image_inputs(self.image_proc_tester ,equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ ,Image.Image ) # Test not batched input snake_case : Union[str, Any] = image_processor(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) ,) # Test batched snake_case : List[str] = image_processor(SCREAMING_SNAKE_CASE_ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) ,) def snake_case_ ( self ): '''simple docstring''' snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : int = prepare_image_inputs(self.image_proc_tester ,equal_resolution=SCREAMING_SNAKE_CASE_ ,numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ ,np.ndarray ) # Test not batched input snake_case : int = image_processor(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) ,) # Test batched snake_case : Optional[int] = image_processor(SCREAMING_SNAKE_CASE_ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) ,) def snake_case_ ( self ): '''simple docstring''' snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : int = prepare_image_inputs(self.image_proc_tester ,equal_resolution=SCREAMING_SNAKE_CASE_ ,torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ ,torch.Tensor ) # Test not batched input snake_case : List[str] = image_processor(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) ,) # Test batched snake_case : Dict = image_processor(SCREAMING_SNAKE_CASE_ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) ,)
715
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Optional[int] = logging.get_logger(__name__) def lowercase ( __A : str ) -> List[Any]: '''simple docstring''' snake_case : Optional[int] = torch.load(__A , map_location="""cpu""" ) if "model" in sd.keys(): snake_case : Any = torch.load(__A , map_location="""cpu""" )["""model"""] # pop unnecessary weights snake_case : Optional[Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(__A ) snake_case : List[Any] = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: snake_case : int = sd.pop(__A ) snake_case : Optional[int] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: snake_case : List[str] = sd[key] # We split QKV in separate Q,K,V snake_case : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) snake_case : Any = key.replace(""".qkv_proj.""" , """.k_proj.""" ) snake_case : List[str] = key.replace(""".qkv_proj.""" , """.v_proj.""" ) snake_case : List[Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 snake_case , snake_case , snake_case : str = torch.split(__A , depth // 3 , dim=0 ) snake_case : Tuple = q snake_case : List[Any] = k snake_case : List[Any] = v del sd[key] return sd @torch.no_grad() def lowercase ( __A : Optional[Any] , __A : Tuple , __A : List[str]=None ) -> Optional[int]: '''simple docstring''' snake_case : Any = load_checkpoint(__A ) if config is not None: snake_case : List[Any] = OPTConfig.from_pretrained(__A ) else: snake_case : Any = OPTConfig() snake_case : Union[str, Any] = OPTModel(__A ).half().eval() model.load_state_dict(__A ) # Check results Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) if __name__ == "__main__": __lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') __lowercase : Any = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
315
0