code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'data2vec-audio' def __init__( self , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=(512, 512, 512, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE_=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE_=(10, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=19 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=0.05 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="sum" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=(512, 512, 512, 512, 1500) , SCREAMING_SNAKE_CASE_=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE_=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = hidden_size lowerCamelCase_ = feat_extract_activation lowerCamelCase_ = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = conv_bias lowerCamelCase_ = num_conv_pos_embeddings lowerCamelCase_ = num_conv_pos_embedding_groups lowerCamelCase_ = conv_pos_kernel_size lowerCamelCase_ = len(self.conv_dim ) lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = feat_proj_dropout lowerCamelCase_ = final_dropout lowerCamelCase_ = layerdrop lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = vocab_size lowerCamelCase_ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase_ = mask_time_prob lowerCamelCase_ = mask_time_length lowerCamelCase_ = mask_time_min_masks lowerCamelCase_ = mask_feature_prob lowerCamelCase_ = mask_feature_length lowerCamelCase_ = mask_feature_min_masks # ctc loss lowerCamelCase_ = ctc_loss_reduction lowerCamelCase_ = ctc_zero_infinity # adapter lowerCamelCase_ = add_adapter lowerCamelCase_ = adapter_kernel_size lowerCamelCase_ = adapter_stride lowerCamelCase_ = num_adapter_layers lowerCamelCase_ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCamelCase_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCamelCase_ = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = list(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = xvector_output_dim @property def UpperCamelCase( self ) -> Dict: '''simple docstring''' return math.prod(self.conv_stride )
42
import functools def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = len(_SCREAMING_SNAKE_CASE ) __a = len(_SCREAMING_SNAKE_CASE ) @functools.cache def min_distance(_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __a = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _SCREAMING_SNAKE_CASE ) , 1 + min_distance(_SCREAMING_SNAKE_CASE , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
225
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : List[str] = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = """encodec""" def __init__( self , lowercase__=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase__=2_4_0_0_0 , lowercase__=1 , lowercase__=False , lowercase__=None , lowercase__=None , lowercase__=1_2_8 , lowercase__=3_2 , lowercase__=1 , lowercase__=[8, 5, 4, 2] , lowercase__="weight_norm" , lowercase__=7 , lowercase__=7 , lowercase__=3 , lowercase__=2 , lowercase__=True , lowercase__="reflect" , lowercase__=2 , lowercase__=2 , lowercase__=1.0 , lowercase__=1_0_2_4 , lowercase__=None , lowercase__=True , **lowercase__ , ): '''simple docstring''' __A =target_bandwidths __A =sampling_rate __A =audio_channels __A =normalize __A =chunk_length_s __A =overlap __A =hidden_size __A =num_filters __A =num_residual_layers __A =upsampling_ratios __A =norm_type __A =kernel_size __A =last_kernel_size __A =residual_kernel_size __A =dilation_growth_rate __A =use_causal_conv __A =pad_mode __A =compress __A =num_lstm_layers __A =trim_right_ratio __A =codebook_size __A =codebook_dim if codebook_dim is not None else hidden_size __A =use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**lowercase__ ) @property def __UpperCamelCase ( self ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __UpperCamelCase ( self ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __UpperCamelCase ( self ): '''simple docstring''' __A =np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __UpperCamelCase ( self ): '''simple docstring''' return int(1_0_0_0 * self.target_bandwidths[-1] // (self.frame_rate * 1_0) )
702
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCamelCase : List[str] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def A__ ( __A : Optional[int] , __A : Tuple , __A : Union[str, Any] , __A : List[str] , __A : Union[str, Any] ) ->str: for attribute in key.split('''.''' ): __A =getattr(__A , __A ) if weight_type is not None: __A =getattr(__A , __A ).shape else: __A =hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __A =value elif weight_type == "weight_g": __A =value elif weight_type == "weight_v": __A =value elif weight_type == "bias": __A =value else: __A =value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def A__ ( __A : int , __A : str ) ->List[str]: __A =[] __A =fairseq_model.state_dict() __A =hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __A =None for name, value in fairseq_dict.items(): __A =False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == '''group''' , ) __A =True elif name.split('''.''' )[0] == "proj": __A =fairseq_model.proj __A =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __A =True if "*" in mapped_key: __A =name.split(__A )[0].split('''.''' )[-2] __A =mapped_key.replace('''*''' , __A ) if "weight_g" in name: __A ='''weight_g''' elif "weight_v" in name: __A ='''weight_v''' elif "bias" in name: __A ='''bias''' elif "weight" in name: __A ='''weight''' else: __A =None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def A__ ( __A : str , __A : List[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : str ) ->Optional[Any]: __A =full_name.split('''conv_layers.''' )[-1] __A =name.split('''.''' ) __A =int(items[0] ) __A =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __A =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__A ) def A__ ( __A : Optional[Any] ) ->List[Any]: __A , __A =emb.weight.shape __A =nn.Linear(__A , __A , bias=__A ) __A =emb.weight.data return lin_layer def A__ ( __A : Dict ) ->Optional[int]: with open(__A , '''r''' , encoding='''utf-8''' ) as f: __A =f.readlines() __A =[line.split(''' ''' )[0] for line in lines] __A =len(__A ) __A ={ '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(__A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def A__ ( __A : List[Any] , __A : Optional[Any] , __A : Tuple , __A : int , __A : str , __A : str , __A : Dict , ) ->Tuple: __A =WavaVecaConfig.from_pretrained(__A ) __A =SpeechaTextaConfig.from_pretrained( __A , vocab_size=__A , decoder_layers=__A , do_stable_layer_norm=__A ) __A =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) __A , __A , __A =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __A =model[0].eval() # set weights for wav2vec2 encoder __A =WavaVecaModel(__A ) __A =recursively_load_weights_wavaveca(model.encoder , __A ) __A =SpeechaTextaForCausalLM(__A ) __A , __A =hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__A ) # set output linear layer unexpected_keys.remove('''embed_out''' ) __A =nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) __A =SpeechEncoderDecoderModel(encoder=__A , decoder=__A ) __A =False # add projection layer __A =nn.Parameter(projection_layer.weight ) __A =nn.Parameter(projection_layer.bias ) __A =create_vocab_dict(__A ) with open(os.path.join(__A , '''vocab.json''' ) , '''w''' ) as fp: json.dump(__A , __A ) __A =SpeechaTextaTokenizer(os.path.join(__A , '''vocab.json''' ) ) tokenizer.save_pretrained(__A ) __A =hf_wavavec.config.to_dict() __A =tokenizer.pad_token_id __A =tokenizer.bos_token_id __A =tokenizer.eos_token_id __A ='''speech_to_text_2''' __A ='''wav2vec2''' __A =SpeechEncoderDecoderConfig.from_dict(__A ) hf_wavavec.save_pretrained(__A ) feature_extractor.save_pretrained(__A ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_0224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') _lowerCamelCase : Tuple = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
516
0
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCamelCase = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def A ( lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Dict ) -> List[Any]: UpperCamelCase__ :str = SavedModel() UpperCamelCase__ :List[str] = [] with open(os.path.join(lowercase__ , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f: UpperCamelCase__ :str = json.load(lowercase__ )["""opsets"""] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowercase__ )] ) with open(lowercase__ , """rb""" ) as f: saved_model.ParseFromString(f.read() ) UpperCamelCase__ :Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCamelCase__ :Union[str, Any] = sorted(lowercase__ ) UpperCamelCase__ :List[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowercase__ ) if strict and len(lowercase__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(lowercase__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*lowercase__ , sep="""\n""" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) UpperCamelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
45
"""simple docstring""" a : str = range(2, 20 + 1) a : Optional[Any] = [10**k for k in range(ks[-1] + 1)] a : dict[int, dict[int, list[list[int]]]] = {} def lowercase__(A , A , A , A ) ->Any: """simple docstring""" lowercase__ : str= sum(a_i[j] for j in range(A , len(A ) ) ) lowercase__ : int= sum(a_i[j] * base[j] for j in range(min(len(A ) , A ) ) ) lowercase__, lowercase__ : Optional[Any]= 0, 0 lowercase__ : Any= n - i lowercase__ : Union[str, Any]= memo.get(A ) if sub_memo is not None: lowercase__ : List[str]= sub_memo.get(A ) if jumps is not None and len(A ) > 0: # find and make the largest jump without going over lowercase__ : List[str]= -1 for _k in range(len(A ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowercase__ : Any= _k break if max_jump >= 0: lowercase__, lowercase__, lowercase__ : str= jumps[max_jump] # since the difference between jumps is cached, add c lowercase__ : List[Any]= diff + c for j in range(min(A , len(A ) ) ): lowercase__, lowercase__ : Union[str, Any]= divmod(A , 10 ) if new_c > 0: add(A , A , A ) else: lowercase__ : Any= [] else: lowercase__ : List[str]= {c: []} lowercase__ : Union[str, Any]= sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowercase__, lowercase__ : Optional[int]= next_term(A , k - 1 , i + dn , A ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowercase__, lowercase__ : str= compute(A , A , i + dn , A ) diff += _diff dn += terms_jumped lowercase__ : Optional[Any]= sub_memo[c] # keep jumps sorted by # of terms skipped lowercase__ : Dict= 0 while j < len(A ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(A , (diff, dn, k) ) return (diff, dn) def lowercase__(A , A , A , A ) ->Optional[Any]: """simple docstring""" if i >= n: return 0, i if k > len(A ): a_i.extend([0 for _ in range(k - len(A ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowercase__ : int= i lowercase__, lowercase__, lowercase__ : Union[str, Any]= 0, 0, 0 for j in range(len(A ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowercase__ : Tuple= ds_c + ds_b diff += addend lowercase__ : List[Any]= 0 for j in range(A ): lowercase__ : int= a_i[j] + addend lowercase__, lowercase__ : Any= divmod(A , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(A , A , A ) return diff, i - start_i def lowercase__(A , A , A ) ->Any: """simple docstring""" for j in range(A , len(A ) ): lowercase__ : List[str]= digits[j] + addend if s >= 10: lowercase__, lowercase__ : str= divmod(A , 10 ) lowercase__ : Optional[int]= addend // 10 + quotient else: lowercase__ : int= s lowercase__ : Union[str, Any]= addend // 10 if addend == 0: break while addend > 0: lowercase__, lowercase__ : str= divmod(A , 10 ) digits.append(A ) def lowercase__(A = 10**15 ) ->int: """simple docstring""" lowercase__ : Optional[int]= [1] lowercase__ : Dict= 1 lowercase__ : List[Any]= 0 while True: lowercase__, lowercase__ : List[str]= next_term(A , 20 , i + dn , A ) dn += terms_jumped if dn == n - i: break lowercase__ : int= 0 for j in range(len(A ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
218
0
'''simple docstring''' import baseaa def _snake_case (_snake_case : str) -> bytes: return baseaa.baaencode(string.encode('utf-8')) def _snake_case (_snake_case : bytes) -> str: return baseaa.baadecode(UpperCAmelCase__).decode('utf-8') if __name__ == "__main__": _SCREAMING_SNAKE_CASE = "Hello World!" _SCREAMING_SNAKE_CASE = baseaa_encode(test) print(encoded) _SCREAMING_SNAKE_CASE = baseaa_decode(encoded) print(decoded)
715
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE_ ( _a , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Optional[int] =CTRLTokenizer __lowerCAmelCase : int =False __lowerCAmelCase : Union[str, Any] =False def UpperCamelCase__ ( self :Any): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase =['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] _lowercase =dict(zip(snake_case, range(len(snake_case)))) _lowercase =['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] _lowercase ={'unk_token': '<unk>'} _lowercase =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) _lowercase =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file, 'w', encoding='utf-8') as fp: fp.write(json.dumps(snake_case) + '\n') with open(self.merges_file, 'w', encoding='utf-8') as fp: fp.write('\n'.join(snake_case)) def UpperCamelCase__ ( self :Union[str, Any], **snake_case :Optional[Any]): """simple docstring""" kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname, **snake_case) def UpperCamelCase__ ( self :Tuple, snake_case :str): """simple docstring""" _lowercase ='adapt react readapt apt' _lowercase ='adapt react readapt apt' return input_text, output_text def UpperCamelCase__ ( self :Tuple): """simple docstring""" _lowercase =CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) _lowercase ='adapt react readapt apt' _lowercase ='adapt re@@ a@@ c@@ t re@@ adapt apt'.split() _lowercase =tokenizer.tokenize(snake_case) self.assertListEqual(snake_case, snake_case) _lowercase =tokens + [tokenizer.unk_token] _lowercase =[0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case), snake_case)
557
0
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = BlenderbotSmallTokenizer __lowerCamelCase : List[str] = False def a__ (self ) -> Tuple: """simple docstring""" super().setUp() _a = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _a = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Union[str, Any]: """simple docstring""" _a = '''adapt act apte''' _a = '''adapt act apte''' return input_text, output_text def a__ (self ) -> Any: """simple docstring""" _a = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt act apte''' _a = ['''adapt''', '''act''', '''ap@@''', '''te'''] _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _a = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_384] _a = '''I am a small frog.''' _a = tok([src_text] , padding=A , truncation=A )['''input_ids'''] _a = tok.batch_decode(A , skip_special_tokens=A , clean_up_tokenization_spaces=A )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def a__ (self ) -> int: """simple docstring""" _a = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) _a = '''I am a small frog .''' _a = '''.''' _a = tok(A )['''input_ids'''] _a = tok(A )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
11
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : List[str] = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class a ( _lowerCamelCase ): snake_case_ = "wavlm" def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any]=32 , lowercase_ : Optional[int]=768 , lowercase_ : List[str]=12 , lowercase_ : Dict=12 , lowercase_ : Any=3072 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Dict=0.1 , lowercase_ : int=0.1 , lowercase_ : int=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : int=0.1 , lowercase_ : Optional[int]=0.02 , lowercase_ : Dict=1e-5 , lowercase_ : Tuple="group" , lowercase_ : str="gelu" , lowercase_ : Any=(512, 512, 512, 512, 512, 512, 512) , lowercase_ : str=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : Any=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : Tuple=False , lowercase_ : List[Any]=128 , lowercase_ : int=16 , lowercase_ : Tuple=320 , lowercase_ : Union[str, Any]=800 , lowercase_ : List[str]=False , lowercase_ : str=True , lowercase_ : List[Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[int]=0.0 , lowercase_ : List[str]=10 , lowercase_ : Union[str, Any]=320 , lowercase_ : Optional[Any]=2 , lowercase_ : List[str]=0.1 , lowercase_ : int=100 , lowercase_ : Tuple=256 , lowercase_ : Tuple=256 , lowercase_ : Dict=0.1 , lowercase_ : Any="mean" , lowercase_ : Tuple=False , lowercase_ : Dict=False , lowercase_ : str=256 , lowercase_ : Optional[int]=(512, 512, 512, 512, 1500) , lowercase_ : List[str]=(5, 3, 3, 1, 1) , lowercase_ : Any=(1, 2, 3, 1, 1) , lowercase_ : int=512 , lowercase_ : List[Any]=80 , lowercase_ : Optional[Any]=0 , lowercase_ : int=1 , lowercase_ : List[str]=2 , lowercase_ : List[str]=False , lowercase_ : Dict=3 , lowercase_ : List[Any]=2 , lowercase_ : Optional[Any]=3 , lowercase_ : int=None , **lowercase_ : List[str] , ): super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) snake_case_ = hidden_size snake_case_ = feat_extract_norm snake_case_ = feat_extract_activation snake_case_ = list(lowercase_ ) snake_case_ = list(lowercase_ ) snake_case_ = list(lowercase_ ) snake_case_ = conv_bias snake_case_ = num_buckets snake_case_ = max_bucket_distance snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = len(self.conv_dim ) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = num_ctc_classes snake_case_ = vocab_size snake_case_ = do_stable_layer_norm snake_case_ = use_weighted_layer_sum snake_case_ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length # parameters for pretraining with codevector quantized representations snake_case_ = num_codevectors_per_group snake_case_ = num_codevector_groups snake_case_ = contrastive_logits_temperature snake_case_ = num_negatives snake_case_ = codevector_dim snake_case_ = proj_codevector_dim snake_case_ = diversity_loss_weight # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # adapter snake_case_ = add_adapter snake_case_ = adapter_kernel_size snake_case_ = adapter_stride snake_case_ = num_adapter_layers snake_case_ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case_ = list(lowercase_ ) snake_case_ = list(lowercase_ ) snake_case_ = list(lowercase_ ) snake_case_ = xvector_output_dim @property def A_ ( self : Tuple ): return functools.reduce(operator.mul , self.conv_stride , 1 )
640
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase : List[str] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
716
def _lowerCAmelCase ( UpperCamelCase__: str ) -> str: """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
546
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : List[Any] = "altclip_text_model" def __init__( self , _A=2_5_0_0_0_2 , _A=1_0_2_4 , _A=2_4 , _A=1_6 , _A=4_0_9_6 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_4 , _A=1 , _A=0.02 , _A=0.02 , _A=1E-05 , _A=1 , _A=0 , _A=2 , _A="absolute" , _A=True , _A=7_6_8 , **_A , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =type_vocab_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =initializer_factor _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =position_embedding_type _SCREAMING_SNAKE_CASE =use_cache _SCREAMING_SNAKE_CASE =project_dim class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : List[str] = "altclip_vision_model" def __init__( self , _A=7_6_8 , _A=3_0_7_2 , _A=5_1_2 , _A=1_2 , _A=1_2 , _A=3 , _A=2_2_4 , _A=3_2 , _A="quick_gelu" , _A=1E-5 , _A=0.0 , _A=0.02 , _A=1.0 , **_A , ): '''simple docstring''' super().__init__(**UpperCamelCase_ ) _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =projection_dim _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =initializer_factor _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =hidden_act @classmethod def UpperCamelCase_ ( cls , _A , **_A ): '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _SCREAMING_SNAKE_CASE =cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('''model_type''' ) == "altclip": _SCREAMING_SNAKE_CASE =config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : List[Any] = "altclip" lowercase : Optional[int] = True def __init__( self , _A=None , _A=None , _A=7_6_8 , _A=2.6592 , **_A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =kwargs.pop('''text_config_dict''' , UpperCamelCase_ ) _SCREAMING_SNAKE_CASE =kwargs.pop('''vision_config_dict''' , UpperCamelCase_ ) super().__init__(**UpperCamelCase_ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: _SCREAMING_SNAKE_CASE ={} # This is the complete result when using `text_config_dict`. _SCREAMING_SNAKE_CASE =AltCLIPTextConfig(**UpperCamelCase_ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: _SCREAMING_SNAKE_CASE =( f"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """ f"""The value `text_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: _SCREAMING_SNAKE_CASE =( f"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """ f"""value `text_config[\"{key}\"]` will be overriden.""" ) logger.warning(UpperCamelCase_ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: _SCREAMING_SNAKE_CASE ={} # This is the complete result when using `vision_config_dict`. _SCREAMING_SNAKE_CASE =AltCLIPVisionConfig(**UpperCamelCase_ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: _SCREAMING_SNAKE_CASE ={ str(UpperCamelCase_ ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: _SCREAMING_SNAKE_CASE =( f"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """ f"""values. The value `vision_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: _SCREAMING_SNAKE_CASE =( f"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """ f"""The value `vision_config[\"{key}\"]` will be overriden.""" ) logger.warning(UpperCamelCase_ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: _SCREAMING_SNAKE_CASE ={} logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''' ) if vision_config is None: _SCREAMING_SNAKE_CASE ={} logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''' ) _SCREAMING_SNAKE_CASE =AltCLIPTextConfig(**UpperCamelCase_ ) _SCREAMING_SNAKE_CASE =AltCLIPVisionConfig(**UpperCamelCase_ ) _SCREAMING_SNAKE_CASE =projection_dim _SCREAMING_SNAKE_CASE =logit_scale_init_value _SCREAMING_SNAKE_CASE =1.0 @classmethod def UpperCamelCase_ ( cls , _A , _A , **_A ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase_ ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE =self.text_config.to_dict() _SCREAMING_SNAKE_CASE =self.vision_config.to_dict() _SCREAMING_SNAKE_CASE =self.__class__.model_type return output
255
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : List[Any] = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class __A (__magic_name__ ): snake_case :List[str] = "git_vision_model" def __init__( self , UpperCamelCase_=7_68 , UpperCamelCase_=30_72 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3 , UpperCamelCase_=2_24 , UpperCamelCase_=16 , UpperCamelCase_="quick_gelu" , UpperCamelCase_=1E-5 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : Union[str, Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : Union[str, Any] = patch_size __UpperCAmelCase : Optional[Any] = image_size __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : List[str] = hidden_act @classmethod def _snake_case ( cls , UpperCamelCase_ , **UpperCamelCase_ ): cls._set_token_in_kwargs(UpperCamelCase_ ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": __UpperCAmelCase : Dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class __A (__magic_name__ ): snake_case :Optional[int] = "git" def __init__( self , UpperCamelCase_=None , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=6 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=10_24 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=0 , UpperCamelCase_="absolute" , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=1_01 , UpperCamelCase_=1_02 , UpperCamelCase_=None , **UpperCamelCase_ , ): super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) if vision_config is None: __UpperCAmelCase : str = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) __UpperCAmelCase : int = GitVisionConfig(**UpperCamelCase_ ) __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Dict = layer_norm_eps __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[Any] = use_cache __UpperCAmelCase : Tuple = tie_word_embeddings __UpperCAmelCase : Optional[int] = num_image_with_embedding __UpperCAmelCase : Tuple = bos_token_id __UpperCAmelCase : List[str] = eos_token_id def _snake_case ( self ): __UpperCAmelCase : Tuple = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Union[str, Any] = self.vision_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output
168
0
import random from .binary_exp_mod import bin_exp_mod def _a ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict=1000 ): """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _lowerCAmelCase = n - 1 _lowerCAmelCase = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _lowerCAmelCase = 0 while count < prec: _lowerCAmelCase = random.randint(2 , n - 1 ) _lowerCAmelCase = bin_exp_mod(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if b != 1: _lowerCAmelCase = True for _ in range(__SCREAMING_SNAKE_CASE ): if b == n - 1: _lowerCAmelCase = False break _lowerCAmelCase = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _UpperCamelCase: List[Any] =abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
720
from PIL import Image def _a ( __SCREAMING_SNAKE_CASE : Image ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = image.size _lowerCAmelCase = 0 _lowerCAmelCase = image.load() for i in range(__SCREAMING_SNAKE_CASE ): for j in range(__SCREAMING_SNAKE_CASE ): _lowerCAmelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(__SCREAMING_SNAKE_CASE ): for i in range(__SCREAMING_SNAKE_CASE ): _lowerCAmelCase = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _UpperCamelCase: List[Any] =mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
585
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : str = CustomTokenizer pass
100
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = ['pixel_values'] def __init__( self : List[Any] , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 255 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 8 , **UpperCAmelCase__ : str , ): '''simple docstring''' super().__init__(**UpperCAmelCase__ ) lowercase : Union[str, Any] =do_rescale lowercase : List[Any] =rescale_factor lowercase : Tuple =do_pad lowercase : List[str] =pad_size def lowerCamelCase_ ( self : List[str] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[int] ): '''simple docstring''' return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' lowercase , lowercase : Union[str, Any] =get_image_size(UpperCAmelCase__ ) lowercase : Tuple =(old_height // size + 1) * size - old_height lowercase : Tuple =(old_width // size + 1) * size - old_width return pad(UpperCAmelCase__ , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[str] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[float] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase__ : Optional[Any] , ): '''simple docstring''' lowercase : int =do_rescale if do_rescale is not None else self.do_rescale lowercase : Tuple =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : int =do_pad if do_pad is not None else self.do_pad lowercase : List[Any] =pad_size if pad_size is not None else self.pad_size lowercase : Any =make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase : Dict =[to_numpy_array(UpperCAmelCase__ ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_pad: lowercase : Union[str, Any] =[self.pad(UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] lowercase : Dict =[to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] lowercase : Any ={'''pixel_values''': images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
92
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( __lowerCamelCase,unittest.TestCase ): _lowercase : Optional[Any] = KandinskyVaaInpaintPipeline _lowercase : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _lowercase : List[Any] = [ 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _lowercase : List[Any] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _lowercase : int = False @property def UpperCamelCase ( self : int ) -> str: """simple docstring""" return 3_2 @property def UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" return 3_2 @property def UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" return self.time_input_dim @property def UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return 1_0_0 @property def UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" torch.manual_seed(0 ) A_ = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } A_ = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" torch.manual_seed(0 ) A_ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" A_ = self.dummy_unet A_ = self.dummy_movq A_ = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowerCamelCase__ , ) A_ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def UpperCamelCase ( self : int , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any]=0 ) -> Union[str, Any]: """simple docstring""" A_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) A_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase__ ) # create init_image A_ = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) A_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask A_ = np.ones((6_4, 6_4) , dtype=np.floataa ) A_ = 0 if str(lowerCamelCase__ ).startswith('''mps''' ): A_ = torch.manual_seed(lowerCamelCase__ ) else: A_ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) A_ = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" A_ = '''cpu''' A_ = self.get_dummy_components() A_ = self.pipeline_class(**lowerCamelCase__ ) A_ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) A_ = output.images A_ = pipe( **self.get_dummy_inputs(lowerCamelCase__ ) , return_dict=lowerCamelCase__ , )[0] A_ = image[0, -3:, -3:, -1] A_ = image_from_tuple[0, -3:, -3:, -1] print(F"image.shape {image.shape}" ) assert image.shape == (1, 6_4, 6_4, 3) A_ = np.array( [0.50775903, 0.49527195, 0.48824543, 0.50192237, 0.48644906, 0.49373814, 0.4780598, 0.47234827, 0.48327848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" A_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) A_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) A_ = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) A_ = 0 A_ = '''a hat''' A_ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) A_ = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) A_ = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) A_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) A_ ,A_ = pipe_prior( lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() A_ = pipeline( image=lowerCamelCase__ , mask_image=lowerCamelCase__ , image_embeds=lowerCamelCase__ , negative_image_embeds=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) A_ = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
716
import datasets from .evaluate import evaluate __lowercase = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ __lowercase = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ __lowercase = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def UpperCamelCase ( self : Tuple , lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple ) -> Optional[Any]: """simple docstring""" A_ = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} A_ = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] A_ = evaluate(dataset=lowerCamelCase__ , predictions=lowerCamelCase__ ) return score
563
0
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : List[Any] = FlaxAutoencoderKL @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Any = 4 _lowercase : str = 3 _lowercase : str = (32, 32) _lowercase : int = jax.random.PRNGKey(0) _lowercase : Tuple = jax.random.uniform(lowerCamelCase, ((batch_size, num_channels) + sizes)) return {"sample": image, "prng_key": prng_key} def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } _lowercase : Any = self.dummy_input return init_dict, inputs_dict
89
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase__ ( A : Dict ): '''simple docstring''' return 1 / (1 + np.exp(-z )) def lowerCamelCase__ ( A : Dict , A : Optional[Any] ): '''simple docstring''' return (-y * np.log(A ) - (1 - y) * np.log(1 - h )).mean() def lowerCamelCase__ ( A : Union[str, Any] , A : Any , A : int ): '''simple docstring''' UpperCAmelCase = np.dot(A , A ) return np.sum(y * scores - np.log(1 + np.exp(A ) ) ) def lowerCamelCase__ ( A : List[str] , A : str , A : int , A : Dict=7_00_00 ): '''simple docstring''' UpperCAmelCase = np.zeros(x.shape[1] ) for iterations in range(A ): UpperCAmelCase = np.dot(A , A ) UpperCAmelCase = sigmoid_function(A ) UpperCAmelCase = np.dot(x.T , h - y ) / y.size UpperCAmelCase = theta - alpha * gradient # updating the weights UpperCAmelCase = np.dot(A , A ) UpperCAmelCase = sigmoid_function(A ) UpperCAmelCase = cost_function(A , A ) if iterations % 1_00 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _lowercase : List[str] = datasets.load_iris() _lowercase : List[Any] = iris.data[:, :2] _lowercase : Union[str, Any] = (iris.target != 0) * 1 _lowercase : Any = 0.1 _lowercase : Optional[Any] = logistic_reg(alpha, x, y, max_iterations=70000) print("""theta: """, theta) # printing the theta i.e our weights vector def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return sigmoid_function( np.dot(A , A ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((_lowercase) , (_lowercase)) : Optional[Any] = (x[:, 0].min(), x[:, 0].max()) ((_lowercase) , (_lowercase)) : Any = (x[:, 1].min(), x[:, 1].max()) ((_lowercase) , (_lowercase)) : Any = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _lowercase : Any = np.c_[xxa.ravel(), xxa.ravel()] _lowercase : Dict = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
210
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase (__lowercase , unittest.TestCase ): '''simple docstring''' lowercase__ = ShapEImgaImgPipeline lowercase__ = ["""image"""] lowercase__ = ["""image"""] lowercase__ = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] lowercase__ = False @property def _lowerCamelCase ( self ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self ): '''simple docstring''' return 8 @property def _lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) UpperCamelCase_ = CLIPVisionModel(snake_case__ ) return model @property def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = CLIPImageProcessor( crop_size=224 , do_center_crop=snake_case__ , do_normalize=snake_case__ , do_resize=snake_case__ , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def _lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase_ = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } UpperCamelCase_ = PriorTransformer(**snake_case__ ) return model @property def _lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase_ = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } UpperCamelCase_ = ShapERenderer(**snake_case__ ) return model def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.dummy_prior UpperCamelCase_ = self.dummy_image_encoder UpperCamelCase_ = self.dummy_image_processor UpperCamelCase_ = self.dummy_renderer UpperCamelCase_ = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=snake_case__ , clip_sample=snake_case__ , clip_sample_range=1.0 , ) UpperCamelCase_ = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def _lowerCamelCase ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(snake_case__ ) else: UpperCamelCase_ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCamelCase_ = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**snake_case__ ) UpperCamelCase_ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = pipe(**self.get_dummy_inputs(snake_case__ ) ) UpperCamelCase_ = output.images[0] UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase_ = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCamelCase ( self ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = torch_device == "cpu" UpperCamelCase_ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=snake_case__ , relax_max_difference=snake_case__ , ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**snake_case__ ) UpperCamelCase_ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = self.get_dummy_inputs(snake_case__ ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase_ = batch_size * [inputs[key]] UpperCamelCase_ = pipe(**snake_case__ , num_images_per_prompt=snake_case__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase (unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) UpperCamelCase_ = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) UpperCamelCase_ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCamelCase_ = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCamelCase_ = pipe( snake_case__ , generator=snake_case__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
706
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput UpperCAmelCase : str =logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _lowercase (a_ ): '''simple docstring''' def __init__( self , *snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ): '''simple docstring''' super().__init__(*snake_case__ , **snake_case__ ) UpperCamelCase_ = eval_examples UpperCamelCase_ = post_process_function UpperCamelCase_ = quant_trainer_args UpperCamelCase_ = 128 # default number of calibration samples def _lowerCamelCase ( self , snake_case__=None ): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) UpperCamelCase_ = calib_dataset if calib_dataset is not None else self.calib_dataset UpperCamelCase_ = self._remove_unused_columns(snake_case__ , description="Calibration" ) return DataLoader( snake_case__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=snake_case__ , ) def _lowerCamelCase ( self , snake_case__=None ): '''simple docstring''' UpperCamelCase_ = self.train_dataset if calib_dataset is None else calib_dataset UpperCamelCase_ = self.get_calib_dataloader(snake_case__ ) UpperCamelCase_ = self.model quant_trainer.configure_model(snake_case__ , self.quant_trainer_args , calib=snake_case__ ) model.eval() quant_trainer.enable_calibration(snake_case__ ) logger.info("***** Running calibration *****" ) logger.info(F""" Num examples = {self.calib_num}""" ) logger.info(F""" Batch size = {calib_dataloader.batch_size}""" ) for step, inputs in enumerate(snake_case__ ): # Prediction step UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prediction_step(snake_case__ , snake_case__ , prediction_loss_only=snake_case__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(snake_case__ , self.quant_trainer_args ) UpperCamelCase_ = model def _lowerCamelCase ( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__ = "eval" ): '''simple docstring''' UpperCamelCase_ = self.eval_dataset if eval_dataset is None else eval_dataset UpperCamelCase_ = self.get_eval_dataloader(snake_case__ ) UpperCamelCase_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase_ = self.compute_metrics UpperCamelCase_ = None UpperCamelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCamelCase_ = eval_loop( snake_case__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case__ , ) finally: UpperCamelCase_ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: UpperCamelCase_ = self.post_process_function(snake_case__ , snake_case__ , output.predictions ) UpperCamelCase_ = self.compute_metrics(snake_case__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCamelCase_ = metrics.pop(snake_case__ ) self.log(snake_case__ ) else: UpperCamelCase_ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCamelCase_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , snake_case__ ) return metrics def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__ = "test" ): '''simple docstring''' UpperCamelCase_ = self.get_test_dataloader(snake_case__ ) # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase_ = self.compute_metrics UpperCamelCase_ = None UpperCamelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCamelCase_ = eval_loop( snake_case__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case__ , ) finally: UpperCamelCase_ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output UpperCamelCase_ = self.post_process_function(snake_case__ , snake_case__ , output.predictions , "predict" ) UpperCamelCase_ = self.compute_metrics(snake_case__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCamelCase_ = metrics.pop(snake_case__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=snake_case__ ) def _lowerCamelCase ( self , snake_case__="./" ): '''simple docstring''' UpperCamelCase_ = self.eval_dataset UpperCamelCase_ = self.get_eval_dataloader(snake_case__ ) UpperCamelCase_ = next(iter(snake_case__ ) ) # saving device - to make it consistent UpperCamelCase_ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple UpperCamelCase_ = tuple(v.to(snake_case__ ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer UpperCamelCase_ = True UpperCamelCase_ = self.model.to(snake_case__ ) model.eval() model.float() UpperCamelCase_ = model.module if hasattr(snake_case__ , "module" ) else model quant_trainer.configure_model(snake_case__ , self.quant_trainer_args ) UpperCamelCase_ = os.path.join(snake_case__ , "model.onnx" ) logger.info(F"""exporting model to {output_model_file}""" ) UpperCamelCase_ = {0: "batch_size", 1: "seq_len"} torch.onnx.export( snake_case__ , snake_case__ , snake_case__ , export_params=snake_case__ , opset_version=13 , do_constant_folding=snake_case__ , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } , verbose=snake_case__ , ) logger.info("onnx export finished" )
504
0
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase__ : Optional[int] = 50_00_00 lowercase__ , lowercase__ : List[str] = os.path.split(__file__) lowercase__ : str = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a__ ( lowercase : datasets.Dataset, **lowercase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = dataset.map(**lowercase ) @get_duration def a__ ( lowercase : datasets.Dataset, **lowercase : Optional[Any] ) -> str: """simple docstring""" _UpperCamelCase = dataset.filter(**lowercase ) def a__ ( ) -> Any: """simple docstring""" _UpperCamelCase = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) _UpperCamelCase = generate_example_dataset( os.path.join(lowercase, '''dataset.arrow''' ), lowercase, num_examples=lowercase ) _UpperCamelCase = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=lowercase ) def tokenize(lowercase : List[Any] ): return tokenizer(examples['''text'''] ) _UpperCamelCase = map(lowercase ) _UpperCamelCase = map(lowercase, batched=lowercase ) _UpperCamelCase = map(lowercase, function=lambda lowercase : None, batched=lowercase ) with dataset.formatted_as(type='''numpy''' ): _UpperCamelCase = map(lowercase, function=lambda lowercase : None, batched=lowercase ) with dataset.formatted_as(type='''pandas''' ): _UpperCamelCase = map(lowercase, function=lambda lowercase : None, batched=lowercase ) with dataset.formatted_as(type='''torch''', columns='''numbers''' ): _UpperCamelCase = map(lowercase, function=lambda lowercase : None, batched=lowercase ) with dataset.formatted_as(type='''tensorflow''', columns='''numbers''' ): _UpperCamelCase = map(lowercase, function=lambda lowercase : None, batched=lowercase ) _UpperCamelCase = map(lowercase, function=lowercase, batched=lowercase ) _UpperCamelCase = filter(lowercase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase, '''wb''' ) as f: f.write(json.dumps(lowercase ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
98
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase__ : Dict = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __lowerCAmelCase : """simple docstring""" _snake_case : Tuple = PegasusConfig _snake_case : Any = {} _snake_case : Dict = 'gelu' def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict=13 , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Tuple=99 , lowerCAmelCase__ : Optional[Any]=32 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Union[str, Any]=37 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : List[str]=20 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Tuple=0 , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def snake_case__ ( self : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_pegasus_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(lowerCAmelCase__ ) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] ) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase__ , ) _UpperCamelCase = model.decode(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ) -> List[str]: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(lowerCAmelCase__ ) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] ) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) _UpperCamelCase = model.decode(lowerCAmelCase__ , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ ) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def a__ ( lowercase : Union[str, Any], lowercase : Tuple, lowercase : Optional[Any], lowercase : Union[str, Any]=None, lowercase : Optional[Any]=None, ) -> Any: """simple docstring""" if attention_mask is None: _UpperCamelCase = np.not_equal(lowercase, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) _snake_case : Optional[Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () _snake_case : Union[str, Any] = True _snake_case : Optional[int] = False _snake_case : Any = False _snake_case : List[Any] = False def snake_case__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = FlaxPegasusModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ ) def snake_case__ ( self : Dict ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : str ) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = model_class(lowerCAmelCase__ ) @jax.jit def encode_jitted(lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict=None , **lowerCAmelCase__ : Union[str, Any] ): return model.encode(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) with self.subTest('''JIT Enabled''' ): _UpperCamelCase = encode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case__ ( self : int ) -> List[str]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict ): return model.decode( decoder_input_ids=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , encoder_outputs=lowerCAmelCase__ , ) with self.subTest('''JIT Enabled''' ): _UpperCamelCase = decode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case__ ( self : Any ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=lowerCAmelCase__ ) _UpperCamelCase = np.ones((1, 1) ) _UpperCamelCase = model(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow def snake_case__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) _UpperCamelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) _UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _UpperCamelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _UpperCamelCase = tokenizer(lowerCAmelCase__ , return_tensors='''np''' , truncation=lowerCAmelCase__ , max_length=512 , padding=lowerCAmelCase__ ) _UpperCamelCase = model.generate(**lowerCAmelCase__ , num_beams=2 ).sequences _UpperCamelCase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) assert tgt_text == decoded
98
1
'''simple docstring''' import colorsys from PIL import Image # type: ignore def A ( _UpperCAmelCase : float ,_UpperCAmelCase : float ,_UpperCAmelCase : int ) -> float: '''simple docstring''' __lowerCAmelCase : List[str] = x __lowerCAmelCase : Optional[Any] = y for step in range(_UpperCAmelCase ): # noqa: B007 __lowerCAmelCase : List[Any] = a * a - b * b + x __lowerCAmelCase : int = 2 * a * b + y __lowerCAmelCase : Union[str, Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def A ( _UpperCAmelCase : float ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def A ( _UpperCAmelCase : float ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(_UpperCAmelCase ,1 ,1 ) ) def A ( _UpperCAmelCase : int = 8_0_0 ,_UpperCAmelCase : int = 6_0_0 ,_UpperCAmelCase : float = -0.6 ,_UpperCAmelCase : float = 0 ,_UpperCAmelCase : float = 3.2 ,_UpperCAmelCase : int = 5_0 ,_UpperCAmelCase : bool = True ,) -> Image.Image: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = Image.new('RGB' ,(image_width, image_height) ) __lowerCAmelCase : Optional[Any] = img.load() # loop through the image-coordinates for image_x in range(_UpperCAmelCase ): for image_y in range(_UpperCAmelCase ): # determine the figure-coordinates based on the image-coordinates __lowerCAmelCase : Tuple = figure_width / image_width * image_height __lowerCAmelCase : int = figure_center_x + (image_x / image_width - 0.5) * figure_width __lowerCAmelCase : Tuple = figure_center_y + (image_y / image_height - 0.5) * figure_height __lowerCAmelCase : int = get_distance(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __lowerCAmelCase : int = get_color_coded_rgb(_UpperCAmelCase ) else: __lowerCAmelCase : Dict = get_black_and_white_rgb(_UpperCAmelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure A_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
721
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCamelCase__ ( a , unittest.TestCase ): '''simple docstring''' _snake_case = FlaxAutoencoderKL @property def snake_case ( self ) -> str: __lowerCAmelCase : Union[str, Any] = 4 __lowerCAmelCase : Tuple = 3 __lowerCAmelCase : str = (32, 32) __lowerCAmelCase : Dict = jax.random.PRNGKey(0 ) __lowerCAmelCase : List[str] = jax.random.uniform(SCREAMING_SNAKE_CASE , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def snake_case ( self ) -> int: __lowerCAmelCase : List[Any] = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __lowerCAmelCase : List[str] = self.dummy_input return init_dict, inputs_dict
123
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case__ ( __snake_case ): '''simple docstring''' __A = '''ClapFeatureExtractor''' __A = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any ) -> Any: super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self : List[Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : str ) -> List[str]: UpperCAmelCase_ = kwargs.pop('''sampling_rate''' , lowerCAmelCase_ ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: UpperCAmelCase_ = self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if audios is not None: UpperCAmelCase_ = self.feature_extractor( lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None and audios is not None: UpperCAmelCase_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def UpperCamelCase ( self : Optional[int] , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Union[str, Any] ) -> Dict: return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCamelCase ( self : Any , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : str ) -> str: return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def UpperCamelCase ( self : List[Any] ) -> Tuple: UpperCAmelCase_ = self.tokenizer.model_input_names UpperCAmelCase_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
121
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase : Optional[Any] = 16 _lowerCamelCase : List[Any] = 32 def _lowerCAmelCase ( __magic_name__ :Accelerator , __magic_name__ :int = 1_6 ): UpperCAmelCase_ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase_ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__magic_name__ :int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase_ = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__magic_name__ :List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase_ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase_ = 1_6 elif accelerator.mixed_precision != "no": UpperCAmelCase_ = 8 else: UpperCAmelCase_ = None return tokenizer.pad( __magic_name__ , padding='''longest''' , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase_ = DataLoader( tokenized_datasets['''train'''] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ , drop_last=__magic_name__ ) UpperCAmelCase_ = DataLoader( tokenized_datasets['''validation'''] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def _lowerCAmelCase ( __magic_name__ :Tuple , __magic_name__ :List[Any] ): # Initialize accelerator UpperCAmelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ = config['''lr'''] UpperCAmelCase_ = int(config['''num_epochs'''] ) UpperCAmelCase_ = int(config['''seed'''] ) UpperCAmelCase_ = int(config['''batch_size'''] ) UpperCAmelCase_ = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase_ = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase_ = MAX_GPU_BATCH_SIZE set_seed(__magic_name__ ) UpperCAmelCase_, UpperCAmelCase_ = get_dataloaders(__magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__magic_name__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ = AdamW(params=model.parameters() , lr=__magic_name__ ) # Instantiate scheduler UpperCAmelCase_ = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=1_0_0 , num_training_steps=(len(__magic_name__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Now we train the model for epoch in range(__magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase_ = model(**__magic_name__ ) UpperCAmelCase_ = outputs.loss UpperCAmelCase_ = loss / gradient_accumulation_steps accelerator.backward(__magic_name__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ = model(**__magic_name__ ) UpperCAmelCase_ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_, UpperCAmelCase_ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) UpperCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __magic_name__ ) def _lowerCAmelCase ( ): UpperCAmelCase_ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__magic_name__ , default=__magic_name__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
121
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: Optional[Any] = tempfile.mkdtemp() # fmt: off _snake_case: Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _snake_case: str = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) _snake_case: str = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _snake_case: Optional[int] = {'unk_token': '<unk>'} _snake_case: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case: Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) _snake_case: Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } _snake_case: Union[str, Any] = os.path.join(self.tmpdirname , __snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(__snake_case , __snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , **__snake_case : Tuple ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **__snake_case : Any ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : str , **__snake_case : List[Any] ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' _snake_case: str = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _snake_case: Any = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: Dict = self.get_tokenizer() _snake_case: List[str] = self.get_rust_tokenizer() _snake_case: List[str] = self.get_image_processor() _snake_case: Union[str, Any] = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_slow.save_pretrained(self.tmpdirname ) _snake_case: Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__snake_case ) _snake_case: Any = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_fast.save_pretrained(self.tmpdirname ) _snake_case: int = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __snake_case ) self.assertIsInstance(processor_fast.tokenizer , __snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __snake_case ) self.assertIsInstance(processor_fast.image_processor , __snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' _snake_case: Any = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _snake_case: List[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _snake_case: List[Any] = self.get_image_processor(do_normalize=__snake_case , padding_value=1.0 ) _snake_case: Any = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: List[Any] = self.get_image_processor() _snake_case: List[str] = self.get_tokenizer() _snake_case: Any = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _snake_case: List[str] = self.prepare_image_inputs() _snake_case: List[str] = image_processor(__snake_case , return_tensors='np' ) _snake_case: Dict = processor(images=__snake_case , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: List[Any] = self.get_image_processor() _snake_case: Any = self.get_tokenizer() _snake_case: List[str] = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _snake_case: int = 'lower newer' _snake_case: str = processor(text=__snake_case ) _snake_case: List[Any] = tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' _snake_case: List[str] = self.get_image_processor() _snake_case: List[Any] = self.get_tokenizer() _snake_case: Tuple = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _snake_case: Optional[int] = 'lower newer' _snake_case: Union[str, Any] = self.prepare_image_inputs() _snake_case: int = processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__snake_case ): processor() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: Dict = self.get_image_processor() _snake_case: Dict = self.get_tokenizer() _snake_case: str = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _snake_case: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _snake_case: List[Any] = processor.batch_decode(__snake_case ) _snake_case: Any = tokenizer.batch_decode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' _snake_case: Union[str, Any] = self.get_image_processor() _snake_case: Any = self.get_tokenizer() _snake_case: Any = CLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _snake_case: Any = 'lower newer' _snake_case: Optional[Any] = self.prepare_image_inputs() _snake_case: int = processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
715
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : def __init__( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : str=13 , __snake_case : Union[str, Any]=30 , __snake_case : Union[str, Any]=2 , __snake_case : Dict=3 , __snake_case : Optional[Any]=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=32 , __snake_case : Optional[int]=5 , __snake_case : Any=4 , __snake_case : int=37 , __snake_case : int="gelu" , __snake_case : Union[str, Any]=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : int=10 , __snake_case : Any=0.02 , __snake_case : List[str]=None , __snake_case : Tuple=2 , ): '''simple docstring''' _snake_case: Optional[Any] = parent _snake_case: Tuple = batch_size _snake_case: str = image_size _snake_case: int = patch_size _snake_case: Union[str, Any] = num_channels _snake_case: Dict = is_training _snake_case: Optional[Any] = use_labels _snake_case: Optional[Any] = hidden_size _snake_case: Tuple = num_hidden_layers _snake_case: List[Any] = num_attention_heads _snake_case: Union[str, Any] = intermediate_size _snake_case: List[str] = hidden_act _snake_case: Tuple = hidden_dropout_prob _snake_case: List[Any] = attention_probs_dropout_prob _snake_case: str = type_sequence_label_size _snake_case: Any = initializer_range _snake_case: str = scope _snake_case: Union[str, Any] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case: Tuple = (image_size // patch_size) ** 2 _snake_case: List[str] = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case: List[str] = None if self.use_labels: _snake_case: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case: Union[str, Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : List[str] ): '''simple docstring''' _snake_case: Dict = ViTModel(config=__snake_case ) model.to(__snake_case ) model.eval() _snake_case: Tuple = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int ): '''simple docstring''' _snake_case: int = ViTForMaskedImageModeling(config=__snake_case ) model.to(__snake_case ) model.eval() _snake_case: Dict = model(__snake_case ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _snake_case: List[str] = 1 _snake_case: Tuple = ViTForMaskedImageModeling(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case: Union[str, Any] = model(__snake_case ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict ): '''simple docstring''' _snake_case: Optional[int] = self.type_sequence_label_size _snake_case: Union[str, Any] = ViTForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: List[Any] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case: Tuple = 1 _snake_case: Optional[int] = ViTForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case: Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: Any = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ): int = config_and_inputs _snake_case: Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: Optional[int] = ViTModelTester(self ) _snake_case: Union[str, Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case , _snake_case: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case: Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case: Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' _snake_case , _snake_case: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case: int = model_class(__snake_case ) _snake_case: List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case: List[Any] = [*signature.parameters.keys()] _snake_case: str = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' _snake_case: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case: Any = ViTModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def lowercase_ ( ) ->List[Any]: _snake_case: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: Optional[int] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(__snake_case ) _snake_case: Dict = self.default_image_processor _snake_case: Optional[Any] = prepare_img() _snake_case: List[str] = image_processor(images=__snake_case , return_tensors='pt' ).to(__snake_case ) # forward pass with torch.no_grad(): _snake_case: Optional[int] = model(**__snake_case ) # verify the logits _snake_case: Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __snake_case ) _snake_case: Dict = torch.tensor([-0.2_744, 0.8_215, -0.0_836] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: str = ViTModel.from_pretrained('facebook/dino-vits8' ).to(__snake_case ) _snake_case: Any = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=4_80 ) _snake_case: Optional[int] = prepare_img() _snake_case: Dict = image_processor(images=__snake_case , return_tensors='pt' ) _snake_case: Optional[Any] = inputs.pixel_values.to(__snake_case ) # forward pass with torch.no_grad(): _snake_case: str = model(__snake_case , interpolate_pos_encoding=__snake_case ) # verify the logits _snake_case: List[str] = torch.Size((1, 36_01, 3_84) ) self.assertEqual(outputs.last_hidden_state.shape , __snake_case ) _snake_case: Any = torch.tensor( [[4.2_340, 4.3_906, -6.6_692], [4.5_463, 1.8_928, -6.7_257], [4.4_429, 0.8_496, -5.8_585]] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __snake_case , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' _snake_case: List[Any] = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' ) _snake_case: Dict = self.default_image_processor _snake_case: Any = prepare_img() _snake_case: str = image_processor(images=__snake_case , return_tensors='pt' ) _snake_case: Any = inputs.pixel_values.to(__snake_case ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _snake_case: int = model(__snake_case )
273
0
'''simple docstring''' import numpy as np import qiskit def lowerCAmelCase ( UpperCamelCase__ : int = 8 , UpperCamelCase__ : int | None = None ): """simple docstring""" __UpperCAmelCase = np.random.default_rng(seed=UpperCamelCase__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __UpperCAmelCase = 6 * key_len # Measurement basis for Alice's qubits. __UpperCAmelCase = rng.integers(2 , size=UpperCamelCase__ ) # The set of states Alice will prepare. __UpperCAmelCase = rng.integers(2 , size=UpperCamelCase__ ) # Measurement basis for Bob's qubits. __UpperCAmelCase = rng.integers(2 , size=UpperCamelCase__ ) # Quantum Circuit to simulate BB84 __UpperCAmelCase = qiskit.QuantumCircuit(UpperCamelCase__ , name='''BB84''' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(UpperCamelCase__ ): if alice_state[index] == 1: bbaa_circ.x(UpperCamelCase__ ) if alice_basis[index] == 1: bbaa_circ.h(UpperCamelCase__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(UpperCamelCase__ ): if bob_basis[index] == 1: bbaa_circ.h(UpperCamelCase__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __UpperCAmelCase = qiskit.Aer.get_backend('''aer_simulator''' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __UpperCAmelCase = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=1 , seed_simulator=UpperCamelCase__ ) # Returns the result of measurement. __UpperCAmelCase = job.result().get_counts(UpperCamelCase__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __UpperCAmelCase = ''''''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __UpperCAmelCase = gen_key[:key_len] if len(UpperCamelCase__ ) >= key_len else gen_key.ljust(UpperCamelCase__ , '''0''' ) return key if __name__ == "__main__": print(F"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
262
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" # A local function to see if a dot lands in the circle. def is_in_circle(UpperCamelCase__ : float , UpperCamelCase__ : float ) -> bool: __UpperCAmelCase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __UpperCAmelCase = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(UpperCamelCase__ ) ) # The ratio of the area for circle to square is pi/4. __UpperCAmelCase = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Callable[[float], float] , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : float = 1.0 , ): """simple docstring""" return mean( function_to_integrate(uniform(UpperCamelCase__ , UpperCamelCase__ ) ) for _ in range(UpperCamelCase__ ) ) * (max_value - min_value) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : float = 1.0 ): """simple docstring""" def identity_function(UpperCamelCase__ : float ) -> float: return x __UpperCAmelCase = area_under_curve_estimator( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print('''******************''' ) def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" def function_to_integrate(UpperCamelCase__ : float ) -> float: return sqrt(4.0 - x * x ) __UpperCAmelCase = area_under_curve_estimator( UpperCamelCase__ , UpperCamelCase__ , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
262
1
from __future__ import annotations def A__ ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def A__ ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def A__ ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( snake_case_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
107
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowercase_ : Optional[Any] = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class _lowerCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ) -> int: SCREAMING_SNAKE_CASE__: Optional[int]= None SCREAMING_SNAKE_CASE__: Dict= os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) SCREAMING_SNAKE_CASE__: List[Any]= os.path.abspath('''examples''' ) for item in os.listdir(lowerCAmelCase ): if item not in EXCLUDE_EXAMPLES: SCREAMING_SNAKE_CASE__: Tuple= os.path.join(lowerCAmelCase , lowerCAmelCase ) if os.path.isfile(lowerCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=lowerCAmelCase , feature_script=lowerCAmelCase , tested_section='''main()''' if parser_only else '''training_function()''' , ): SCREAMING_SNAKE_CASE__: List[Any]= compare_against_test( os.path.join(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= '''\n'''.join(lowerCAmelCase ) if special_strings is not None: for string in special_strings: SCREAMING_SNAKE_CASE__: Union[str, Any]= diff.replace(lowerCAmelCase , '''''' ) self.assertEqual(lowerCAmelCase , '''''' ) def UpperCamelCase_ ( self ) -> Optional[Any]: self.one_complete_example('''complete_nlp_example.py''' , lowerCAmelCase ) self.one_complete_example('''complete_nlp_example.py''' , lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: List[Any]= os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) SCREAMING_SNAKE_CASE__: Dict= [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) self.one_complete_example('''complete_cv_example.py''' , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class _lowerCamelCase ( UpperCamelCase_ ): __a = False @classmethod def UpperCamelCase_ ( cls ) -> List[Any]: super().setUpClass() SCREAMING_SNAKE_CASE__: List[Any]= tempfile.mkdtemp() SCREAMING_SNAKE_CASE__: Tuple= os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) SCREAMING_SNAKE_CASE__: Dict= ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def UpperCamelCase_ ( cls ) -> List[Any]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCamelCase_ ( self ) -> str: SCREAMING_SNAKE_CASE__: Dict= f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: List[Any]= f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() SCREAMING_SNAKE_CASE__: List[Any]= run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: Tuple= f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() SCREAMING_SNAKE_CASE__: Dict= run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase ) self.assertNotIn('''epoch 0:''' , lowerCAmelCase ) self.assertIn('''epoch 1:''' , lowerCAmelCase ) def UpperCamelCase_ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE__: Dict= f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() SCREAMING_SNAKE_CASE__: Dict= run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase ) if torch.cuda.is_available(): SCREAMING_SNAKE_CASE__: List[str]= torch.cuda.device_count() else: SCREAMING_SNAKE_CASE__: List[Any]= 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , lowerCAmelCase ) self.assertIn('''epoch 1:''' , lowerCAmelCase ) else: self.assertIn('''epoch 0:''' , lowerCAmelCase ) self.assertIn('''epoch 1:''' , lowerCAmelCase ) @slow def UpperCamelCase_ ( self ) -> str: SCREAMING_SNAKE_CASE__: List[str]= ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): SCREAMING_SNAKE_CASE__: Any= run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= re.findall('''({.+})''' , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= [r for r in results if '''accuracy''' in r][-1] SCREAMING_SNAKE_CASE__: List[str]= ast.literal_eval(lowerCAmelCase ) self.assertGreaterEqual(results['''accuracy'''] , 0.75 ) def UpperCamelCase_ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE__: Optional[Any]= ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def UpperCamelCase_ ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: SCREAMING_SNAKE_CASE__: Optional[int]= f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase , '''tracking''' ) ) ) def UpperCamelCase_ ( self ) -> int: SCREAMING_SNAKE_CASE__: int= ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def UpperCamelCase_ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE__: List[str]= ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
107
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __magic_name__ ( snake_case ): def __init__( self : List[Any] , lowerCamelCase__ : Tuple ): lowerCAmelCase : Optional[int] = data def __iter__( self : Dict ): for element in self.data: yield element def UpperCAmelCase__ ( __magic_name__ : Tuple=True ): '''simple docstring''' lowerCAmelCase : Optional[int] = Accelerator(even_batches=__magic_name__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def UpperCAmelCase__ ( __magic_name__ : Accelerator , __magic_name__ : int , __magic_name__ : int , __magic_name__ : bool = False ): '''simple docstring''' if iterable: lowerCAmelCase : Optional[Any] = DummyIterableDataset(torch.as_tensor(range(__magic_name__ ) ) ) else: lowerCAmelCase : str = TensorDataset(torch.as_tensor(range(__magic_name__ ) ) ) lowerCAmelCase : Tuple = DataLoader(__magic_name__ , batch_size=__magic_name__ ) lowerCAmelCase : List[Any] = accelerator.prepare(__magic_name__ ) return dl def UpperCAmelCase__ ( __magic_name__ : Accelerator , __magic_name__ : int , __magic_name__ : int , __magic_name__ : List[int] , __magic_name__ : List[int] , ): '''simple docstring''' lowerCAmelCase : List[str] = create_dataloader(accelerator=__magic_name__ , dataset_size=__magic_name__ , batch_size=__magic_name__ ) lowerCAmelCase : int = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __magic_name__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __magic_name__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase : Dict = create_accelerator(even_batches=__magic_name__ ) verify_dataloader_batch_sizes( __magic_name__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __magic_name__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = create_accelerator(even_batches=__magic_name__ ) lowerCAmelCase : Any = torch.nn.Linear(1 , 1 ) lowerCAmelCase : Any = accelerator.prepare(__magic_name__ ) lowerCAmelCase : List[Any] = create_dataloader(__magic_name__ , dataset_size=3 , batch_size=1 ) lowerCAmelCase : Union[str, Any] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__magic_name__ ): lowerCAmelCase : List[str] = ddp_model(batch[0].float() ) lowerCAmelCase : Union[str, Any] = output.sum() loss.backward() batch_idxs.append(__magic_name__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def UpperCAmelCase__ ( __magic_name__ : Union[str, Any] ): '''simple docstring''' with warnings.catch_warnings(record=__magic_name__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __magic_name__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = True lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = create_accelerator(even_batches=__magic_name__ ) lowerCAmelCase : Tuple = torch.nn.Linear(1 , 1 ) lowerCAmelCase : Optional[int] = accelerator.prepare(__magic_name__ ) lowerCAmelCase : Optional[int] = create_dataloader(__magic_name__ , dataset_size=3 , batch_size=1 ) lowerCAmelCase : Any = create_dataloader(__magic_name__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__magic_name__ ): lowerCAmelCase : List[Any] = train_dl.batch_sampler.even_batches lowerCAmelCase : Tuple = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = False lowerCAmelCase : Union[str, Any] = create_accelerator(even_batches=__magic_name__ ) lowerCAmelCase : int = torch.nn.Linear(1 , 1 ) lowerCAmelCase : Tuple = accelerator.prepare(__magic_name__ ) create_dataloader(__magic_name__ , dataset_size=3 , batch_size=1 , iterable=__magic_name__ ) lowerCAmelCase : Dict = create_dataloader(__magic_name__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__magic_name__ ): lowerCAmelCase : Dict = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase : Any = create_accelerator() lowerCAmelCase : List[str] = torch.nn.Linear(1 , 1 ) lowerCAmelCase : List[str] = accelerator.prepare(__magic_name__ ) create_dataloader(__magic_name__ , dataset_size=3 , batch_size=1 , iterable=__magic_name__ ) with warnings.catch_warnings(record=__magic_name__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__magic_name__ ): pass assert issubclass(w[-1].category , __magic_name__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase : Dict = create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) lowerCAmelCase : Optional[Any] = accelerator.state.distributed_type lowerCAmelCase : List[Any] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__magic_name__ ) lowerCAmelCase : Dict = original_state if __name__ == "__main__": main()
348
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
348
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : Any ='''laion/clap-htsat-unfused''' lowercase : int =tempfile.mkdtemp() def lowerCamelCase_ ( self : Any , **UpperCAmelCase__ : List[str] ): '''simple docstring''' return RobertaTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : Any , **UpperCAmelCase__ : List[str] ): '''simple docstring''' return ClapFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self : str ): '''simple docstring''' lowercase : List[Any] =self.get_tokenizer() lowercase : str =self.get_feature_extractor() lowercase : List[str] =ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) lowercase : str =ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Tuple =ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowercase : int =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowercase : str =self.get_feature_extractor(do_normalize=UpperCAmelCase__ , padding_value=1.0 ) lowercase : int =ClapProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : str =self.get_feature_extractor() lowercase : Any =self.get_tokenizer() lowercase : List[Any] =ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) lowercase : int =floats_list((3, 1000) ) lowercase : str =feature_extractor(UpperCAmelCase__ , return_tensors='''np''' ) lowercase : int =processor(audios=UpperCAmelCase__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : Optional[int] =self.get_feature_extractor() lowercase : Optional[Any] =self.get_tokenizer() lowercase : Optional[int] =ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) lowercase : str ='''This is a test string''' lowercase : Optional[Any] =processor(text=UpperCAmelCase__ ) lowercase : Optional[Any] =tokenizer(UpperCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Dict =self.get_feature_extractor() lowercase : Optional[Any] =self.get_tokenizer() lowercase : Any =ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) lowercase : Optional[int] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : str =processor.batch_decode(UpperCAmelCase__ ) lowercase : Optional[Any] =tokenizer.batch_decode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : int =self.get_feature_extractor() lowercase : str =self.get_tokenizer() lowercase : List[str] =ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , )
88
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys UpperCamelCase_ = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
88
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : int ): lowerCAmelCase = word.split() def justify(_UpperCAmelCase : list , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: lowerCAmelCase = max_width - width lowerCAmelCase = len(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCAmelCase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCAmelCase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCAmelCase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_UpperCAmelCase ): num_spaces_between_words_list[i] += 1 lowerCAmelCase = [] for i in range(_UpperCAmelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_UpperCAmelCase ) lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = 0 for word in words: if width + len(_UpperCAmelCase ) + len(_UpperCAmelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_UpperCAmelCase ) width += len(_UpperCAmelCase ) else: # justify the line and add it to result answer.append(justify(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) # reset new line and new width lowerCAmelCase ,lowerCAmelCase = [word], len(_UpperCAmelCase ) lowerCAmelCase = max_width - width - len(_UpperCAmelCase ) answer.append(' '.join(_UpperCAmelCase ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
4
"""simple docstring""" from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : str , _snake_case : Optional[Any] , _snake_case : Tuple=13 , _snake_case : Any=30 , _snake_case : List[str]=2 , _snake_case : int=3 , _snake_case : List[Any]=True , _snake_case : str=True , _snake_case : Tuple=32 , _snake_case : Tuple=2 , _snake_case : Dict=4 , _snake_case : int=37 , _snake_case : List[str]="gelu" , _snake_case : Any=0.1 , _snake_case : int=0.1 , _snake_case : Optional[int]=10 , _snake_case : Union[str, Any]=0.02 , _snake_case : Optional[int]=3 , _snake_case : Tuple=None , ) -> Optional[int]: '''simple docstring''' a__ = parent a__ = batch_size a__ = image_size a__ = patch_size a__ = num_channels a__ = is_training a__ = use_labels a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = type_sequence_label_size a__ = initializer_range a__ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ = (image_size // patch_size) ** 2 a__ = num_patches + 1 def _lowerCAmelCase ( self : Tuple ) -> int: '''simple docstring''' a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self : Any , _snake_case : Union[str, Any] , _snake_case : str , _snake_case : str ) -> Optional[Any]: '''simple docstring''' a__ = TFViTModel(config=_snake_case ) a__ = model(_snake_case , training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. a__ = self.image_size // 2 a__ = pixel_values[:, :, :image_size, :image_size] a__ = model(_snake_case , interpolate_pos_encoding=_snake_case , training=_snake_case ) a__ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : List[Any] , _snake_case : Dict , _snake_case : Any , _snake_case : List[str] ) -> Dict: '''simple docstring''' a__ = self.type_sequence_label_size a__ = TFViTForImageClassification(_snake_case ) a__ = model(_snake_case , labels=_snake_case , training=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. a__ = self.image_size // 2 a__ = pixel_values[:, :, :image_size, :image_size] a__ = model(_snake_case , interpolate_pos_encoding=_snake_case , training=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ = 1 a__ = TFViTForImageClassification(_snake_case ) a__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : List[str] ) -> str: '''simple docstring''' a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( a , a , unittest.TestCase ): """simple docstring""" a_ : List[str] =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () a_ : List[str] =( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) a_ : Optional[int] =False a_ : Optional[Any] =False a_ : Optional[Any] =False def _lowerCAmelCase ( self : Dict ) -> Any: '''simple docstring''' a__ = TFViTModelTester(self ) a__ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def _lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' pass def _lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) a__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , tf.keras.layers.Layer ) ) def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(_snake_case ) a__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _lowerCAmelCase ( self : str ) -> Any: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _lowerCAmelCase ( self : Any ) -> Tuple: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_snake_case ) def _lowerCamelCase ( ) -> Any: '''simple docstring''' a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' a__ = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=_snake_case , return_tensors='tf' ) # forward pass a__ = model(**_snake_case ) # verify the logits a__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _snake_case ) a__ = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _snake_case , atol=1E-4 )
232
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( __UpperCamelCase ): UpperCamelCase_ : Union[str, Any] = ["image_processor", "tokenizer"] UpperCamelCase_ : List[Any] = "CLIPImageProcessor" UpperCamelCase_ : Union[str, Any] = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self : List[str] , snake_case__ : str=None , snake_case__ : Any=None , **snake_case__ : List[Any] ): lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , snake_case__ , ) lowerCAmelCase__ = kwargs.pop("""feature_extractor""" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(snake_case__ , snake_case__ ) def __call__( self : List[str] , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=None , snake_case__ : int=None , **snake_case__ : Optional[int] ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: lowerCAmelCase__ = self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if images is not None: lowerCAmelCase__ = self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is not None and images is not None: lowerCAmelCase__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict , *snake_case__ : int , **snake_case__ : Optional[Any] ): return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , *snake_case__ : Dict , **snake_case__ : List[str] ): return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.tokenizer.model_input_names lowerCAmelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
674
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = 0 def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCAmelCase__ = CLIPImageProcessor(**snake_case__ ) # save in new folder model_config.save_pretrained(snake_case__ ) config.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) # make sure private variable is not incorrectly saved lowerCAmelCase__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): with self.assertRaisesRegex( snake_case__ , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""clip-base""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): with self.assertRaisesRegex( snake_case__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , revision="""aaaaaa""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): with self.assertRaisesRegex( snake_case__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ , trust_remote_code=snake_case__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoImageProcessor.register(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = Path(snake_case__ ) / """preprocessor_config.json""" lowerCAmelCase__ = Path(snake_case__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case__ , """w""" ) ) lowerCAmelCase__ = CustomImageProcessor.from_pretrained(snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case__ ) lowerCAmelCase__ = AutoImageProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self : List[str] ): class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = True try: AutoConfig.register("""custom""" , snake_case__ ) AutoImageProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local lowerCAmelCase__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCAmelCase__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(snake_case__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
674
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __lowerCAmelCase = pytest.mark.integration @require_faiss class __magic_name__ ( _UpperCamelCase ): def __lowercase ( self : Union[str, Any] ): _a : Any = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def __lowercase ( self : int ): import faiss _a : Dataset = self._create_dummy_dataset() _a : Tuple = dset.map( lambda _UpperCAmelCase ,_UpperCAmelCase : {"vecs": i * np.ones(5 ,dtype=np.floataa )} ,with_indices=_UpperCAmelCase ,keep_in_memory=_UpperCAmelCase ) _a : Any = dset.add_faiss_index('vecs' ,batch_size=100 ,metric_type=faiss.METRIC_INNER_PRODUCT ) _a , _a : int = dset.get_nearest_examples('vecs' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] ,'my_name-train_29' ) dset.drop_index('vecs' ) def __lowercase ( self : List[Any] ): import faiss _a : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='vecs' ,batch_size=100 ,metric_type=faiss.METRIC_INNER_PRODUCT ,) _a , _a : Optional[int] = dset.get_nearest_examples('vecs' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] ,'my_name-train_29' ) def __lowercase ( self : Dict ): import faiss _a : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='vecs' ,metric_type=faiss.METRIC_INNER_PRODUCT ,) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' ,tmp_file.name ) dset.load_faiss_index('vecs2' ,tmp_file.name ) os.unlink(tmp_file.name ) _a , _a : List[str] = dset.get_nearest_examples('vecs2' ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] ,'my_name-train_29' ) def __lowercase ( self : str ): _a : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_UpperCAmelCase ,partial(dset.get_nearest_examples ,'vecs2' ,np.ones(5 ,dtype=np.floataa ) ) ) def __lowercase ( self : Optional[Any] ): from elasticsearch import Elasticsearch _a : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: _a : Optional[Any] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) _a : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} _a : Any = Elasticsearch() dset.add_elasticsearch_index('filename' ,es_client=_UpperCAmelCase ) _a , _a : Dict = dset.get_nearest_examples('filename' ,'my_name-train_29' ) self.assertEqual(examples['filename'][0] ,'my_name-train_29' ) @require_faiss class __magic_name__ ( _UpperCamelCase ): def __lowercase ( self : str ): import faiss _a : Dict = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal ,5 ) index.add_vectors(np.zeros((5, 5) ,dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal ,10 ) # single query _a : Optional[Any] = np.zeros(5 ,dtype=np.floataa ) _a : Dict = 1 _a , _a : Optional[Any] = index.search(_UpperCAmelCase ) self.assertRaises(_UpperCAmelCase ,index.search ,query.reshape(-1 ,1 ) ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) # batched queries _a : Any = np.eye(5 ,dtype=np.floataa )[::-1] _a , _a : List[Any] = index.search_batch(_UpperCAmelCase ) self.assertRaises(_UpperCAmelCase ,index.search_batch ,queries[0] ) _a : Union[str, Any] = [scores[0] for scores in total_scores] _a : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCAmelCase ) ,0 ) self.assertListEqual([4, 3, 2, 1, 0] ,_UpperCAmelCase ) def __lowercase ( self : Tuple ): import faiss _a : Tuple = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) _a : Union[str, Any] = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexLSH ) with self.assertRaises(_UpperCAmelCase ): _a : Union[str, Any] = FaissIndex(string_factory='Flat' ,custom_index=faiss.IndexFlat(5 ) ) def __lowercase ( self : List[str] ): import faiss _a : Dict = faiss.IndexFlat(5 ) _a : Optional[int] = FaissIndex(custom_index=_UpperCAmelCase ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) def __lowercase ( self : List[str] ): import faiss _a : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) _a : str = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) _a : Optional[int] = np.zeros(5 ,dtype=np.floataa ) _a : List[Any] = 1 _a , _a : str = index.search(_UpperCAmelCase ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) @require_faiss def __lowerCamelCase ( lowerCAmelCase_ ) -> Tuple: import faiss _a : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) _a : int = 'index.faiss' _a : Optional[Any] = f"""mock://{index_name}""" index.save(lowerCAmelCase_ , storage_options=mockfs.storage_options ) _a : int = FaissIndex.load(lowerCAmelCase_ , storage_options=mockfs.storage_options ) _a : Tuple = np.zeros(5 , dtype=np.floataa ) _a : int = 1 _a , _a : List[str] = index.search(lowerCAmelCase_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __magic_name__ ( _UpperCamelCase ): def __lowercase ( self : Tuple ): from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: _a : Optional[int] = Elasticsearch() _a : Union[str, Any] = {'acknowledged': True} _a : Optional[int] = ElasticSearchIndex(es_client=_UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query _a : Tuple = 'foo' _a : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} _a , _a : List[str] = index.search(_UpperCAmelCase ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # single query with timeout _a : str = 'foo' _a : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} _a , _a : Any = index.search(_UpperCAmelCase ,request_timeout=30 ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # batched queries _a : Union[str, Any] = ['foo', 'bar', 'foobar'] _a : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} _a , _a : Tuple = index.search_batch(_UpperCAmelCase ) _a : Union[str, Any] = [scores[0] for scores in total_scores] _a : str = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCAmelCase ) ,0 ) self.assertListEqual([1, 1, 1] ,_UpperCAmelCase ) # batched queries with timeout _a : Dict = ['foo', 'bar', 'foobar'] _a : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} _a , _a : str = index.search_batch(_UpperCAmelCase ,request_timeout=30 ) _a : Dict = [scores[0] for scores in total_scores] _a : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCAmelCase ) ,0 ) self.assertListEqual([1, 1, 1] ,_UpperCAmelCase )
358
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ ) -> bool: if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) _a : Tuple = sorted(string.lower() ) return len(lowerCAmelCase_ ) == len(set(lowerCAmelCase_ ) ) if __name__ == "__main__": __lowerCAmelCase = input('''Enter a string ''').strip() __lowerCAmelCase = is_isogram(input_str) print(f"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
358
1
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _A (__a , __a , __a , __a , __a ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__lowerCAmelCase )] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __lowerCAmelCase ) ) , x.transpose() ) , __lowerCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _A (__a , __a , __a ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = (1, 2, 1) SCREAMING_SNAKE_CASE_ : str = (1, 1, 0, 7) SCREAMING_SNAKE_CASE_ : Union[str, Any] = SARIMAX( __lowerCAmelCase , exog=__lowerCAmelCase , order=__lowerCAmelCase , seasonal_order=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = model.fit(disp=__lowerCAmelCase , maxiter=6_00 , method='''nm''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_fit.predict(1 , len(__lowerCAmelCase ) , exog=[test_match] ) return result[0] def _A (__a , __a , __a ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = regressor.predict(__lowerCAmelCase ) return y_pred[0] def _A (__a ) -> float: """simple docstring""" train_user.sort() SCREAMING_SNAKE_CASE_ : List[Any] = np.percentile(__lowerCAmelCase , 25 ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.percentile(__lowerCAmelCase , 75 ) SCREAMING_SNAKE_CASE_ : Dict = qa - qa SCREAMING_SNAKE_CASE_ : int = qa - (iqr * 0.1) return low_lim def _A (__a , __a ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 for i in list_vote: if i > actual_result: SCREAMING_SNAKE_CASE_ : Tuple = not_safe + 1 else: if abs(abs(__lowerCAmelCase ) - abs(__lowerCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) UpperCAmelCase_ : int = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] UpperCAmelCase_ : str = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) UpperCAmelCase_ : Tuple = Normalizer().fit_transform(data_input_df.values) # split data UpperCAmelCase_ : Union[str, Any] = normalize_df[:, 2].tolist() UpperCAmelCase_ : Any = normalize_df[:, 0].tolist() UpperCAmelCase_ : List[Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) UpperCAmelCase_ : int = normalize_df[:, [1, 2]].tolist() UpperCAmelCase_ : List[str] = x[: len(x) - 1] UpperCAmelCase_ : Optional[int] = x[len(x) - 1 :] # for linear regression & sarimax UpperCAmelCase_ : List[Any] = total_date[: len(total_date) - 1] UpperCAmelCase_ : Dict = total_user[: len(total_user) - 1] UpperCAmelCase_ : Optional[Any] = total_match[: len(total_match) - 1] UpperCAmelCase_ : Dict = total_date[len(total_date) - 1 :] UpperCAmelCase_ : List[Any] = total_user[len(total_user) - 1 :] UpperCAmelCase_ : int = total_match[len(total_match) - 1 :] # voting system with forecasting UpperCAmelCase_ : Dict = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data UpperCAmelCase_ : str = "" if data_safety_checker(res_vote, tst_user) else "not " print("""Today's data is {not_str}safe.""")
712
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Any , lowercase_ : Dict , lowercase_ : str=3 , lowercase_ : Dict=7 , lowercase_ : Any=True , lowercase_ : List[Any]=True , lowercase_ : Union[str, Any]=False , lowercase_ : Optional[int]=True , lowercase_ : Union[str, Any]=99 , lowercase_ : Dict=32 , lowercase_ : Union[str, Any]=5 , lowercase_ : Optional[Any]=4 , lowercase_ : List[str]=37 , lowercase_ : int="gelu" , lowercase_ : int=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : Any=512 , lowercase_ : List[Any]=16 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=3 , lowercase_ : Dict=4 , lowercase_ : Optional[int]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : List[str] = seq_length SCREAMING_SNAKE_CASE_ : Optional[Any] = is_training SCREAMING_SNAKE_CASE_ : Dict = use_input_mask SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : str = use_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : str = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : int = hidden_act SCREAMING_SNAKE_CASE_ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : Dict = type_vocab_size SCREAMING_SNAKE_CASE_ : str = type_sequence_label_size SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : int = num_labels SCREAMING_SNAKE_CASE_ : Dict = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_ : Tuple = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Union[str, Any] = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] , self.num_choices) SCREAMING_SNAKE_CASE_ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowercase_ , ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = FalconModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : int , lowercase_ : Dict , lowercase_ : int , lowercase_ : str , lowercase_ : str , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : Optional[int] = FalconModel(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : List[str] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = FalconForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Any , lowercase_ : int , lowercase_ : str , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : str , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : Optional[int] = FalconForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Dict = torch.cat([input_ids, next_tokens] , dim=-1) SCREAMING_SNAKE_CASE_ : List[Any] = torch.cat([input_mask, next_mask] , dim=-1) SCREAMING_SNAKE_CASE_ : List[str] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['''hidden_states'''][0] SCREAMING_SNAKE_CASE_ : Any = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['''hidden_states'''][0] # select random slice SCREAMING_SNAKE_CASE_ : int = ids_tensor((1,) , output_from_past.shape[-1]).item() SCREAMING_SNAKE_CASE_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) __UpperCamelCase = (FalconForCausalLM,) if is_torch_available() else () __UpperCamelCase = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = FalconModelTester(self) SCREAMING_SNAKE_CASE_ : List[Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: SCREAMING_SNAKE_CASE_ : Optional[int] = alibi self.model_tester.create_and_check_model(lowercase_ , *lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : Tuple = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ : Optional[int] = input_ids.ne(1).to(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Tuple = FalconForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = 3 SCREAMING_SNAKE_CASE_ : int = '''single_label_classification''' SCREAMING_SNAKE_CASE_ : Optional[int] = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = input_ids.ne(1).to(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FalconForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[Any] = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = FalconForCausalLM(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : str = model(lowercase_ , use_cache=lowercase_) SCREAMING_SNAKE_CASE_ : Any = input_ids.shape[0] SCREAMING_SNAKE_CASE_ : Dict = model._convert_to_rw_cache(result.past_key_values) SCREAMING_SNAKE_CASE_ : int = model._convert_cache_to_standard_format(lowercase_ , lowercase_) for layer in range(len(lowercase_)): for tensor_idx in range(2): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx])) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : int = 3 SCREAMING_SNAKE_CASE_ : Tuple = '''multi_label_classification''' SCREAMING_SNAKE_CASE_ : Tuple = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ : List[str] = input_ids.ne(1).to(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) SCREAMING_SNAKE_CASE_ : int = FalconForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(lowercase_ , '''use_cache'''): return SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class(lowercase_).to(lowercase_) if "use_cache" not in inputs: SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : str = model(**lowercase_) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return SCREAMING_SNAKE_CASE_ : Tuple = ( getattr(lowercase_ , '''decoder_layers''' , lowercase_) or getattr(lowercase_ , '''num_decoder_layers''' , lowercase_) or config.num_hidden_layers ) SCREAMING_SNAKE_CASE_ : str = getattr(lowercase_ , '''num_kv_heads''' , config.num_attention_heads) SCREAMING_SNAKE_CASE_ : Tuple = getattr(lowercase_ , '''d_model''' , config.hidden_size) SCREAMING_SNAKE_CASE_ : Dict = embed_dim // num_attention_heads SCREAMING_SNAKE_CASE_ : int = outputs['''past_key_values'''] self.assertEqual(len(lowercase_) , lowercase_) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = inputs['''input_ids'''].shape for i in range(lowercase_): if config.new_decoder_architecture: SCREAMING_SNAKE_CASE_ : Dict = config.num_attention_heads elif config.multi_query: SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 self.assertEqual(len(past_kv[0]) , 2) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''') SCREAMING_SNAKE_CASE_ : Optional[int] = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''') model.eval() model.to(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=19) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.batch_decode(lowercase_)[0] self.assertEqual(lowercase_ , lowercase_) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : str = FalconForCausalLM.from_pretrained(lowercase_) model.eval() model.to(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(lowercase_) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=4) model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=4) model.generate(**lowercase_ , num_beams=2 , max_new_tokens=4) @slow def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: SCREAMING_SNAKE_CASE_ : List[str] = AutoTokenizer.from_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = FalconForCausalLM.from_pretrained(lowercase_) model.eval() model.to(device=lowercase_) SCREAMING_SNAKE_CASE_ : int = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(lowercase_) # Test results are the same with and without cache SCREAMING_SNAKE_CASE_ : Any = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=20 , use_cache=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=20 , use_cache=lowercase_) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0)
176
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
45
import unittest import numpy as np def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , ) -> np.ndarray: UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: List[Any] = np.shape(UpperCAmelCase__ ) if shape_a[0] != shape_b[0]: UpperCamelCase_: Any = ( 'Expected the same number of rows for A and B. ' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCAmelCase__ ) if shape_b[1] != shape_c[1]: UpperCamelCase_: int = ( 'Expected the same number of columns for B and C. ' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCAmelCase__ ) UpperCamelCase_: Dict = pseudo_inv if a_inv is None: try: UpperCamelCase_: Optional[Any] = np.linalg.inv(UpperCAmelCase__ ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: Dict = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: Tuple = np.array([[2, 1], [6, 3]] ) UpperCamelCase_: Tuple = schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[Any] = np.block([[a, b], [b.T, c]] ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: Dict = np.linalg.det(_lowerCamelCase ) self.assertAlmostEqual(_lowerCamelCase , det_a * det_s ) def _a ( self ): UpperCamelCase_: int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[str] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: str = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
57
0
import requests from bsa import BeautifulSoup def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _lowerCAmelCase : int = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE , params=SCREAMING_SNAKE_CASE ).content , "html.parser" ) _lowerCAmelCase : List[Any] = soup.find("div" , attrs={"class": "gs_ri"} ) _lowerCAmelCase : List[Any] = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": __UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 3_0, 'pages': '3979-3990', 'year': 2_0_1_8, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
715
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( A , unittest.TestCase ): """simple docstring""" _lowercase : List[str] = KandinskyVaaControlnetImgaImgPipeline _lowercase : Tuple = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] _lowercase : str = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] _lowercase : Optional[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowercase : Tuple = False @property def __magic_name__ ( self : Any ): '''simple docstring''' return 3_2 @property def __magic_name__ ( self : Tuple ): '''simple docstring''' return 3_2 @property def __magic_name__ ( self : List[Any] ): '''simple docstring''' return self.time_input_dim @property def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def __magic_name__ ( self : Any ): '''simple docstring''' return 1_0_0 @property def __magic_name__ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _lowerCAmelCase : Optional[int] = UNetaDConditionModel(**A_ ) return model @property def __magic_name__ ( self : Dict ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __magic_name__ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__ ( self : int ): '''simple docstring''' _lowerCAmelCase : Tuple = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : Tuple = { "num_train_timesteps": 1_0_0_0, "beta_schedule": "linear", "beta_start": 0.00085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } _lowerCAmelCase : int = DDIMScheduler(**A_ ) _lowerCAmelCase : Tuple = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __magic_name__ ( self : Union[str, Any] , A_ : Union[str, Any] , A_ : Optional[int]=0 ): '''simple docstring''' _lowerCAmelCase : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A_ ) ).to(A_ ) _lowerCAmelCase : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A_ ) # create init_image _lowerCAmelCase : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(A_ ) ).to(A_ ) _lowerCAmelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Tuple = Image.fromarray(np.uinta(A_ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) # create hint _lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith("mps" ): _lowerCAmelCase : Tuple = torch.manual_seed(A_ ) else: _lowerCAmelCase : Any = torch.Generator(device=A_ ).manual_seed(A_ ) _lowerCAmelCase : Union[str, Any] = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 1_0, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def __magic_name__ ( self : Optional[int] ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "cpu" _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**A_ ) _lowerCAmelCase : Optional[Any] = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _lowerCAmelCase : List[str] = pipe(**self.get_dummy_inputs(A_ ) ) _lowerCAmelCase : List[Any] = output.images _lowerCAmelCase : str = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] _lowerCAmelCase : int = image[0, -3:, -3:, -1] _lowerCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _lowerCAmelCase : List[Any] = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self : Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : List[Any] ): '''simple docstring''' _lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) _lowerCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) _lowerCAmelCase : Union[str, Any] = init_image.resize((5_1_2, 5_1_2) ) _lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) _lowerCAmelCase : Tuple = torch.from_numpy(np.array(A_ ) ).float() / 255.0 _lowerCAmelCase : Optional[int] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _lowerCAmelCase : List[str] = "A robot, 4k photo" _lowerCAmelCase : Dict = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) _lowerCAmelCase : str = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) _lowerCAmelCase : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Tuple = pipe_prior( A_ , image=A_ , strength=0.85 , generator=A_ , negative_prompt="" , ).to_tuple() _lowerCAmelCase : List[Any] = pipeline( image=A_ , image_embeds=A_ , negative_image_embeds=A_ , hint=A_ , generator=A_ , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type="np" , ) _lowerCAmelCase : str = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(A_ , A_ )
503
0
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : def __init__( self )-> Dict: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = '' UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = 256 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' UpperCamelCase = cva.imread(A_ , 0 ) UpperCamelCase = copy.deepcopy(self.img ) UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCamelCase = np.sum(A_ ) for i in range(len(A_ ) ): UpperCamelCase = x[i] / self.k self.sk += prk UpperCamelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase = int(last % last ) UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(A_ ) UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase = self.img[j][i] if num != self.last_list[num]: UpperCamelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') lowerCAmelCase : str = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
3
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """mctct""" def __init__( self , A_=8065 , A_=1536 , A_=36 , A_=6144 , A_=4 , A_=384 , A_=920 , A_=1e-5 , A_=0.3 , A_="relu" , A_=0.02 , A_=0.3 , A_=0.3 , A_=1 , A_=0 , A_=2 , A_=1 , A_=0.3 , A_=1 , A_=(7,) , A_=(3,) , A_=80 , A_=1 , A_=None , A_="sum" , A_=False , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = num_attention_heads UpperCamelCase = attention_head_dim UpperCamelCase = max_position_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = layerdrop UpperCamelCase = hidden_act UpperCamelCase = initializer_range UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id UpperCamelCase = conv_glu_dim UpperCamelCase = conv_dropout UpperCamelCase = num_conv_layers UpperCamelCase = input_feat_per_channel UpperCamelCase = input_channels UpperCamelCase = conv_channels UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # prevents config testing fail with exporting to json UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
3
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } lowerCAmelCase_ = { 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off lowerCAmelCase_ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class _A ( _lowerCamelCase ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Tuple = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : List[int] = [] _UpperCamelCase : List[int] = [] def __init__( self : List[str] , _A : Tuple , _A : str="<s>" , _A : Any="</s>" , _A : str="</s>" , _A : Any="<s>" , _A : Any="<unk>" , _A : Tuple="<pad>" , _A : List[str]="<mask>" , _A : Optional[Any]=None , _A : int=None , _A : List[str]=None , _A : Optional[Dict[str, Any]] = None , _A : Optional[int]=None , _A : Any=False , **_A : Union[str, Any] , ) -> Tuple: """simple docstring""" lowercase : str = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token lowercase : str = {} if sp_model_kwargs is None else sp_model_kwargs lowercase : List[Any] = legacy_behaviour super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , tokenizer_file=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_A , **_A , ) lowercase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) lowercase : Any = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowercase : Union[str, Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase : Union[str, Any] = 1 lowercase : Union[str, Any] = len(self.sp_model ) lowercase : List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A ) } lowercase : List[str] = {v: k for k, v in self.lang_code_to_id.items()} lowercase : str = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase : int = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase : Optional[int] = src_lang if src_lang is not None else '''eng_Latn''' lowercase : Optional[Any] = self.lang_code_to_id[self._src_lang] lowercase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple ) -> Tuple: """simple docstring""" lowercase : Tuple = self.__dict__.copy() lowercase : List[str] = None lowercase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict , _A : List[Any] ) -> str: """simple docstring""" lowercase : List[str] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase : int = {} lowercase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __a ( self : List[Any] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def __a ( self : Any , _A : str ) -> None: """simple docstring""" lowercase : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __a ( self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) lowercase : List[Any] = [1] * len(self.prefix_tokens ) lowercase : Optional[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def __a ( self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __a ( self : Tuple , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase : str = [self.sep_token_id] lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __a ( self : Union[str, Any] , _A : Any , _A : str , _A : Optional[str] , _A : Optional[str] , **_A : Optional[Any] ) -> int: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase : Tuple = src_lang lowercase : Dict = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) lowercase : Any = self.convert_tokens_to_ids(_A ) lowercase : List[Any] = tgt_lang_id return inputs def __a ( self : List[Any] ) -> int: """simple docstring""" lowercase : Union[str, Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self : List[Any] , _A : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_A , out_type=_A ) def __a ( self : List[Any] , _A : str ) -> List[str]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase : List[str] = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __a ( self : Any , _A : Tuple ) -> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __a ( self : str , _A : Optional[Any] ) -> str: """simple docstring""" lowercase : str = ''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def __a ( self : str , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: lowercase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def __a ( self : Optional[int] , _A : List[str] , _A : str = "eng_Latn" , _A : Optional[List[str]] = None , _A : str = "fra_Latn" , **_A : Optional[int] , ) -> BatchEncoding: """simple docstring""" lowercase : Any = src_lang lowercase : List[str] = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __a ( self : Union[str, Any] , _A : Optional[Any] ) -> None: """simple docstring""" lowercase : str = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowercase : Union[str, Any] = [] lowercase : List[Any] = [self.eos_token_id, self.cur_lang_code] else: lowercase : List[Any] = [self.cur_lang_code] lowercase : Any = [self.eos_token_id] def __a ( self : Union[str, Any] , _A : str ) -> None: """simple docstring""" lowercase : Tuple = self.lang_code_to_id[lang] if self.legacy_behaviour: lowercase : str = [] lowercase : Tuple = [self.eos_token_id, self.cur_lang_code] else: lowercase : Optional[Any] = [self.cur_lang_code] lowercase : List[Any] = [self.eos_token_id]
596
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _A ( unittest.TestCase ): def __a ( self : str ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase : Dict = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase : Dict = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def __a ( self : Any ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase : List[str] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) lowercase : Optional[int] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def __a ( self : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Optional[Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase : List[Any] = DDPMScheduler() lowercase : Optional[int] = AudioDiffusionPipeline(vqvae=_A , unet=self.dummy_unet , mel=_A , scheduler=_A ) lowercase : Any = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) lowercase : Any = torch.Generator(device=_A ).manual_seed(42 ) lowercase : List[str] = pipe(generator=_A , steps=4 ) lowercase : List[str] = output.audios[0] lowercase : List[str] = output.images[0] lowercase : Any = torch.Generator(device=_A ).manual_seed(42 ) lowercase : str = pipe(generator=_A , steps=4 , return_dict=_A ) lowercase : Tuple = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] lowercase : Any = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] lowercase : str = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase : Dict = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase : List[Any] = DDIMScheduler() lowercase : List[str] = self.dummy_vqvae_and_unet lowercase : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_A , scheduler=_A ) lowercase : Dict = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) np.random.seed(0 ) lowercase : int = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase : List[str] = torch.Generator(device=_A ).manual_seed(42 ) lowercase : Tuple = pipe(raw_audio=_A , generator=_A , start_step=5 , steps=10 ) lowercase : Any = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase : Optional[int] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] lowercase : Dict = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase : Dict = self.dummy_unet_condition lowercase : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_A , mel=_A , scheduler=_A ) lowercase : Dict = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) np.random.seed(0 ) lowercase : Dict = torch.rand((1, 1, 10) ) lowercase : Optional[int] = pipe(generator=_A , encoding=_A ) lowercase : int = output.images[0] lowercase : str = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] lowercase : int = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __a ( self : Dict ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ) -> int: """simple docstring""" lowercase : Optional[int] = torch_device lowercase : Optional[int] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) lowercase : List[str] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) lowercase : Union[str, Any] = torch.Generator(device=_A ).manual_seed(42 ) lowercase : Dict = pipe(generator=_A ) lowercase : Union[str, Any] = output.audios[0] lowercase : int = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase : Any = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] lowercase : int = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
596
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
1
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _A ( nn.Module ): def __init__( self : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : List[Any] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : Optional[Any] = nn.Linear(4 , 5 ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__magic_name__ ) ) ) class _A ( __lowercase ): def lowercase__ ( self : List[str] , __magic_name__ : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class _A ( __lowercase ): def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return output + 1 class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = ModelForTest() __snake_case : Tuple = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) self.assertEqual(test_model._hf_hook , __magic_name__ ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Optional[int] = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) add_hook_to_module(__magic_name__ , __magic_name__ , append=__magic_name__ ) self.assertEqual(isinstance(test_model._hf_hook , __magic_name__ ) , __magic_name__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Any = torch.randn(2 , 3 ) __snake_case : str = test_model(x + 1 ) __snake_case : int = test_model(x + 2 ) __snake_case : Union[str, Any] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Optional[int] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[str] = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : str = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Any = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Dict = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : str = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , output + 2 , atol=1E-5 ) def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : int = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Dict = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __snake_case : Dict = True __snake_case : int = test_model(__magic_name__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__magic_name__ , AlignDevicesHook(io_same_device=__magic_name__ ) ) __snake_case : Tuple = torch.randn(2 , 3 ).to(0 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , torch.device(0 ) ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : List[str] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __snake_case : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : str = torch.randn(2 , 3 ) __snake_case : str = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Union[str, Any] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Optional[int] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , offload_buffers=__magic_name__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Optional[int] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : List[str] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Optional[Any] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() , offload_buffers=__magic_name__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : List[str] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
26
0
import collections import os import re from pathlib import Path UpperCAmelCase_ = """src/transformers""" # Matches is_xxx_available() UpperCAmelCase_ = re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} UpperCAmelCase_ = re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase_ = re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available UpperCAmelCase_ = re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase_ = re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase_ = re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase_ = re.compile(R"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase_ = re.compile(R"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo UpperCAmelCase_ = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: UpperCAmelCase_ = re.compile(R"""^\s*try:""") # Catches a line with else: UpperCAmelCase_ = re.compile(R"""^\s*else:""") def lowerCamelCase__ ( UpperCamelCase__ : int ) -> Tuple: '''simple docstring''' if _re_test_backend.search(UpperCamelCase__ ) is None: return None _snake_case = [b[0] for b in _re_backend.findall(UpperCamelCase__ )] backends.sort() return "_and_".join(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : str ) -> Optional[Any]: '''simple docstring''' with open(UpperCamelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _snake_case = f.readlines() _snake_case = 0 while line_index < len(UpperCamelCase__ ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCamelCase__ ): return None # First grab the objects without a specific backend in _import_structure _snake_case = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: _snake_case = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCamelCase__ ): _snake_case = _re_one_line_import_struct.search(UpperCamelCase__ ).groups()[0] _snake_case = re.findall(R'\[([^\]]+)\]' , UpperCamelCase__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue _snake_case = _re_import_struct_key_value.search(UpperCamelCase__ ) if single_line_import_search is not None: _snake_case = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(UpperCamelCase__ ) > 0] objects.extend(UpperCamelCase__ ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 _snake_case = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. _snake_case = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _snake_case = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _snake_case = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): _snake_case = lines[line_index] if _re_import_struct_add_one.search(UpperCamelCase__ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCamelCase__ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCamelCase__ ) is not None: _snake_case = _re_import_struct_add_many.search(UpperCamelCase__ ).groups()[0].split(', ' ) _snake_case = [obj[1:-1] for obj in imports if len(UpperCamelCase__ ) > 0] objects.extend(UpperCamelCase__ ) elif _re_between_brackets.search(UpperCamelCase__ ) is not None: _snake_case = _re_between_brackets.search(UpperCamelCase__ ).groups()[0].split(', ' ) _snake_case = [obj[1:-1] for obj in imports if len(UpperCamelCase__ ) > 0] objects.extend(UpperCamelCase__ ) elif _re_quote_object.search(UpperCamelCase__ ) is not None: objects.append(_re_quote_object.search(UpperCamelCase__ ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 _snake_case = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _snake_case = [] while ( line_index < len(UpperCamelCase__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): _snake_case = lines[line_index] _snake_case = _re_import.search(UpperCamelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 _snake_case = {'none': objects} # Let's continue with backend-specific objects while line_index < len(UpperCamelCase__ ): # If the line is an if is_backend_available, we grab all objects associated. _snake_case = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _snake_case = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _snake_case = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): _snake_case = lines[line_index] _snake_case = _re_import.search(UpperCamelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 _snake_case = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> Tuple: '''simple docstring''' def find_duplicates(UpperCamelCase__ : Dict ): return [k for k, v in collections.Counter(UpperCamelCase__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _snake_case = [] for key in import_dict_objects.keys(): _snake_case = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _snake_case = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _snake_case = 'base imports' if key == 'none' else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def lowerCamelCase__ ( ) -> List[Any]: '''simple docstring''' _snake_case = [] for root, _, files in os.walk(UpperCamelCase__ ): if "__init__.py" in files: _snake_case = os.path.join(UpperCamelCase__ , '__init__.py' ) _snake_case = parse_init(UpperCamelCase__ ) if objects is not None: _snake_case = analyze_results(*UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _snake_case = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('\n'.join(UpperCamelCase__ ) ) if len(UpperCamelCase__ ) > 0: raise ValueError('\n\n'.join(UpperCamelCase__ ) ) def lowerCamelCase__ ( ) -> List[Any]: '''simple docstring''' _snake_case = [] for path, directories, files in os.walk(UpperCamelCase__ ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(UpperCamelCase__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCamelCase__ ) / folder).glob('*.py' ) ) ) == 0: continue _snake_case = str((Path(UpperCamelCase__ ) / folder).relative_to(UpperCamelCase__ ) ) _snake_case = short_path.replace(os.path.sep , '.' ) submodules.append(UpperCamelCase__ ) for fname in files: if fname == "__init__.py": continue _snake_case = str((Path(UpperCamelCase__ ) / fname).relative_to(UpperCamelCase__ ) ) _snake_case = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(UpperCamelCase__ ) return submodules UpperCAmelCase_ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def lowerCamelCase__ ( ) -> Optional[int]: '''simple docstring''' from transformers.utils import direct_transformers_import _snake_case = direct_transformers_import(UpperCamelCase__ ) _snake_case = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(UpperCamelCase__ , '__init__.py' ) , 'r' ) as f: _snake_case = f.read() import_structure_keys.update(set(re.findall(R'import_structure\[\"([^\"]*)\"\]' , UpperCamelCase__ ) ) ) _snake_case = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(UpperCamelCase__ ) > 0: _snake_case = '\n'.join(F'''- {module}''' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registed in the main init of Transformers:\n' F'''{list_of_modules}\n''' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
541
def lowerCamelCase__ ( UpperCamelCase__ : list ) -> list: '''simple docstring''' _snake_case = len(UpperCamelCase__ ) for i in range(1 , UpperCamelCase__ ): _snake_case = collection[i] _snake_case = 0 _snake_case = i - 1 while low <= high: _snake_case = (low + high) // 2 if val < collection[mid]: _snake_case = mid - 1 else: _snake_case = mid + 1 for j in range(UpperCamelCase__ , UpperCamelCase__ , -1 ): _snake_case = collection[j - 1] _snake_case = val return collection if __name__ == "__main__": UpperCAmelCase_ = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase_ = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
541
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean lowerCamelCase = 0 lowerCamelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right lowerCamelCase = tuple[int, int] class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): """simple docstring""" a__ : Tuple = pos_x a__ : str = pos_y a__ : Any = (pos_y, pos_x) a__ : List[str] = goal_x a__ : Optional[Any] = goal_y a__ : int = g_cost a__ : Any = parent a__ : List[Any] = self.calculate_heuristic() a__ : str = self.g_cost + self.h_cost def _A ( self ): """simple docstring""" a__ : int = self.pos_x - self.goal_x a__ : str = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(__UpperCAmelCase ) + abs(__UpperCAmelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , __UpperCAmelCase ): """simple docstring""" return self.f_cost < other.f_cost class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Union[str, Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __UpperCAmelCase ) a__ : int = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , __UpperCAmelCase ) a__ : Any = [self.start] a__ : list[Node] = [] a__ : int = False def _A ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() a__ : Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(__UpperCAmelCase ) self.closed_nodes.append(__UpperCAmelCase ) a__ : int = self.get_successors(__UpperCAmelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__UpperCAmelCase ) else: # retrieve the best current path a__ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(__UpperCAmelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__UpperCAmelCase ) else: self.open_nodes.append(__UpperCAmelCase ) return [self.start.pos] def _A ( self , __UpperCAmelCase ): """simple docstring""" a__ : Tuple = [] for action in delta: a__ : Optional[Any] = parent.pos_x + action[1] a__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __UpperCAmelCase , __UpperCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __UpperCAmelCase , ) ) return successors def _A ( self , __UpperCAmelCase ): """simple docstring""" a__ : Optional[int] = node a__ : List[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) a__ : Dict = current_node.parent path.reverse() return path class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Any = AStar(__UpperCAmelCase , __UpperCAmelCase ) a__ : Optional[int] = AStar(__UpperCAmelCase , __UpperCAmelCase ) a__ : str = False def _A ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() a__ : Dict = self.fwd_astar.open_nodes.pop(0 ) a__ : Any = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( __UpperCAmelCase , __UpperCAmelCase ) self.fwd_astar.closed_nodes.append(__UpperCAmelCase ) self.bwd_astar.closed_nodes.append(__UpperCAmelCase ) a__ : str = current_bwd_node a__ : int = current_fwd_node a__ : str = { self.fwd_astar: self.fwd_astar.get_successors(__UpperCAmelCase ), self.bwd_astar: self.bwd_astar.get_successors(__UpperCAmelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(__UpperCAmelCase ) else: # retrieve the best current path a__ : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(__UpperCAmelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(__UpperCAmelCase ) else: astar.open_nodes.append(__UpperCAmelCase ) return [self.fwd_astar.start.pos] def _A ( self , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Union[str, Any] = self.fwd_astar.retrace_path(__UpperCAmelCase ) a__ : Optional[Any] = self.bwd_astar.retrace_path(__UpperCAmelCase ) bwd_path.pop() bwd_path.reverse() a__ : Union[str, Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] lowerCamelCase = (0, 0) lowerCamelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCamelCase = time.time() lowerCamelCase = AStar(init, goal) lowerCamelCase = a_star.search() lowerCamelCase = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') lowerCamelCase = time.time() lowerCamelCase = BidirectionalAStar(init, goal) lowerCamelCase = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
191
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def __a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: # load base model SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained(__lowerCAmelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors SCREAMING_SNAKE_CASE : Any = load_file(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: SCREAMING_SNAKE_CASE : Dict = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) SCREAMING_SNAKE_CASE : Tuple = pipeline.text_encoder else: SCREAMING_SNAKE_CASE : Any = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) SCREAMING_SNAKE_CASE : Dict = pipeline.unet # find the target layer SCREAMING_SNAKE_CASE : Union[str, Any] = layer_infos.pop(0 ) while len(__lowerCAmelCase ) > -1: try: SCREAMING_SNAKE_CASE : List[Any] = curr_layer.__getattr__(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE : Optional[int] = layer_infos.pop(0 ) elif len(__lowerCAmelCase ) == 0: break except Exception: if len(__lowerCAmelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: SCREAMING_SNAKE_CASE : List[str] = layer_infos.pop(0 ) SCREAMING_SNAKE_CASE : str = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(__lowerCAmelCase ) else: pair_keys.append(__lowerCAmelCase ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: SCREAMING_SNAKE_CASE : Any = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) SCREAMING_SNAKE_CASE : str = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__lowerCAmelCase , __lowerCAmelCase ).unsqueeze(2 ).unsqueeze(3 ) else: SCREAMING_SNAKE_CASE : List[Any] = state_dict[pair_keys[0]].to(torch.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__lowerCAmelCase , __lowerCAmelCase ) # update visited list for item in pair_keys: visited.append(__lowerCAmelCase ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : List[Any] = parser.parse_args() _lowerCamelCase : List[str] = args.base_model_path _lowerCamelCase : str = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Any = args.lora_prefix_unet _lowerCamelCase : List[Any] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : Optional[Any] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Optional[Any] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
352
0
def a ( A__ : List[str] , A__ : Optional[Any] ) -> Any: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(A__ ): for j in range(A__ ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def a ( A__ : List[str] , A__ : Any ) -> Optional[int]: """simple docstring""" _lowercase =[[float('inf' ) for _ in range(A__ )] for _ in range(A__ )] for i in range(A__ ): for j in range(A__ ): _lowercase =graph[i][j] # check vertex k against all other vertices (i, j) for k in range(A__ ): # looping through rows of graph array for i in range(A__ ): # looping through columns of graph array for j in range(A__ ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _lowercase =dist[i][k] + dist[k][j] _print_dist(A__ , A__ ) return dist, v if __name__ == "__main__": lowercase_ = int(input('Enter number of vertices: ')) lowercase_ = int(input('Enter number of edges: ')) lowercase_ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowercase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowercase_ = int(input('Enter source:')) lowercase_ = int(input('Enter destination:')) lowercase_ = float(input('Enter weight:')) lowercase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
720
from math import pow, sqrt def a ( *A__ : float ) -> bool: """simple docstring""" _lowercase =len(A__ ) > 0 and all(value > 0.0 for value in values ) return result def a ( A__ : float , A__ : float ) -> float | ValueError: """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A__ , A__ ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def a ( A__ : float , A__ : float , A__ : float ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A__ , A__ , A__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def a ( A__ : float , A__ : float , A__ : float ) -> float | ValueError: """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A__ , A__ , A__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def a ( A__ : float , A__ : float , A__ : float ) -> float | ValueError: """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(A__ , A__ , A__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def a ( A__ : float , A__ : float , A__ : float ) -> float | ValueError: """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(A__ , A__ , A__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
380
0
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowercase = datasets.utils.logging.get_logger(__name__) @dataclass class a_ ( datasets.BuilderConfig ): lowercase_ : Optional[datasets.Features] = None lowercase_ : str = "utf-8" lowercase_ : Optional[str] = None lowercase_ : Optional[str] = None lowercase_ : bool = True # deprecated lowercase_ : Optional[int] = None # deprecated lowercase_ : int = 10 << 20 # 10MB lowercase_ : Optional[bool] = None class a_ ( datasets.ArrowBasedBuilder ): lowercase_ : int = JsonConfig def lowercase__ ( self : int ): if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' ) __snake_case = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' ) if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' ) return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : int , __lowerCAmelCase : Dict ): if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) __snake_case = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCAmelCase , (str, list, tuple) ): __snake_case = data_files if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __snake_case = [files] __snake_case = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] __snake_case = [] for split_name, files in data_files.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __snake_case = [files] __snake_case = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCAmelCase , gen_kwargs={'files': files} ) ) return splits def lowercase__ ( self : List[str] , __lowerCAmelCase : pa.Table ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): __snake_case = self.config.features.arrow_schema.field(__lowerCAmelCase ).type __snake_case = pa_table.append_column(__lowerCAmelCase , pa.array([None] * len(__lowerCAmelCase ) , type=__lowerCAmelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case = table_cast(__lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def lowercase__ ( self : Tuple , __lowerCAmelCase : Any ): for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCAmelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __snake_case = json.load(__lowerCAmelCase ) # We keep only the field we are interested in __snake_case = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__lowerCAmelCase , (list, tuple) ): __snake_case = set().union(*[row.keys() for row in dataset] ) __snake_case = {col: [row.get(__lowerCAmelCase ) for row in dataset] for col in keys} else: __snake_case = dataset __snake_case = pa.Table.from_pydict(__lowerCAmelCase ) yield file_idx, self._cast_table(__lowerCAmelCase ) # If the file has one json object per line else: with open(__lowerCAmelCase , 'rb' ) as f: __snake_case = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __snake_case = max(self.config.chunksize // 3_2 , 1_6 << 1_0 ) __snake_case = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: __snake_case = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__lowerCAmelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __snake_case = batch.decode(self.config.encoding , errors=__lowerCAmelCase ).encode('utf-8' ) try: while True: try: __snake_case = paj.read_json( io.BytesIO(__lowerCAmelCase ) , read_options=paj.ReadOptions(block_size=__lowerCAmelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__lowerCAmelCase , pa.ArrowInvalid ) and "straddling" not in str(__lowerCAmelCase ) or block_size > len(__lowerCAmelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'Batch of {len(__lowerCAmelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __snake_case = json.load(__lowerCAmelCase ) except json.JSONDecodeError: logger.error(F'Failed to read file \'{file}\' with error {type(__lowerCAmelCase )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # list is the only sequence type supported in JSON try: __snake_case = set().union(*[row.keys() for row in dataset] ) __snake_case = {col: [row.get(__lowerCAmelCase ) for row in dataset] for col in keys} __snake_case = pa.Table.from_pydict(__lowerCAmelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'Failed to read file \'{file}\' with error {type(__lowerCAmelCase )}: {e}' ) raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(__lowerCAmelCase ) break else: logger.error(F'Failed to read file \'{file}\' with error {type(__lowerCAmelCase )}: {e}' ) raise ValueError( F'Not able to read records in the JSON file at {file}. ' F'You should probably indicate the field of the JSON file containing your records. ' F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowerCAmelCase ) batch_idx += 1
356
'''simple docstring''' def lowerCamelCase__ ( a ): assert ( isinstance(a , a ) and number_of_steps > 0 ), f'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 __snake_case , __snake_case = 1, 1 for _ in range(number_of_steps - 1 ): __snake_case , __snake_case = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
356
1
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : str=1_3 , __lowerCamelCase : Any=3_0 , __lowerCamelCase : Any=2 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : int=True , __lowerCamelCase : int=True , __lowerCamelCase : List[str]=3_2 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : Optional[Any]=3_7 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Dict=1_0 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Tuple=None , __lowerCamelCase : Dict=2 , ) -> Any: __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = scope __magic_name__ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __magic_name__ = (image_size // patch_size) ** 2 __magic_name__ = num_patches + 1 def _snake_case ( self : Dict ) -> Tuple: __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = self.get_config() return config, pixel_values, labels def _snake_case ( self : int ) -> Any: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _snake_case ( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ) -> List[str]: __magic_name__ = ViTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __magic_name__ = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : List[str] ) -> Any: __magic_name__ = ViTForMaskedImageModeling(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __magic_name__ = model(__lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ = 1 __magic_name__ = ViTForMaskedImageModeling(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ = model(__lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _snake_case ( self : Any , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ) -> Tuple: __magic_name__ = self.type_sequence_label_size __magic_name__ = ViTForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __magic_name__ = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ = 1 __magic_name__ = ViTForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self : List[str] ) -> str: __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCAmelCase__ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCAmelCase__ = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def _snake_case ( self : Optional[int] ) -> str: __magic_name__ = ViTModelTester(self ) __magic_name__ = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=3_7 ) def _snake_case ( self : Any ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def _snake_case ( self : str ) -> Dict: pass def _snake_case ( self : Optional[int] ) -> Optional[Any]: __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _snake_case ( self : Union[str, Any] ) -> Optional[Any]: __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(__lowerCamelCase ) __magic_name__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : Optional[int] ) -> int: __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : Any ) -> Optional[int]: __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase ) def _snake_case ( self : int ) -> Optional[int]: __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _snake_case ( self : int ) -> str: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = ViTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _lowerCAmelCase ( ): '''simple docstring''' __magic_name__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _snake_case ( self : Dict ) -> Union[str, Any]: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def _snake_case ( self : Optional[int] ) -> List[str]: __magic_name__ = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(__lowerCamelCase ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __magic_name__ = model(**__lowerCamelCase ) # verify the logits __magic_name__ = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __magic_name__ = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) @slow def _snake_case ( self : int ) -> Any: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. __magic_name__ = ViTModel.from_pretrained("facebook/dino-vits8" ).to(__lowerCamelCase ) __magic_name__ = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=4_8_0 ) __magic_name__ = prepare_img() __magic_name__ = image_processor(images=__lowerCamelCase , return_tensors="pt" ) __magic_name__ = inputs.pixel_values.to(__lowerCamelCase ) # forward pass with torch.no_grad(): __magic_name__ = model(__lowerCamelCase , interpolate_pos_encoding=__lowerCamelCase ) # verify the logits __magic_name__ = torch.Size((1, 3_6_0_1, 3_8_4) ) self.assertEqual(outputs.last_hidden_state.shape , __lowerCamelCase ) __magic_name__ = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def _snake_case ( self : Any ) -> List[Any]: __magic_name__ = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=__lowerCamelCase , return_tensors="pt" ) __magic_name__ = inputs.pixel_values.to(__lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __magic_name__ = model(__lowerCamelCase )
468
"""simple docstring""" from copy import deepcopy class A_ : def __init__( self : List[str] , __lowerCamelCase : list[int] | None = None , __lowerCamelCase : int | None = None ) -> None: if arr is None and size is not None: __magic_name__ = size __magic_name__ = [0] * size elif arr is not None: self.init(__lowerCamelCase ) else: raise ValueError("Either arr or size must be specified" ) def _snake_case ( self : Optional[int] , __lowerCamelCase : list[int] ) -> None: __magic_name__ = len(__lowerCamelCase ) __magic_name__ = deepcopy(__lowerCamelCase ) for i in range(1 , self.size ): __magic_name__ = self.next_(__lowerCamelCase ) if j < self.size: self.tree[j] += self.tree[i] def _snake_case ( self : Any ) -> list[int]: __magic_name__ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): __magic_name__ = self.next_(__lowerCamelCase ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _snake_case ( __lowerCamelCase : int ) -> int: return index + (index & (-index)) @staticmethod def _snake_case ( __lowerCamelCase : int ) -> int: return index - (index & (-index)) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : int ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value __magic_name__ = self.next_(__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : int , __lowerCamelCase : int ) -> None: self.add(__lowerCamelCase , value - self.get(__lowerCamelCase ) ) def _snake_case ( self : List[Any] , __lowerCamelCase : int ) -> int: if right == 0: return 0 __magic_name__ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] __magic_name__ = self.prev(__lowerCamelCase ) return result def _snake_case ( self : Any , __lowerCamelCase : int , __lowerCamelCase : int ) -> int: return self.prefix(__lowerCamelCase ) - self.prefix(__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : int ) -> int: return self.query(__lowerCamelCase , index + 1 ) def _snake_case ( self : Tuple , __lowerCamelCase : int ) -> int: value -= self.tree[0] if value < 0: return -1 __magic_name__ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 __magic_name__ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
468
1
"""simple docstring""" import math def __UpperCAmelCase ( lowercase ): """simple docstring""" if not isinstance(lowercase ,lowercase ): _UpperCAmelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(lowercase ) if number < 1: _UpperCAmelCase = f'''Input value of [number={number}] must be > 0''' raise ValueError(lowercase ) elif number == 1: return 3 elif number == 2: return 5 else: _UpperCAmelCase = int(math.log(number // 3 ,2 ) ) + 2 _UpperCAmelCase = [3, 5] _UpperCAmelCase = 2 _UpperCAmelCase = 3 for block in range(1 ,lowercase ): for _ in range(lowercase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): UpperCAmelCase__ = 0 try: UpperCAmelCase__ = proth(number) except ValueError: print(F'''ValueError: there is no {number}th Proth number''') continue print(F'''The {number}th Proth number: {value}''')
277
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" ,[ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(lowercase ,i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 ,4 ), range(4 ,7 ), range(7 ,10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 ,1 ), range(1 ,2 ), range(2 ,3 )]), ] ,) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = _distribute_shards(**lowercase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" ,[ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] ,) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = _split_gen_kwargs(lowercase ,lowercase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" ,[ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] ,) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" if expected is RuntimeError: with pytest.raises(lowercase ): _number_of_shards_in_gen_kwargs(lowercase ) else: _UpperCAmelCase = _number_of_shards_in_gen_kwargs(lowercase ) assert out == expected
277
1
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( _UpperCamelCase ,unittest.TestCase ): _UpperCamelCase : int = LxmertTokenizer _UpperCamelCase : Union[str, Any] = LxmertTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : str = True def _snake_case ( self ) -> Any: """simple docstring""" super().setUp() a__ : Optional[int] = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _snake_case ( self , snake_case ) -> Union[str, Any]: """simple docstring""" a__ : Any = "UNwant\u00E9d,running" a__ : Union[str, Any] = "unwanted, running" return input_text, output_text def _snake_case ( self ) -> str: """simple docstring""" a__ : Dict = self.tokenizer_class(self.vocab_file ) a__ : Optional[Any] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def _snake_case ( self ) -> Dict: """simple docstring""" if not self.test_rust_tokenizer: return a__ : Tuple = self.get_tokenizer() a__ : int = self.get_rust_tokenizer() a__ : Tuple = "I was born in 92000, and this is falsé." a__ : Tuple = tokenizer.tokenize(_UpperCAmelCase ) a__ : Union[str, Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) a__ : Dict = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) a__ : Optional[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) a__ : List[Any] = self.get_rust_tokenizer() a__ : Any = tokenizer.encode(_UpperCAmelCase ) a__ : Any = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
714
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowerCAmelCase ( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): _UpperCamelCase : Optional[int] = StableUnCLIPPipeline _UpperCamelCase : Optional[int] = TEXT_TO_IMAGE_PARAMS _UpperCamelCase : str = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCamelCase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _UpperCamelCase : Any = False def _snake_case ( self ) -> List[str]: """simple docstring""" a__ : Any = 32 a__ : int = embedder_hidden_size # prior components torch.manual_seed(0 ) a__ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) a__ : Optional[Any] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case , projection_dim=snake_case , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) a__ : int = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=snake_case , num_layers=1 , ) torch.manual_seed(0 ) a__ : str = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_000 , clip_sample=snake_case , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) a__ : Any = StableUnCLIPImageNormalizer(embedding_dim=snake_case ) a__ : int = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) a__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) a__ : Union[str, Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) a__ : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=snake_case , layers_per_block=1 , upcast_attention=snake_case , use_linear_projection=snake_case , ) torch.manual_seed(0 ) a__ : Tuple = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=snake_case , steps_offset=1 , ) torch.manual_seed(0 ) a__ : Optional[int] = AutoencoderKL() a__ : Any = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def _snake_case ( self , snake_case , snake_case=0 ) -> Dict: """simple docstring""" if str(snake_case ).startswith("mps" ): a__ : Union[str, Any] = torch.manual_seed(snake_case ) else: a__ : List[str] = torch.Generator(device=snake_case ).manual_seed(snake_case ) a__ : Any = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ) -> List[str]: """simple docstring""" a__ : Dict = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=snake_case ) def _snake_case ( self ) -> int: """simple docstring""" a__ : int = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=snake_case ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def _snake_case ( self ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Tuple: """simple docstring""" a__ : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) a__ : int = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a__ : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) a__ : Dict = pipe("anime turle" , generator=snake_case , output_type="np" ) a__ : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case , snake_case ) def _snake_case ( self ) -> Tuple: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a__ : str = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) a__ : Union[str, Any] = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a__ : Union[str, Any] = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) a__ : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
629
0
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def UpperCAmelCase__ ( *__magic_name__ : Dict , __magic_name__ : Tuple = None , __magic_name__ : int=True , __magic_name__ : int=2 ): '''simple docstring''' from .. import __version__ lowerCAmelCase : int = take_from lowerCAmelCase : Union[str, Any] = () if not isinstance(args[0] , __snake_case ): lowerCAmelCase : Union[str, Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__snake_case ).base_version ) >= version.parse(__snake_case ): raise ValueError( f'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' f''' version {__version__} is >= {version_name}''' ) lowerCAmelCase : Union[str, Any] = None if isinstance(__snake_case , __snake_case ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__snake_case ),) lowerCAmelCase : int = f'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(__snake_case , __snake_case ): values += (getattr(__snake_case , __snake_case ),) lowerCAmelCase : Any = f'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: lowerCAmelCase : int = f'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: lowerCAmelCase : Optional[Any] = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , __snake_case , stacklevel=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) > 0: lowerCAmelCase : Dict = inspect.getouterframes(inspect.currentframe() )[1] lowerCAmelCase : Any = call_frame.filename lowerCAmelCase : Optional[int] = call_frame.lineno lowerCAmelCase : Dict = call_frame.function lowerCAmelCase , lowerCAmelCase : Any = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(__snake_case ) == 0: return elif len(__snake_case ) == 1: return values[0] return values
348
from __future__ import annotations import os from typing import Any import requests lowerCamelCase : Tuple = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCamelCase : int = BASE_URL + '''/user''' # https://github.com/settings/tokens lowerCamelCase : Any = os.environ.get('''USER_TOKEN''', '''''') def __lowerCAmelCase ( __snake_case ): __lowerCAmelCase = { "Authorization": F"""token {auth_token}""", "Accept": "application/vnd.github.v3+json", } return requests.get(__snake_case , headers=__snake_case ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
367
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCamelCase_ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __UpperCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_A , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCamelCase : Optional[str] = field( default=_A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCamelCase : bool = field( default=_A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : bool = field( default=_A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=_A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCAmelCase__ ( self : Dict ): if self.train_file is not None: UpperCamelCase_: Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase_: Dict = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self : Optional[int] , snake_case_ : Dict ): UpperCamelCase_: Dict = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase_: int = [feature.pop(snake_case_ ) for feature in features] UpperCamelCase_: Optional[Any] = len(snake_case_ ) UpperCamelCase_: List[str] = len(features[0]["""input_ids"""] ) UpperCamelCase_: Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] UpperCamelCase_: Any = list(chain(*snake_case_ ) ) UpperCamelCase_: List[Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten UpperCamelCase_: Tuple = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase_: Optional[int] = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def A__ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_: int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_: List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase_: Dict = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) datasets.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_: List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_: List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase_: List[str] = {} if data_args.train_file is not None: UpperCamelCase_: List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase_: Optional[int] = data_args.validation_file UpperCamelCase_: Any = data_args.train_file.split(""".""" )[-1] UpperCamelCase_: Tuple = load_dataset( lowerCamelCase , data_files=lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase_: int = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase_: List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase_: Union[str, Any] = [F'''ending{i}''' for i in range(4 )] UpperCamelCase_: str = """sent1""" UpperCamelCase_: List[str] = """sent2""" if data_args.max_seq_length is None: UpperCamelCase_: int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) UpperCamelCase_: Optional[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_: Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase ): UpperCamelCase_: Optional[Any] = [[context] * 4 for context in examples[context_name]] UpperCamelCase_: Dict = examples[question_header_name] UpperCamelCase_: List[str] = [ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(lowerCamelCase ) ] # Flatten out UpperCamelCase_: str = list(chain(*lowerCamelCase ) ) UpperCamelCase_: Any = list(chain(*lowerCamelCase ) ) # Tokenize UpperCamelCase_: Any = tokenizer( lowerCamelCase , lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_: str = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCamelCase_: Union[str, Any] = min(len(lowerCamelCase ) , data_args.max_train_samples ) UpperCamelCase_: Optional[int] = train_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): UpperCamelCase_: str = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_: Dict = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCamelCase_: str = min(len(lowerCamelCase ) , data_args.max_eval_samples ) UpperCamelCase_: Tuple = eval_dataset.select(range(lowerCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): UpperCamelCase_: str = eval_dataset.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase_: str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase ): UpperCamelCase_: List[str] = eval_predictions UpperCamelCase_: Optional[Any] = np.argmax(lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase_: Union[str, Any] = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , compute_metrics=lowerCamelCase , ) # Training if training_args.do_train: UpperCamelCase_: List[Any] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_: str = last_checkpoint UpperCamelCase_: Optional[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase_: Tuple = train_result.metrics UpperCamelCase_: Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: Optional[Any] = trainer.evaluate() UpperCamelCase_: Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase ) UpperCamelCase_: Optional[Any] = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) UpperCamelCase_: Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def A__ ( lowerCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
708
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = BarthezTokenizer __UpperCamelCase : str = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[Any] = True def lowerCAmelCase__ ( self : Optional[int] ): super().setUp() UpperCamelCase_: Tuple = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case_ ) UpperCamelCase_: Dict = tokenizer def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = """<pad>""" UpperCamelCase_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case_ ) , 10_1122 ) def lowerCAmelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase_: Union[str, Any] = [0, 57, 3018, 7_0307, 91, 2] UpperCamelCase_: Union[str, Any] = self.tokenizer( snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase_: Any = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Any ): if not self.test_rust_tokenizer: return UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase_: str = """I was born in 92000, and this is falsé.""" UpperCamelCase_: str = tokenizer.tokenize(snake_case_ ) UpperCamelCase_: int = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) UpperCamelCase_: int = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[str] = self.get_rust_tokenizer() UpperCamelCase_: Tuple = tokenizer.encode(snake_case_ ) UpperCamelCase_: Tuple = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCAmelCase__ ( self : int ): # fmt: off UpperCamelCase_: Optional[Any] = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase_: str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=snake_case_ , )
670
0
import math from datetime import datetime, timedelta def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = year % 19 __lowerCAmelCase = year % 4 __lowerCAmelCase = year % 7 __lowerCAmelCase = math.floor(year / 100 ) __lowerCAmelCase = math.floor((13 + 8 * leap_day_inhibits) / 25 ) __lowerCAmelCase = leap_day_inhibits / 4 __lowerCAmelCase = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 __lowerCAmelCase = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __lowerCAmelCase = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon __lowerCAmelCase = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(lowerCAmelCase_, 4, 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(lowerCAmelCase_, 4, 18 ) else: return datetime(lowerCAmelCase_, 3, 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): _snake_case : Union[str, Any] = 'will be' if year > datetime.now().year else 'was' print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
53
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __magic_name__ : Optional[Any] = 'http://www.mocksite.com/file1.txt' __magic_name__ : Tuple = '"text": ["foo", "foo"]' __magic_name__ : str = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class __snake_case : __a = 200 __a = {'''Content-Length''': '''100'''} __a = {} def __a ( self: List[str] , **A_: List[Any] ): return [bytes(A_ , """utf-8""" )] def a_ ( *lowercase__ :List[Any], **lowercase__ :Any ): return MockResponse() @pytest.mark.parametrize("""urls_type""", [str, list, dict] ) def a_ ( lowercase__ :Optional[int], lowercase__ :Any, lowercase__ :Optional[int] ): import requests monkeypatch.setattr(lowercase__, """request""", lowercase__ ) __lowerCamelCase = URL if issubclass(lowercase__, lowercase__ ): __lowerCamelCase = url elif issubclass(lowercase__, lowercase__ ): __lowerCamelCase = [url] elif issubclass(lowercase__, lowercase__ ): __lowerCamelCase = {"""train""": url} __lowerCamelCase = """dummy""" __lowerCamelCase = """downloads""" __lowerCamelCase = tmp_path __lowerCamelCase = DownloadConfig( cache_dir=os.path.join(lowercase__, lowercase__ ), use_etag=lowercase__, ) __lowerCamelCase = DownloadManager(dataset_name=lowercase__, download_config=lowercase__ ) __lowerCamelCase = dl_manager.download(lowercase__ ) __lowerCamelCase = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowercase__, lowercase__ ): __lowerCamelCase = [downloaded_paths] __lowerCamelCase = [urls] elif isinstance(lowercase__, lowercase__ ): assert "train" in downloaded_paths.keys() __lowerCamelCase = downloaded_paths.values() __lowerCamelCase = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowercase__, lowercase__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __lowerCamelCase = Path(lowercase__ ) __lowerCamelCase = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __lowerCamelCase = downloaded_path.read_text() assert content == CONTENT __lowerCamelCase = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __lowerCamelCase = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""", [str, list, dict] ) def a_ ( lowercase__ :Dict, lowercase__ :Optional[Any], lowercase__ :Dict ): __lowerCamelCase = str(lowercase__ ) if issubclass(lowercase__, lowercase__ ): __lowerCamelCase = filename elif issubclass(lowercase__, lowercase__ ): __lowerCamelCase = [filename] elif issubclass(lowercase__, lowercase__ ): __lowerCamelCase = {"""train""": filename} __lowerCamelCase = """dummy""" __lowerCamelCase = xz_file.parent __lowerCamelCase = """extracted""" __lowerCamelCase = DownloadConfig( cache_dir=lowercase__, use_etag=lowercase__, ) __lowerCamelCase = DownloadManager(dataset_name=lowercase__, download_config=lowercase__ ) __lowerCamelCase = dl_manager.extract(lowercase__ ) __lowerCamelCase = paths for extracted_paths in [extracted_paths]: if isinstance(lowercase__, lowercase__ ): __lowerCamelCase = [extracted_paths] __lowerCamelCase = [paths] elif isinstance(lowercase__, lowercase__ ): assert "train" in extracted_paths.keys() __lowerCamelCase = extracted_paths.values() __lowerCamelCase = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowercase__, lowercase__ ): assert extracted_path == dl_manager.extracted_paths[input_path] __lowerCamelCase = Path(lowercase__ ) __lowerCamelCase = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowercase__, etag=lowercase__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __lowerCamelCase = extracted_path.read_text() __lowerCamelCase = text_file.read_text() assert extracted_file_content == expected_file_content def a_ ( lowercase__ :List[str], lowercase__ :int ): assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(lowercase__, start=1 ): __lowerCamelCase = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""", ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def a_ ( lowercase__ :Optional[int], lowercase__ :Union[str, Any] ): __lowerCamelCase = request.getfixturevalue(lowercase__ ) __lowerCamelCase = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowercase__ ), start=1 ): _test_jsonl(lowercase__, lowercase__ ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""", ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def a_ ( lowercase__ :Optional[int], lowercase__ :List[Any] ): __lowerCamelCase = request.getfixturevalue(lowercase__ ) __lowerCamelCase = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowercase__ ), start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowercase__ ), start=1 ): _test_jsonl(lowercase__, lowercase__ ) assert num_tar == 1 assert num_jsonl == 2 def a_ ( lowercase__ :Tuple ): __lowerCamelCase = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowercase__ ), start=1 ): assert os.path.basename(lowercase__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
281
0
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ = "hf-internal-testing/tiny-random-bert" lowercase__ = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") lowercase__ = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = cached_file(_lowercase , _lowercase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_lowercase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_lowercase , _lowercase ) ) ) with open(os.path.join(_lowercase , """refs""" , """main""" ) ) as f: __a : Any = f.read() self.assertEqual(_lowercase , os.path.join(_lowercase , """snapshots""" , _lowercase , _lowercase ) ) self.assertTrue(os.path.isfile(_lowercase ) ) # File is cached at the same place the second time. __a : List[Any] = cached_file(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) # Using a specific revision to test the full commit hash. __a : List[Any] = cached_file(_lowercase , _lowercase , revision="""9b8c223""" ) self.assertEqual(_lowercase , os.path.join(_lowercase , """snapshots""" , _lowercase , _lowercase ) ) def lowerCAmelCase__(self ): '''simple docstring''' with self.assertRaisesRegex(_lowercase , """is not a valid model identifier""" ): __a : Union[str, Any] = cached_file("""tiny-random-bert""" , _lowercase ) with self.assertRaisesRegex(_lowercase , """is not a valid git identifier""" ): __a : Tuple = cached_file(_lowercase , _lowercase , revision="""aaaa""" ) with self.assertRaisesRegex(_lowercase , """does not appear to have a file named""" ): __a : str = cached_file(_lowercase , """conf""" ) def lowerCAmelCase__(self ): '''simple docstring''' with self.assertRaisesRegex(_lowercase , """does not appear to have a file named""" ): __a : Any = cached_file(_lowercase , """conf""" ) with open(os.path.join(_lowercase , """refs""" , """main""" ) ) as f: __a : Any = f.read() self.assertTrue(os.path.isfile(os.path.join(_lowercase , """.no_exist""" , _lowercase , """conf""" ) ) ) __a : List[Any] = cached_file(_lowercase , """conf""" , _raise_exceptions_for_missing_entries=_lowercase ) self.assertIsNone(_lowercase ) __a : str = cached_file(_lowercase , """conf""" , local_files_only=_lowercase , _raise_exceptions_for_missing_entries=_lowercase ) self.assertIsNone(_lowercase ) __a : List[Any] = mock.Mock() __a : List[Any] = 500 __a : int = {} __a : Any = HTTPError __a : Union[str, Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=_lowercase ) as mock_head: __a : Union[str, Any] = cached_file(_lowercase , """conf""" , _raise_exceptions_for_connection_errors=_lowercase ) self.assertIsNone(_lowercase ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__(self ): '''simple docstring''' self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _lowercase ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _lowercase ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _lowercase ) ) def lowerCAmelCase__(self ): '''simple docstring''' self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_lowercase , """is not a valid model identifier""" ): get_file_from_repo("""bert-base-case""" , _lowercase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_lowercase , """is not a valid git identifier""" ): get_file_from_repo("""bert-base-cased""" , _lowercase , revision="""ahaha""" ) __a : str = get_file_from_repo("""bert-base-cased""" , _lowercase ) # The name is the cached name which is not very easy to test, so instead we load the content. __a : Union[str, Any] = json.loads(open(_lowercase , """r""" ).read() ) self.assertEqual(config["""hidden_size"""] , 768 ) def lowerCAmelCase__(self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __a : Any = Path(_lowercase ) / """a.txt""" filename.touch() self.assertEqual(get_file_from_repo(_lowercase , """a.txt""" ) , str(_lowercase ) ) self.assertIsNone(get_file_from_repo(_lowercase , """b.txt""" ) )
63
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "unispeech" def __init__(self , _lowercase=32 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=1e-5 , _lowercase="group" , _lowercase="gelu" , _lowercase=(512, 512, 512, 512, 512, 512, 512) , _lowercase=(5, 2, 2, 2, 2, 2, 2) , _lowercase=(10, 3, 3, 3, 3, 2, 2) , _lowercase=False , _lowercase=128 , _lowercase=16 , _lowercase=False , _lowercase=True , _lowercase=0.05 , _lowercase=10 , _lowercase=2 , _lowercase=0.0 , _lowercase=10 , _lowercase=0 , _lowercase=320 , _lowercase=2 , _lowercase=0.1 , _lowercase=100 , _lowercase=256 , _lowercase=256 , _lowercase=0.1 , _lowercase="mean" , _lowercase=False , _lowercase=False , _lowercase=256 , _lowercase=80 , _lowercase=0 , _lowercase=1 , _lowercase=2 , _lowercase=0.5 , **_lowercase , ): '''simple docstring''' super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) __a : Union[str, Any] = hidden_size __a : Any = feat_extract_norm __a : Union[str, Any] = feat_extract_activation __a : Tuple = list(_lowercase ) __a : Dict = list(_lowercase ) __a : List[Any] = list(_lowercase ) __a : List[Any] = conv_bias __a : Optional[Any] = num_conv_pos_embeddings __a : Union[str, Any] = num_conv_pos_embedding_groups __a : Dict = len(self.conv_dim ) __a : Dict = num_hidden_layers __a : Union[str, Any] = intermediate_size __a : List[str] = hidden_act __a : int = num_attention_heads __a : int = hidden_dropout __a : Any = attention_dropout __a : List[Any] = activation_dropout __a : List[Any] = feat_proj_dropout __a : Union[str, Any] = final_dropout __a : str = layerdrop __a : Dict = layer_norm_eps __a : Dict = initializer_range __a : Union[str, Any] = num_ctc_classes __a : List[Any] = vocab_size __a : Any = do_stable_layer_norm __a : List[str] = use_weighted_layer_sum __a : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a : Dict = apply_spec_augment __a : Union[str, Any] = mask_time_prob __a : List[str] = mask_time_length __a : Dict = mask_time_min_masks __a : List[Any] = mask_feature_prob __a : Tuple = mask_feature_length __a : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __a : List[Any] = num_codevectors_per_group __a : Union[str, Any] = num_codevector_groups __a : List[Any] = contrastive_logits_temperature __a : Any = feat_quantizer_dropout __a : Optional[int] = num_negatives __a : List[str] = codevector_dim __a : List[Any] = proj_codevector_dim __a : Tuple = diversity_loss_weight # ctc loss __a : Any = ctc_loss_reduction __a : List[str] = ctc_zero_infinity # pretraining loss __a : Tuple = replace_prob @property def lowerCAmelCase__(self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
63
1
def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' if length <= 0 or not isinstance(lowercase , lowercase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
70
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _A = logging.get_logger(__name__) # General docstring _A = """RegNetConfig""" # Base docstring _A = """facebook/regnet-y-040""" _A = [1, 10_88, 7, 7] # Image classification docstring _A = """facebook/regnet-y-040""" _A = """tabby, tabby cat""" _A = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): def __init__( self , lowercase , lowercase = 3 , lowercase = 1 , lowercase = 1 , lowercase = "relu" , **lowercase , ) -> Any: '''simple docstring''' super().__init__(**lowercase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __SCREAMING_SNAKE_CASE : List[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __SCREAMING_SNAKE_CASE : Tuple = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=lowercase , strides=lowercase , padding='''VALID''' , groups=lowercase , use_bias=lowercase , name='''convolution''' , ) __SCREAMING_SNAKE_CASE : Any = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) __SCREAMING_SNAKE_CASE : List[Any] = ACTaFN[activation] if activation is not None else tf.identity def _snake_case ( self , lowercase ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = self.convolution(self.padding(lowercase ) ) __SCREAMING_SNAKE_CASE : int = self.normalization(lowercase ) __SCREAMING_SNAKE_CASE : Tuple = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): def __init__( self , lowercase , **lowercase ) -> Dict: '''simple docstring''' super().__init__(**lowercase ) __SCREAMING_SNAKE_CASE : str = config.num_channels __SCREAMING_SNAKE_CASE : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def _snake_case ( self , lowercase ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = shape_list(lowercase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.transpose(lowercase , perm=(0, 2, 3, 1) ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.embedder(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): def __init__( self , lowercase , lowercase = 2 , **lowercase ) -> str: '''simple docstring''' super().__init__(**lowercase ) __SCREAMING_SNAKE_CASE : Optional[Any] = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=1 , strides=lowercase , use_bias=lowercase , name='''convolution''' ) __SCREAMING_SNAKE_CASE : Any = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) def _snake_case ( self , lowercase , lowercase = False ) -> tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(lowercase ) , training=lowercase ) class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): def __init__( self , lowercase , lowercase , **lowercase ) -> List[Any]: '''simple docstring''' super().__init__(**lowercase ) __SCREAMING_SNAKE_CASE : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='''pooler''' ) __SCREAMING_SNAKE_CASE : Dict = [ tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def _snake_case ( self , lowercase ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = self.pooler(lowercase ) for layer_module in self.attention: __SCREAMING_SNAKE_CASE : Optional[Any] = layer_module(lowercase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_state * pooled return hidden_state class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ) -> int: '''simple docstring''' super().__init__(**lowercase ) __SCREAMING_SNAKE_CASE : int = in_channels != out_channels or stride != 1 __SCREAMING_SNAKE_CASE : Optional[int] = max(1 , out_channels // config.groups_width ) __SCREAMING_SNAKE_CASE : List[str] = ( TFRegNetShortCut(lowercase , stride=lowercase , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __SCREAMING_SNAKE_CASE : Union[str, Any] = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='''layer.2''' ), ] __SCREAMING_SNAKE_CASE : Optional[int] = ACTaFN[config.hidden_act] def _snake_case ( self , lowercase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = hidden_state for layer_module in self.layers: __SCREAMING_SNAKE_CASE : List[Any] = layer_module(lowercase ) __SCREAMING_SNAKE_CASE : Any = self.shortcut(lowercase ) hidden_state += residual __SCREAMING_SNAKE_CASE : str = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(**lowercase ) __SCREAMING_SNAKE_CASE : Tuple = in_channels != out_channels or stride != 1 __SCREAMING_SNAKE_CASE : Tuple = max(1 , out_channels // config.groups_width ) __SCREAMING_SNAKE_CASE : Tuple = ( TFRegNetShortCut(lowercase , stride=lowercase , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(lowercase , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='''layer.3''' ), ] __SCREAMING_SNAKE_CASE : Any = ACTaFN[config.hidden_act] def _snake_case ( self , lowercase ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE : int = hidden_state for layer_module in self.layers: __SCREAMING_SNAKE_CASE : Dict = layer_module(lowercase ) __SCREAMING_SNAKE_CASE : int = self.shortcut(lowercase ) hidden_state += residual __SCREAMING_SNAKE_CASE : int = self.activation(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): def __init__( self , lowercase , lowercase , lowercase , lowercase = 2 , lowercase = 2 , **lowercase ) -> int: '''simple docstring''' super().__init__(**lowercase ) __SCREAMING_SNAKE_CASE : Optional[Any] = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer __SCREAMING_SNAKE_CASE : Dict = [ # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , lowercase , stride=lowercase , name='''layers.0''' ), *[layer(lowercase , lowercase , lowercase , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def _snake_case ( self , lowercase ) -> List[str]: '''simple docstring''' for layer_module in self.layers: __SCREAMING_SNAKE_CASE : int = layer_module(lowercase ) return hidden_state class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): def __init__( self , lowercase , **lowercase ) -> Tuple: '''simple docstring''' super().__init__(**lowercase ) __SCREAMING_SNAKE_CASE : Optional[Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) __SCREAMING_SNAKE_CASE : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowercase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowercase , lowercase , lowercase , depth=lowercase , name=f"""stages.{i+1}""" ) ) def _snake_case ( self , lowercase , lowercase = False , lowercase = True ) -> TFBaseModelOutputWithNoAttention: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __SCREAMING_SNAKE_CASE : List[Any] = hidden_states + (hidden_state,) __SCREAMING_SNAKE_CASE : Optional[int] = stage_module(lowercase ) if output_hidden_states: __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowercase , hidden_states=lowercase ) @keras_serializable class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): __a : Any = RegNetConfig def __init__( self , lowercase , **lowercase ) -> Tuple: '''simple docstring''' super().__init__(**lowercase ) __SCREAMING_SNAKE_CASE : int = config __SCREAMING_SNAKE_CASE : List[Any] = TFRegNetEmbeddings(lowercase , name='''embedder''' ) __SCREAMING_SNAKE_CASE : Dict = TFRegNetEncoder(lowercase , name='''encoder''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='''pooler''' ) @unpack_inputs def _snake_case ( self , lowercase , lowercase = None , lowercase = None , lowercase = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __SCREAMING_SNAKE_CASE : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __SCREAMING_SNAKE_CASE : str = self.embedder(lowercase , training=lowercase ) __SCREAMING_SNAKE_CASE : Any = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) __SCREAMING_SNAKE_CASE : List[str] = encoder_outputs[0] __SCREAMING_SNAKE_CASE : Optional[Any] = self.pooler(lowercase ) # Change to NCHW output format have uniformity in the modules __SCREAMING_SNAKE_CASE : List[Any] = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) __SCREAMING_SNAKE_CASE : int = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __SCREAMING_SNAKE_CASE : Optional[Any] = tuple([tf.transpose(lowercase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE_ ( snake_case ): __a : int = RegNetConfig __a : List[Any] = '''regnet''' __a : Optional[int] = '''pixel_values''' @property def _snake_case ( self ) -> Any: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} _A = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ _A = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , snake_case , ) class SCREAMING_SNAKE_CASE_ ( snake_case ): def __init__( self , lowercase , *lowercase , **lowercase ) -> List[str]: '''simple docstring''' super().__init__(lowercase , *lowercase , **lowercase ) __SCREAMING_SNAKE_CASE : Tuple = TFRegNetMainLayer(lowercase , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self , lowercase , lowercase = None , lowercase = None , lowercase=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __SCREAMING_SNAKE_CASE : Dict = return_dict if return_dict is not None else self.config.use_return_dict __SCREAMING_SNAKE_CASE : Union[str, Any] = self.regnet( pixel_values=lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , snake_case , ) class SCREAMING_SNAKE_CASE_ ( snake_case , snake_case ): def __init__( self , lowercase , *lowercase , **lowercase ) -> Optional[Any]: '''simple docstring''' super().__init__(lowercase , *lowercase , **lowercase ) __SCREAMING_SNAKE_CASE : Tuple = config.num_labels __SCREAMING_SNAKE_CASE : str = TFRegNetMainLayer(lowercase , name='''regnet''' ) # classification head __SCREAMING_SNAKE_CASE : List[Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __SCREAMING_SNAKE_CASE : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __SCREAMING_SNAKE_CASE : Union[str, Any] = self.regnet( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) __SCREAMING_SNAKE_CASE : Optional[int] = outputs.pooler_output if return_dict else outputs[1] __SCREAMING_SNAKE_CASE : str = self.classifier[0](lowercase ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.classifier[1](lowercase ) __SCREAMING_SNAKE_CASE : Tuple = None if labels is None else self.hf_compute_loss(labels=lowercase , logits=lowercase ) if not return_dict: __SCREAMING_SNAKE_CASE : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states )
158
0
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> Any: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , UpperCAmelCase__ ) lowercase_ : List[Any] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: lowercase_ : str = dataset_size < in_memory_max_size else: lowercase_ : List[Any] = False lowercase_ : Any = is_small_dataset(UpperCAmelCase__ ) assert result == expected
703
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _lowercase : Optional[Any] = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] _lowercase : List[Any] = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def lowerCamelCase ( ) -> List[str]: lowercase_ : str = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , bootstrap_aggregation=UpperCAmelCase__ , rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : int = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , bootstrap_aggregation=UpperCAmelCase__ , rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def lowerCamelCase ( ) -> Optional[Any]: lowercase_ : Tuple = """rougeLsum""" lowercase_ : Optional[Any] = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ , rouge_keys=[k] )[k] lowercase_ : Optional[Any] = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ , rouge_keys=[k] )[k] assert score > score_no_sep def lowerCamelCase ( ) -> List[Any]: lowercase_ : Optional[int] = ["""rouge1""", """rouge2""", """rougeL"""] lowercase_ : Tuple = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ , rouge_keys=UpperCAmelCase__ ) lowercase_ : Tuple = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ , rouge_keys=UpperCAmelCase__ ) assert score_sep == score_no_sep def lowerCamelCase ( ) -> Optional[Any]: lowercase_ : Union[str, Any] = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] lowercase_ : List[str] = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ ) == calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ ) def lowerCamelCase ( ) -> Union[str, Any]: lowercase_ : Optional[Any] = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] lowercase_ : List[Any] = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] lowercase_ : Optional[int] = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , rouge_keys=["""rougeLsum"""] , newline_sep=UpperCAmelCase__ )["""rougeLsum"""] lowercase_ : List[str] = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def lowerCamelCase ( ) -> Tuple: lowercase_ : Optional[int] = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) lowercase_ : List[Any] = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) ) assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = calculate_rouge_path( data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=UpperCAmelCase__ ) assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
30
0
from __future__ import annotations def lowerCamelCase__ ( a : list[int] , a : int ) -> list[int]: """simple docstring""" a__ :int = 0 a__ :Any = len(a ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: a__ :Any = i + 1 else: a__ :Tuple = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
395
def lowerCamelCase__ ( a : list , a : list , a : int , a : int , a : int ) -> int: """simple docstring""" if index == number_of_items: return 0 a__ :str = 0 a__ :Union[str, Any] = 0 a__ :Optional[int] = knapsack(a , a , a , a , index + 1 ) if weights[index] <= max_weight: a__ :str = values[index] + knapsack( a , a , a , max_weight - weights[index] , index + 1 ) return max(a , a ) if __name__ == "__main__": import doctest doctest.testmod()
395
1
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowercase_ = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: '''simple docstring''' warnings.warn(__A , __A ) requires_backends(__A , 'sklearn' ) return (preds == labels).mean() def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> int: '''simple docstring''' warnings.warn(__A , __A ) requires_backends(__A , 'sklearn' ) A__ = simple_accuracy(__A , __A ) A__ = fa_score(y_true=__A , y_pred=__A ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict ) -> List[Any]: '''simple docstring''' warnings.warn(__A , __A ) requires_backends(__A , 'sklearn' ) A__ = pearsonr(__A , __A )[0] A__ = spearmanr(__A , __A )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int ) -> Any: '''simple docstring''' warnings.warn(__A , __A ) requires_backends(__A , 'sklearn' ) assert len(__A ) == len(__A ), f'Predictions and labels have mismatched lengths {len(__A )} and {len(__A )}' if task_name == "cola": return {"mcc": matthews_corrcoef(__A , __A )} elif task_name == "sst-2": return {"acc": simple_accuracy(__A , __A )} elif task_name == "mrpc": return acc_and_fa(__A , __A ) elif task_name == "sts-b": return pearson_and_spearman(__A , __A ) elif task_name == "qqp": return acc_and_fa(__A , __A ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__A , __A )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__A , __A )} elif task_name == "qnli": return {"acc": simple_accuracy(__A , __A )} elif task_name == "rte": return {"acc": simple_accuracy(__A , __A )} elif task_name == "wnli": return {"acc": simple_accuracy(__A , __A )} elif task_name == "hans": return {"acc": simple_accuracy(__A , __A )} else: raise KeyError(__A ) def _snake_case( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: '''simple docstring''' warnings.warn(__A , __A ) requires_backends(__A , 'sklearn' ) if len(__A ) != len(__A ): raise ValueError(f'Predictions and labels have mismatched lengths {len(__A )} and {len(__A )}' ) if task_name == "xnli": return {"acc": simple_accuracy(__A , __A )} else: raise KeyError(__A )
701
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowercase_ = random.Random() def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int]=1.0 , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Tuple=None ) -> List[Any]: '''simple docstring''' if rng is None: A__ = global_rng A__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple,lowercase_ : str,lowercase_ : Optional[Any]=7,lowercase_ : Union[str, Any]=4_0_0,lowercase_ : Optional[int]=2_0_0_0,lowercase_ : Dict=2_0_4_8,lowercase_ : int=1_2_8,lowercase_ : str=1,lowercase_ : List[Any]=5_1_2,lowercase_ : Union[str, Any]=3_0,lowercase_ : Any=4_4_1_0_0,)-> Union[str, Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = min_seq_length A__ = max_seq_length A__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ = spectrogram_length A__ = feature_size A__ = num_audio_channels A__ = hop_length A__ = chunk_length A__ = sampling_rate def snake_case__ ( self : Tuple )-> Dict: '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def snake_case__ ( self : Tuple,lowercase_ : List[Any]=False,lowercase_ : Optional[int]=False )-> str: '''simple docstring''' def _flatten(lowercase_ : Any ): return list(itertools.chain(*lowercase_ ) ) if equal_length: A__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length,self.max_seq_length,self.seq_length_diff ) ] if numpify: A__ = [np.asarray(lowercase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = TvltFeatureExtractor def snake_case__ ( self : Optional[Any] )-> Dict: '''simple docstring''' A__ = TvltFeatureExtractionTester(self ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowercase_,'spectrogram_length' ) ) self.assertTrue(hasattr(lowercase_,'feature_size' ) ) self.assertTrue(hasattr(lowercase_,'num_audio_channels' ) ) self.assertTrue(hasattr(lowercase_,'hop_length' ) ) self.assertTrue(hasattr(lowercase_,'chunk_length' ) ) self.assertTrue(hasattr(lowercase_,'sampling_rate' ) ) def snake_case__ ( self : Dict )-> Any: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = feat_extract_first.save_pretrained(lowercase_ )[0] check_json_file_has_correct_format(lowercase_ ) A__ = self.feature_extraction_class.from_pretrained(lowercase_ ) A__ = feat_extract_first.to_dict() A__ = feat_extract_second.to_dict() A__ = dict_first.pop('mel_filters' ) A__ = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowercase_,lowercase_ ) ) self.assertEqual(lowercase_,lowercase_ ) def snake_case__ ( self : str )-> Dict: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = os.path.join(lowercase_,'feat_extract.json' ) feat_extract_first.to_json_file(lowercase_ ) A__ = self.feature_extraction_class.from_json_file(lowercase_ ) A__ = feat_extract_first.to_dict() A__ = feat_extract_second.to_dict() A__ = dict_first.pop('mel_filters' ) A__ = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowercase_,lowercase_ ) ) self.assertEqual(lowercase_,lowercase_ ) def snake_case__ ( self : Optional[int] )-> Optional[int]: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 A__ = [floats_list((1, x) )[0] for x in range(8_0_0,1_4_0_0,2_0_0 )] A__ = [np.asarray(lowercase_ ) for speech_input in speech_inputs] # Test not batched input A__ = feature_extractor(np_speech_inputs[0],return_tensors='np',sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched A__ = feature_extractor(lowercase_,return_tensors='np',sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking A__ = feature_extractor( lowercase_,return_tensors='np',sampling_rate=4_4_1_0_0,mask_audio=lowercase_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. A__ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] A__ = np.asarray(lowercase_ ) A__ = feature_extractor(lowercase_,return_tensors='np',sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def snake_case__ ( self : Optional[Any],lowercase_ : Tuple )-> Tuple: '''simple docstring''' A__ = load_dataset('hf-internal-testing/librispeech_asr_dummy','clean',split='validation' ) # automatic decoding with librispeech A__ = ds.sort('id' ).select(range(lowercase_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = self._load_datasamples(1 ) A__ = TvltFeatureExtractor() A__ = feature_extractor(lowercase_,return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape,(1, 1, 1_9_2, 1_2_8) ) A__ = torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2],lowercase_,atol=1E-4 ) )
586
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _snake_case = logging.get_logger(__name__) def A ( _lowerCamelCase ): '''simple docstring''' if isinstance(_lowerCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_lowerCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_lowerCamelCase ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class UpperCAmelCase_ ( a): lowerCamelCase__ = ["pixel_values"] def __init__( self, __a = True, __a = None, __a = PILImageResampling.BILINEAR, __a = True, __a = None, __a = True, __a = 1 / 255, __a = True, __a = None, __a = None, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : List[str] = size if size is not None else {"shortest_edge": 224} _lowerCAmelCase : List[str] = get_size_dict(__a, default_to_square=__a) _lowerCAmelCase : str = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowerCAmelCase : int = get_size_dict(__a, param_name="crop_size") _lowerCAmelCase : Dict = do_resize _lowerCAmelCase : Tuple = size _lowerCAmelCase : int = do_center_crop _lowerCAmelCase : Tuple = crop_size _lowerCAmelCase : Tuple = resample _lowerCAmelCase : Tuple = do_rescale _lowerCAmelCase : List[str] = rescale_factor _lowerCAmelCase : Union[str, Any] = do_normalize _lowerCAmelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self, __a, __a, __a = PILImageResampling.BILINEAR, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : Dict = get_size_dict(__a, default_to_square=__a) if "shortest_edge" in size: _lowerCAmelCase : Optional[int] = get_resize_output_image_size(__a, size["shortest_edge"], default_to_square=__a) elif "height" in size and "width" in size: _lowerCAmelCase : Tuple = (size["height"], size["width"]) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}") return resize(__a, size=__a, resample=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : Dict = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}") return center_crop(__a, size=(size["height"], size["width"]), data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a = None, **__a, ): '''simple docstring''' return rescale(__a, scale=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a, __a, __a = None, **__a, ): '''simple docstring''' return normalize(__a, mean=__a, std=__a, data_format=__a, **__a) def snake_case__ ( self, __a, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = ChannelDimension.FIRST, ): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. _lowerCAmelCase : Dict = to_numpy_array(__a) if do_resize: _lowerCAmelCase : str = self.resize(image=__a, size=__a, resample=__a) if do_center_crop: _lowerCAmelCase : List[str] = self.center_crop(__a, size=__a) if do_rescale: _lowerCAmelCase : Tuple = self.rescale(image=__a, scale=__a) if do_normalize: _lowerCAmelCase : Any = self.normalize(image=__a, mean=__a, std=__a) _lowerCAmelCase : Any = to_channel_dimension_format(__a, __a) return image def snake_case__ ( self, __a, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = None, __a = ChannelDimension.FIRST, **__a, ): '''simple docstring''' _lowerCAmelCase : List[str] = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : Dict = resample if resample is not None else self.resample _lowerCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : str = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : str = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : Optional[Any] = image_std if image_std is not None else self.image_std _lowerCAmelCase : Tuple = size if size is not None else self.size _lowerCAmelCase : List[str] = get_size_dict(__a, default_to_square=__a) _lowerCAmelCase : Dict = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : Dict = get_size_dict(__a, param_name="crop_size") if not valid_images(__a): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") _lowerCAmelCase : str = make_batched(__a) _lowerCAmelCase : int = [ [ self._preprocess_image( image=__a, do_resize=__a, size=__a, resample=__a, do_center_crop=__a, crop_size=__a, do_rescale=__a, rescale_factor=__a, do_normalize=__a, image_mean=__a, image_std=__a, data_format=__a, ) for img in video ] for video in videos ] _lowerCAmelCase : Optional[Any] = {"pixel_values": videos} return BatchFeature(data=__a, tensor_type=__a)
500
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class UpperCamelCase__( datasets.BeamBasedBuilder ): def a__( self : List[str] )-> int: """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=lowerCAmelCase , ) def a__( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[Any] )-> int: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def a__( self : int , lowerCAmelCase : Dict , lowerCAmelCase : List[str] )-> int: """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase ) class UpperCamelCase__( datasets.BeamBasedBuilder ): def a__( self : Optional[int] )-> str: """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=lowerCAmelCase , ) def a__( self : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def a__( self : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] )-> Optional[int]: """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase ) def lowerCamelCase__ ( ): '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def lowerCamelCase__ ( ): '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class UpperCamelCase__( lowerCAmelCase ): @require_beam def a__( self : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase = DummyBeamDataset(cache_dir=lowerCAmelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , lowerCAmelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , lowerCAmelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def a__( self : Optional[Any] )-> Tuple: """simple docstring""" import apache_beam as beam UpperCAmelCase = beam.io.parquetio.WriteToParquet UpperCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase = DummyBeamDataset(cache_dir=lowerCAmelCase , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: UpperCAmelCase = partial(lowerCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , lowerCAmelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , lowerCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def a__( self : Union[str, Any] )-> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase = DummyBeamDataset(cache_dir=lowerCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def a__( self : str )-> int: """simple docstring""" UpperCAmelCase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase = NestedBeamDataset(cache_dir=lowerCAmelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , lowerCAmelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , lowerCAmelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
210
0
'''simple docstring''' from __future__ import annotations import csv import requests from bsa import BeautifulSoup def _lowerCAmelCase ( lowercase : str = "" ) ->dict[str, float]: """simple docstring""" lowercase__ = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' lowercase__ = BeautifulSoup(requests.get(lowercase ).text , '''html.parser''' ) lowercase__ = soup.find_all('''td''' , attrs='''titleColumn''' ) lowercase__ = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(lowercase , lowercase ) } def _lowerCAmelCase ( lowercase : str = "IMDb_Top_250_Movies.csv" ) ->None: """simple docstring""" lowercase__ = get_imdb_top_aaa_movies() with open(lowercase , '''w''' , newline='''''' ) as out_file: lowercase__ = csv.writer(lowercase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
709
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _lowerCAmelCase ( lowercase : int ) ->Tuple: """simple docstring""" def is_in_circle(lowercase : float , lowercase : float ) -> bool: lowercase__ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowercase__ = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowercase ) ) # The ratio of the area for circle to square is pi/4. lowercase__ = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def _lowerCAmelCase ( lowercase : int , lowercase : Callable[[float], float] , lowercase : float = 0.0 , lowercase : float = 1.0 , ) ->float: """simple docstring""" return mean( function_to_integrate(uniform(lowercase , lowercase ) ) for _ in range(lowercase ) ) * (max_value - min_value) def _lowerCAmelCase ( lowercase : int , lowercase : float = 0.0 , lowercase : float = 1.0 ) ->None: """simple docstring""" def identity_function(lowercase : float ) -> float: return x lowercase__ = area_under_curve_estimator( lowercase , lowercase , lowercase , lowercase ) lowercase__ = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def _lowerCAmelCase ( lowercase : int ) ->None: """simple docstring""" def function_to_integrate(lowercase : float ) -> float: return sqrt(4.0 - x * x ) lowercase__ = area_under_curve_estimator( lowercase , lowercase , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
318
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { "google/mobilenet_v2_1.4_224": "https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json", "google/mobilenet_v2_1.0_224": "https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json", "google/mobilenet_v2_0.75_160": "https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json", "google/mobilenet_v2_0.35_96": "https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class a_ ( SCREAMING_SNAKE_CASE__ ): A = '''mobilenet_v2''' def __init__( self , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=224 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="relu6" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.8 , SCREAMING_SNAKE_CASE=0.0_2 , SCREAMING_SNAKE_CASE=0.0_0_1 , SCREAMING_SNAKE_CASE=255 , **SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = depth_multiplier SCREAMING_SNAKE_CASE_ = depth_divisible_by SCREAMING_SNAKE_CASE_ = min_depth SCREAMING_SNAKE_CASE_ = expand_ratio SCREAMING_SNAKE_CASE_ = output_stride SCREAMING_SNAKE_CASE_ = first_layer_is_expansion SCREAMING_SNAKE_CASE_ = finegrained_output SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = tf_padding SCREAMING_SNAKE_CASE_ = classifier_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = semantic_loss_ignore_index class a_ ( SCREAMING_SNAKE_CASE__ ): A = version.parse('''1.11''' ) @property def A_( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def A_( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def A_( self ) -> float: """simple docstring""" return 1e-4
205
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowercase ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' if not is_accelerate_available(): return method SCREAMING_SNAKE_CASE_ = version.parse(accelerate.__version__ ).base_version if version.parse(SCREAMING_SNAKE_CASE ) < version.parse('0.17.0' ): return method def wrapper(self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return wrapper
205
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase: Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase: Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase: Dict = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase: Dict = { """distilbert-base-uncased""": 512, """distilbert-base-uncased-distilled-squad""": 512, """distilbert-base-cased""": 512, """distilbert-base-cased-distilled-squad""": 512, """distilbert-base-german-cased""": 512, """distilbert-base-multilingual-cased""": 512, } UpperCAmelCase: List[Any] = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ : List[str] = DistilBertTokenizer def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=True ,UpperCAmelCase_="[UNK]" ,UpperCAmelCase_="[SEP]" ,UpperCAmelCase_="[PAD]" ,UpperCAmelCase_="[CLS]" ,UpperCAmelCase_="[MASK]" ,UpperCAmelCase_=True ,UpperCAmelCase_=None ,**UpperCAmelCase_ ,): super().__init__( UpperCAmelCase_ ,tokenizer_file=UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ,unk_token=UpperCAmelCase_ ,sep_token=UpperCAmelCase_ ,pad_token=UpperCAmelCase_ ,cls_token=UpperCAmelCase_ ,mask_token=UpperCAmelCase_ ,tokenize_chinese_chars=UpperCAmelCase_ ,strip_accents=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,UpperCAmelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" ,UpperCAmelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,UpperCAmelCase_ ) != tokenize_chinese_chars ): _lowercase : Optional[int] = getattr(UpperCAmelCase_ ,normalizer_state.pop("""type""" ) ) _lowercase : str = do_lower_case _lowercase : int = strip_accents _lowercase : List[Any] = tokenize_chinese_chars _lowercase : Union[str, Any] = normalizer_class(**UpperCAmelCase_ ) _lowercase : Optional[int] = do_lower_case def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): _lowercase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Optional[Any] = [self.sep_token_id] _lowercase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : int = self._tokenizer.model.save(UpperCAmelCase_ ,name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ )
708
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if n == 1 or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return 0 elif n == 2: return 1 else: _lowercase : int = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : str = 0 _lowercase : Any = 2 while digits < n: index += 1 _lowercase : Union[str, Any] = len(str(fibonacci(__UpperCAmelCase ) ) ) return index def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = 1000 ): return fibonacci_digits_index(__UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
600
0
from __future__ import annotations from cmath import sqrt def a_ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _lowerCamelCase : Any =b * b - 4 * a * c _lowerCamelCase : Tuple =(-b + sqrt(SCREAMING_SNAKE_CASE__ )) / (2 * a) _lowerCamelCase : Any =(-b - sqrt(SCREAMING_SNAKE_CASE__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def a_ ( ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : List[str] =quadratic_roots(a=5 , b=6 , c=1 ) print(F'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
464
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowerCamelCase = get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCamelCase = get_tests_dir('fixtures/vocab.json') lowerCamelCase = get_tests_dir('fixtures') class A ( unittest.TestCase ): UpperCamelCase__ : Dict =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] def lowerCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Dict =0 def lowerCamelCase ( self : str ) -> List[str]: """simple docstring""" _lowerCamelCase : List[Any] =AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : int ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : int =WavaVecaConfig() _lowerCamelCase : Dict =AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) _lowerCamelCase : Any =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) copyfile(lowercase_ , os.path.join(lowercase_ , 'vocab.json' ) ) _lowerCamelCase : Union[str, Any] =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : List[Any] =WavaVecaFeatureExtractor() _lowerCamelCase : List[str] =AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) _lowerCamelCase : str =WavaVecaProcessor(lowercase_ , lowercase_ ) # save in new folder processor.save_pretrained(lowercase_ ) # drop `processor_class` in tokenizer with open(os.path.join(lowercase_ , lowercase_ ) , 'r' ) as f: _lowerCamelCase : Optional[int] =json.load(lowercase_ ) config_dict.pop('processor_class' ) with open(os.path.join(lowercase_ , lowercase_ ) , 'w' ) as f: f.write(json.dumps(lowercase_ ) ) _lowerCamelCase : Optional[int] =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Optional[Any] =WavaVecaFeatureExtractor() _lowerCamelCase : Tuple =AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) _lowerCamelCase : Dict =WavaVecaProcessor(lowercase_ , lowercase_ ) # save in new folder processor.save_pretrained(lowercase_ ) # drop `processor_class` in feature extractor with open(os.path.join(lowercase_ , lowercase_ ) , 'r' ) as f: _lowerCamelCase : Union[str, Any] =json.load(lowercase_ ) config_dict.pop('processor_class' ) with open(os.path.join(lowercase_ , lowercase_ ) , 'w' ) as f: f.write(json.dumps(lowercase_ ) ) _lowerCamelCase : Optional[int] =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Optional[Any] =WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(lowercase_ ) # copy relevant files copyfile(lowercase_ , os.path.join(lowercase_ , 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(lowercase_ , lowercase_ ) , 'w' ) as f: f.write('{}' ) _lowerCamelCase : int =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : str ) -> Optional[int]: """simple docstring""" with self.assertRaises(lowercase_ ): _lowerCamelCase : int =AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): _lowerCamelCase : Union[str, Any] =AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ ) _lowerCamelCase : List[str] =AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) _lowerCamelCase : int =processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) _lowerCamelCase : Optional[int] =processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version _lowerCamelCase : int =AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ , use_fast=lowercase_ ) _lowerCamelCase : Optional[int] =new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def lowerCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) AutoProcessor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoProcessor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : str =CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : str =os.path.join(lowercase_ , 'vocab.txt' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCamelCase : List[Any] =CustomTokenizer(lowercase_ ) _lowerCamelCase : Optional[int] =CustomProcessor(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowercase_ ) _lowerCamelCase : List[Any] =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" class A ( UpperCamelCase_ ): UpperCamelCase__ : Optional[Any] =False class A ( UpperCamelCase_ ): UpperCamelCase__ : int =False class A ( UpperCamelCase_ ): UpperCamelCase__ : Union[str, Any] ='AutoFeatureExtractor' UpperCamelCase__ : str ='AutoTokenizer' UpperCamelCase__ : List[Any] =False try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) AutoProcessor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local classes. _lowerCamelCase : int =AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. _lowerCamelCase : int =AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. _lowerCamelCase : str =AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _lowerCamelCase : List[Any] =AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' ) def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" _lowerCamelCase : Any =AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' ) @is_staging_test class A ( unittest.TestCase ): UpperCamelCase__ : List[Any] =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCamelCase ( cls : int ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] =TOKEN HfFolder.save_token(lowercase_ ) @classmethod def lowerCamelCase ( cls : Optional[int] ) -> Union[str, Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-processor' ) except HTTPError: pass def lowerCamelCase ( self : str ) -> int: """simple docstring""" _lowerCamelCase : Tuple =WavaVecaProcessor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_ , 'test-processor' ) , push_to_hub=lowercase_ , use_auth_token=self._token ) _lowerCamelCase : Union[str, Any] =WavaVecaProcessor.from_pretrained(F'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCamelCase ( self : str ) -> Tuple: """simple docstring""" _lowerCamelCase : int =WavaVecaProcessor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_ , 'test-processor-org' ) , push_to_hub=lowercase_ , use_auth_token=self._token , organization='valid_org' , ) _lowerCamelCase : str =WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() _lowerCamelCase : Optional[Any] =CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Dict =os.path.join(lowercase_ , 'vocab.txt' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCamelCase : Any =CustomTokenizer(lowercase_ ) _lowerCamelCase : List[Any] =CustomProcessor(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'''{USER}/test-dynamic-processor''' , token=self._token ) _lowerCamelCase : List[str] =Repository(lowercase_ , clone_from=F'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(lowercase_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowercase_ , 'tokenizer_config.json' ) ) as f: _lowerCamelCase : Union[str, Any] =json.load(lowercase_ ) self.assertDictEqual( tokenizer_config['auto_map'] , { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowercase_ , 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase_ , 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase_ , 'custom_processing.py' ) ) ) repo.push_to_hub() _lowerCamelCase : Tuple =AutoProcessor.from_pretrained(F'''{USER}/test-dynamic-processor''' , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
464
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_=False ): __SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): for i in range(config.num_hidden_layers ): if base_model: __SCREAMING_SNAKE_CASE = """""" else: __SCREAMING_SNAKE_CASE = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __SCREAMING_SNAKE_CASE = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] __SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] __SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def _lowerCAmelCase ( UpperCamelCase_ ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. __SCREAMING_SNAKE_CASE = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = dct.pop(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = val def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = ViTMSNConfig() __SCREAMING_SNAKE_CASE = 1000 __SCREAMING_SNAKE_CASE = """datasets/huggingface/label-files""" __SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ ) , """r""" ) ) __SCREAMING_SNAKE_CASE = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __SCREAMING_SNAKE_CASE = 384 __SCREAMING_SNAKE_CASE = 1536 __SCREAMING_SNAKE_CASE = 6 elif "l16" in checkpoint_url: __SCREAMING_SNAKE_CASE = 1024 __SCREAMING_SNAKE_CASE = 4096 __SCREAMING_SNAKE_CASE = 24 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 0.1 elif "b4" in checkpoint_url: __SCREAMING_SNAKE_CASE = 4 elif "l7" in checkpoint_url: __SCREAMING_SNAKE_CASE = 7 __SCREAMING_SNAKE_CASE = 1024 __SCREAMING_SNAKE_CASE = 4096 __SCREAMING_SNAKE_CASE = 24 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 0.1 __SCREAMING_SNAKE_CASE = ViTMSNModel(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location="""cpu""" )["""target_encoder"""] __SCREAMING_SNAKE_CASE = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = create_rename_keys(UpperCamelCase__ , base_model=UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ , base_model=UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" __SCREAMING_SNAKE_CASE = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) __SCREAMING_SNAKE_CASE = ViTImageProcessor( size=config.image_size , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) __SCREAMING_SNAKE_CASE = model(**UpperCamelCase__ ) __SCREAMING_SNAKE_CASE = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __SCREAMING_SNAKE_CASE = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: __SCREAMING_SNAKE_CASE = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: __SCREAMING_SNAKE_CASE = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: __SCREAMING_SNAKE_CASE = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: __SCREAMING_SNAKE_CASE = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase__ , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __magic_name__ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
715
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__=None , **lowerCAmelCase__): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""") __SCREAMING_SNAKE_CASE = model __SCREAMING_SNAKE_CASE = kwargs.get("""model_save_dir""" , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = kwargs.get("""latest_model_name""" , lowerCAmelCase__) def __call__( self , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = {k: np.array(lowerCAmelCase__) for k, v in kwargs.items()} return self.model.run(lowerCAmelCase__ , lowerCAmelCase__) @staticmethod def snake_case_ ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""") __SCREAMING_SNAKE_CASE = """CPUExecutionProvider""" return ort.InferenceSession(lowerCAmelCase__ , providers=[provider] , sess_options=lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = file_name if file_name is not None else ONNX_WEIGHTS_NAME __SCREAMING_SNAKE_CASE = self.model_save_dir.joinpath(self.latest_model_name) __SCREAMING_SNAKE_CASE = Path(lowerCAmelCase__).joinpath(lowerCAmelCase__) try: shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__) except shutil.SameFileError: pass # copy external weights (for models >2GB) __SCREAMING_SNAKE_CASE = self.model_save_dir.joinpath(lowerCAmelCase__) if src_path.exists(): __SCREAMING_SNAKE_CASE = Path(lowerCAmelCase__).joinpath(lowerCAmelCase__) try: shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__) except shutil.SameFileError: pass def snake_case_ ( self , lowerCAmelCase__ , **lowerCAmelCase__ , ): if os.path.isfile(lowerCAmelCase__): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) # saving model weights/files self._save_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def snake_case_ ( cls , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = OnnxRuntimeModel.load_model( os.path.join(lowerCAmelCase__ , lowerCAmelCase__) , provider=lowerCAmelCase__ , sess_options=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = Path(lowerCAmelCase__) # load model from hub else: # download model __SCREAMING_SNAKE_CASE = hf_hub_download( repo_id=lowerCAmelCase__ , filename=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = Path(lowerCAmelCase__).parent __SCREAMING_SNAKE_CASE = Path(lowerCAmelCase__).name __SCREAMING_SNAKE_CASE = OnnxRuntimeModel.load_model(lowerCAmelCase__ , provider=lowerCAmelCase__ , sess_options=lowerCAmelCase__) return cls(model=lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def snake_case_ ( cls , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = None if len(str(lowerCAmelCase__).split("""@""")) == 2: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = model_id.split("""@""") return cls._from_pretrained( model_id=lowerCAmelCase__ , revision=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
248
0
'''simple docstring''' import unittest from transformers import DonutProcessor __UpperCAmelCase = '''naver-clova-ix/donut-base''' class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = DonutProcessor.from_pretrained(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowerCAmelCase__ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowerCAmelCase__ = self.processor.tokenajson(lowerCamelCase_ ) self.assertDictEqual(lowerCamelCase_ , lowerCamelCase_ )
90
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "roberta-prelayernorm" def __init__( self , __lowerCamelCase=5_0_2_6_5 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase) _A : str = vocab_size _A : Union[str, Any] = hidden_size _A : Optional[int] = num_hidden_layers _A : Optional[Any] = num_attention_heads _A : List[Any] = hidden_act _A : Dict = intermediate_size _A : Tuple = hidden_dropout_prob _A : Optional[int] = attention_probs_dropout_prob _A : str = max_position_embeddings _A : Dict = type_vocab_size _A : str = initializer_range _A : str = layer_norm_eps _A : List[Any] = position_embedding_type _A : Union[str, Any] = use_cache _A : Union[str, Any] = classifier_dropout class lowerCAmelCase__ ( a): '''simple docstring''' @property def _lowerCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: _A : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
503
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
1
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: '''simple docstring''' def get_matched_characters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: snake_case : Dict = [] snake_case : List[str] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): snake_case : Optional[int] = int(max(0 , i - limit ) ) snake_case : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(SCREAMING_SNAKE_CASE__ ) snake_case : Tuple = F'{_stra[0:_stra.index(SCREAMING_SNAKE_CASE__ )]} {_stra[_stra.index(SCREAMING_SNAKE_CASE__ ) + 1:]}' return "".join(SCREAMING_SNAKE_CASE__ ) # matching characters snake_case : Union[str, Any] = get_matched_characters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case : List[str] = get_matched_characters(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case : Tuple = len(SCREAMING_SNAKE_CASE__ ) # transposition snake_case : List[Any] = ( len([(ca, ca) for ca, ca in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if ca != ca] ) // 2 ) if not match_count: snake_case : str = 0.0 else: snake_case : Dict = ( 1 / 3 * ( match_count / len(SCREAMING_SNAKE_CASE__ ) + match_count / len(SCREAMING_SNAKE_CASE__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters snake_case : Tuple = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
638
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = 200_0000 ) -> int: '''simple docstring''' snake_case : list[int] = [0] snake_case : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case : int = 0 # the area corresponding to the grid that gives the product closest to target snake_case : int = 0 # an estimate of b, using the quadratic formula snake_case : float # the largest integer less than b_estimate snake_case : int # the largest integer less than b_estimate snake_case : int # the triangle number corresponding to b_floor snake_case : int # the triangle number corresponding to b_ceil snake_case : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case : int = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case : Optional[int] = floor(SCREAMING_SNAKE_CASE__ ) snake_case : int = ceil(SCREAMING_SNAKE_CASE__ ) snake_case : Optional[Any] = triangle_numbers[b_floor] snake_case : Union[str, Any] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case : str = triangle_b_first_guess * triangle_a snake_case : int = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case : List[Any] = triangle_b_second_guess * triangle_a snake_case : Any = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
638
1
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["audio_values", "audio_mask"] def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = spectrogram( _UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase__ = is_batched_numpy or ( isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ): lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa ) elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], _UpperCAmelCase ): lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowercase__ = {"audio_values": padded_audio_features} lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase ) return encoded_inputs
668
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_: Dict = "pt" elif is_tf_available(): lowerCAmelCase_: Dict = "tf" else: lowerCAmelCase_: str = "jax" class a__ ( _a , unittest.TestCase ): snake_case_ = ByTaTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) ) lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase__ = " " + output_txt lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowercase__ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = "Unicode €." lowercase__ = tokenizer(_UpperCAmelCase ) lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" ) lowercase__ = tokenizer("e è é ê ë" ) lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase__ = list(batch.input_ids.numpy()[0] ) else: lowercase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", _UpperCAmelCase ) self.assertIn("attention_mask", _UpperCAmelCase ) self.assertNotIn("decoder_input_ids", _UpperCAmelCase ) self.assertNotIn("decoder_attention_mask", _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = [ "Summary of the text.", "Another summary.", ] lowercase__ = tokenizer( text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertEqual(32, targets["input_ids"].shape[1] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization. </s>"] lowercase__ = ["Summary of the text. </s>"] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] ) self.assertEqual(_UpperCAmelCase, batch["labels"][0] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )] lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == "" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowercase__ = 0 lowercase__ = tokenizer.convert_ids_to_tokens( _UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) for attr in attributes_list: setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
668
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class UpperCamelCase_ (SCREAMING_SNAKE_CASE_ ): __magic_name__ = "pegasus" __magic_name__ = ["past_key_values"] __magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any] , lowerCAmelCase_ : List[str]=50_265 , lowerCAmelCase_ : Dict=1_024 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Optional[Any]=4_096 , lowerCAmelCase_ : List[Any]=16 , lowerCAmelCase_ : List[Any]=12 , lowerCAmelCase_ : str=4_096 , lowerCAmelCase_ : Any=16 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : Any=1_024 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=0.0_2 , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : Union[str, Any]=0 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Union[str, Any]=1 , **lowerCAmelCase_ : Tuple , ) -> Tuple: UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : Optional[Any] = d_model UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : Optional[int] = encoder_layers UpperCAmelCase_ : str = encoder_attention_heads UpperCAmelCase_ : Dict = decoder_ffn_dim UpperCAmelCase_ : Dict = decoder_layers UpperCAmelCase_ : Optional[Any] = decoder_attention_heads UpperCAmelCase_ : Dict = dropout UpperCAmelCase_ : Optional[Any] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Any = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : List[str] = encoder_layerdrop UpperCAmelCase_ : int = decoder_layerdrop UpperCAmelCase_ : List[str] = use_cache UpperCAmelCase_ : Optional[int] = encoder_layers UpperCAmelCase_ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , **lowercase_ , ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.d_model
95
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
373
0
def _lowercase ( lowercase__ = 1_0_0_0 ): return sum(e for e in range(3 , lowercase__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
700
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
583
0
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() lowerCAmelCase : int = logging.get_logger('transformers.models.speecht5') lowerCAmelCase : Optional[int] = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } lowerCAmelCase : Any = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } lowerCAmelCase : Tuple = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } lowerCAmelCase : List[str] = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } lowerCAmelCase : int = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } lowerCAmelCase : Tuple = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } lowerCAmelCase : Any = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } lowerCAmelCase : List[Any] = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } lowerCAmelCase : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } lowerCAmelCase : str = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCAmelCase : str = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCAmelCase : Any = [] lowerCAmelCase : Union[str, Any] = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] lowerCAmelCase : List[Any] = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] lowerCAmelCase : str = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] lowerCAmelCase : int = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def A_( A : Optional[int] , A : List[Any] , A : Optional[int] , A : Dict , A : Any): for attribute in key.split('.'): UpperCamelCase = getattr(A , A) if weight_type is not None: UpperCamelCase = getattr(A , A).shape else: UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''') if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value elif weight_type == "running_mean": UpperCamelCase = value elif weight_type == "running_var": UpperCamelCase = value elif weight_type == "num_batches_tracked": UpperCamelCase = value else: UpperCamelCase = value logger.info(f'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''') def A_( A : Any , A : Optional[Any]): for key in ignore_keys: if key.endswith('.*'): if name.startswith(key[:-1]): return True elif ".*." in key: UpperCamelCase , UpperCamelCase = key.split('.*.') if prefix in name and suffix in name: return True elif key in name: return True return False def A_( A : List[Any] , A : Dict , A : Union[str, Any]): UpperCamelCase = [] if task == "s2t": UpperCamelCase = hf_model.speechta.encoder.prenet.feature_encoder UpperCamelCase = MAPPING_S2T UpperCamelCase = IGNORE_KEYS_S2T elif task == "t2s": UpperCamelCase = None UpperCamelCase = MAPPING_T2S UpperCamelCase = IGNORE_KEYS_T2S elif task == "s2s": UpperCamelCase = hf_model.speechta.encoder.prenet.feature_encoder UpperCamelCase = MAPPING_S2S UpperCamelCase = IGNORE_KEYS_S2S else: raise ValueError(f'''Unsupported task: {task}''') for name, value in fairseq_dict.items(): if should_ignore(A , A): logger.info(f'''{name} was ignored''') continue UpperCamelCase = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCamelCase , UpperCamelCase = key.split('.*.') if prefix in name and suffix in name: UpperCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(A)[0].split('.')[-2] UpperCamelCase = mapped_key.replace('*' , A) if "weight_g" in name: UpperCamelCase = 'weight_g' elif "weight_v" in name: UpperCamelCase = 'weight_v' elif "bias" in name: UpperCamelCase = 'bias' elif "weight" in name: UpperCamelCase = 'weight' elif "running_mean" in name: UpperCamelCase = 'running_mean' elif "running_var" in name: UpperCamelCase = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase = 'num_batches_tracked' else: UpperCamelCase = None set_recursively(A , A , A , A , A) continue if not is_used: unused_weights.append(A) logger.warning(f'''Unused weights: {unused_weights}''') def A_( A : Union[str, Any] , A : Union[str, Any] , A : Optional[Any] , A : Optional[Any] , A : int): UpperCamelCase = full_name.split('conv_layers.')[-1] UpperCamelCase = name.split('.') UpperCamelCase = int(items[0]) UpperCamelCase = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''') UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''') UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''') UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''') UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(A) @torch.no_grad() def A_( A : Optional[Any] , A : Tuple , A : str , A : List[str]=None , A : List[Any]=None , A : Any=None , ): if config_path is not None: UpperCamelCase = SpeechTaConfig.from_pretrained(A) else: UpperCamelCase = SpeechTaConfig() if task == "s2t": UpperCamelCase = config.max_text_positions UpperCamelCase = SpeechTaForSpeechToText(A) elif task == "t2s": UpperCamelCase = 1876 UpperCamelCase = 600 UpperCamelCase = config.max_speech_positions UpperCamelCase = SpeechTaForTextToSpeech(A) elif task == "s2s": UpperCamelCase = 1876 UpperCamelCase = config.max_speech_positions UpperCamelCase = SpeechTaForSpeechToSpeech(A) else: raise ValueError(f'''Unknown task name: {task}''') if vocab_path: UpperCamelCase = SpeechTaTokenizer(A , model_max_length=config.max_text_positions) # Mask token behaves like a normal word, i.e. include the space before it UpperCamelCase = AddedToken('<mask>' , lstrip=A , rstrip=A) UpperCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token}) tokenizer.add_tokens(['<ctc_blank>']) UpperCamelCase = SpeechTaFeatureExtractor() UpperCamelCase = SpeechTaProcessor(tokenizer=A , feature_extractor=A) processor.save_pretrained(A) UpperCamelCase = torch.load(A) recursively_load_weights(fairseq_checkpoint['model'] , A , A) model.save_pretrained(A) if repo_id: print('Pushing to the hub...') processor.push_to_hub(A) model.push_to_hub(A) if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) lowerCAmelCase : Any = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
3
class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase ): A__ = size A__ = [0] * size A__ = [0] * size @staticmethod def UpperCamelCase ( __lowerCamelCase ): return index | (index + 1) @staticmethod def UpperCamelCase ( __lowerCamelCase ): return (index & (index + 1)) - 1 def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = value while index < self.size: A__ = self.get_prev(__lowerCamelCase ) + 1 if current_left_border == index: A__ = value else: A__ = max(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) A__ = self.get_next(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): right -= 1 # Because of right is exclusive A__ = 0 while left <= right: A__ = self.get_prev(__lowerCamelCase ) if left <= current_left: A__ = max(__lowerCamelCase,self.tree[right] ) A__ = current_left else: A__ = max(__lowerCamelCase,self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
190
0
"""simple docstring""" def _a ( UpperCAmelCase__ ) -> list[int]: __SCREAMING_SNAKE_CASE = [0 for i in range(len(UpperCAmelCase__ ) )] # initialize interval's left pointer and right pointer __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 0 for i in range(1 , len(UpperCAmelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: __SCREAMING_SNAKE_CASE = min(right_pointer - i + 1 , z_result[i - left_pointer] ) __SCREAMING_SNAKE_CASE = min_edge while go_next(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = i, i + z_result[i] - 1 return z_result def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> bool: return i + z_result[i] < len(UpperCAmelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> int: __SCREAMING_SNAKE_CASE = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string __SCREAMING_SNAKE_CASE = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCAmelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ =logging.get_logger(__name__) def _a ( UpperCAmelCase__ ) -> Tuple: __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' ) if "model" in sd.keys(): __SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ , map_location='''cpu''' )['''model'''] # pop unnecessary weights __SCREAMING_SNAKE_CASE = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __SCREAMING_SNAKE_CASE = sd.pop(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __SCREAMING_SNAKE_CASE = sd[key] # We split QKV in separate Q,K,V __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __SCREAMING_SNAKE_CASE = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __SCREAMING_SNAKE_CASE = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(UpperCAmelCase__ , depth // 3 , dim=0 ) __SCREAMING_SNAKE_CASE = q __SCREAMING_SNAKE_CASE = k __SCREAMING_SNAKE_CASE = v del sd[key] return sd @torch.no_grad() def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = load_checkpoint(UpperCAmelCase__ ) if config is not None: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = OPTConfig() __SCREAMING_SNAKE_CASE = OPTModel(UpperCAmelCase__ ).half().eval() model.load_state_dict(UpperCAmelCase__ ) # Check results Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") lowerCAmelCase__ =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
690
1
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") __lowerCAmelCase : int =parser.parse_args() if args.model_type == "bert": __lowerCAmelCase : Any =BertForMaskedLM.from_pretrained(args.model_name) __lowerCAmelCase : Union[str, Any] ="""bert""" else: raise ValueError("""args.model_type should be \"bert\".""") __lowerCAmelCase : int =model.state_dict() __lowerCAmelCase : Optional[int] ={} for w in ["word_embeddings", "position_embeddings"]: __lowerCAmelCase : Union[str, Any] =state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: __lowerCAmelCase : Dict =state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] __lowerCAmelCase : Dict =0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: __lowerCAmelCase : Dict =state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] __lowerCAmelCase : int =state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] __lowerCAmelCase : Optional[int] =state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] __lowerCAmelCase : int =state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] __lowerCAmelCase : List[Any] =state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] __lowerCAmelCase : Optional[int] =state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] __lowerCAmelCase : str =state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] __lowerCAmelCase : List[str] =state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 __lowerCAmelCase : Union[str, Any] =state_dict["""cls.predictions.decoder.weight"""] __lowerCAmelCase : Union[str, Any] =state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: __lowerCAmelCase : List[str] =state_dict[F"""cls.predictions.transform.dense.{w}"""] __lowerCAmelCase : int =state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
359
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : str = TransfoXLTokenizer snake_case__ : Union[str, Any] = False snake_case__ : Union[str, Any] = False def A__ ( self ): """simple docstring""" super().setUp() lowercase = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" lowercase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = """<unk> UNwanted , running""" lowercase = """<unk> unwanted, running""" return input_text, output_text def A__ ( self ): """simple docstring""" lowercase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__lowerCAmelCase ) lowercase = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(__lowerCAmelCase , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [0, 4, 8, 7] ) def A__ ( self ): """simple docstring""" lowercase = TransfoXLTokenizer(lower_case=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def A__ ( self ): """simple docstring""" lowercase = TransfoXLTokenizer(lower_case=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def A__ ( self ): """simple docstring""" lowercase = TransfoXLTokenizer(lower_case=__lowerCAmelCase ) lowercase = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" lowercase = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowerCAmelCase ) , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_tokenizer() lowercase = len(__lowerCAmelCase ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowerCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
359
1
'''simple docstring''' import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _lowerCAmelCase : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _A ( ): snake_case__ : Optional[int] = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: snake_case__ : Dict = get_sagemaker_input() else: snake_case__ : List[Any] = get_cluster_input() return config def _A ( snake_case__ : Tuple=None ): if subparsers is not None: snake_case__ : Tuple = subparsers.add_parser('''config''' , description=snake_case__ ) else: snake_case__ : Dict = argparse.ArgumentParser('''Accelerate config command''' , description=snake_case__ ) parser.add_argument( '''--config_file''' , default=snake_case__ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=snake_case__ ) return parser def _A ( snake_case__ : List[str] ): snake_case__ : Optional[Any] = get_user_input() if args.config_file is not None: snake_case__ : List[Any] = args.config_file else: if not os.path.isdir(snake_case__ ): os.makedirs(snake_case__ ) snake_case__ : Any = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(snake_case__ ) else: config.to_yaml_file(snake_case__ ) print(f'''accelerate configuration saved at {config_file}''' ) def _A ( ): snake_case__ : Tuple = config_command_parser() snake_case__ : int = parser.parse_args() config_command(snake_case__ ) if __name__ == "__main__": main()
709
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCAmelCase : Union[str, Any] = "\nimport os\n" _lowerCAmelCase : Optional[int] = "\ndef foo():\n import os\n return False\n" _lowerCAmelCase : Union[str, Any] = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" _lowerCAmelCase : str = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : str = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" _lowerCAmelCase : Tuple = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" _lowerCAmelCase : List[str] = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" _lowerCAmelCase : Optional[int] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" _lowerCAmelCase : List[Any] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" _lowerCAmelCase : Tuple = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , snake_case__ ) def _A ( snake_case__ : List[str] , snake_case__ : Dict ): snake_case__ : str = os.path.join(snake_case__ , '''test_file.py''' ) with open(snake_case__ , '''w''' ) as _tmp_file: _tmp_file.write(snake_case__ ) snake_case__ : int = get_imports(snake_case__ ) assert parsed_imports == ["os"]
694
0
from statistics import mean import numpy as np def A__ ( _a : list , _a : list , _a : list , _a : int ): '''simple docstring''' snake_case__ : Dict =0 # Number of processes finished snake_case__ : List[str] =0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. snake_case__ : List[Any] =[0] * no_of_process # List to include calculation results snake_case__ : Optional[int] =[0] * no_of_process # Sort by arrival time. snake_case__ : List[str] =[burst_time[i] for i in np.argsort(_a )] snake_case__ : Tuple =[process_name[i] for i in np.argsort(_a )] arrival_time.sort() while no_of_process > finished_process_count: snake_case__ : Union[str, Any] =0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: snake_case__ : Optional[int] =arrival_time[i] snake_case__ : Optional[Any] =0 # Index showing the location of the process being performed snake_case__ : Tuple =0 # Saves the current response ratio. snake_case__ : int =0 for i in range(0 , _a ): if finished_process[i] == 0 and arrival_time[i] <= current_time: snake_case__ : Tuple =(burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: snake_case__ : List[str] =temp snake_case__ : List[Any] =i # Calculate the turn around time snake_case__ : Dict =current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. snake_case__ : Dict =1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def A__ ( _a : list , _a : list , _a : list , _a : int ): '''simple docstring''' snake_case__ : Optional[int] =[0] * no_of_process for i in range(0 , _a ): snake_case__ : int =turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": __lowerCamelCase : Optional[int] = 5 __lowerCamelCase : int = ["""A""", """B""", """C""", """D""", """E"""] __lowerCamelCase : Any = [1, 2, 3, 4, 5] __lowerCamelCase : str = [1, 2, 3, 4, 5] __lowerCamelCase : str = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) __lowerCamelCase : str = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( F"{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t" F"{turn_around_time[i]}\t\t\t{waiting_time[i]}" ) print(F"average waiting time : {mean(waiting_time):.5f}") print(F"average turn around time : {mean(turn_around_time):.5f}")
385
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __lowerCamelCase : Optional[Any] = { """configuration_ernie""": ["""ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ErnieConfig""", """ErnieOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ErnieForCausalLM""", """ErnieForMaskedLM""", """ErnieForMultipleChoice""", """ErnieForNextSentencePrediction""", """ErnieForPreTraining""", """ErnieForQuestionAnswering""", """ErnieForSequenceClassification""", """ErnieForTokenClassification""", """ErnieModel""", """ErniePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
385
1
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCAmelCase__ = get_tests_dir("fixtures/dummy-config.json") class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : Dict ) -> List[Any]: UpperCAmelCase = 0 def _UpperCamelCase ( self : Optional[int] ) -> Dict: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _UpperCamelCase ( self : Dict ) -> Optional[Any]: UpperCAmelCase = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self : str ) -> int: UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self : str ) -> Any: UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self : Union[str, Any] ) -> Dict: UpperCAmelCase = AutoConfig.for_model("roberta" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self : int ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. UpperCAmelCase = os.path.join(lowerCAmelCase__ , "fake-roberta" ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(type(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _UpperCamelCase ( self : Union[str, Any] ) -> List[str]: try: AutoConfig.register("custom" , lowerCAmelCase__ ) # Wrong model type will raise an error with self.assertRaises(lowerCAmelCase__ ): AutoConfig.register("model" , lowerCAmelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__ ): AutoConfig.register("bert" , lowerCAmelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: with self.assertRaisesRegex( lowerCAmelCase__ , "bert-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase = AutoConfig.from_pretrained("bert-base" ) def _UpperCamelCase ( self : int ) -> int: with self.assertRaisesRegex( lowerCAmelCase__ , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase__ , revision="aaaaaa" ) def _UpperCamelCase ( self : Any ) -> Optional[int]: with self.assertRaisesRegex( lowerCAmelCase__ , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): UpperCAmelCase = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _UpperCamelCase ( self : str ) -> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase__ ): UpperCAmelCase = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase__ ): UpperCAmelCase = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ ) UpperCAmelCase = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase__ , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def _UpperCamelCase ( self : Tuple ) -> Tuple: class __magic_name__ ( _snake_case ): UpperCAmelCase = """new-model""" try: AutoConfig.register("new-model" , lowerCAmelCase__ ) # If remote code is not set, the default is to use local UpperCAmelCase = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. UpperCAmelCase = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub UpperCAmelCase = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
709
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase__ = {"UserAgent": UserAgent().random} def _lowerCAmelCase( __A ): UpperCAmelCase = script.contents[0] UpperCAmelCase = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __magic_name__ : def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Any: UpperCAmelCase = f"https://www.instagram.com/{username}/" UpperCAmelCase = self.get_json() def _UpperCamelCase ( self : List[str] ) -> dict: UpperCAmelCase = requests.get(self.url , headers=lowerCAmelCase__ ).text UpperCAmelCase = BeautifulSoup(lowerCAmelCase__ , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Tuple ) -> str: return f"{self.__class__.__name__}('{self.username}')" def __str__( self : Optional[int] ) -> str: return f"{self.fullname} ({self.username}) is {self.biography}" @property def _UpperCamelCase ( self : Any ) -> str: return self.user_data["username"] @property def _UpperCamelCase ( self : List[Any] ) -> str: return self.user_data["full_name"] @property def _UpperCamelCase ( self : List[str] ) -> str: return self.user_data["biography"] @property def _UpperCamelCase ( self : Optional[int] ) -> str: return self.user_data["business_email"] @property def _UpperCamelCase ( self : str ) -> str: return self.user_data["external_url"] @property def _UpperCamelCase ( self : int ) -> int: return self.user_data["edge_followed_by"]["count"] @property def _UpperCamelCase ( self : List[Any] ) -> int: return self.user_data["edge_follow"]["count"] @property def _UpperCamelCase ( self : List[str] ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _UpperCamelCase ( self : Tuple ) -> str: return self.user_data["profile_pic_url_hd"] @property def _UpperCamelCase ( self : Optional[int] ) -> bool: return self.user_data["is_verified"] @property def _UpperCamelCase ( self : Optional[Any] ) -> bool: return self.user_data["is_private"] def _lowerCAmelCase( __A = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCAmelCase = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = InstagramUser("github") print(instagram_user) print(f"{instagram_user.number_of_posts = }") print(f"{instagram_user.number_of_followers = }") print(f"{instagram_user.number_of_followings = }") print(f"{instagram_user.email = }") print(f"{instagram_user.website = }") print(f"{instagram_user.profile_picture_url = }") print(f"{instagram_user.is_verified = }") print(f"{instagram_user.is_private = }")
1
0
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =set() # edges = list of graph's edges UpperCAmelCase_ =get_edges(lowercase__ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: UpperCAmelCase_ , UpperCAmelCase_ =edges.pop() chosen_vertices.add(lowercase__ ) chosen_vertices.add(lowercase__ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowercase__ ) return chosen_vertices def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
54
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __snake_case :List[Any] = logging.get_logger(__name__) class _A ( _snake_case ): def __init__( self : Dict , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : str): '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_)
720
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __snake_case :Dict = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class _A ( __UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : List[str] = GPTSwaTokenizer UpperCamelCase__ : Dict = False UpperCamelCase__ : int = True UpperCamelCase__ : List[Any] = False def _lowerCamelCase ( self : List[Any]): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a = GPTSwaTokenizer(__SCREAMING_SNAKE_CASE , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''') tokenizer.save_pretrained(self.tmpdirname) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' __a = '''This is a test''' __a = '''This is a test''' return input_text, output_text def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = '''<s>''' __a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''j''') self.assertEqual(len(__SCREAMING_SNAKE_CASE) , 2_000) def _lowerCamelCase ( self : Dict): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 2_000) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = GPTSwaTokenizer(__SCREAMING_SNAKE_CASE) __a = tokenizer.tokenize('''This is a test''') self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE) , [465, 287, 265, 631, 842]) __a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') # fmt: off self.assertListEqual( __SCREAMING_SNAKE_CASE , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on __a = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE) self.assertListEqual( __SCREAMING_SNAKE_CASE , [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) __a = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE) # fmt: off self.assertListEqual( __SCREAMING_SNAKE_CASE , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.''']) # fmt: on def _lowerCamelCase ( self : Any): '''simple docstring''' __a = GPTSwaTokenizer(__SCREAMING_SNAKE_CASE) __a = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] __a = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): self.assertListEqual(tokenizer.encode_fast(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) # Test that decode_fast returns the input text for text, token_ids in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): self.assertEqual(tokenizer.decode_fast(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Any): '''simple docstring''' __a = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off __a = {'''input_ids''': [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=__SCREAMING_SNAKE_CASE , )
60
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCamelCase = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
71
"""simple docstring""" from itertools import count def __magic_name__ ( _lowerCamelCase: int = 50 ) -> int: '''simple docstring''' lowerCAmelCase = [1] * min_block_length for n in count(_lowerCamelCase ): fill_count_functions.append(1 ) for block_length in range(_lowerCamelCase, n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_000_000: break return n if __name__ == "__main__": print(f"""{solution() = }""")
535
0
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __snake_case :Tuple ='src/transformers' __snake_case :Dict ='docs/source/en' __snake_case :Dict ='.' def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' with open(lowerCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: A = f.readlines() # Find the start prompt. A = 0 while not lines[start_index].startswith(lowerCAmelCase__ ): start_index += 1 start_index += 1 A = start_index while not lines[end_index].startswith(lowerCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __snake_case :List[Any] ='Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. __snake_case :List[Any] =re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') __snake_case :List[str] =re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __snake_case :Tuple =re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. __snake_case :int =direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase_ ( lowerCAmelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' A = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowerCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' A = 2 if text == '✅' or text == '❌' else len(lowerCAmelCase__ ) A = (width - text_length) // 2 A = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase_ ( ) -> Any: '''simple docstring''' A = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES A = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } A = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. A = collections.defaultdict(lowerCAmelCase__ ) A = collections.defaultdict(lowerCAmelCase__ ) A = collections.defaultdict(lowerCAmelCase__ ) A = collections.defaultdict(lowerCAmelCase__ ) A = collections.defaultdict(lowerCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCAmelCase__ ): A = None if attr_name.endswith('Tokenizer' ): A = slow_tokenizers A = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): A = fast_tokenizers A = attr_name[:-13] elif _re_tf_models.match(lowerCAmelCase__ ) is not None: A = tf_models A = _re_tf_models.match(lowerCAmelCase__ ).groups()[0] elif _re_flax_models.match(lowerCAmelCase__ ) is not None: A = flax_models A = _re_flax_models.match(lowerCAmelCase__ ).groups()[0] elif _re_pt_models.match(lowerCAmelCase__ ) is not None: A = pt_models A = _re_pt_models.match(lowerCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): A = True break # Try again after removing the last word in the name A = ''.join(camel_case_split(lowerCAmelCase__ )[:-1] ) # Let's build that table! A = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) A = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). A = [len(lowerCAmelCase__ ) + 2 for c in columns] A = max([len(lowerCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se A = '|' + '|'.join([_center_text(lowerCAmelCase__ , lowerCAmelCase__ ) for c, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" A = {True: '✅', False: '❌'} for name in model_names: A = model_name_to_prefix[name] A = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCAmelCase__ , lowerCAmelCase__ ) for l, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] ) + "|\n" return table def lowerCamelCase_ ( lowerCAmelCase__ : Tuple=False ) -> List[str]: '''simple docstring''' A , A , A , A = _find_text_in_file( filename=os.path.join(lowerCAmelCase__ , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) A = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCAmelCase__ , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": __snake_case :List[Any] =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __snake_case :List[Any] =parser.parse_args() check_model_table(args.fix_and_overwrite)
224
from __future__ import annotations class lowerCAmelCase__ : def __init__( self : Dict , __UpperCamelCase : list[list[int]] ) -> List[Any]: A = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(__UpperCamelCase ) != 0: A = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__UpperCamelCase ) != cols: raise error for value in row: if not isinstance(__UpperCamelCase , (int, float) ): raise error A = rows else: A = [] def __UpperCamelCase ( self : Tuple ) -> list[list[int]]: return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def __UpperCamelCase ( self : Optional[Any] ) -> int: return len(self.rows ) @property def __UpperCamelCase ( self : Optional[Any] ) -> int: return len(self.rows[0] ) @property def __UpperCamelCase ( self : str ) -> tuple[int, int]: return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Optional[int] ) -> bool: return self.order[0] == self.order[1] def __UpperCamelCase ( self : Optional[Any] ) -> Matrix: A = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def __UpperCamelCase ( self : List[str] ) -> bool: return bool(self.determinant() ) def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : int ) -> int: A = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__UpperCamelCase ).determinant() def __UpperCamelCase ( self : Dict , __UpperCamelCase : int , __UpperCamelCase : int ) -> int: if (row + column) % 2 == 0: return self.get_minor(__UpperCamelCase , __UpperCamelCase ) return -1 * self.get_minor(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> Matrix: return Matrix( [ [self.get_minor(__UpperCamelCase , __UpperCamelCase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def __UpperCamelCase ( self : str ) -> Matrix: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def __UpperCamelCase ( self : Optional[int] ) -> Matrix: A = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__UpperCamelCase ) def __UpperCamelCase ( self : Dict ) -> Matrix: A = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self : Dict ) -> str: return str(self.rows ) def __str__( self : List[str] ) -> str: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(__UpperCamelCase ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def __UpperCamelCase ( self : List[str] , __UpperCamelCase : list[int] , __UpperCamelCase : int | None = None ) -> None: A = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise type_error for value in row: if not isinstance(__UpperCamelCase , (int, float) ): raise type_error if len(__UpperCamelCase ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(__UpperCamelCase ) else: A = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Any , __UpperCamelCase : list[int] , __UpperCamelCase : int | None = None ) -> None: A = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise type_error for value in column: if not isinstance(__UpperCamelCase , (int, float) ): raise type_error if len(__UpperCamelCase ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: A = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: A = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Tuple , __UpperCamelCase : object ) -> bool: if not isinstance(__UpperCamelCase , __UpperCamelCase ): return NotImplemented return self.rows == other.rows def __ne__( self : Optional[int] , __UpperCamelCase : object ) -> bool: return not self == other def __neg__( self : List[str] ) -> Matrix: return self * -1 def __add__( self : str , __UpperCamelCase : Matrix ) -> Matrix: if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Dict , __UpperCamelCase : Matrix ) -> Matrix: if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : str , __UpperCamelCase : Matrix | int | float ) -> Matrix: if isinstance(__UpperCamelCase , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(__UpperCamelCase , __UpperCamelCase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self : Dict , __UpperCamelCase : int ) -> Matrix: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) A = self for _ in range(other - 1 ): result *= self return result @classmethod def __UpperCamelCase ( cls : List[Any] , __UpperCamelCase : list[int] , __UpperCamelCase : list[int] ) -> int: return sum(row[i] * column[i] for i in range(len(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
224
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def __lowercase ( snake_case, snake_case=False ): """simple docstring""" try: __magic_name__ :List[str] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __magic_name__ :Dict = default else: # KEY is set, convert it to True or False. try: __magic_name__ :int = strtobool(snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value SCREAMING_SNAKE_CASE__ : Union[str, Any] = parse_flag_from_env("""RUN_SLOW""", default=False) SCREAMING_SNAKE_CASE__ : Dict = parse_flag_from_env("""RUN_REMOTE""", default=False) SCREAMING_SNAKE_CASE__ : Any = parse_flag_from_env("""RUN_LOCAL""", default=True) SCREAMING_SNAKE_CASE__ : Dict = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression SCREAMING_SNAKE_CASE__ : Optional[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") SCREAMING_SNAKE_CASE__ : Dict = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") SCREAMING_SNAKE_CASE__ : Optional[int] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio SCREAMING_SNAKE_CASE__ : List[str] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam SCREAMING_SNAKE_CASE__ : Dict = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE__ : Tuple = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows SCREAMING_SNAKE_CASE__ : Union[str, Any] = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def __lowercase ( snake_case ): """simple docstring""" try: import faiss # noqa except ImportError: __magic_name__ :Optional[Any] = unittest.skip('''test requires faiss''' )(snake_case ) return test_case def __lowercase ( snake_case ): """simple docstring""" try: import regex # noqa except ImportError: __magic_name__ :Union[str, Any] = unittest.skip('''test requires regex''' )(snake_case ) return test_case def __lowercase ( snake_case ): """simple docstring""" try: import elasticsearch # noqa except ImportError: __magic_name__ :Optional[int] = unittest.skip('''test requires elasticsearch''' )(snake_case ) return test_case def __lowercase ( snake_case ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: __magic_name__ :Tuple = unittest.skip('''test requires sqlalchemy''' )(snake_case ) return test_case def __lowercase ( snake_case ): """simple docstring""" if not config.TORCH_AVAILABLE: __magic_name__ :Optional[int] = unittest.skip('''test requires PyTorch''' )(snake_case ) return test_case def __lowercase ( snake_case ): """simple docstring""" if not config.TF_AVAILABLE: __magic_name__ :Tuple = unittest.skip('''test requires TensorFlow''' )(snake_case ) return test_case def __lowercase ( snake_case ): """simple docstring""" if not config.JAX_AVAILABLE: __magic_name__ :Optional[int] = unittest.skip('''test requires JAX''' )(snake_case ) return test_case def __lowercase ( snake_case ): """simple docstring""" if not config.PIL_AVAILABLE: __magic_name__ :Tuple = unittest.skip('''test requires Pillow''' )(snake_case ) return test_case def __lowercase ( snake_case ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(snake_case ) else: return test_case def __lowercase ( snake_case ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(snake_case ) else: return test_case def __lowercase ( snake_case ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(snake_case ) else: return test_case def __lowercase ( snake_case ): """simple docstring""" def _require_spacy_model(snake_case ): try: import spacy # noqa F401 spacy.load(snake_case ) except ImportError: return unittest.skip('''test requires spacy''' )(snake_case ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(snake_case ) )(snake_case ) else: return test_case return _require_spacy_model def __lowercase ( snake_case ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(snake_case ) else: return test_case def __lowercase ( snake_case ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(snake_case ) else: return test_case def __lowercase ( snake_case ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: __magic_name__ :List[str] = unittest.skip('''test is slow''' )(snake_case ) return test_case def __lowercase ( snake_case ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: __magic_name__ :Optional[Any] = unittest.skip('''test is local''' )(snake_case ) return test_case def __lowercase ( snake_case ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: __magic_name__ :List[str] = unittest.skip('''test is packaged''' )(snake_case ) return test_case def __lowercase ( snake_case ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: __magic_name__ :Any = unittest.skip('''test requires remote''' )(snake_case ) return test_case def __lowercase ( *snake_case ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(snake_case ) and name.startswith('''test''' ): for decorator in decorators: __magic_name__ :List[Any] = decorator(snake_case ) setattr(cls, snake_case, snake_case ) return cls return decorate class lowerCamelCase_ ( lowerCamelCase ): pass class lowerCamelCase_ ( lowerCamelCase ): a__ = 0 a__ = 1 a__ = 2 @contextmanager def __lowercase ( snake_case=OfflineSimulationMode.CONNECTION_FAILS, snake_case=1E-1_6 ): """simple docstring""" __magic_name__ :Optional[Any] = requests.Session().request def timeout_request(snake_case, snake_case, snake_case, **snake_case ): # Change the url to an invalid url so that the connection hangs __magic_name__ :str = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) __magic_name__ :Any = timeout try: return online_request(snake_case, snake_case, **snake_case ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __magic_name__ :int = url __magic_name__ :int = e.args[0] __magic_name__ :Optional[int] = (max_retry_error.args[0].replace('''10.255.255.1''', f'''OfflineMock[{url}]''' ),) __magic_name__ :List[str] = (max_retry_error,) raise def raise_connection_error(snake_case, snake_case, **snake_case ): raise requests.ConnectionError('''Offline mode is enabled.''', request=snake_case ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''', snake_case ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''', snake_case ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''', snake_case ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __lowercase ( *snake_case, **snake_case ): """simple docstring""" __magic_name__ :List[Any] = str(Path().resolve() ) with tempfile.TemporaryDirectory(*snake_case, **snake_case ) as tmp_dir: try: os.chdir(snake_case ) yield finally: os.chdir(snake_case ) @contextmanager def __lowercase ( ): """simple docstring""" import gc gc.collect() __magic_name__ :List[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __lowercase ( ): """simple docstring""" import gc gc.collect() __magic_name__ :Optional[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __lowercase ( snake_case, snake_case ): """simple docstring""" return deepcopy(snake_case ).integers(0, 1_0_0, 1_0 ).tolist() == deepcopy(snake_case ).integers(0, 1_0_0, 1_0 ).tolist() def __lowercase ( snake_case ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(snake_case, *snake_case, **snake_case ): try: return func(*snake_case, **snake_case ) except HTTPError as err: if str(snake_case ).startswith('''500''' ) or str(snake_case ).startswith('''502''' ): pytest.xfail(str(snake_case ) ) raise err return decorator.decorator(_wrapper, snake_case ) class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :str = returncode __magic_name__ :Any = stdout __magic_name__ :str = stderr async def __lowercase ( snake_case, snake_case ): """simple docstring""" while True: __magic_name__ :Optional[int] = await stream.readline() if line: callback(snake_case ) else: break async def __lowercase ( snake_case, snake_case=None, snake_case=None, snake_case=None, snake_case=False, snake_case=False ): """simple docstring""" if echo: print('''\nRunning: ''', ''' '''.join(snake_case ) ) __magic_name__ :Optional[int] = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], stdin=snake_case, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=snake_case, ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __magic_name__ :Any = [] __magic_name__ :Optional[Any] = [] def tee(snake_case, snake_case, snake_case, snake_case="" ): __magic_name__ :Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(snake_case ) if not quiet: print(snake_case, snake_case, file=snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout, lambda snake_case : tee(snake_case, snake_case, sys.stdout, label='''stdout:''' ) ), _read_stream(p.stderr, lambda snake_case : tee(snake_case, snake_case, sys.stderr, label='''stderr:''' ) ), ], timeout=snake_case, ) return _RunOutput(await p.wait(), snake_case, snake_case ) def __lowercase ( snake_case, snake_case=None, snake_case=None, snake_case=1_8_0, snake_case=False, snake_case=True ): """simple docstring""" __magic_name__ :Union[str, Any] = asyncio.get_event_loop() __magic_name__ :List[Any] = loop.run_until_complete( _stream_subprocess(snake_case, env=snake_case, stdin=snake_case, timeout=snake_case, quiet=snake_case, echo=snake_case ) ) __magic_name__ :str = ''' '''.join(snake_case ) if result.returncode > 0: __magic_name__ :Tuple = '''\n'''.join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' ) return result def __lowercase ( ): """simple docstring""" __magic_name__ :str = os.environ.get('''PYTEST_XDIST_WORKER''', '''gw0''' ) __magic_name__ :Union[str, Any] = re.sub(R'''^gw''', '''''', snake_case, 0, re.M ) return int(snake_case ) def __lowercase ( ): """simple docstring""" __magic_name__ :Union[str, Any] = 2_9_5_0_0 __magic_name__ :List[Any] = pytest_xdist_worker_id() return port + uniq_delta
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: PreTrainedTokenizer , _lowerCamelCase: int , _lowerCamelCase: Optional[int] = None , ): __SCREAMING_SNAKE_CASE : Union[str, Any] = {} if train_file is not None: __SCREAMING_SNAKE_CASE : Any = [train_file] if eval_file is not None: __SCREAMING_SNAKE_CASE : Any = [eval_file] if test_file is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = [test_file] __SCREAMING_SNAKE_CASE : Optional[Any] = datasets.load_dataset("""csv""" , data_files=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = list(ds[list(files.keys() )[0]].features.keys() ) __SCREAMING_SNAKE_CASE : Dict = features_name.pop(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = list(set(ds[list(files.keys() )[0]][label_name] ) ) __SCREAMING_SNAKE_CASE : str = {label: i for i, label in enumerate(_lowerCamelCase )} __SCREAMING_SNAKE_CASE : Any = tokenizer.model_input_names __SCREAMING_SNAKE_CASE : Any = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): __SCREAMING_SNAKE_CASE : Optional[int] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): __SCREAMING_SNAKE_CASE : int = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __SCREAMING_SNAKE_CASE : int = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __SCREAMING_SNAKE_CASE : str = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE : int = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __SCREAMING_SNAKE_CASE : Optional[int] = {k: v for k, v in ex.items() if k in input_names} __SCREAMING_SNAKE_CASE : str = labelaid[ex[label_name]] yield (d, label) __SCREAMING_SNAKE_CASE : Tuple = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __SCREAMING_SNAKE_CASE : Dict = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __SCREAMING_SNAKE_CASE : Any = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __SCREAMING_SNAKE_CASE : Optional[int] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCamelCase__ : List[str] = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' _A : int = field(metadata={'''help''': '''Which column contains the label'''} ) _A : str = field(default=lowerCamelCase__ , metadata={'''help''': '''The path of the training file'''} ) _A : Optional[str] = field(default=lowerCamelCase__ , metadata={'''help''': '''The path of the development file'''} ) _A : Optional[str] = field(default=lowerCamelCase__ , metadata={'''help''': '''The path of the test file'''} ) _A : int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _A : bool = field( default=lowerCamelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _UpperCamelCase : '''simple docstring''' _A : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _A : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _A : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _A : bool = field(default=lowerCamelCase__ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _A : Optional[str] = field( default=lowerCamelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __SCREAMING_SNAKE_CASE : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( F"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " F"16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCamelCase: EvalPrediction ) -> Dict: __SCREAMING_SNAKE_CASE : List[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __SCREAMING_SNAKE_CASE : List[Any] = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __SCREAMING_SNAKE_CASE : Dict = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.evaluate() __SCREAMING_SNAKE_CASE : List[str] = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(_lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
578
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: '''simple docstring''' A__ = 384 if "tiny" in model_name: A__ = [3, 3, 9, 3] A__ = [96, 192, 384, 768] if "small" in model_name: A__ = [3, 3, 27, 3] A__ = [96, 192, 384, 768] if "base" in model_name: A__ = [3, 3, 27, 3] A__ = [128, 256, 512, 1024] A__ = 512 if "large" in model_name: A__ = [3, 3, 27, 3] A__ = [192, 384, 768, 1536] A__ = 768 if "xlarge" in model_name: A__ = [3, 3, 27, 3] A__ = [256, 512, 1024, 2048] A__ = 1024 # set label information A__ = 150 A__ = "huggingface/label-files" A__ = "ade20k-id2label.json" A__ = json.load(open(hf_hub_download(_A , _A , repo_type='dataset' ) , 'r' ) ) A__ = {int(_A ): v for k, v in idalabel.items()} A__ = {v: k for k, v in idalabel.items()} A__ = ConvNextConfig( depths=_A , hidden_sizes=_A , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) A__ = UperNetConfig( backbone_config=_A , auxiliary_in_channels=_A , num_labels=_A , idalabel=_A , labelaid=_A , ) return config def _snake_case( SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: '''simple docstring''' A__ = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: '''simple docstring''' A__ = dct.pop(_A ) A__ = val def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: '''simple docstring''' A__ = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } A__ = model_name_to_url[model_name] A__ = torch.hub.load_state_dict_from_url(_A , map_location='cpu' )["state_dict"] A__ = get_upernet_config(_A ) A__ = UperNetForSemanticSegmentation(_A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A__ = state_dict.pop(_A ) if "bn" in key: A__ = key.replace('bn' , 'batch_norm' ) A__ = val # rename keys A__ = create_rename_keys(_A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) model.load_state_dict(_A ) # verify on image A__ = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" A__ = Image.open(requests.get(_A , stream=_A ).raw ).convert('RGB' ) A__ = SegformerImageProcessor() A__ = processor(_A , return_tensors='pt' ).pixel_values with torch.no_grad(): A__ = model(_A ) if model_name == "upernet-convnext-tiny": A__ = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": A__ = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": A__ = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": A__ = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": A__ = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _A , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_A ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_A ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowercase_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
705
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: '''simple docstring''' if got_ver is None or want_ver is None: raise ValueError( f'Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider' f' reinstalling {pkg}.' ) if not ops[op](version.parse(SCREAMING_SNAKE_CASE__ ) , version.parse(SCREAMING_SNAKE_CASE__ ) ): raise ImportError( f'{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}' ) def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> None: '''simple docstring''' A__ = f'\n{hint}' if hint is not None else '' # non-versioned check if re.match(R'^[\w_\-\d]+$' , SCREAMING_SNAKE_CASE__ ): A__ , A__ , A__ = requirement, None, None else: A__ = re.findall(R'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , SCREAMING_SNAKE_CASE__ ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' f' got {requirement}' ) A__ , A__ = match[0] A__ = want_full.split(',' ) # there could be multiple requirements A__ = {} for w in want_range: A__ = re.findall(R'^([\s!=<>]{1,2})(.+)' , SCREAMING_SNAKE_CASE__ ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' f' but got {requirement}' ) A__ , A__ = match[0] A__ = want_ver if op not in ops: raise ValueError(f'{requirement}: need one of {list(ops.keys() )}, but got {op}' ) # special case if pkg == "python": A__ = '.'.join([str(SCREAMING_SNAKE_CASE__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return # check if any version is installed try: A__ = importlib.metadata.version(SCREAMING_SNAKE_CASE__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'The \'{requirement}\' distribution was not found and is required by this application. {hint}' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Dict ) -> Dict: '''simple docstring''' A__ = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
586
0
"""simple docstring""" import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __A = """\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ __A = """\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ __A = """ Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" return float((preds == labels).mean() ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :str = simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :int = np.array(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[Any] = np.array(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[str] = en_sentvecs.shape[0] # mean centering lowerCAmelCase__ :List[Any] = en_sentvecs - np.mean(_SCREAMING_SNAKE_CASE , axis=0 ) lowerCAmelCase__ :Union[str, Any] = in_sentvecs - np.mean(_SCREAMING_SNAKE_CASE , axis=0 ) lowerCAmelCase__ :Tuple = cdist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'cosine' ) lowerCAmelCase__ :str = np.array(range(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ :int = sim.argsort(axis=1 )[:, :10] lowerCAmelCase__ :Optional[Any] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def snake_case ( self ): '''simple docstring''' if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' ) if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32' ) ), 'references': datasets.Value('int64' ) if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' if self.config_name != 'cvit-mkb-clsr' else None , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(__UpperCAmelCase , __UpperCAmelCase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(__UpperCAmelCase , __UpperCAmelCase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(__UpperCAmelCase , __UpperCAmelCase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]' )
93
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __A = logging.get_logger(__name__) __A = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __A = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } __A = { """roberta-base""": 512, """roberta-large""": 512, """roberta-large-mnli""": 512, """distilroberta-base""": 512, """roberta-base-openai-detector""": 512, """roberta-large-openai-detector""": 512, } class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :str = VOCAB_FILES_NAMES __magic_name__ :List[Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ :str = ["""input_ids""", """attention_mask"""] __magic_name__ :Any = RobertaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="replace" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ :Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: lowerCAmelCase__ :Optional[int] = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) lowerCAmelCase__ :List[Any] = add_prefix_space lowerCAmelCase__ :str = pre_tok_class(**__UpperCAmelCase ) lowerCAmelCase__ :List[str] = add_prefix_space lowerCAmelCase__ :str = 'post_processor' lowerCAmelCase__ :Optional[Any] = getattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase ) if tokenizer_component_instance: lowerCAmelCase__ :Optional[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase__ :Any = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase__ :int = tuple(state['cls'] ) lowerCAmelCase__ :List[Any] = False if state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: lowerCAmelCase__ :Union[str, Any] = add_prefix_space lowerCAmelCase__ :Any = True if state.get('trim_offsets' , __UpperCAmelCase ) != trim_offsets: lowerCAmelCase__ :Union[str, Any] = trim_offsets lowerCAmelCase__ :Optional[int] = True if changes_to_apply: lowerCAmelCase__ :str = getattr(__UpperCAmelCase , state.pop('type' ) ) lowerCAmelCase__ :Any = component_class(**__UpperCAmelCase ) setattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase ) @property def snake_case ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value lowerCAmelCase__ :List[str] = value def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Any = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' lowerCAmelCase__ :str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :List[Any] = [self.sep_token_id] lowerCAmelCase__ :int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
93
1
def lowerCAmelCase__ ( a__ ) ->list[int]: '''simple docstring''' if length <= 0 or not isinstance(a__ , a__ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(a__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
715
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , **lowercase_ : Tuple) -> Any: """simple docstring""" super().__init__(**lowercase_) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , "vision") self.check_model_type(lowercase_) def __call__( self : str , lowercase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , lowercase_ : Union[str, List[str]] = None , **lowercase_ : str , ) -> List[str]: """simple docstring""" if "text_queries" in kwargs: _UpperCamelCase = kwargs.pop("text_queries") if isinstance(lowercase_ , (str, Image.Image)): _UpperCamelCase = {"image": image, "candidate_labels": candidate_labels} else: _UpperCamelCase = image _UpperCamelCase = super().__call__(lowercase_ , **lowercase_) return results def __UpperCAmelCase ( self : Any , **lowercase_ : int) -> List[str]: """simple docstring""" _UpperCamelCase = {} if "threshold" in kwargs: _UpperCamelCase = kwargs["threshold"] if "top_k" in kwargs: _UpperCamelCase = kwargs["top_k"] return {}, {}, postprocess_params def __UpperCAmelCase ( self : List[Any] , lowercase_ : Any) -> List[str]: """simple docstring""" _UpperCamelCase = load_image(inputs["image"]) _UpperCamelCase = inputs["candidate_labels"] if isinstance(lowercase_ , lowercase_): _UpperCamelCase = candidate_labels.split(",") _UpperCamelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(lowercase_): _UpperCamelCase = self.tokenizer(lowercase_ , return_tensors=self.framework) _UpperCamelCase = self.image_processor(lowercase_ , return_tensors=self.framework) yield { "is_last": i == len(lowercase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __UpperCAmelCase ( self : Dict , lowercase_ : Tuple) -> str: """simple docstring""" _UpperCamelCase = model_inputs.pop("target_size") _UpperCamelCase = model_inputs.pop("candidate_label") _UpperCamelCase = model_inputs.pop("is_last") _UpperCamelCase = self.model(**lowercase_) _UpperCamelCase = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def __UpperCAmelCase ( self : int , lowercase_ : Tuple , lowercase_ : List[str]=0.1 , lowercase_ : int=None) -> List[str]: """simple docstring""" _UpperCamelCase = [] for model_output in model_outputs: _UpperCamelCase = model_output["candidate_label"] _UpperCamelCase = BaseModelOutput(lowercase_) _UpperCamelCase = self.image_processor.post_process_object_detection( outputs=lowercase_ , threshold=lowercase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): _UpperCamelCase = outputs["scores"][index].item() _UpperCamelCase = self._get_bounding_box(outputs["boxes"][index][0]) _UpperCamelCase = {"score": score, "label": label, "box": box} results.append(lowercase_) _UpperCamelCase = sorted(lowercase_ , key=lambda lowercase_: x["score"] , reverse=lowercase_) if top_k: _UpperCamelCase = results[:top_k] return results def __UpperCAmelCase ( self : str , lowercase_ : "torch.Tensor") -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = box.int().tolist() _UpperCamelCase = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
82
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _a : List[str] = imread(r'digital_image_processing/image_data/lena_small.jpg') _a : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = cn.convert_to_negative(_lowerCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def UpperCamelCase__ ( ): '''simple docstring''' with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(_lowerCAmelCase , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCamelCase = canny.canny(_lowerCAmelCase ) # assert canny array for at least one True assert canny_array.any() def UpperCamelCase__ ( ): '''simple docstring''' assert gg.gaussian_filter(_lowerCAmelCase , 5 , sigma=0.9 ).all() def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCamelCase = conv.img_convolve(_lowerCAmelCase , _lowerCAmelCase ).astype(_lowerCAmelCase ) assert res.any() def UpperCamelCase__ ( ): '''simple docstring''' assert med.median_filter(_lowerCAmelCase , 3 ).any() def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = sob.sobel_filter(_lowerCAmelCase ) assert grad.any() and theta.any() def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = sp.make_sepia(_lowerCAmelCase , 20 ) assert sepia.all() def UpperCamelCase__ ( _A: Optional[int] = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' __lowerCamelCase = bs.Burkes(imread(_lowerCAmelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def UpperCamelCase__ ( _A: List[str] = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' __lowerCamelCase = rs.NearestNeighbour(imread(_lowerCAmelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. __lowerCamelCase = imread(_lowerCAmelCase , 0 ) # Test for get_neighbors_pixel function() return not None __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = image[x_coordinate][y_coordinate] __lowerCamelCase = lbp.get_neighbors_pixel( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCamelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __lowerCamelCase = lbp.local_binary_value(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) assert lbp_image.any()
479
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __a = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def __snake_case( _lowerCAmelCase=True ) -> Dict: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_a ) ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = None lowercase = None def lowerCamelCase ( self : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ): with TemporaryDirectory() as tmp_dir: snake_case__ : Dict = dataset_module_factory(snake_case_ , cache_dir=snake_case_ ) snake_case__ : Optional[int] = import_main_class(dataset_module.module_path , dataset=snake_case_ ) snake_case__ : DatasetBuilder = builder_cls( cache_dir=snake_case_ , config_name=snake_case_ , hash=dataset_module.hash , ) snake_case__ : Dict = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=snake_case_ ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) snake_case__ : List[str] = cached_path(snake_case_ , cache_dir=snake_case_ ) self.assertTrue(os.path.exists(snake_case_ ) ) @pytest.mark.integration def __snake_case( _lowerCAmelCase ) -> Tuple: snake_case__ : Optional[int] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" snake_case__ : Dict = dataset_module_factory("""wikipedia""" , cache_dir=_lowerCAmelCase ) snake_case__ : Dict = import_main_class(dataset_module.module_path ) snake_case__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam snake_case__ : Any = None builder_instance.download_and_prepare() snake_case__ : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ : Optional[int] = dataset_module_factory("""wikipedia""" , cache_dir=_lowerCAmelCase ) snake_case__ : List[str] = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) snake_case__ : DatasetBuilder = builder_cls( cache_dir=_lowerCAmelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) snake_case__ : Any = builder_instance.as_streaming_dataset() assert ds assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert "train" in ds assert isinstance(ds["""train"""] , _lowerCAmelCase ) assert next(iter(ds["""train"""] ) )
374
0
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging snake_case__ : Dict = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' _snake_case : Tuple = ["""input_features""", """attention_mask"""] def __init__( self : Any , lowerCamelCase : List[str]=80 , lowerCamelCase : Optional[int]=16_000 , lowerCamelCase : List[str]=80 , lowerCamelCase : Dict=0.0 , lowerCamelCase : int=True , lowerCamelCase : List[Any]=True , lowerCamelCase : Dict=True , **lowerCamelCase : List[str] , ): '''simple docstring''' super().__init__(feature_size=lowerCamelCase , sampling_rate=lowerCamelCase , padding_value=lowerCamelCase , **lowerCamelCase ) __lowercase = num_mel_bins __lowercase = do_ceptral_normalize __lowercase = normalize_means __lowercase = normalize_vars __lowercase = True def _snake_case ( self : Any , lowerCamelCase : np.ndarray , ): '''simple docstring''' __lowercase = waveform * (2**15) # Kaldi compliance: 16-bit signed integers __lowercase = torch.from_numpy(lowerCamelCase ).unsqueeze(0 ) __lowercase = ta_kaldi.fbank(lowerCamelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _snake_case ( lowerCamelCase : np.ndarray , lowerCamelCase : int , lowerCamelCase : Optional[bool] = True , lowerCamelCase : Optional[bool] = True , lowerCamelCase : float = 0.0 , ): '''simple docstring''' if normalize_means: __lowercase = x[:input_length].mean(axis=0 ) __lowercase = np.subtract(lowerCamelCase , lowerCamelCase ) if normalize_vars: __lowercase = x[:input_length].std(axis=0 ) __lowercase = np.divide(lowerCamelCase , lowerCamelCase ) if input_length < x.shape[0]: __lowercase = padding_value # make sure array is in float32 __lowercase = x.astype(np.floataa ) return x def _snake_case ( self : Union[str, Any] , lowerCamelCase : List[np.ndarray] , lowerCamelCase : Optional[np.ndarray] = None ): '''simple docstring''' __lowercase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowerCamelCase , lowerCamelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(lowerCamelCase , lowerCamelCase ) ] def __call__( self : Dict , lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase : Union[bool, str, PaddingStrategy] = False , lowerCamelCase : Optional[int] = None , lowerCamelCase : bool = False , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , **lowerCamelCase : Dict , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __lowercase = isinstance(lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __lowercase = is_batched_numpy or ( isinstance(lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase = [np.asarray(lowerCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase , np.ndarray ): __lowercase = np.asarray(lowerCamelCase , dtype=np.floataa ) elif isinstance(lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowercase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase = [raw_speech] # extract fbank features __lowercase = [self._extract_fbank_features(lowerCamelCase ) for waveform in raw_speech] # convert into correct format for padding __lowercase = BatchFeature({"input_features": features} ) __lowercase = self.pad( lowerCamelCase , padding=lowerCamelCase , max_length=lowerCamelCase , truncation=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , **lowerCamelCase , ) # make sure list is in array format __lowercase = padded_inputs.get("input_features" ) if isinstance(input_features[0] , lowerCamelCase ): __lowercase = [np.asarray(lowerCamelCase , dtype=np.floataa ) for feature in input_features] __lowercase = padded_inputs.get("attention_mask" ) if attention_mask is not None: __lowercase = [np.asarray(lowerCamelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __lowercase = ( np.array(lowerCamelCase , dtype=np.intaa ) if self._get_padding_strategies(lowerCamelCase , max_length=lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) __lowercase = self.normalize( padded_inputs["input_features"] , attention_mask=lowerCamelCase ) if return_tensors is not None: __lowercase = padded_inputs.convert_to_tensors(lowerCamelCase ) return padded_inputs
717
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
0
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib __A : Union[str, Any] = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } __A : List[str] = logging.WARNING def snake_case__ ( ) ->Dict: """simple docstring""" __lowercase : Union[str, Any] = os.getenv("DATASETS_VERBOSITY", _lowerCamelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'Unknown option DATASETS_VERBOSITY={env_level_str}, ' F'has to be one of: { ", ".join(log_levels.keys() ) }' ) return _default_log_level def snake_case__ ( ) ->str: """simple docstring""" return __name__.split("." )[0] def snake_case__ ( ) ->logging.Logger: """simple docstring""" return logging.getLogger(_get_library_name() ) def snake_case__ ( ) ->None: """simple docstring""" __lowercase : Union[str, Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def snake_case__ ( ) ->None: """simple docstring""" __lowercase : Any = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def snake_case__ ( _lowerCamelCase = None ) ->logging.Logger: """simple docstring""" if name is None: __lowercase : int = _get_library_name() return logging.getLogger(_lowerCamelCase ) def snake_case__ ( ) ->int: """simple docstring""" return _get_library_root_logger().getEffectiveLevel() def snake_case__ ( _lowerCamelCase ) ->None: """simple docstring""" _get_library_root_logger().setLevel(_lowerCamelCase ) def snake_case__ ( ) ->str: """simple docstring""" return set_verbosity(_lowerCamelCase ) def snake_case__ ( ) ->Dict: """simple docstring""" return set_verbosity(_lowerCamelCase ) def snake_case__ ( ) ->int: """simple docstring""" return set_verbosity(_lowerCamelCase ) def snake_case__ ( ) ->Optional[Any]: """simple docstring""" return set_verbosity(_lowerCamelCase ) def snake_case__ ( ) ->None: """simple docstring""" __lowercase : List[Any] = False def snake_case__ ( ) ->None: """simple docstring""" __lowercase : str = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[str] , *lowercase__ : List[Any] , **lowercase__ : int ): # pylint: disable=unused-argument __lowercase : Optional[int] = args[0] if args else None def __iter__( self : str ): return iter(self._iterator ) def __getattr__( self : int , lowercase__ : List[str] ): def empty_fn(*lowercase__ : Tuple , **lowercase__ : int ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Any ): return self def __exit__( self : List[Any] , lowercase__ : Any , lowercase__ : int , lowercase__ : Tuple ): return __A : Tuple = True class lowerCAmelCase__ : """simple docstring""" def __call__( self : Optional[Any] , *lowercase__ : List[Any] , lowercase__ : List[str]=False , **lowercase__ : Tuple ): if _tqdm_active and not disable: return tqdm_lib.tqdm(*lowercase__ , **lowercase__ ) else: return EmptyTqdm(*lowercase__ , **lowercase__ ) def snake_case ( self : Union[str, Any] , *lowercase__ : Any , **lowercase__ : Union[str, Any] ): __lowercase : Dict = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowercase__ , **lowercase__ ) def snake_case ( self : Any ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() __A : Any = _tqdm_cls() def snake_case__ ( ) ->bool: """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def snake_case__ ( ) ->List[str]: """simple docstring""" global _tqdm_active __lowercase : Dict = True def snake_case__ ( ) ->str: """simple docstring""" global _tqdm_active __lowercase : Optional[Any] = False
575
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A : List[str] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCAmelCase__ : """simple docstring""" __UpperCAmelCase : Dict = PegasusConfig __UpperCAmelCase : int = {} __UpperCAmelCase : Tuple = "gelu" def __init__( self : List[str] , lowercase__ : int , lowercase__ : Union[str, Any]=1_3 , lowercase__ : Dict=7 , lowercase__ : Optional[Any]=True , lowercase__ : str=False , lowercase__ : Optional[int]=9_9 , lowercase__ : Tuple=3_2 , lowercase__ : Any=5 , lowercase__ : Any=4 , lowercase__ : Any=3_7 , lowercase__ : Any=0.1 , lowercase__ : List[str]=0.1 , lowercase__ : Tuple=2_0 , lowercase__ : str=2 , lowercase__ : int=1 , lowercase__ : Dict=0 , ): __lowercase : int = parent __lowercase : str = batch_size __lowercase : Tuple = seq_length __lowercase : Tuple = is_training __lowercase : Dict = use_labels __lowercase : List[str] = vocab_size __lowercase : int = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : int = intermediate_size __lowercase : Any = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : List[Any] = max_position_embeddings __lowercase : int = eos_token_id __lowercase : Union[str, Any] = pad_token_id __lowercase : Union[str, Any] = bos_token_id def snake_case ( self : int ): __lowercase : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __lowercase : Union[str, Any] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase : Union[str, Any] = np.concatenate([input_ids, eos_tensor] , axis=1 ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowercase : Optional[Any] = prepare_pegasus_inputs_dict(lowercase__ , lowercase__ , lowercase__ ) return config, inputs_dict def snake_case ( self : str , lowercase__ : List[str] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ): __lowercase : Union[str, Any] = 2_0 __lowercase : List[Any] = model_class_name(lowercase__ ) __lowercase : Tuple = model.encode(inputs_dict["input_ids"] ) __lowercase ,__lowercase : Optional[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __lowercase : Any = model.init_cache(decoder_input_ids.shape[0] , lowercase__ , lowercase__ ) __lowercase : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) __lowercase : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowercase : Optional[int] = model.decode( decoder_input_ids[:, :-1] , lowercase__ , decoder_attention_mask=lowercase__ , past_key_values=lowercase__ , decoder_position_ids=lowercase__ , ) __lowercase : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __lowercase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , lowercase__ , decoder_attention_mask=lowercase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase__ , ) __lowercase : List[Any] = model.decode(lowercase__ , lowercase__ ) __lowercase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' ) def snake_case ( self : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : List[str] , lowercase__ : Optional[Any] ): __lowercase : Any = 2_0 __lowercase : Any = model_class_name(lowercase__ ) __lowercase : List[Any] = model.encode(inputs_dict["input_ids"] ) __lowercase ,__lowercase : Optional[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __lowercase : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowercase : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , lowercase__ , lowercase__ ) __lowercase : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowercase : str = model.decode( decoder_input_ids[:, :-1] , lowercase__ , decoder_attention_mask=lowercase__ , past_key_values=lowercase__ , decoder_position_ids=lowercase__ , ) __lowercase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __lowercase : Dict = model.decode( decoder_input_ids[:, -1:] , lowercase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase__ , decoder_position_ids=lowercase__ , ) __lowercase : Union[str, Any] = model.decode(lowercase__ , lowercase__ , decoder_attention_mask=lowercase__ ) __lowercase : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' ) def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase=None, _lowerCamelCase=None, ) ->int: """simple docstring""" if attention_mask is None: __lowercase : List[str] = np.not_equal(_lowerCamelCase, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __lowercase : Optional[int] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __UpperCAmelCase : Optional[int] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __UpperCAmelCase : Dict = True __UpperCAmelCase : int = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[int] = False def snake_case ( self : List[Any] ): __lowercase : Optional[Any] = FlaxPegasusModelTester(self ) __lowercase : Optional[Any] = ConfigTester(self , config_class=lowercase__ ) def snake_case ( self : List[Any] ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): __lowercase ,__lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase__ , lowercase__ , lowercase__ ) def snake_case ( self : Optional[int] ): __lowercase ,__lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase__ , lowercase__ , lowercase__ ) def snake_case ( self : Tuple ): __lowercase ,__lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase : Union[str, Any] = self._prepare_for_class(lowercase__ , lowercase__ ) __lowercase : List[str] = model_class(lowercase__ ) @jax.jit def encode_jitted(lowercase__ : List[str] , lowercase__ : int=None , **lowercase__ : Tuple ): return model.encode(input_ids=lowercase__ , attention_mask=lowercase__ ) with self.subTest("JIT Enabled" ): __lowercase : List[Any] = encode_jitted(**lowercase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase : Optional[Any] = encode_jitted(**lowercase__ ).to_tuple() self.assertEqual(len(lowercase__ ) , len(lowercase__ ) ) for jitted_output, output in zip(lowercase__ , lowercase__ ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case ( self : Optional[Any] ): __lowercase ,__lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase : Union[str, Any] = model_class(lowercase__ ) __lowercase : List[str] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) __lowercase : Optional[int] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowercase__ : Optional[int] , lowercase__ : Optional[int] , lowercase__ : Any ): return model.decode( decoder_input_ids=lowercase__ , decoder_attention_mask=lowercase__ , encoder_outputs=lowercase__ , ) with self.subTest("JIT Enabled" ): __lowercase : Tuple = decode_jitted(**lowercase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase : Any = decode_jitted(**lowercase__ ).to_tuple() self.assertEqual(len(lowercase__ ) , len(lowercase__ ) ) for jitted_output, output in zip(lowercase__ , lowercase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case ( self : Any ): for model_class_name in self.all_model_classes: __lowercase : int = model_class_name.from_pretrained("google/pegasus-large" , from_pt=lowercase__ ) __lowercase : Any = np.ones((1, 1) ) __lowercase : Tuple = model(lowercase__ ) self.assertIsNotNone(lowercase__ ) @slow def snake_case ( self : Optional[int] ): __lowercase : str = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) __lowercase : Optional[Any] = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) __lowercase : Any = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] __lowercase : Union[str, Any] = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] __lowercase : Tuple = tokenizer(lowercase__ , return_tensors="np" , truncation=lowercase__ , max_length=5_1_2 , padding=lowercase__ ) __lowercase : Tuple = model.generate(**lowercase__ , num_beams=2 ).sequences __lowercase : str = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__ ) assert tgt_text == decoded
575
1
'''simple docstring''' def _UpperCamelCase ( _a : int ): """simple docstring""" assert isinstance(_a , _a ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: __UpperCamelCase : Any = f"""The input value of [n={number}] has to be > 0""" raise ValueError(_a ) else: __UpperCamelCase : Tuple = sylvester(number - 1 ) __UpperCamelCase : List[str] = num - 1 __UpperCamelCase : int = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
706
'''simple docstring''' from ...processing_utils import ProcessorMixin class __lowercase ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''SpeechT5FeatureExtractor''' SCREAMING_SNAKE_CASE__ = '''SpeechT5Tokenizer''' def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): __UpperCamelCase : Union[str, Any] = kwargs.pop('audio' , _lowerCamelCase ) __UpperCamelCase : Tuple = kwargs.pop('text' , _lowerCamelCase ) __UpperCamelCase : Union[str, Any] = kwargs.pop('text_target' , _lowerCamelCase ) __UpperCamelCase : List[Any] = kwargs.pop('audio_target' , _lowerCamelCase ) __UpperCamelCase : Any = kwargs.pop('sampling_rate' , _lowerCamelCase ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: __UpperCamelCase : Dict = self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) elif text is not None: __UpperCamelCase : int = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) else: __UpperCamelCase : List[str] = None if audio_target is not None: __UpperCamelCase : Dict = self.feature_extractor(audio_target=_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) __UpperCamelCase : Optional[int] = targets['input_values'] elif text_target is not None: __UpperCamelCase : Any = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) __UpperCamelCase : Optional[int] = targets['input_ids'] else: __UpperCamelCase : List[str] = None if inputs is None: return targets if targets is not None: __UpperCamelCase : List[Any] = labels __UpperCamelCase : Any = targets.get('attention_mask' ) if decoder_attention_mask is not None: __UpperCamelCase : int = decoder_attention_mask return inputs def lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ): __UpperCamelCase : Optional[Any] = kwargs.pop('input_values' , _lowerCamelCase ) __UpperCamelCase : Union[str, Any] = kwargs.pop('input_ids' , _lowerCamelCase ) __UpperCamelCase : List[Any] = kwargs.pop('labels' , _lowerCamelCase ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: __UpperCamelCase : Optional[int] = self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) elif input_ids is not None: __UpperCamelCase : int = self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase ) else: __UpperCamelCase : str = None if labels is not None: if "input_ids" in labels or (isinstance(_lowerCamelCase , _lowerCamelCase ) and "input_ids" in labels[0]): __UpperCamelCase : Dict = self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase ) __UpperCamelCase : str = targets['input_ids'] else: __UpperCamelCase : int = self.feature_extractor.feature_size __UpperCamelCase : Any = self.feature_extractor.num_mel_bins __UpperCamelCase : Dict = self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) __UpperCamelCase : List[str] = feature_size_hack __UpperCamelCase : Tuple = targets['input_values'] else: __UpperCamelCase : List[str] = None if inputs is None: return targets if targets is not None: __UpperCamelCase : Optional[int] = labels __UpperCamelCase : Union[str, Any] = targets.get('attention_mask' ) if decoder_attention_mask is not None: __UpperCamelCase : Optional[Any] = decoder_attention_mask return inputs def lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase )
287
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) UpperCAmelCase__ : Any = number_of_bytes // partitions UpperCAmelCase__ : List[Any] = [] for i in range(__UpperCamelCase ): UpperCAmelCase__ : List[Any] = i * bytes_per_partition + 1 UpperCAmelCase__ : Union[str, Any] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F"{start_bytes}-{end_bytes}" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
65
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def _lowerCAmelCase (_lowercase ): """simple docstring""" return x + 2 class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase_ ( self : Union[str, Any] ): a__ = "x = 3" a__ = {} a__ = evaluate(a__ ,{} ,state=a__ ) assert result == 3 self.assertDictEqual(a__ ,{"x": 3} ) a__ = "x = y" a__ = {"y": 5} a__ = evaluate(a__ ,{} ,state=a__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(a__ ,{"x": 5, "y": 5} ) def lowerCAmelCase_ ( self : str ): a__ = "y = add_two(x)" a__ = {"x": 3} a__ = evaluate(a__ ,{"add_two": add_two} ,state=a__ ) assert result == 5 self.assertDictEqual(a__ ,{"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: a__ = evaluate(a__ ,{} ,state=a__ ) assert result is None assert "tried to execute add_two" in out.out def lowerCAmelCase_ ( self : Any ): a__ = "x = 3" a__ = {} a__ = evaluate(a__ ,{} ,state=a__ ) assert result == 3 self.assertDictEqual(a__ ,{"x": 3} ) def lowerCAmelCase_ ( self : Dict ): a__ = "test_dict = {'x': x, 'y': add_two(x)}" a__ = {"x": 3} a__ = evaluate(a__ ,{"add_two": add_two} ,state=a__ ) self.assertDictEqual(a__ ,{"x": 3, "y": 5} ) self.assertDictEqual(a__ ,{"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowerCAmelCase_ ( self : Dict ): a__ = "x = 3\ny = 5" a__ = {} a__ = evaluate(a__ ,{} ,state=a__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(a__ ,{"x": 3, "y": 5} ) def lowerCAmelCase_ ( self : str ): a__ = "text = f'This is x: {x}.'" a__ = {"x": 3} a__ = evaluate(a__ ,{} ,state=a__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(a__ ,{"x": 3, "text": "This is x: 3."} ) def lowerCAmelCase_ ( self : Union[str, Any] ): a__ = "if x <= 3:\n y = 2\nelse:\n y = 5" a__ = {"x": 3} a__ = evaluate(a__ ,{} ,state=a__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(a__ ,{"x": 3, "y": 2} ) a__ = {"x": 8} a__ = evaluate(a__ ,{} ,state=a__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(a__ ,{"x": 8, "y": 5} ) def lowerCAmelCase_ ( self : List[Any] ): a__ = "test_list = [x, add_two(x)]" a__ = {"x": 3} a__ = evaluate(a__ ,{"add_two": add_two} ,state=a__ ) self.assertListEqual(a__ ,[3, 5] ) self.assertDictEqual(a__ ,{"x": 3, "test_list": [3, 5]} ) def lowerCAmelCase_ ( self : Any ): a__ = "y = x" a__ = {"x": 3} a__ = evaluate(a__ ,{} ,state=a__ ) assert result == 3 self.assertDictEqual(a__ ,{"x": 3, "y": 3} ) def lowerCAmelCase_ ( self : Tuple ): a__ = "test_list = [x, add_two(x)]\ntest_list[1]" a__ = {"x": 3} a__ = evaluate(a__ ,{"add_two": add_two} ,state=a__ ) assert result == 5 self.assertDictEqual(a__ ,{"x": 3, "test_list": [3, 5]} ) a__ = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" a__ = {"x": 3} a__ = evaluate(a__ ,{"add_two": add_two} ,state=a__ ) assert result == 5 self.assertDictEqual(a__ ,{"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowerCAmelCase_ ( self : List[Any] ): a__ = "x = 0\nfor i in range(3):\n x = i" a__ = {} a__ = evaluate(a__ ,{"range": range} ,state=a__ ) assert result == 2 self.assertDictEqual(a__ ,{"x": 2, "i": 2} )
331
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _A = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Tuple = ["pixel_values"] def __init__( self , A_ = True , A_ = 1 / 255 , A_ = True , A_ = 8 , **A_ , ) -> None: super().__init__(**A_ ) __UpperCamelCase =do_rescale __UpperCamelCase =rescale_factor __UpperCamelCase =do_pad __UpperCamelCase =pad_size def _a ( self , A_ , A_ , A_ = None , **A_ ) -> np.ndarray: return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def _a ( self , A_ , A_ , A_ = None ) -> str: __UpperCamelCase , __UpperCamelCase =get_image_size(A_ ) __UpperCamelCase =(old_height // size + 1) * size - old_height __UpperCamelCase =(old_width // size + 1) * size - old_width return pad(A_ , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=A_ ) def _a ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> Tuple: __UpperCamelCase =do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase =rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase =do_pad if do_pad is not None else self.do_pad __UpperCamelCase =pad_size if pad_size is not None else self.pad_size __UpperCamelCase =make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase =[to_numpy_array(A_ ) for image in images] if do_rescale: __UpperCamelCase =[self.rescale(image=A_ , scale=A_ ) for image in images] if do_pad: __UpperCamelCase =[self.pad(A_ , size=A_ ) for image in images] __UpperCamelCase =[to_channel_dimension_format(A_ , A_ ) for image in images] __UpperCamelCase ={'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
682
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): # ===== initialization ===== __UpperCamelCase =Mock() __UpperCamelCase =conn, Mock() __UpperCamelCase =iter([1, None] ) __UpperCamelCase =lambda SCREAMING_SNAKE_CASE__ : next(SCREAMING_SNAKE_CASE__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=SCREAMING_SNAKE_CASE__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
682
1
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __a = datasets.logging.get_logger(__name__) __a = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' __a = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' __a = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' __a = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): """simple docstring""" def _lowercase ( self : Optional[Any] ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( '''Using default BLEURT-Base checkpoint for sequence maximum length 128. ''' '''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''' ) lowercase_ = '''bleurt-base-128''' if self.config_name.lower() in CHECKPOINT_URLS: lowercase_ = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: lowercase_ = self.config_name.upper() else: raise KeyError( f'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' ) # download the model checkpoint specified by self.config_name and set up the scorer lowercase_ = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) lowercase_ = score.BleurtScorer(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> Dict: lowercase_ = self.scorer.score(references=SCREAMING_SNAKE_CASE_ , candidates=SCREAMING_SNAKE_CASE_ ) return {"scores": scores}
97
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _a : str = logging.get_logger(__name__) _a : Optional[int] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class __A (__magic_name__ ): def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , *UpperCamelCase_ , **UpperCamelCase_ ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) if config is None: assert isinstance(self.model , UpperCamelCase_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f""" {self.model.__class__}""" ) __UpperCAmelCase : Optional[int] = self.model.config else: __UpperCAmelCase : int = config __UpperCAmelCase : Union[str, Any] = data_args __UpperCAmelCase : str = self.config.tgt_vocab_size if isinstance(self.config , UpperCamelCase_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" " padding.." ) if self.args.label_smoothing == 0: __UpperCAmelCase : Dict = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __UpperCAmelCase : List[Any] = label_smoothed_nll_loss def _snake_case ( self , UpperCamelCase_ ): if self.optimizer is None: __UpperCAmelCase : Optional[Any] = ["bias", "LayerNorm.weight"] __UpperCAmelCase : Union[str, Any] = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] __UpperCAmelCase : Optional[int] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __UpperCAmelCase : int = Adafactor __UpperCAmelCase : Any = {"scale_parameter": False, "relative_step": False} else: __UpperCAmelCase : List[str] = AdamW __UpperCAmelCase : Optional[int] = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } __UpperCAmelCase : Any = self.args.learning_rate if self.sharded_ddp: __UpperCAmelCase : Dict = OSS( params=UpperCamelCase_ , optim=UpperCamelCase_ , **UpperCamelCase_ , ) else: __UpperCAmelCase : Dict = optimizer_cls(UpperCamelCase_ , **UpperCamelCase_ ) if self.lr_scheduler is None: __UpperCAmelCase : Dict = self._get_lr_scheduler(UpperCamelCase_ ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __UpperCAmelCase : Optional[int] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __UpperCAmelCase : List[Any] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: __UpperCAmelCase : Tuple = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=UpperCamelCase_ ) return scheduler def _snake_case ( self ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __UpperCAmelCase : List[str] = model(**UpperCamelCase_ , use_cache=UpperCamelCase_ )[0] __UpperCAmelCase : Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models __UpperCAmelCase , __UpperCAmelCase : str = model(**UpperCamelCase_ , labels=UpperCamelCase_ , use_cache=UpperCamelCase_ )[:2] else: # compute label smoothed loss __UpperCAmelCase : Dict = model(**UpperCamelCase_ , use_cache=UpperCamelCase_ )[0] __UpperCAmelCase : Optional[int] = torch.nn.functional.log_softmax(UpperCamelCase_ , dim=-1 ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self.loss_fn(UpperCamelCase_ , UpperCamelCase_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = inputs.pop("labels" ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self._compute_loss(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return loss def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , ): __UpperCAmelCase : Optional[Any] = self._prepare_inputs(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __UpperCAmelCase : Union[str, Any] = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **UpperCamelCase_ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __UpperCAmelCase : Optional[int] = self._pad_tensors_to_max_len(UpperCamelCase_ , gen_kwargs["max_length"] ) __UpperCAmelCase : Union[str, Any] = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data __UpperCAmelCase , __UpperCAmelCase : List[Any] = self._compute_loss(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __UpperCAmelCase : Dict = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __UpperCAmelCase : Dict = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __UpperCAmelCase : Union[str, Any] = self._pad_tensors_to_max_len(UpperCamelCase_ , gen_kwargs["max_length"] ) return (loss, logits, labels) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): # If PAD token is not defined at least EOS token has to be defined __UpperCAmelCase : List[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f""" padded to `max_length`={max_length}""" ) __UpperCAmelCase : Union[str, Any] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) __UpperCAmelCase : Optional[Any] = tensor return padded_tensor
168
0
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class a ( __UpperCAmelCase ): lowercase_ : Union[str, Any] = 'mctct' def __init__( self : Dict , snake_case__ : Any=8_065 , snake_case__ : Tuple=1_536 , snake_case__ : Union[str, Any]=36 , snake_case__ : List[Any]=6_144 , snake_case__ : Tuple=4 , snake_case__ : List[str]=384 , snake_case__ : List[Any]=920 , snake_case__ : Any=1E-5 , snake_case__ : List[Any]=0.3 , snake_case__ : List[str]="relu" , snake_case__ : List[Any]=0.0_2 , snake_case__ : Optional[Any]=0.3 , snake_case__ : List[str]=0.3 , snake_case__ : List[Any]=1 , snake_case__ : Optional[int]=0 , snake_case__ : Any=2 , snake_case__ : Any=1 , snake_case__ : List[str]=0.3 , snake_case__ : Tuple=1 , snake_case__ : Union[str, Any]=(7,) , snake_case__ : List[Any]=(3,) , snake_case__ : List[Any]=80 , snake_case__ : Optional[int]=1 , snake_case__ : List[str]=None , snake_case__ : int="sum" , snake_case__ : Dict=False , **snake_case__ : List[str] , ): """simple docstring""" super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = intermediate_size __lowerCAmelCase = num_attention_heads __lowerCAmelCase = attention_head_dim __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = layerdrop __lowerCAmelCase = hidden_act __lowerCAmelCase = initializer_range __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = pad_token_id __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id __lowerCAmelCase = conv_glu_dim __lowerCAmelCase = conv_dropout __lowerCAmelCase = num_conv_layers __lowerCAmelCase = input_feat_per_channel __lowerCAmelCase = input_channels __lowerCAmelCase = conv_channels __lowerCAmelCase = ctc_loss_reduction __lowerCAmelCase = ctc_zero_infinity # prevents config testing fail with exporting to json __lowerCAmelCase = list(snake_case__ ) __lowerCAmelCase = list(snake_case__ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " F"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." )
376
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class a ( __UpperCAmelCase ): lowercase_ : str = 'distilbert' lowercase_ : Any = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self : Optional[int] , snake_case__ : int=30_522 , snake_case__ : str=512 , snake_case__ : Tuple=False , snake_case__ : Tuple=6 , snake_case__ : Any=12 , snake_case__ : Dict=768 , snake_case__ : Any=4 * 768 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : str=0.1 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.0_2 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Optional[Any]=0.2 , snake_case__ : str=0 , **snake_case__ : Dict , ): """simple docstring""" __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = sinusoidal_pos_embds __lowerCAmelCase = n_layers __lowerCAmelCase = n_heads __lowerCAmelCase = dim __lowerCAmelCase = hidden_dim __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation __lowerCAmelCase = initializer_range __lowerCAmelCase = qa_dropout __lowerCAmelCase = seq_classif_dropout super().__init__(**snake_case__ , pad_token_id=snake_case__ ) class a ( __UpperCAmelCase ): @property def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" if self.task == "multiple-choice": __lowerCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowerCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
376
1
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def a_ ( _lowerCAmelCase ) -> List[Any]: __lowerCamelCase : Dict = torch.load(_lowerCamelCase ,map_location='cpu' ) if "model" in sd.keys(): __lowerCamelCase : Union[str, Any] = torch.load(_lowerCamelCase ,map_location='cpu' )['model'] # pop unnecessary weights __lowerCamelCase : Union[str, Any] = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCamelCase ) __lowerCamelCase : str = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowerCamelCase : Optional[Any] = sd.pop(_lowerCamelCase ) __lowerCamelCase : Dict = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowerCamelCase : int = sd[key] # We split QKV in separate Q,K,V __lowerCamelCase : Union[str, Any] = key.replace('.qkv_proj.' ,'.q_proj.' ) __lowerCamelCase : Any = key.replace('.qkv_proj.' ,'.k_proj.' ) __lowerCamelCase : Tuple = key.replace('.qkv_proj.' ,'.v_proj.' ) __lowerCamelCase : int = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowerCamelCase : Any = torch.split(_lowerCamelCase ,depth // 3 ,dim=0 ) __lowerCamelCase : Tuple = q __lowerCamelCase : int = k __lowerCamelCase : int = v del sd[key] return sd @torch.no_grad() def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ) -> Optional[Any]: __lowerCamelCase : List[Any] = load_checkpoint(_lowerCamelCase ) if config is not None: __lowerCamelCase : Any = OPTConfig.from_pretrained(_lowerCamelCase ) else: __lowerCamelCase : str = OPTConfig() __lowerCamelCase : Tuple = OPTModel(_lowerCamelCase ).half().eval() model.load_state_dict(_lowerCamelCase ) # Check results Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') _UpperCamelCase = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
459
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase="pt" ): '''simple docstring''' _lowerCAmelCase : str = {'add_prefix_space': True} if isinstance(_lowerCamelCase , _lowerCamelCase ) and not line.startswith(' ' ) else {} _lowerCAmelCase : List[str] = padding_side return tokenizer( [line] , max_length=_lowerCamelCase , padding='max_length' if pad_to_max_length else None , truncation=_lowerCamelCase , return_tensors=_lowerCamelCase , add_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase : str = input_ids.ne(_lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ,_A ,_A ,_A="train" ,_A=None ,_A=None ,_A=None ,_A="" ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = Path(_A ).joinpath(type_path + '.source' ) _lowerCAmelCase : Optional[int] = Path(_A ).joinpath(type_path + '.target' ) _lowerCAmelCase : List[Any] = self.get_char_lens(self.src_file ) _lowerCAmelCase : Tuple = max_source_length _lowerCAmelCase : Union[str, Any] = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" _lowerCAmelCase : Dict = tokenizer _lowerCAmelCase : List[Any] = prefix if n_obs is not None: _lowerCAmelCase : int = self.src_lens[:n_obs] _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Any = tgt_lang def __len__( self ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = index + 1 # linecache starts at 1 _lowerCAmelCase : Optional[int] = self.prefix + linecache.getline(str(self.src_file ) ,_A ).rstrip('\n' ) _lowerCAmelCase : Optional[int] = linecache.getline(str(self.tgt_file ) ,_A ).rstrip('\n' ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_A ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _lowerCAmelCase : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_A ) else self.tokenizer ) _lowerCAmelCase : Dict = self.tokenizer.generator if isinstance(self.tokenizer ,_A ) else self.tokenizer _lowerCAmelCase : Union[str, Any] = encode_line(_A ,_A ,self.max_source_length ,'right' ) _lowerCAmelCase : Optional[int] = encode_line(_A ,_A ,self.max_target_length ,'right' ) _lowerCAmelCase : Tuple = source_inputs['input_ids'].squeeze() _lowerCAmelCase : int = target_inputs['input_ids'].squeeze() _lowerCAmelCase : Optional[Any] = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' return [len(_A ) for x in Path(_A ).open().readlines()] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = torch.stack([x['input_ids'] for x in batch] ) _lowerCAmelCase : List[Any] = torch.stack([x['attention_mask'] for x in batch] ) _lowerCAmelCase : Any = torch.stack([x['decoder_input_ids'] for x in batch] ) _lowerCAmelCase : List[str] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_A ) else self.tokenizer.pad_token_id ) _lowerCAmelCase : List[str] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_A ) else self.tokenizer.pad_token_id ) _lowerCAmelCase : int = trim_batch(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = trim_batch(_A ,_A ,attention_mask=_A ) _lowerCAmelCase : List[str] = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch _lowerCAmelCase = getLogger(__name__) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return list(itertools.chain.from_iterable(_lowerCamelCase ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = get_git_info() save_json(_lowerCamelCase , os.path.join(_lowerCamelCase , 'git_log.json' ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=4 , **_lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase , 'w' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=_lowerCamelCase , **_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase ) as f: return json.load(_lowerCamelCase ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = git.Repo(search_parent_directories=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = { 'repo_id': str(_lowerCamelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return list(map(_lowerCamelCase , _lowerCamelCase ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase , 'wb' ) as f: return pickle.dump(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' def remove_articles(_lowerCamelCase ): return re.sub(R'\b(a|an|the)\b' , ' ' , _lowerCamelCase ) def white_space_fix(_lowerCamelCase ): return " ".join(text.split() ) def remove_punc(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCamelCase ) ) ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = normalize_answer(_lowerCamelCase ).split() _lowerCAmelCase : List[str] = normalize_answer(_lowerCamelCase ).split() _lowerCAmelCase : Optional[Any] = Counter(_lowerCamelCase ) & Counter(_lowerCamelCase ) _lowerCAmelCase : List[Any] = sum(common.values() ) if num_same == 0: return 0 _lowerCAmelCase : Any = 1.0 * num_same / len(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = 1.0 * num_same / len(_lowerCamelCase ) _lowerCAmelCase : str = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return normalize_answer(_lowerCamelCase ) == normalize_answer(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = 0 for hypo, pred in zip(_lowerCamelCase , _lowerCamelCase ): em += exact_match_score(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: em /= len(_lowerCamelCase ) return {"em": em} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return model_prefix.startswith('rag' ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _lowerCAmelCase : List[str] = 'dropout_rate' for p in extra_params: if getattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not hasattr(_lowerCamelCase , _lowerCamelCase ) and not hasattr(_lowerCamelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowerCamelCase ) ) delattr(_lowerCamelCase , _lowerCamelCase ) continue _lowerCAmelCase : Optional[Any] = p if hasattr(_lowerCamelCase , _lowerCamelCase ) else equivalent_param[p] setattr(_lowerCamelCase , _lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) delattr(_lowerCamelCase , _lowerCamelCase ) return hparams, config
259
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _A : def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[0, 1, 2, 3] , ) -> List[str]: '''simple docstring''' UpperCamelCase__ = parent UpperCamelCase__ = 100 UpperCamelCase__ = batch_size UpperCamelCase__ = image_size UpperCamelCase__ = patch_size UpperCamelCase__ = num_channels UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = scope UpperCamelCase__ = out_indices UpperCamelCase__ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = (image_size // patch_size) ** 2 UpperCamelCase__ = num_patches + 1 def _a (self ) -> Any: '''simple docstring''' UpperCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase__ = self.get_config() return config, pixel_values, labels, pixel_labels def _a (self ) -> int: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' UpperCamelCase__ = BeitModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = BeitForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' UpperCamelCase__ = self.type_sequence_label_size UpperCamelCase__ = BeitForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ = 1 UpperCamelCase__ = BeitForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' UpperCamelCase__ = self.num_labels UpperCamelCase__ = BeitForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _a (self ) -> Any: '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _A ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : str =( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Optional[int] =( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =False SCREAMING_SNAKE_CASE_ : Tuple =False SCREAMING_SNAKE_CASE_ : Tuple =False def _a (self ) -> Any: '''simple docstring''' UpperCamelCase__ = BeitModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def _a (self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def _a (self ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def _a (self ) -> Any: '''simple docstring''' pass def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def _a (self ) -> Dict: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ = [*signature.parameters.keys()] UpperCamelCase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Dict: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Tuple: '''simple docstring''' if not self.model_tester.is_training: return UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(SCREAMING_SNAKE_CASE_ ), BeitForMaskedImageModeling]: continue UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def _a (self ) -> List[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase__ = False UpperCamelCase__ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(SCREAMING_SNAKE_CASE_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ ) model.gradient_checkpointing_enable() model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase__ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def _a (self ) -> Dict: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ = _config_zero_init(SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: UpperCamelCase__ = model_class(config=SCREAMING_SNAKE_CASE_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def _a (self ) -> List[Any]: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = BeitModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __UpperCamelCase ( ): UpperCamelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def _a (self ) -> Optional[Any]: '''simple docstring''' return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def _a (self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values.to(SCREAMING_SNAKE_CASE_ ) # prepare bool_masked_pos UpperCamelCase__ = torch.ones((1, 196) , dtype=torch.bool ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase__ = model(pixel_values=SCREAMING_SNAKE_CASE_ , bool_masked_pos=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-2 ) ) @slow def _a (self ) -> str: '''simple docstring''' UpperCamelCase__ = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = torch.Size((1, 1000) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) UpperCamelCase__ = 281 self.assertEqual(logits.argmax(-1 ).item() , SCREAMING_SNAKE_CASE_ ) @slow def _a (self ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.default_image_processor UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor([1.6881, -0.2787, 0.5901] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) UpperCamelCase__ = 2396 self.assertEqual(logits.argmax(-1 ).item() , SCREAMING_SNAKE_CASE_ ) @slow def _a (self ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) UpperCamelCase__ = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = BeitImageProcessor(do_resize=SCREAMING_SNAKE_CASE_ , size=640 , do_center_crop=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCamelCase__ = Image.open(ds[0]['''file'''] ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = outputs.logits # verify the logits UpperCamelCase__ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: UpperCamelCase__ = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=SCREAMING_SNAKE_CASE_ , ) else: UpperCamelCase__ = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=SCREAMING_SNAKE_CASE_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def _a (self ) -> Tuple: '''simple docstring''' UpperCamelCase__ = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) UpperCamelCase__ = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = BeitImageProcessor(do_resize=SCREAMING_SNAKE_CASE_ , size=640 , do_center_crop=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCamelCase__ = Image.open(ds[0]['''file'''] ) UpperCamelCase__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = outputs.logits.detach().cpu() UpperCamelCase__ = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ , target_sizes=[(500, 300)] ) UpperCamelCase__ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_ )
469
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __magic_name__ =pd.read_csv('''sample_data.csv''', header=None) __magic_name__ =df.shape[:1][0] # If you're using some other dataset input the target column __magic_name__ =df.iloc[:, 1:2] __magic_name__ =actual_data.values.reshape(len_data, 1) __magic_name__ =MinMaxScaler().fit_transform(actual_data) __magic_name__ =10 __magic_name__ =5 __magic_name__ =20 __magic_name__ =len_data - periods * look_back __magic_name__ =actual_data[:division] __magic_name__ =actual_data[division - look_back :] __magic_name__ , __magic_name__ =[], [] __magic_name__ , __magic_name__ =[], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __magic_name__ =np.array(train_x) __magic_name__ =np.array(test_x) __magic_name__ =np.array([list(i.ravel()) for i in train_y]) __magic_name__ =np.array([list(i.ravel()) for i in test_y]) __magic_name__ =Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') __magic_name__ =model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) __magic_name__ =model.predict(x_test)
469
1
"""simple docstring""" import random def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Optional[int] = num - 1 lowerCAmelCase : Any = 0 while s % 2 == 0: lowerCAmelCase : List[Any] = s // 2 t += 1 for _ in range(5 ): lowerCAmelCase : int = random.randrange(2 , num - 1 ) lowerCAmelCase : Tuple = pow(A_ , A_ , A_ ) if v != 1: lowerCAmelCase : Tuple = 0 while v != (num - 1): if i == t - 1: return False else: lowerCAmelCase : List[Any] = i + 1 lowerCAmelCase : Dict = (v**2) % num return True def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' if num < 2: return False lowerCAmelCase : Optional[int] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(A_ ) def a__ ( SCREAMING_SNAKE_CASE : str = 1_0_2_4 ): '''simple docstring''' while True: lowerCAmelCase : List[Any] = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(A_ ): return num if __name__ == "__main__": lowerCAmelCase__ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
645
'''simple docstring''' import os from pathlib import Path def lowerCamelCase_ ( ): from torch.utils.cpp_extension import load __lowerCamelCase = Path(A_ ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' __lowerCamelCase = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , A_ , with_cuda=A_ , extra_include_paths=[str(A_ )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
316
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase__ : Any = logging.getLogger(__name__) def a_ ( lowerCamelCase , lowerCamelCase ): return (preds == labels).mean() @dataclass class snake_case : """simple docstring""" snake_case__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case__ = field( default=_a , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case__ = field( default=_a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case__ = field( default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case : """simple docstring""" snake_case__ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) snake_case__ = field(metadata={"help": "Should contain the data files for the task."} ) snake_case__ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ = field( default=_a , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def a_ ( ): UpperCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowerCamelCase ) # Set seed set_seed(training_args.seed ) try: UpperCAmelCase__ = processors[data_args.task_name]() UpperCAmelCase__ = processor.get_labels() UpperCAmelCase__ = len(lowerCamelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCAmelCase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase__ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowerCamelCase ) -> Dict: UpperCAmelCase__ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCamelCase , p.label_ids )} # Data collator UpperCAmelCase__ = DataCollatorWithPadding(lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase__ = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , compute_metrics=lowerCamelCase , data_collator=lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase__ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) UpperCAmelCase__ = trainer.evaluate() UpperCAmelCase__ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(lowerCamelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , lowerCamelCase , lowerCamelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(lowerCamelCase ) return results def a_ ( lowerCamelCase ): main() if __name__ == "__main__": main()
720
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def a_ ( lowerCamelCase ): return "".join(sorted(lowerCamelCase ) ) def a_ ( lowerCamelCase ): return word_by_signature[signature(lowerCamelCase )] lowerCAmelCase__ : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') lowerCAmelCase__ : str = sorted({word.strip().lower() for word in data.splitlines()}) lowerCAmelCase__ : Optional[Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowerCAmelCase__ : int = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
632
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class _lowerCamelCase ( a_ ): _lowerCamelCase :Union[List[PIL.Image.Image], np.ndarray] _lowerCamelCase :Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class _lowerCamelCase ( a_ ): _lowerCamelCase :np.ndarray _lowerCamelCase :List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
299
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _A = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _lowerCamelCase : def __init__( self : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str]=16 , UpperCamelCase : List[str]=13 , UpperCamelCase : Any=7 , UpperCamelCase : str=14 , UpperCamelCase : List[Any]=10 , UpperCamelCase : Any=19 , UpperCamelCase : Optional[int]=5 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=16 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : List[Any]=4 , UpperCamelCase : str=4 , UpperCamelCase : Optional[int]="gelu" , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : List[Any]=[1, 2, 3, 4, 5] , UpperCamelCase : str=25 , UpperCamelCase : Any=5 , ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = d_model lowerCAmelCase__ : Tuple = parent lowerCAmelCase__ : Optional[Any] = batch_size lowerCAmelCase__ : Dict = prediction_length lowerCAmelCase__ : Tuple = context_length lowerCAmelCase__ : Any = cardinality lowerCAmelCase__ : Any = num_time_features lowerCAmelCase__ : Tuple = lags_sequence lowerCAmelCase__ : Tuple = embedding_dimension lowerCAmelCase__ : str = is_training lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : List[Any] = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob lowerCAmelCase__ : int = context_length lowerCAmelCase__ : Union[str, Any] = prediction_length + label_length lowerCAmelCase__ : Optional[Any] = label_length lowerCAmelCase__ : Union[str, Any] = moving_average lowerCAmelCase__ : Any = autocorrelation_factor def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def _lowerCAmelCase ( self : str , UpperCamelCase : Optional[int] ) -> str: """simple docstring""" lowerCAmelCase__ : Dict = config.context_length + max(config.lags_sequence ) lowerCAmelCase__ : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCAmelCase__ : Tuple = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCAmelCase__ : Dict = floats_tensor([self.batch_size, _past_length] ) lowerCAmelCase__ : int = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, config.prediction_length] ) lowerCAmelCase__ : Optional[int] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Tuple = self.get_config() lowerCAmelCase__ : Optional[Any] = self.prepare_autoformer_inputs_dict(UpperCamelCase ) return config, inputs_dict def _lowerCAmelCase ( self : str ) -> Any: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = AutoformerModel(config=UpperCamelCase ).to(UpperCamelCase ).eval() lowerCAmelCase__ : List[str] = model(**UpperCamelCase ) lowerCAmelCase__ : Any = outputs.encoder_last_hidden_state lowerCAmelCase__ : Any = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : List[str] = model.get_encoder() encoder.save_pretrained(UpperCamelCase ) lowerCAmelCase__ : Any = AutoformerEncoder.from_pretrained(UpperCamelCase ).to(UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = model.create_network_inputs(**UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Tuple = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCAmelCase__ : int = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCAmelCase__ : List[Any] = encoder(inputs_embeds=UpperCamelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) lowerCAmelCase__ : Tuple = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCAmelCase__ : List[str] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCAmelCase__ : Tuple = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCAmelCase__ : List[Any] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Optional[Any] = model.get_decoder() decoder.save_pretrained(UpperCamelCase ) lowerCAmelCase__ : List[str] = AutoformerDecoder.from_pretrained(UpperCamelCase ).to(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = decoder( trend=UpperCamelCase , inputs_embeds=UpperCamelCase , encoder_hidden_states=UpperCamelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _lowerCamelCase ( a_ , a_ , unittest.TestCase ): _lowerCamelCase :Tuple = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _lowerCamelCase :int = (AutoformerForPrediction,) if is_torch_available() else () _lowerCamelCase :int = {"feature-extraction": AutoformerModel} if is_torch_available() else {} _lowerCamelCase :Tuple = False _lowerCamelCase :int = False _lowerCamelCase :List[Any] = False _lowerCamelCase :Optional[int] = False _lowerCamelCase :int = False _lowerCamelCase :Any = False def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Tuple = AutoformerModelTester(self ) lowerCAmelCase__ : int = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase ) def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase__ : Dict = model_class(UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : int = model_class.from_pretrained(UpperCamelCase , output_loading_info=UpperCamelCase ) self.assertEqual(info["""missing_keys"""] , [] ) def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCamelCase ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" pass def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Optional[int] = inspect.signature(getattr(UpperCamelCase , """forward""" ) ) # The main input is the name of the argument after `self` lowerCAmelCase__ : str = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , UpperCamelCase ) def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : str = model_class(UpperCamelCase ) lowerCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : List[str] = [*signature.parameters.keys()] lowerCAmelCase__ : str = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(UpperCamelCase )] , UpperCamelCase ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : Optional[int] = getattr(self.model_tester , """seq_length""" , UpperCamelCase ) lowerCAmelCase__ : List[str] = getattr(self.model_tester , """decoder_seq_length""" , UpperCamelCase ) lowerCAmelCase__ : Tuple = getattr(self.model_tester , """encoder_seq_length""" , UpperCamelCase ) lowerCAmelCase__ : List[str] = getattr(self.model_tester , """d_model""" , UpperCamelCase ) lowerCAmelCase__ : Any = getattr(self.model_tester , """num_attention_heads""" , UpperCamelCase ) lowerCAmelCase__ : Optional[int] = d_model // num_attention_heads for model_class in self.all_model_classes: lowerCAmelCase__ : str = True lowerCAmelCase__ : Any = False lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : Dict = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowerCAmelCase__ : int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ : int = True lowerCAmelCase__ : Tuple = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowerCAmelCase__ : str = outputs.encoder_attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCAmelCase__ : int = len(UpperCamelCase ) lowerCAmelCase__ : int = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(UpperCamelCase , UpperCamelCase ) # decoder attentions lowerCAmelCase__ : List[str] = outputs.decoder_attentions self.assertIsInstance(UpperCamelCase , (list, tuple) ) self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCAmelCase__ : int = outputs.cross_attentions self.assertIsInstance(UpperCamelCase , (list, tuple) ) self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCAmelCase__ : int = True lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Dict = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(out_len + 2 , len(UpperCamelCase ) ) lowerCAmelCase__ : Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowercase_ ( __UpperCAmelCase="train-batch.pt" ) -> Optional[int]: lowerCAmelCase__ : Any = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=__UpperCAmelCase , repo_type="""dataset""" ) lowerCAmelCase__ : Optional[int] = torch.load(__UpperCAmelCase , map_location=__UpperCAmelCase ) return batch @require_torch @slow class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowerCAmelCase__ : int = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCamelCase ) lowerCAmelCase__ : List[str] = prepare_batch() with torch.no_grad(): lowerCAmelCase__ : Dict = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] lowerCAmelCase__ : str = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , UpperCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=UpperCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCamelCase , atol=UpperCamelCase ) ) def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : List[str] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCamelCase ) lowerCAmelCase__ : List[Any] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): lowerCAmelCase__ : Dict = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state lowerCAmelCase__ : int = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=UpperCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCamelCase , atol=UpperCamelCase ) ) def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" lowerCAmelCase__ : Tuple = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCamelCase ) lowerCAmelCase__ : str = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) lowerCAmelCase__ : Optional[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , UpperCamelCase ) lowerCAmelCase__ : int = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=UpperCamelCase ) lowerCAmelCase__ : List[Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCamelCase , rtol=1E-1 ) )
299
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
712
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
0
"""simple docstring""" import math import os import sys def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[Any] = """""" try: with open(SCREAMING_SNAKE_CASE , """rb""" ) as binary_file: UpperCamelCase : Any = binary_file.read() for dat in data: UpperCamelCase : Optional[int] = f"""{dat:08b}""" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lexicon.pop(SCREAMING_SNAKE_CASE ) UpperCamelCase : int = last_match_id if math.loga(SCREAMING_SNAKE_CASE ).is_integer(): for curr_key in lexicon: UpperCamelCase : List[Any] = """0""" + lexicon[curr_key] UpperCamelCase : Optional[Any] = bin(SCREAMING_SNAKE_CASE )[2:] def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : int = {"""0""": """0""", """1""": """1"""} UpperCamelCase , UpperCamelCase : int = """""", """""" UpperCamelCase : int = len(SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase : int = lexicon[curr_string] result += last_match_id add_key_to_lexicon(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) index += 1 UpperCamelCase : str = """""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": UpperCamelCase : Any = lexicon[curr_string] result += last_match_id return result def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Any = os.path.getsize(SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = bin(SCREAMING_SNAKE_CASE )[2:] UpperCamelCase : List[Any] = len(SCREAMING_SNAKE_CASE ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = 8 try: with open(SCREAMING_SNAKE_CASE , """wb""" ) as opened_file: UpperCamelCase : Optional[int] = [ to_write[i : i + byte_length] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(SCREAMING_SNAKE_CASE , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = read_file_binary(SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = compress_data(SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = add_file_length(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) write_file_binary(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
102
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = '''roberta''' def __init__( self , lowerCamelCase=5_02_65 , lowerCamelCase=7_68 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=30_72 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=5_12 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) UpperCamelCase : Any = vocab_size UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : Dict = num_hidden_layers UpperCamelCase : Dict = num_attention_heads UpperCamelCase : List[Any] = hidden_act UpperCamelCase : Optional[int] = intermediate_size UpperCamelCase : Optional[int] = hidden_dropout_prob UpperCamelCase : Tuple = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : List[str] = type_vocab_size UpperCamelCase : Tuple = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : Union[str, Any] = position_embedding_type UpperCamelCase : Tuple = use_cache UpperCamelCase : Any = classifier_dropout class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
173
0
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase__ = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def __UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any]=8 ) -> Optional[int]: '''simple docstring''' _a = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _a = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Optional[int]: super().__init__() self.register_modules( unet=__UpperCamelCase , scheduler=__UpperCamelCase , movq=__UpperCamelCase , ) _a = 2 ** (len(self.movq.config.block_out_channels ) - 1) def a_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: if latents is None: _a = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=__UpperCamelCase , dtype=__UpperCamelCase ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) _a = latents.to(__UpperCamelCase ) _a = latents * scheduler.init_noise_sigma return latents def a_ ( self , __UpperCamelCase=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _a = torch.device(f"cuda:{gpu_id}" ) _a = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__UpperCamelCase , __UpperCamelCase ) def a_ ( self , __UpperCamelCase=0 ) -> Optional[int]: if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _a = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=__UpperCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _a = None for cpu_offloaded_model in [self.unet, self.movq]: _a , _a = cpu_offload_with_hook(__UpperCamelCase , __UpperCamelCase , prev_module_hook=__UpperCamelCase ) # We'll offload the last model manually. _a = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def a_ ( self ) -> int: if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__UpperCamelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__UpperCamelCase ) def __call__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 512 , __UpperCamelCase = 512 , __UpperCamelCase = 100 , __UpperCamelCase = 4.0 , __UpperCamelCase = 1 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , ) -> List[Any]: _a = self._execution_device _a = guidance_scale > 1.0 if isinstance(__UpperCamelCase , __UpperCamelCase ): _a = torch.cat(__UpperCamelCase , dim=0 ) if isinstance(__UpperCamelCase , __UpperCamelCase ): _a = torch.cat(__UpperCamelCase , dim=0 ) if isinstance(__UpperCamelCase , __UpperCamelCase ): _a = torch.cat(__UpperCamelCase , dim=0 ) _a = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _a = image_embeds.repeat_interleave(__UpperCamelCase , dim=0 ) _a = negative_image_embeds.repeat_interleave(__UpperCamelCase , dim=0 ) _a = hint.repeat_interleave(__UpperCamelCase , dim=0 ) _a = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__UpperCamelCase ) _a = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__UpperCamelCase ) self.scheduler.set_timesteps(__UpperCamelCase , device=__UpperCamelCase ) _a = self.scheduler.timesteps _a = self.movq.config.latent_channels _a , _a = downscale_height_and_width(__UpperCamelCase , __UpperCamelCase , self.movq_scale_factor ) # create initial latent _a = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = {"image_embeds": image_embeds, "hint": hint} _a = self.unet( sample=__UpperCamelCase , timestep=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , added_cond_kwargs=__UpperCamelCase , return_dict=__UpperCamelCase , )[0] if do_classifier_free_guidance: _a , _a = noise_pred.split(latents.shape[1] , dim=1 ) _a , _a = noise_pred.chunk(2 ) _a , _a = variance_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _a = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _a , _a = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase , )[0] # post-processing _a = self.movq.decode(__UpperCamelCase , force_not_quantize=__UpperCamelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: _a = image * 0.5 + 0.5 _a = image.clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _a = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
711
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): UpperCAmelCase = ['''image_processor''', '''tokenizer'''] UpperCAmelCase = '''LayoutLMv2ImageProcessor''' UpperCAmelCase = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase ) -> str: if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCamelCase , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor _a = self.image_processor(images=__UpperCamelCase , return_tensors=__UpperCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCamelCase , __UpperCamelCase ): _a = [text] # add batch dimension (as the image processor always adds a batch dimension) _a = features["words"] _a = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) # add pixel values _a = features.pop("pixel_values" ) if return_overflowing_tokens is True: _a = self.get_overflowing_images(__UpperCamelCase , encoded_inputs["overflow_to_sample_mapping"] ) _a = images return encoded_inputs def a_ ( self , __UpperCamelCase , __UpperCamelCase ) -> Dict: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f" {len(__UpperCamelCase )} and {len(__UpperCamelCase )}" ) return images_with_overflow def a_ ( self , *__UpperCamelCase , **__UpperCamelCase ) -> Tuple: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def a_ ( self , *__UpperCamelCase , **__UpperCamelCase ) -> List[Any]: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def a_ ( self ) -> int: return ["input_ids", "bbox", "attention_mask", "image"] @property def a_ ( self ) -> Dict: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCamelCase , ) return self.image_processor_class @property def a_ ( self ) -> int: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCamelCase , ) return self.image_processor
276
0
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase_ ( unittest.TestCase ): @property def _snake_case ( self ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _lowerCAmelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def _snake_case ( self ) -> Any: torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.dummy_uncond_unet _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = self.dummy_vq_model _lowerCAmelCase = LDMPipeline(unet=_lowerCAmelCase , vqvae=_lowerCAmelCase , scheduler=_lowerCAmelCase ) ldm.to(_lowerCAmelCase ) ldm.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = ldm(generator=_lowerCAmelCase , num_inference_steps=2 , output_type="numpy" ).images _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = ldm(generator=_lowerCAmelCase , num_inference_steps=2 , output_type="numpy" , return_dict=_lowerCAmelCase )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) _lowerCAmelCase = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> List[str]: _lowerCAmelCase = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(_lowerCAmelCase ) ldm.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = ldm(generator=_lowerCAmelCase , num_inference_steps=5 , output_type="numpy" ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCAmelCase = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447] ) _lowerCAmelCase = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
18
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowercase : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class __UpperCamelCase ( lowerCAmelCase_ ): A_ = ["pixel_values"] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = None , __a = True , __a = 1 / 255 , __a = True , __a = None , __a = None , __a = True , **__a , ): '''simple docstring''' super().__init__(**__a ) __a : Dict = size if size is not None else {'shortest_edge': 224} __a : Optional[Any] = get_size_dict(__a , default_to_square=__a ) __a : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} __a : Dict = get_size_dict(__a , default_to_square=__a , param_name='crop_size' ) __a : int = do_resize __a : Tuple = size __a : Optional[int] = resample __a : List[str] = do_center_crop __a : int = crop_size __a : int = do_rescale __a : List[Any] = rescale_factor __a : Dict = do_normalize __a : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __a : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD __a : Tuple = do_convert_rgb def __UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BICUBIC , __a = None , **__a , ): '''simple docstring''' __a : Optional[Any] = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __a : Tuple = get_resize_output_image_size(__a , size=size['shortest_edge'] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __UpperCAmelCase ( self , __a , __a , __a = None , **__a , ): '''simple docstring''' __a : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__a , size=(size['height'], size['width']) , data_format=__a , **__a ) def __UpperCAmelCase ( self , __a , __a , __a = None , **__a , ): '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a ) def __UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ): '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ): '''simple docstring''' __a : str = do_resize if do_resize is not None else self.do_resize __a : Dict = size if size is not None else self.size __a : Dict = get_size_dict(__a , param_name='size' , default_to_square=__a ) __a : Optional[Any] = resample if resample is not None else self.resample __a : str = do_center_crop if do_center_crop is not None else self.do_center_crop __a : Optional[Any] = crop_size if crop_size is not None else self.crop_size __a : int = get_size_dict(__a , param_name='crop_size' , default_to_square=__a ) __a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __a : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __a : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __a : List[str] = image_mean if image_mean is not None else self.image_mean __a : List[str] = image_std if image_std is not None else self.image_std __a : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __a : int = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __a : Dict = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __a : int = [to_numpy_array(__a ) for image in images] if do_resize: __a : Tuple = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __a : List[Any] = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __a : Tuple = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __a : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __a : Optional[Any] = [to_channel_dimension_format(__a , __a ) for image in images] __a : int = {'pixel_values': images} return BatchFeature(data=__a , tensor_type=__a )
476
0
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __lowercase( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
585
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _a ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : float | Decimal , __SCREAMING_SNAKE_CASE : float = 10**-10 ): """simple docstring""" _lowerCAmelCase = a while True: _lowerCAmelCase = Decimal(__SCREAMING_SNAKE_CASE ) - ( Decimal(eval(__SCREAMING_SNAKE_CASE ) ) / Decimal(eval(str(diff(__SCREAMING_SNAKE_CASE ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__SCREAMING_SNAKE_CASE ) ) < precision: # noqa: S307 return float(__SCREAMING_SNAKE_CASE ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(F"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(F"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(F"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
585
1
from __future__ import annotations def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = list(range(len(A_ ) ) ) __magic_name__ = [v / w for v, w in zip(A_, A_ )] index.sort(key=lambda A_ : ratio[i], reverse=A_ ) __magic_name__ = 0 __magic_name__ = [0] * len(A_ ) for i in index: if weight[i] <= capacity: __magic_name__ = 1 max_value += value[i] capacity -= weight[i] else: __magic_name__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
529
from __future__ import annotations def a__ ( A_, A_ ): '''simple docstring''' if b == 0: return (1, 0) ((__magic_name__) , (__magic_name__)) = extended_euclid(A_, a % b ) __magic_name__ = a // b return (y, x - k * y) def a__ ( A_, A_, A_, A_ ): '''simple docstring''' ((__magic_name__) , (__magic_name__)) = extended_euclid(A_, A_ ) __magic_name__ = na * na __magic_name__ = ra * x * na + ra * y * na return (n % m + m) % m def a__ ( A_, A_ ): '''simple docstring''' ((__magic_name__) , (__magic_name__)) = extended_euclid(A_, A_ ) if b < 0: __magic_name__ = (b % n + n) % n return b def a__ ( A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ , __magic_name__ = invert_modulo(A_, A_ ), invert_modulo(A_, A_ ) __magic_name__ = na * na __magic_name__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
529
1
from __future__ import annotations lowercase_ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowercase_ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowerCAmelCase ( UpperCAmelCase ) ->list[float]: """simple docstring""" __magic_name__ : Any = [] __magic_name__ : int = len(UpperCAmelCase ) for i in range(UpperCAmelCase ): __magic_name__ : float = -1 for j in range(i + 1, UpperCAmelCase ): if arr[i] < arr[j]: __magic_name__ : Optional[Any] = arr[j] break result.append(UpperCAmelCase ) return result def lowerCAmelCase ( UpperCAmelCase ) ->list[float]: """simple docstring""" __magic_name__ : List[Any] = [] for i, outer in enumerate(UpperCAmelCase ): __magic_name__ : float = -1 for inner in arr[i + 1 :]: if outer < inner: __magic_name__ : Optional[int] = inner break result.append(UpperCAmelCase ) return result def lowerCAmelCase ( UpperCAmelCase ) ->list[float]: """simple docstring""" __magic_name__ : Tuple = len(UpperCAmelCase ) __magic_name__ : list[float] = [] __magic_name__ : list[float] = [-1] * arr_size for index in reversed(range(UpperCAmelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __magic_name__ : int = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowercase_ = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
711
import math import random def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase = False ) ->float: """simple docstring""" if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowercase_ = 0.0_2 def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->float: """simple docstring""" __magic_name__ : Optional[int] = float(2 * (random.randint(1, 100 )) - 1 ) for _ in range(UpperCAmelCase ): # Forward propagation __magic_name__ : Optional[Any] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __magic_name__ : Optional[int] = (expected / 100) - layer_a # Error delta __magic_name__ : Tuple = layer_1_error * sigmoid_function(UpperCAmelCase, UpperCAmelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = int(input('''Expected value: ''')) lowercase_ = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
336
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = (DPMSolverSinglestepScheduler,) UpperCAmelCase__ : Any = (("num_inference_steps", 25),) def __lowercase ( self , **_a ) -> List[str]: _a : List[str] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf''' ), '''variance_type''': None, } config.update(**_a ) return config def __lowercase ( self , _a=0 , **_a ) -> Any: _a : List[str] = dict(self.forward_default_kwargs ) _a : Optional[Any] = kwargs.pop('''num_inference_steps''' , _a ) _a : Dict = self.dummy_sample _a : Any = 0.1 * sample _a : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _a : List[str] = self.get_scheduler_config(**_a ) _a : str = scheduler_class(**_a ) scheduler.set_timesteps(_a ) # copy over dummy past residuals _a : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_a ) _a : List[str] = scheduler_class.from_pretrained(_a ) new_scheduler.set_timesteps(_a ) # copy over dummy past residuals _a : int = dummy_past_residuals[: new_scheduler.config.solver_order] _a , _a : Any = sample, sample for t in range(_a , time_step + scheduler.config.solver_order + 1 ): _a : Dict = scheduler.step(_a , _a , _a , **_a ).prev_sample _a : List[str] = new_scheduler.step(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowercase ( self ) -> Dict: pass def __lowercase ( self , _a=0 , **_a ) -> List[Any]: _a : List[str] = dict(self.forward_default_kwargs ) _a : Union[str, Any] = kwargs.pop('''num_inference_steps''' , _a ) _a : Union[str, Any] = self.dummy_sample _a : List[str] = 0.1 * sample _a : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _a : int = self.get_scheduler_config() _a : Optional[int] = scheduler_class(**_a ) scheduler.set_timesteps(_a ) # copy over dummy past residuals (must be after setting timesteps) _a : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_a ) _a : str = scheduler_class.from_pretrained(_a ) # copy over dummy past residuals new_scheduler.set_timesteps(_a ) # copy over dummy past residual (must be after setting timesteps) _a : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _a : int = scheduler.step(_a , _a , _a , **_a ).prev_sample _a : int = new_scheduler.step(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowercase ( self , _a=None , **_a ) -> Dict: if scheduler is None: _a : Optional[Any] = self.scheduler_classes[0] _a : List[str] = self.get_scheduler_config(**_a ) _a : Union[str, Any] = scheduler_class(**_a ) _a : int = self.scheduler_classes[0] _a : List[Any] = self.get_scheduler_config(**_a ) _a : Union[str, Any] = scheduler_class(**_a ) _a : Optional[Any] = 1_0 _a : List[Any] = self.dummy_model() _a : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(_a ) for i, t in enumerate(scheduler.timesteps ): _a : Any = model(_a , _a ) _a : Dict = scheduler.step(_a , _a , _a ).prev_sample return sample def __lowercase ( self ) -> Dict: _a : Optional[int] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _a : Union[str, Any] = 5_0 _a : Any = self.dummy_model() _a : Tuple = self.dummy_sample_deter scheduler.set_timesteps(_a ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _a : List[Any] = model(_a , _a ) _a : Optional[int] = scheduler.step(_a , _a , _a ).prev_sample _a : Union[str, Any] = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2574 ) < 1e-3 def __lowercase ( self ) -> int: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_a ) def __lowercase ( self ) -> List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _a : Dict = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _a : Dict = self.full_loop(scheduler=_a ) _a : Optional[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 _a : int = DEISMultistepScheduler.from_config(scheduler.config ) _a : Union[str, Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) _a : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) _a : Union[str, Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _a : Optional[int] = self.full_loop(scheduler=_a ) _a : List[str] = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def __lowercase ( self ) -> Union[str, Any]: self.check_over_configs(thresholding=_a ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , algorithm_type='''dpmsolver++''' , solver_order=_a , solver_type=_a , ) def __lowercase ( self ) -> Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def __lowercase ( self ) -> Dict: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_a , solver_type=_a , prediction_type=_a , algorithm_type=_a , ) _a : List[Any] = self.full_loop( solver_order=_a , solver_type=_a , prediction_type=_a , algorithm_type=_a , ) assert not torch.isnan(_a ).any(), "Samples have nan numbers" def __lowercase ( self ) -> List[Any]: self.check_over_configs(lower_order_final=_a ) self.check_over_configs(lower_order_final=_a ) def __lowercase ( self ) -> List[Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def __lowercase ( self ) -> int: self.check_over_configs(variance_type=_a ) self.check_over_configs(variance_type='''learned_range''' ) def __lowercase ( self ) -> Optional[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=_a , time_step=0 ) def __lowercase ( self ) -> Optional[Any]: _a : Any = self.full_loop() _a : Optional[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def __lowercase ( self ) -> Optional[int]: _a : Optional[Any] = self.full_loop(use_karras_sigmas=_a ) _a : int = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.2248 ) < 1e-3 def __lowercase ( self ) -> Optional[Any]: _a : Dict = self.full_loop(prediction_type='''v_prediction''' ) _a : Optional[int] = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.1453 ) < 1e-3 def __lowercase ( self ) -> str: _a : List[str] = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_a ) _a : Tuple = torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.0649 ) < 1e-3 def __lowercase ( self ) -> List[str]: _a : Union[str, Any] = self.scheduler_classes[0] _a : Dict = self.get_scheduler_config(thresholding=_a , dynamic_thresholding_ratio=0 ) _a : str = scheduler_class(**_a ) _a : Dict = 1_0 _a : Optional[Any] = self.dummy_model() _a : List[str] = self.dummy_sample_deter.half() scheduler.set_timesteps(_a ) for i, t in enumerate(scheduler.timesteps ): _a : Any = model(_a , _a ) _a : int = scheduler.step(_a , _a , _a ).prev_sample assert sample.dtype == torch.floataa
14
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig a =logging.get_logger(__name__) # General docstring a ="""RegNetConfig""" # Base docstring a ="""facebook/regnet-y-040""" a =[1, 1088, 7, 7] # Image classification docstring a ="""facebook/regnet-y-040""" a ="""tabby, tabby cat""" a =[ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A_ ( tf.keras.layers.Layer ): def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int = 3 ,SCREAMING_SNAKE_CASE__ : int = 1 ,SCREAMING_SNAKE_CASE__ : int = 1 ,SCREAMING_SNAKE_CASE__ : Optional[str] = "relu" ,**SCREAMING_SNAKE_CASE__ : Optional[int] ,): super().__init__(**SCREAMING_SNAKE_CASE__) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __lowerCamelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2) __lowerCamelCase : Union[str, Any] = tf.keras.layers.ConvaD( filters=SCREAMING_SNAKE_CASE__ ,kernel_size=SCREAMING_SNAKE_CASE__ ,strides=SCREAMING_SNAKE_CASE__ ,padding='VALID' ,groups=SCREAMING_SNAKE_CASE__ ,use_bias=SCREAMING_SNAKE_CASE__ ,name='convolution' ,) __lowerCamelCase : int = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name='normalization') __lowerCamelCase : Union[str, Any] = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : List[str]): __lowerCamelCase : List[Any] = self.convolution(self.padding(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Union[str, Any] = self.normalization(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = self.activation(SCREAMING_SNAKE_CASE__) return hidden_state class A_ ( tf.keras.layers.Layer ): def __init__( self : str ,SCREAMING_SNAKE_CASE__ : RegNetConfig ,**SCREAMING_SNAKE_CASE__ : Dict): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = config.num_channels __lowerCamelCase : Dict = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='embedder' ,) def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : Optional[int] = shape_list(SCREAMING_SNAKE_CASE__)[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.') # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __lowerCamelCase : Optional[int] = tf.transpose(SCREAMING_SNAKE_CASE__ ,perm=(0, 2, 3, 1)) __lowerCamelCase : List[Any] = self.embedder(SCREAMING_SNAKE_CASE__) return hidden_state class A_ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int = 2 ,**SCREAMING_SNAKE_CASE__ : Tuple): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = tf.keras.layers.ConvaD( filters=SCREAMING_SNAKE_CASE__ ,kernel_size=1 ,strides=SCREAMING_SNAKE_CASE__ ,use_bias=SCREAMING_SNAKE_CASE__ ,name='convolution') __lowerCamelCase : Optional[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name='normalization') def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : tf.Tensor ,SCREAMING_SNAKE_CASE__ : bool = False): return self.normalization(self.convolution(SCREAMING_SNAKE_CASE__) ,training=SCREAMING_SNAKE_CASE__) class A_ ( tf.keras.layers.Layer ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Any): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = tf.keras.layers.GlobalAveragePoolingaD(keepdims=SCREAMING_SNAKE_CASE__ ,name='pooler') __lowerCamelCase : Dict = [ tf.keras.layers.ConvaD(filters=SCREAMING_SNAKE_CASE__ ,kernel_size=1 ,activation='relu' ,name='attention.0'), tf.keras.layers.ConvaD(filters=SCREAMING_SNAKE_CASE__ ,kernel_size=1 ,activation='sigmoid' ,name='attention.2'), ] def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __lowerCamelCase : Optional[Any] = self.pooler(SCREAMING_SNAKE_CASE__) for layer_module in self.attention: __lowerCamelCase : Any = layer_module(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = hidden_state * pooled return hidden_state class A_ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : RegNetConfig ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int = 1 ,**SCREAMING_SNAKE_CASE__ : List[Any]): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = in_channels != out_channels or stride != 1 __lowerCamelCase : Union[str, Any] = max(1 ,out_channels // config.groups_width) __lowerCamelCase : Dict = ( TFRegNetShortCut(SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,name='shortcut') if should_apply_shortcut else tf.keras.layers.Activation('linear' ,name='shortcut') ) # `self.layers` instead of `self.layer` because that is a reserved argument. __lowerCamelCase : Optional[int] = [ TFRegNetConvLayer(SCREAMING_SNAKE_CASE__ ,kernel_size=1 ,activation=config.hidden_act ,name='layer.0'), TFRegNetConvLayer( SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,groups=SCREAMING_SNAKE_CASE__ ,activation=config.hidden_act ,name='layer.1'), TFRegNetConvLayer(SCREAMING_SNAKE_CASE__ ,kernel_size=1 ,activation=SCREAMING_SNAKE_CASE__ ,name='layer.2'), ] __lowerCamelCase : Dict = ACTaFN[config.hidden_act] def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[int]): __lowerCamelCase : int = hidden_state for layer_module in self.layers: __lowerCamelCase : List[str] = layer_module(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = self.shortcut(SCREAMING_SNAKE_CASE__) hidden_state += residual __lowerCamelCase : int = self.activation(SCREAMING_SNAKE_CASE__) return hidden_state class A_ ( tf.keras.layers.Layer ): def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : RegNetConfig ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int = 1 ,**SCREAMING_SNAKE_CASE__ : List[str]): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = in_channels != out_channels or stride != 1 __lowerCamelCase : Tuple = max(1 ,out_channels // config.groups_width) __lowerCamelCase : int = ( TFRegNetShortCut(SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,name='shortcut') if should_apply_shortcut else tf.keras.layers.Activation('linear' ,name='shortcut') ) __lowerCamelCase : Optional[int] = [ TFRegNetConvLayer(SCREAMING_SNAKE_CASE__ ,kernel_size=1 ,activation=config.hidden_act ,name='layer.0'), TFRegNetConvLayer( SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,groups=SCREAMING_SNAKE_CASE__ ,activation=config.hidden_act ,name='layer.1'), TFRegNetSELayer(SCREAMING_SNAKE_CASE__ ,reduced_channels=int(round(in_channels / 4)) ,name='layer.2'), TFRegNetConvLayer(SCREAMING_SNAKE_CASE__ ,kernel_size=1 ,activation=SCREAMING_SNAKE_CASE__ ,name='layer.3'), ] __lowerCamelCase : List[Any] = ACTaFN[config.hidden_act] def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Optional[int] = hidden_state for layer_module in self.layers: __lowerCamelCase : Dict = layer_module(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = self.shortcut(SCREAMING_SNAKE_CASE__) hidden_state += residual __lowerCamelCase : Any = self.activation(SCREAMING_SNAKE_CASE__) return hidden_state class A_ ( tf.keras.layers.Layer ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : RegNetConfig ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : int = 2 ,SCREAMING_SNAKE_CASE__ : int = 2 ,**SCREAMING_SNAKE_CASE__ : Tuple): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer __lowerCamelCase : Tuple = [ # downsampling is done in the first layer with stride of 2 layer(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,name='layers.0'), *[layer(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,name=F"layers.{i+1}") for i in range(depth - 1)], ] def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : List[Any]): for layer_module in self.layers: __lowerCamelCase : Any = layer_module(SCREAMING_SNAKE_CASE__) return hidden_state class A_ ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : RegNetConfig ,**SCREAMING_SNAKE_CASE__ : Any): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( SCREAMING_SNAKE_CASE__ ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='stages.0' ,)) __lowerCamelCase : Optional[int] = zip(config.hidden_sizes ,config.hidden_sizes[1:]) for i, ((in_channels, out_channels), depth) in enumerate(zip(SCREAMING_SNAKE_CASE__ ,config.depths[1:])): self.stages.append(TFRegNetStage(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,depth=SCREAMING_SNAKE_CASE__ ,name=F"stages.{i+1}")) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : tf.Tensor ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = True): __lowerCamelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCamelCase : Optional[Any] = hidden_states + (hidden_state,) __lowerCamelCase : str = stage_module(SCREAMING_SNAKE_CASE__) if output_hidden_states: __lowerCamelCase : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return TFBaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ ,hidden_states=SCREAMING_SNAKE_CASE__) @keras_serializable class A_ ( tf.keras.layers.Layer ): _UpperCAmelCase : List[Any] = RegNetConfig def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Optional[int]): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = config __lowerCamelCase : Optional[int] = TFRegNetEmbeddings(SCREAMING_SNAKE_CASE__ ,name='embedder') __lowerCamelCase : Union[str, Any] = TFRegNetEncoder(SCREAMING_SNAKE_CASE__ ,name='encoder') __lowerCamelCase : int = tf.keras.layers.GlobalAveragePoolingaD(keepdims=SCREAMING_SNAKE_CASE__ ,name='pooler') @unpack_inputs def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : tf.Tensor ,SCREAMING_SNAKE_CASE__ : Optional[bool] = None ,SCREAMING_SNAKE_CASE__ : Optional[bool] = None ,SCREAMING_SNAKE_CASE__ : bool = False ,): __lowerCamelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : Union[str, Any] = self.embedder(SCREAMING_SNAKE_CASE__ ,training=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = self.encoder( SCREAMING_SNAKE_CASE__ ,output_hidden_states=SCREAMING_SNAKE_CASE__ ,return_dict=SCREAMING_SNAKE_CASE__ ,training=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = encoder_outputs[0] __lowerCamelCase : int = self.pooler(SCREAMING_SNAKE_CASE__) # Change to NCHW output format have uniformity in the modules __lowerCamelCase : Union[str, Any] = tf.transpose(SCREAMING_SNAKE_CASE__ ,perm=(0, 3, 1, 2)) __lowerCamelCase : str = tf.transpose(SCREAMING_SNAKE_CASE__ ,perm=(0, 3, 1, 2)) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __lowerCamelCase : Union[str, Any] = tuple([tf.transpose(SCREAMING_SNAKE_CASE__ ,perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ ,pooler_output=SCREAMING_SNAKE_CASE__ ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Any = RegNetConfig _UpperCAmelCase : Optional[int] = '''regnet''' _UpperCAmelCase : List[Any] = '''pixel_values''' @property def lowerCAmelCase ( self : int): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) ,dtype=tf.floataa)} a =r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ a =r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , SCREAMING_SNAKE_CASE , ) class A_ ( SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : RegNetConfig ,*SCREAMING_SNAKE_CASE__ : Tuple ,**SCREAMING_SNAKE_CASE__ : Tuple): super().__init__(SCREAMING_SNAKE_CASE__ ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = TFRegNetMainLayer(SCREAMING_SNAKE_CASE__ ,name='regnet') @unpack_inputs @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=SCREAMING_SNAKE_CASE__ ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : tf.Tensor ,SCREAMING_SNAKE_CASE__ : Optional[bool] = None ,SCREAMING_SNAKE_CASE__ : Optional[bool] = None ,SCREAMING_SNAKE_CASE__ : int=False ,): __lowerCamelCase : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : Tuple = self.regnet( pixel_values=SCREAMING_SNAKE_CASE__ ,output_hidden_states=SCREAMING_SNAKE_CASE__ ,return_dict=SCREAMING_SNAKE_CASE__ ,training=SCREAMING_SNAKE_CASE__ ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , SCREAMING_SNAKE_CASE , ) class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : RegNetConfig ,*SCREAMING_SNAKE_CASE__ : List[str] ,**SCREAMING_SNAKE_CASE__ : str): super().__init__(SCREAMING_SNAKE_CASE__ ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = config.num_labels __lowerCamelCase : Union[str, Any] = TFRegNetMainLayer(SCREAMING_SNAKE_CASE__ ,name='regnet') # classification head __lowerCamelCase : Optional[Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name='classifier.1') if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=SCREAMING_SNAKE_CASE__ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : tf.Tensor = None ,SCREAMING_SNAKE_CASE__ : tf.Tensor = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Any=False ,): __lowerCamelCase : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : str = self.regnet( SCREAMING_SNAKE_CASE__ ,output_hidden_states=SCREAMING_SNAKE_CASE__ ,return_dict=SCREAMING_SNAKE_CASE__ ,training=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = outputs.pooler_output if return_dict else outputs[1] __lowerCamelCase : Optional[Any] = self.classifier[0](SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = self.classifier[1](SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = None if labels is None else self.hf_compute_loss(labels=SCREAMING_SNAKE_CASE__ ,logits=SCREAMING_SNAKE_CASE__) if not return_dict: __lowerCamelCase : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=SCREAMING_SNAKE_CASE__ ,logits=SCREAMING_SNAKE_CASE__ ,hidden_states=outputs.hidden_states)
652
0
snake_case = [ """Audio""", """Array2D""", """Array3D""", """Array4D""", """Array5D""", """ClassLabel""", """Features""", """Sequence""", """Value""", """Image""", """Translation""", """TranslationVariableLanguages""", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
535
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging snake_case = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class A_ ( UpperCAmelCase ): """simple docstring""" def __init__( self : str ,__A : int = 101 ) -> Optional[int]: _lowercase = length def __len__( self : List[Any] ) -> Any: return self.length def __getitem__( self : List[Any] ,__A : Optional[int] ) -> int: return i class A_ : """simple docstring""" def __call__( self : str ,__A : Union[str, Any] ) -> Any: return {"input_ids": torch.tensor(__A ), "labels": torch.tensor(__A )} class A_ ( nn.Module ): """simple docstring""" def __init__( self : Dict ) -> Any: super().__init__() # Add some (unused) params otherwise DDP will complain. _lowercase = nn.Linear(120 ,80 ) def __UpperCAmelCase ( self : Dict ,__A : Dict ,__A : Any=None ) -> Tuple: if labels is not None: return torch.tensor(0.0 ,device=input_ids.device ), input_ids else: return input_ids class A_ ( UpperCAmelCase ): """simple docstring""" @require_torch_neuroncore def __UpperCAmelCase ( self : int ) -> Any: _lowercase = F"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() _lowercase = self.get_auto_remove_tmp_dir() _lowercase = F"""--output_dir {output_dir}""".split() _lowercase = ['torchrun'] + distributed_args + args execute_subprocess_async(__A ,env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class A_ ( UpperCAmelCase ): """simple docstring""" @require_torch_multi_gpu def __UpperCAmelCase ( self : Dict ) -> List[Any]: _lowercase = F"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() _lowercase = self.get_auto_remove_tmp_dir() _lowercase = F"""--output_dir {output_dir}""".split() _lowercase = ['torchrun'] + distributed_args + args execute_subprocess_async(__A ,env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py snake_case = HfArgumentParser((TrainingArguments,)) snake_case = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: snake_case = DummyDataset(dataset_length) def SCREAMING_SNAKE_CASE__ ( snake_case__ :EvalPrediction ) -> Dict: _lowercase = list(range(len(snake_case__ ) ) ) _lowercase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' F"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} snake_case = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) snake_case = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) snake_case = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) snake_case = 2 snake_case = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) snake_case = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) snake_case = None
535
1
import os import string import sys a_ : List[str] = 1 << 8 a_ : Union[str, Any] = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 2_7, 'up': 6_5 + ARROW_KEY_FLAG, 'down': 6_6 + ARROW_KEY_FLAG, 'right': 6_7 + ARROW_KEY_FLAG, 'left': 6_8 + ARROW_KEY_FLAG, 'mod_int': 9_1, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 5_0, 'delete': 5_1, 'pg_up': 5_3, 'pg_down': 5_4, } a_ : Optional[Any] = KEYMAP['up'] a_ : List[str] = KEYMAP['left'] if sys.platform == "win32": a_ : List[Any] = [] a_ : Optional[int] = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(1_0): a_ : Optional[Any] = ord(str(i)) def __lowercase( ): """simple docstring""" if os.name == "nt": import msvcrt lowerCamelCase = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(UpperCAmelCase__ ) == 0: # Read the keystroke lowerCamelCase = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCamelCase = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCamelCase = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(UpperCAmelCase__ ) if ord(UpperCAmelCase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCamelCase = chr(KEYMAP["esc"] ) except KeyError: lowerCamelCase = cha[1] else: lowerCamelCase = ch.decode(UpperCAmelCase__ ) else: lowerCamelCase = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCamelCase = sys.stdin.fileno() lowerCamelCase = termios.tcgetattr(UpperCAmelCase__ ) try: tty.setraw(UpperCAmelCase__ ) lowerCamelCase = sys.stdin.read(1 ) finally: termios.tcsetattr(UpperCAmelCase__ , termios.TCSADRAIN , UpperCAmelCase__ ) return ch def __lowercase( ): """simple docstring""" lowerCamelCase = get_raw_chars() if ord(UpperCAmelCase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(UpperCAmelCase__ ) == KEYMAP["esc"]: lowerCamelCase = get_raw_chars() if ord(UpperCAmelCase__ ) == KEYMAP["mod_int"]: lowerCamelCase = get_raw_chars() if ord(UpperCAmelCase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCAmelCase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(UpperCAmelCase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
623
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase): """simple docstring""" _A = AudioLDMPipeline _A = TEXT_TO_AUDIO_PARAMS _A = TEXT_TO_AUDIO_BATCH_PARAMS _A = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ]) def _a (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=(32, 64) , class_embed_type="simple_projection" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=__a , ) lowerCamelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , projection_dim=32 , ) lowerCamelCase = ClapTextModelWithProjection(__a ) lowerCamelCase = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta" , model_max_length=77 ) lowerCamelCase = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_60_00 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__a , ) lowerCamelCase = SpeechTaHifiGan(__a ) lowerCamelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "vocoder": vocoder, } return components def _a (self , __a , __a=0 ): '''simple docstring''' if str(__a ).startswith("mps" ): lowerCamelCase = torch.manual_seed(__a ) else: lowerCamelCase = torch.Generator(device=__a ).manual_seed(__a ) lowerCamelCase = { "prompt": "A hammer hitting a wooden surface", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, } return inputs def _a (self ): '''simple docstring''' lowerCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.get_dummy_components() lowerCamelCase = AudioLDMPipeline(**__a ) lowerCamelCase = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase = self.get_dummy_inputs(__a ) lowerCamelCase = audioldm_pipe(**__a ) lowerCamelCase = output.audios[0] assert audio.ndim == 1 assert len(__a ) == 2_56 lowerCamelCase = audio[:10] lowerCamelCase = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def _a (self ): '''simple docstring''' lowerCamelCase = self.get_dummy_components() lowerCamelCase = AudioLDMPipeline(**__a ) lowerCamelCase = audioldm_pipe.to(__a ) lowerCamelCase = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase = self.get_dummy_inputs(__a ) lowerCamelCase = 3 * [inputs["prompt"]] # forward lowerCamelCase = audioldm_pipe(**__a ) lowerCamelCase = output.audios[0] lowerCamelCase = self.get_dummy_inputs(__a ) lowerCamelCase = 3 * [inputs.pop("prompt" )] lowerCamelCase = audioldm_pipe.tokenizer( __a , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__a , return_tensors="pt" , ) lowerCamelCase = text_inputs["input_ids"].to(__a ) lowerCamelCase = audioldm_pipe.text_encoder( __a , ) lowerCamelCase = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCamelCase = F.normalize(__a , dim=-1 ) lowerCamelCase = prompt_embeds # forward lowerCamelCase = audioldm_pipe(**__a ) lowerCamelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def _a (self ): '''simple docstring''' lowerCamelCase = self.get_dummy_components() lowerCamelCase = AudioLDMPipeline(**__a ) lowerCamelCase = audioldm_pipe.to(__a ) lowerCamelCase = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase = self.get_dummy_inputs(__a ) lowerCamelCase = 3 * ["this is a negative prompt"] lowerCamelCase = negative_prompt lowerCamelCase = 3 * [inputs["prompt"]] # forward lowerCamelCase = audioldm_pipe(**__a ) lowerCamelCase = output.audios[0] lowerCamelCase = self.get_dummy_inputs(__a ) lowerCamelCase = 3 * [inputs.pop("prompt" )] lowerCamelCase = [] for p in [prompt, negative_prompt]: lowerCamelCase = audioldm_pipe.tokenizer( __a , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__a , return_tensors="pt" , ) lowerCamelCase = text_inputs["input_ids"].to(__a ) lowerCamelCase = audioldm_pipe.text_encoder( __a , ) lowerCamelCase = text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCamelCase = F.normalize(__a , dim=-1 ) embeds.append(__a ) lowerCamelCase , lowerCamelCase = embeds # forward lowerCamelCase = audioldm_pipe(**__a ) lowerCamelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def _a (self ): '''simple docstring''' lowerCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.get_dummy_components() lowerCamelCase = PNDMScheduler(skip_prk_steps=__a ) lowerCamelCase = AudioLDMPipeline(**__a ) lowerCamelCase = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase = self.get_dummy_inputs(__a ) lowerCamelCase = "egg cracking" lowerCamelCase = audioldm_pipe(**__a , negative_prompt=__a ) lowerCamelCase = output.audios[0] assert audio.ndim == 1 assert len(__a ) == 2_56 lowerCamelCase = audio[:10] lowerCamelCase = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def _a (self ): '''simple docstring''' lowerCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.get_dummy_components() lowerCamelCase = PNDMScheduler(skip_prk_steps=__a ) lowerCamelCase = AudioLDMPipeline(**__a ) lowerCamelCase = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase = "A hammer hitting a wooden surface" # test num_waveforms_per_prompt=1 (default) lowerCamelCase = audioldm_pipe(__a , num_inference_steps=2 ).audios assert audios.shape == (1, 2_56) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowerCamelCase = 2 lowerCamelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_56) # test num_waveforms_per_prompt for single prompt lowerCamelCase = 2 lowerCamelCase = audioldm_pipe(__a , num_inference_steps=2 , num_waveforms_per_prompt=__a ).audios assert audios.shape == (num_waveforms_per_prompt, 2_56) # test num_waveforms_per_prompt for batch of prompts lowerCamelCase = 2 lowerCamelCase = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__a ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_56) def _a (self ): '''simple docstring''' lowerCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.get_dummy_components() lowerCamelCase = AudioLDMPipeline(**__a ) lowerCamelCase = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase = audioldm_pipe.vocoder.config.sampling_rate lowerCamelCase = self.get_dummy_inputs(__a ) lowerCamelCase = audioldm_pipe(audio_length_in_s=0.016 , **__a ) lowerCamelCase = output.audios[0] assert audio.ndim == 1 assert len(__a ) / vocoder_sampling_rate == 0.016 lowerCamelCase = audioldm_pipe(audio_length_in_s=0.032 , **__a ) lowerCamelCase = output.audios[0] assert audio.ndim == 1 assert len(__a ) / vocoder_sampling_rate == 0.032 def _a (self ): '''simple docstring''' lowerCamelCase = self.get_dummy_components() lowerCamelCase = AudioLDMPipeline(**__a ) lowerCamelCase = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase = ["hey"] lowerCamelCase = audioldm_pipe(__a , num_inference_steps=1 ) lowerCamelCase = output.audios.shape assert audio_shape == (1, 2_56) lowerCamelCase = audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowerCamelCase = SpeechTaHifiGan(__a ).to(__a ) lowerCamelCase = audioldm_pipe(__a , num_inference_steps=1 ) lowerCamelCase = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_56) def _a (self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__a ) def _a (self ): '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=__a ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _a (self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__a ) @slow class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def _a (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self , __a , __a="cpu" , __a=torch.floataa , __a=0 ): '''simple docstring''' lowerCamelCase = torch.Generator(device=__a ).manual_seed(__a ) lowerCamelCase = np.random.RandomState(__a ).standard_normal((1, 8, 1_28, 16) ) lowerCamelCase = torch.from_numpy(__a ).to(device=__a , dtype=__a ) lowerCamelCase = { "prompt": "A hammer hitting a wooden surface", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 2.5, } return inputs def _a (self ): '''simple docstring''' lowerCamelCase = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) lowerCamelCase = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase = self.get_inputs(__a ) lowerCamelCase = 25 lowerCamelCase = audioldm_pipe(**__a ).audios[0] assert audio.ndim == 1 assert len(__a ) == 8_19_20 lowerCamelCase = audio[7_72_30:7_72_40] lowerCamelCase = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) lowerCamelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def _a (self ): '''simple docstring''' lowerCamelCase = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) lowerCamelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowerCamelCase = audioldm_pipe.to(__a ) audioldm_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase = self.get_inputs(__a ) lowerCamelCase = audioldm_pipe(**__a ).audios[0] assert audio.ndim == 1 assert len(__a ) == 8_19_20 lowerCamelCase = audio[2_77_80:2_77_90] lowerCamelCase = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) lowerCamelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
623
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase : List[Any] = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
from __future__ import annotations from collections.abc import Generator def SCREAMING_SNAKE_CASE ( ) -> Generator[int, None, None]: lowerCamelCase__ : dict[int, int] = {} lowerCamelCase__ : Union[str, Any] = 2 while True: lowerCamelCase__ : Optional[int] = factor_map.pop(_UpperCAmelCase , _UpperCAmelCase ) if factor: lowerCamelCase__ : Optional[Any] = factor + prime while x in factor_map: x += factor lowerCamelCase__ : Optional[Any] = factor else: lowerCamelCase__ : Union[str, Any] = prime yield prime prime += 1 def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 1e10 ) -> int: lowerCamelCase__ : Tuple = sieve() lowerCamelCase__ : Dict = 1 while True: lowerCamelCase__ : List[Any] = next(_UpperCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(_UpperCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
188
0
'''simple docstring''' def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = '''mra''' def __init__( self : str , __lowerCamelCase : Tuple=5_0_2_6_5 , __lowerCamelCase : List[str]=7_6_8 , __lowerCamelCase : Union[str, Any]=1_2 , __lowerCamelCase : Optional[int]=1_2 , __lowerCamelCase : Union[str, Any]=3_0_7_2 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Union[str, Any]=5_1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : List[Any]="absolute" , __lowerCamelCase : int=4 , __lowerCamelCase : List[Any]="full" , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : Any=0 , __lowerCamelCase : Dict=1 , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=2 , **__lowerCamelCase : Dict , ): """simple docstring""" super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = position_embedding_type _SCREAMING_SNAKE_CASE = block_per_row _SCREAMING_SNAKE_CASE = approx_mode _SCREAMING_SNAKE_CASE = initial_prior_first_n_blocks _SCREAMING_SNAKE_CASE = initial_prior_diagonal_n_blocks
418
0
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Optional[Any] = {} snake_case_ : Optional[Any] = job["""started_at"""] snake_case_ : Tuple = job["""completed_at"""] snake_case_ : Tuple = date_parser.parse(SCREAMING_SNAKE_CASE__ ) snake_case_ : Union[str, Any] = date_parser.parse(SCREAMING_SNAKE_CASE__ ) snake_case_ : Any = round((end_datetime - start_datetime).total_seconds() / 60.0 ) snake_case_ : int = start snake_case_ : str = end snake_case_ : Optional[Any] = duration_in_min return job_info def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=None ): """simple docstring""" snake_case_ : List[str] = None if token is not None: snake_case_ : Optional[int] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} snake_case_ : Optional[int] = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' snake_case_ : Optional[Any] = requests.get(SCREAMING_SNAKE_CASE__ , headers=SCREAMING_SNAKE_CASE__ ).json() snake_case_ : Optional[int] = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(SCREAMING_SNAKE_CASE__ ) for job in result["""jobs"""]} ) snake_case_ : Optional[int] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(SCREAMING_SNAKE_CASE__ ): snake_case_ : Optional[int] = requests.get(url + f'&page={i + 2}' , headers=SCREAMING_SNAKE_CASE__ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(SCREAMING_SNAKE_CASE__ ) for job in result["""jobs"""]} ) return job_time except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') a_ = parser.parse_args() a_ = get_job_time(args.workflow_run_id) a_ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v['duration']}''')
48
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
48
1
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase__ = _symbol_database.Default() lowerCAmelCase__ = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCAmelCase__ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase__ = None lowerCAmelCase__ = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase__ = 45 lowerCAmelCase__ = 1_581 lowerCAmelCase__ = 1_517 lowerCAmelCase__ = 1_570 lowerCAmelCase__ = 1_584 lowerCAmelCase__ = 1_793 lowerCAmelCase__ = 1_795 lowerCAmelCase__ = 1_916 lowerCAmelCase__ = 1_864 lowerCAmelCase__ = 1_905 lowerCAmelCase__ = 1_919 lowerCAmelCase__ = 2_429 lowerCAmelCase__ = 2_208 lowerCAmelCase__ = 2_418 lowerCAmelCase__ = 2_323 lowerCAmelCase__ = 2_407 # @@protoc_insertion_point(module_scope)
321
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class __a ( __snake_case ): lowerCamelCase : Union[str, Any] ='open-llama' def __init__( self , UpperCAmelCase=10_0000 , UpperCAmelCase=4096 , UpperCAmelCase=1_1008 , UpperCAmelCase=32 , UpperCAmelCase=32 , UpperCAmelCase="silu" , UpperCAmelCase=2048 , UpperCAmelCase=0.0_2 , UpperCAmelCase=1E-6 , UpperCAmelCase=True , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = hidden_size lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = initializer_range lowerCAmelCase_ = rms_norm_eps lowerCAmelCase_ = use_cache lowerCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , UpperCAmelCase ) lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_dropout_prob lowerCAmelCase_ = use_stable_embedding lowerCAmelCase_ = shared_input_output_embedding lowerCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase , ) def lowerCamelCase_ ( self ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""" ) lowerCAmelCase_ = self.rope_scaling.get('''type''' , UpperCAmelCase ) lowerCAmelCase_ = self.rope_scaling.get('''factor''' , UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(UpperCAmelCase , UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
552
0
def UpperCAmelCase_ ( _A ): '''simple docstring''' try: SCREAMING_SNAKE_CASE__ = float(_A ) except ValueError: raise ValueError('''Please enter a valid number''' ) SCREAMING_SNAKE_CASE__ = decimal - int(_A ) if fractional_part == 0: return int(_A ), 1 else: SCREAMING_SNAKE_CASE__ = len(str(_A ).split('''.''' )[1] ) SCREAMING_SNAKE_CASE__ = int(decimal * (10**number_of_frac_digits) ) SCREAMING_SNAKE_CASE__ = 10**number_of_frac_digits SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = denominator, numerator while True: SCREAMING_SNAKE_CASE__ = dividend % divisor if remainder == 0: break SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = divisor, remainder SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = numerator / divisor, denominator / divisor return int(_A ), int(_A ) if __name__ == "__main__": print(F"{decimal_to_fraction(2) = }") print(F"{decimal_to_fraction(8_9.0) = }") print(F"{decimal_to_fraction('67') = }") print(F"{decimal_to_fraction('45.0') = }") print(F"{decimal_to_fraction(1.5) = }") print(F"{decimal_to_fraction('6.25') = }") print(F"{decimal_to_fraction('78td') = }")
705
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = KandinskyImgaImgPipeline a = ["prompt", "image_embeds", "negative_image_embeds", "image"] a = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] a = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a = False @property def lowercase_ ( self : str ) -> List[str]: return 32 @property def lowercase_ ( self : Optional[int] ) -> int: return 32 @property def lowercase_ ( self : Union[str, Any] ) -> int: return self.time_input_dim @property def lowercase_ ( self : List[str] ) -> int: return self.time_input_dim * 4 @property def lowercase_ ( self : Union[str, Any] ) -> Any: return 100 @property def lowercase_ ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def lowercase_ ( self : List[Any] ) -> List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE__ = MultilingualCLIP(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = text_encoder.eval() return text_encoder @property def lowercase_ ( self : str ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE__ = UNetaDConditionModel(**__lowerCamelCase ) return model @property def lowercase_ ( self : Dict ) -> Optional[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self : Tuple ) -> Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder SCREAMING_SNAKE_CASE__ = self.dummy_tokenizer SCREAMING_SNAKE_CASE__ = self.dummy_unet SCREAMING_SNAKE_CASE__ = self.dummy_movq SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE__ = DDIMScheduler(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowercase_ ( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any]=0 ) -> str: SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(__lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def lowercase_ ( self : int ) -> Any: SCREAMING_SNAKE_CASE__ = '''cpu''' SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Tuple ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE__ = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE__ = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = pipe_prior( __lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE__ = pipeline( __lowerCamelCase , image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
472
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class UpperCAmelCase_ ( __lowerCamelCase ): __lowerCamelCase = 42 __lowerCamelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class UpperCAmelCase_ ( __lowerCamelCase ): __lowerCamelCase = 42 __lowerCamelCase = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
79
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ =get_tests_dir("fixtures/test_sentencepiece.model") UpperCAmelCase__ ={"target_lang": "fi", "source_lang": "en"} UpperCAmelCase__ =">>zh<<" UpperCAmelCase__ ="Helsinki-NLP/" if is_torch_available(): UpperCAmelCase__ ="pt" elif is_tf_available(): UpperCAmelCase__ ="tf" else: UpperCAmelCase__ ="jax" @require_sentencepiece class lowerCamelCase__ ( _a , unittest.TestCase ): a : Dict = MarianTokenizer a : Optional[int] = False a : Any = True def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' super().setUp() __lowercase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowercase = dict(zip(A_ , range(len(A_ ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(A_ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(A_ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(A_ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(A_ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) __lowercase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Dict , **A_ : Any ): '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname , **A_ ) def SCREAMING_SNAKE_CASE_ ( self : int , A_ : List[str] ): '''simple docstring''' return ( "This is a test", "This is a test", ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' __lowercase = """</s>""" __lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(A_ ) , 9 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = MarianTokenizer.from_pretrained(F'''{ORG_NAME}opus-mt-en-de''' ) __lowercase = en_de_tokenizer(["""I am a small frog"""] , return_tensors=A_ ) self.assertIsInstance(A_ , A_ ) __lowercase = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(A_ , batch.input_ids[0] ) __lowercase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(A_ ) __lowercase = [x.name for x in Path(A_ ).glob("""*""" )] self.assertIn("""source.spm""" , A_ ) MarianTokenizer.from_pretrained(A_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = tok( ["""I am a small frog""" * 1_0_0_0, """I am a small frog"""] , padding=A_ , truncation=A_ , return_tensors=A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2) ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=A_ , return_tensors=A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' __lowercase = {"""input_ids""": [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' __lowercase = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) __lowercase = """Tämä on testi""" __lowercase = """This is a test""" __lowercase = [7_6, 7, 2_0_4_7, 2] __lowercase = [6_9, 1_2, 1_1, 9_4_0, 2] __lowercase = tokenizer(A_ ).input_ids self.assertListEqual(A_ , A_ ) __lowercase = tokenizer(text_target=A_ ).input_ids self.assertListEqual(A_ , A_ ) __lowercase = tokenizer.decode(A_ , skip_special_tokens=A_ ) self.assertEqual(A_ , A_ )
616
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase : Dict = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any]) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(_lowerCamelCase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(_lowerCamelCase , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(_lowerCamelCase): return [[videos]] raise ValueError(F'Could not make batched video from {videos}') class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = ['pixel_values'] def __init__( self :Any , a :bool = True , a :Dict[str, int] = None , a :PILImageResampling = PILImageResampling.BILINEAR , a :bool = True , a :Dict[str, int] = None , a :bool = True , a :Union[int, float] = 1 / 2_5_5 , a :bool = True , a :Optional[Union[float, List[float]]] = None , a :Optional[Union[float, List[float]]] = None , **a :Union[str, Any] , ) -> None: super().__init__(**a ) __UpperCamelCase : Union[str, Any] = size if size is not None else {"shortest_edge": 2_2_4} __UpperCamelCase : Optional[int] = get_size_dict(a , default_to_square=a ) __UpperCamelCase : List[str] = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} __UpperCamelCase : Optional[int] = get_size_dict(a , param_name="crop_size" ) __UpperCamelCase : int = do_resize __UpperCamelCase : List[str] = size __UpperCamelCase : str = do_center_crop __UpperCamelCase : Tuple = crop_size __UpperCamelCase : Optional[int] = resample __UpperCamelCase : str = do_rescale __UpperCamelCase : str = rescale_factor __UpperCamelCase : Tuple = do_normalize __UpperCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self :Union[str, Any] , a :np.ndarray , a :Dict[str, int] , a :PILImageResampling = PILImageResampling.BILINEAR , a :Optional[Union[str, ChannelDimension]] = None , **a :Tuple , ) -> np.ndarray: __UpperCamelCase : Any = get_size_dict(a , default_to_square=a ) if "shortest_edge" in size: __UpperCamelCase : Dict = get_resize_output_image_size(a , size["shortest_edge"] , default_to_square=a ) elif "height" in size and "width" in size: __UpperCamelCase : int = (size["height"], size["width"]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(a , size=a , resample=a , data_format=a , **a ) def _lowerCamelCase ( self :Any , a :np.ndarray , a :Dict[str, int] , a :Optional[Union[str, ChannelDimension]] = None , **a :str , ) -> np.ndarray: __UpperCamelCase : List[str] = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(a , size=(size["height"], size["width"]) , data_format=a , **a ) def _lowerCamelCase ( self :Any , a :np.ndarray , a :Union[int, float] , a :Optional[Union[str, ChannelDimension]] = None , **a :Tuple , ) -> Optional[Any]: return rescale(a , scale=a , data_format=a , **a ) def _lowerCamelCase ( self :Optional[Any] , a :np.ndarray , a :Union[float, List[float]] , a :Union[float, List[float]] , a :Optional[Union[str, ChannelDimension]] = None , **a :List[str] , ) -> np.ndarray: return normalize(a , mean=a , std=a , data_format=a , **a ) def _lowerCamelCase ( self :List[str] , a :ImageInput , a :bool = None , a :Dict[str, int] = None , a :PILImageResampling = None , a :bool = None , a :Dict[str, int] = None , a :bool = None , a :float = None , a :bool = None , a :Optional[Union[float, List[float]]] = None , a :Optional[Union[float, List[float]]] = None , a :Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __UpperCamelCase : Optional[Any] = to_numpy_array(a ) if do_resize: __UpperCamelCase : List[str] = self.resize(image=a , size=a , resample=a ) if do_center_crop: __UpperCamelCase : Optional[int] = self.center_crop(a , size=a ) if do_rescale: __UpperCamelCase : Optional[Any] = self.rescale(image=a , scale=a ) if do_normalize: __UpperCamelCase : Dict = self.normalize(image=a , mean=a , std=a ) __UpperCamelCase : Tuple = to_channel_dimension_format(a , a ) return image def _lowerCamelCase ( self :Optional[Any] , a :ImageInput , a :bool = None , a :Dict[str, int] = None , a :PILImageResampling = None , a :bool = None , a :Dict[str, int] = None , a :bool = None , a :float = None , a :bool = None , a :Optional[Union[float, List[float]]] = None , a :Optional[Union[float, List[float]]] = None , a :Optional[Union[str, TensorType]] = None , a :ChannelDimension = ChannelDimension.FIRST , **a :Optional[Any] , ) -> PIL.Image.Image: __UpperCamelCase : int = do_resize if do_resize is not None else self.do_resize __UpperCamelCase : str = resample if resample is not None else self.resample __UpperCamelCase : Any = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase : int = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase : Any = image_mean if image_mean is not None else self.image_mean __UpperCamelCase : Optional[int] = image_std if image_std is not None else self.image_std __UpperCamelCase : List[str] = size if size is not None else self.size __UpperCamelCase : List[Any] = get_size_dict(a , default_to_square=a ) __UpperCamelCase : str = crop_size if crop_size is not None else self.crop_size __UpperCamelCase : str = get_size_dict(a , param_name="crop_size" ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) __UpperCamelCase : Optional[Any] = make_batched(a ) __UpperCamelCase : List[str] = [ [ self._preprocess_image( image=a , do_resize=a , size=a , resample=a , do_center_crop=a , crop_size=a , do_rescale=a , rescale_factor=a , do_normalize=a , image_mean=a , image_std=a , data_format=a , ) for img in video ] for video in videos ] __UpperCamelCase : Union[str, Any] = {"pixel_values": videos} return BatchFeature(data=a , tensor_type=a )
94
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : Optional[Any] = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 'speech_to_text_2' _A = ['past_key_values'] _A = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self :Dict , a :Tuple=1_0_0_0_0 , a :Optional[int]=6 , a :List[str]=2_0_4_8 , a :Tuple=4 , a :List[Any]=0.0 , a :str=True , a :Any="relu" , a :Any=2_5_6 , a :Optional[int]=0.1 , a :Any=0.0 , a :int=0.0 , a :int=0.02 , a :List[Any]=2 , a :Tuple=True , a :str=1 , a :Optional[int]=0 , a :List[Any]=2 , a :Any=1_0_2_4 , **a :str , ) -> int: __UpperCamelCase : List[str] = vocab_size __UpperCamelCase : int = d_model __UpperCamelCase : Optional[int] = decoder_ffn_dim __UpperCamelCase : Any = decoder_layers __UpperCamelCase : Any = decoder_attention_heads __UpperCamelCase : Tuple = dropout __UpperCamelCase : Any = attention_dropout __UpperCamelCase : Any = activation_dropout __UpperCamelCase : Dict = activation_function __UpperCamelCase : int = init_std __UpperCamelCase : List[str] = decoder_layerdrop __UpperCamelCase : Optional[Any] = use_cache __UpperCamelCase : int = decoder_layers __UpperCamelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase : Dict = max_target_positions super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , decoder_start_token_id=a , **a , )
94
1