code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __snake_case : str = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __snake_case : Any = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' __snake_case : List[str] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def A__ ( self : Optional[int] ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def A__ ( self : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , ): A__ = len(references[0] ) if any(len(_lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ = [[refs[i] for refs in references] for i in range(_lowerCamelCase )] A__ = TER( normalized=_lowerCamelCase , no_punct=_lowerCamelCase , asian_support=_lowerCamelCase , case_sensitive=_lowerCamelCase , ) A__ = sb_ter.corpus_score(_lowerCamelCase , _lowerCamelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
571
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a_ ( __a ): return 1 / (1 + np.exp(-z )) def a_ ( __a , __a ): return (-y * np.log(__a ) - (1 - y) * np.log(1 - h )).mean() def a_ ( __a , __a , __a ): A__ = np.dot(__a , __a ) return np.sum(y * scores - np.log(1 + np.exp(__a ) ) ) def a_ ( __a , __a , __a , __a=7_0000 ): A__ = np.zeros(x.shape[1] ) for iterations in range(__a ): A__ = np.dot(__a , __a ) A__ = sigmoid_function(__a ) A__ = np.dot(x.T , h - y ) / y.size A__ = theta - alpha * gradient # updating the weights A__ = np.dot(__a , __a ) A__ = sigmoid_function(__a ) A__ = cost_function(__a , __a ) if iterations % 100 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __snake_case : List[Any] = datasets.load_iris() __snake_case : List[Any] = iris.data[:, :2] __snake_case : List[str] = (iris.target != 0) * 1 __snake_case : List[Any] = 0.1 __snake_case : Optional[Any] = logistic_reg(alpha, x, y, max_iterations=70_000) print('theta: ', theta) # printing the theta i.e our weights vector def a_ ( __a ): return sigmoid_function( np.dot(__a , __a ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((__snake_case) , (__snake_case)) : Tuple = (x[:, 0].min(), x[:, 0].max()) ((__snake_case) , (__snake_case)) : Tuple = (x[:, 1].min(), x[:, 1].max()) ((__snake_case) , (__snake_case)) : Optional[Any] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __snake_case : int = np.c_[xxa.ravel(), xxa.ravel()] __snake_case : Dict = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
571
1
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase ( unittest.TestCase): """simple docstring""" def __init__( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Any=13 , UpperCamelCase__ : Optional[int]=7 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : str=32 , UpperCamelCase__ : str=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : List[Any]=37 , UpperCamelCase__ : int="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Dict=512 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : str=4 , ) -> Tuple: _UpperCamelCase =parent _UpperCamelCase =batch_size _UpperCamelCase =seq_length _UpperCamelCase =is_training _UpperCamelCase =use_attention_mask _UpperCamelCase =use_token_type_ids _UpperCamelCase =use_labels _UpperCamelCase =vocab_size _UpperCamelCase =hidden_size _UpperCamelCase =num_hidden_layers _UpperCamelCase =num_attention_heads _UpperCamelCase =intermediate_size _UpperCamelCase =hidden_act _UpperCamelCase =hidden_dropout_prob _UpperCamelCase =attention_probs_dropout_prob _UpperCamelCase =max_position_embeddings _UpperCamelCase =type_vocab_size _UpperCamelCase =type_sequence_label_size _UpperCamelCase =initializer_range _UpperCamelCase =num_choices def UpperCamelCase__ ( self : int ) -> Optional[int]: _UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase =None if self.use_attention_mask: _UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase =None if self.use_token_type_ids: _UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase =AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self : int ) -> List[str]: _UpperCamelCase =self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase =config_and_inputs _UpperCamelCase ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase ( lowercase_ , unittest.TestCase): """simple docstring""" lowerCAmelCase_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ ( self : Tuple ) -> Optional[int]: _UpperCamelCase =FlaxAlbertModelTester(self ) @slow def UpperCamelCase__ ( self : List[str] ) -> Union[str, Any]: for model_class_name in self.all_model_classes: _UpperCamelCase =model_class_name.from_pretrained('''albert-base-v2''' ) _UpperCamelCase =model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase__ ) @require_flax class UpperCAmelCase ( unittest.TestCase): """simple docstring""" @slow def UpperCamelCase__ ( self : Optional[int] ) -> str: _UpperCamelCase =FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _UpperCamelCase =np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCamelCase =np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] _UpperCamelCase =(1, 11, 768) self.assertEqual(output.shape , UpperCamelCase__ ) _UpperCamelCase =np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1E-4 ) )
271
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Any = logging.get_logger(__name__) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) _UpperCamelCase =DetaConfig( backbone_config=__SCREAMING_SNAKE_CASE , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=__SCREAMING_SNAKE_CASE , with_box_refine=__SCREAMING_SNAKE_CASE , two_stage=__SCREAMING_SNAKE_CASE , ) # set labels _UpperCamelCase ='''huggingface/label-files''' if "o365" in model_name: _UpperCamelCase =366 _UpperCamelCase ='''object365-id2label.json''' else: _UpperCamelCase =91 _UpperCamelCase ='''coco-detection-id2label.json''' _UpperCamelCase =num_labels _UpperCamelCase =json.load(open(cached_download(hf_hub_url(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) ) , '''r''' ) ) _UpperCamelCase ={int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _UpperCamelCase =idalabel _UpperCamelCase ={v: k for k, v in idalabel.items()} return config def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =[] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =dct.pop(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =val def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCamelCase =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCamelCase =state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) _UpperCamelCase =state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase =in_proj_weight[:dim, :] _UpperCamelCase =in_proj_bias[: dim] _UpperCamelCase =in_proj_weight[ dim : dim * 2, : ] _UpperCamelCase =in_proj_bias[ dim : dim * 2 ] _UpperCamelCase =in_proj_weight[ -dim :, : ] _UpperCamelCase =in_proj_bias[-dim :] # fmt: on def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _UpperCamelCase =state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCamelCase =state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase =in_proj_weight[:hidden_size, :] _UpperCamelCase =in_proj_bias[:hidden_size] _UpperCamelCase =in_proj_weight[ hidden_size : hidden_size * 2, : ] _UpperCamelCase =in_proj_bias[hidden_size : hidden_size * 2] _UpperCamelCase =in_proj_weight[-hidden_size:, :] _UpperCamelCase =in_proj_bias[-hidden_size:] def _a (): """simple docstring""" _UpperCamelCase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase =Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =get_deta_config(__SCREAMING_SNAKE_CASE ) # load original state dict if model_name == "deta-swin-large": _UpperCamelCase =hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": _UpperCamelCase =hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) _UpperCamelCase =torch.load(__SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__SCREAMING_SNAKE_CASE , param.shape ) # rename keys _UpperCamelCase =create_rename_keys(__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_swin_q_k_v(__SCREAMING_SNAKE_CASE , config.backbone_config ) read_in_decoder_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _UpperCamelCase =state_dict.pop(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =val if "input_proj" in key: _UpperCamelCase =state_dict.pop(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _UpperCamelCase =state_dict.pop(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =val # finally, create HuggingFace model and load state dict _UpperCamelCase =DetaForObjectDetection(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) model.eval() _UpperCamelCase ='''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__SCREAMING_SNAKE_CASE ) # load image processor _UpperCamelCase =DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image _UpperCamelCase =prepare_img() _UpperCamelCase =processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) _UpperCamelCase =encoding['''pixel_values'''] _UpperCamelCase =model(pixel_values.to(__SCREAMING_SNAKE_CASE ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _UpperCamelCase =torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) _UpperCamelCase =torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": _UpperCamelCase =torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) _UpperCamelCase =torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__SCREAMING_SNAKE_CASE ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__SCREAMING_SNAKE_CASE ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": __lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCamelCase : List[str] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
271
1
import math def __UpperCamelCase ( A , A ): UpperCamelCase__ = len(A ) UpperCamelCase__ = int(math.floor(math.sqrt(A ) ) ) UpperCamelCase__ = 0 while arr[min(A , A ) - 1] < x: UpperCamelCase__ = step step += int(math.floor(math.sqrt(A ) ) ) if prev >= n: return -1 while arr[prev] < x: UpperCamelCase__ = prev + 1 if prev == min(A , A ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": __magic_name__ =input('''Enter numbers separated by a comma:\n''').strip() __magic_name__ =[int(item) for item in user_input.split(''',''')] __magic_name__ =int(input('''Enter the number to be searched:\n''')) __magic_name__ =jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f"""Number {x} is at index {res}""")
415
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __UpperCamelCase ( A , A , A=1e-12 ): UpperCamelCase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A , axis=1 ) , a_min=A ) ).T UpperCamelCase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A , axis=1 ) , a_min=A ) ).T return jnp.matmul(A , norm_emb_a.T ) class _A ( nn.Module ): SCREAMING_SNAKE_CASE_ : CLIPConfig SCREAMING_SNAKE_CASE_ : jnp.dtype =jnp.floataa def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = FlaxCLIPVisionModule(self.config.vision_config ) UpperCamelCase__ = nn.Dense(self.config.projection_dim , use_bias=SCREAMING_SNAKE_CASE_ , dtype=self.dtype ) UpperCamelCase__ = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) UpperCamelCase__ = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCamelCase__ = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) UpperCamelCase__ = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__(self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = self.vision_model(SCREAMING_SNAKE_CASE_ )[1] UpperCamelCase__ = self.visual_projection(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = jax_cosine_distance(SCREAMING_SNAKE_CASE_ , self.special_care_embeds ) UpperCamelCase__ = jax_cosine_distance(SCREAMING_SNAKE_CASE_ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCamelCase__ = 0.0 UpperCamelCase__ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCamelCase__ = jnp.round(SCREAMING_SNAKE_CASE_ , 3 ) UpperCamelCase__ = jnp.any(special_scores > 0 , axis=1 , keepdims=SCREAMING_SNAKE_CASE_ ) # Use a lower threshold if an image has any special care concept UpperCamelCase__ = is_special_care * 0.01 UpperCamelCase__ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCamelCase__ = jnp.round(SCREAMING_SNAKE_CASE_ , 3 ) UpperCamelCase__ = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _A ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] =CLIPConfig SCREAMING_SNAKE_CASE_ : Dict ="clip_input" SCREAMING_SNAKE_CASE_ : Union[str, Any] =FlaxStableDiffusionSafetyCheckerModule def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = jnp.floataa , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: '''simple docstring''' if input_shape is None: UpperCamelCase__ = (1, 224, 224, 3) UpperCamelCase__ = self.module_class(config=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , input_shape=SCREAMING_SNAKE_CASE_ , seed=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , _do_init=_do_init ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> FrozenDict: '''simple docstring''' UpperCamelCase__ = jax.random.normal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ = jax.random.split(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = {'''params''': params_rng, '''dropout''': dropout_rng} UpperCamelCase__ = self.module.init(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )['''params'''] return random_params def __call__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , ) -> str: '''simple docstring''' UpperCamelCase__ = jnp.transpose(SCREAMING_SNAKE_CASE_ , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa ) , rngs={} , )
415
1
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) class _UpperCamelCase (lowercase__ ): snake_case_ = ["""pixel_values"""] def __init__( self , __UpperCamelCase = True , __UpperCamelCase = 3_2 , __UpperCamelCase=PILImageResampling.BILINEAR , __UpperCamelCase = True , **__UpperCamelCase , )-> Optional[Any]: __lowerCAmelCase = do_resize __lowerCAmelCase = do_rescale __lowerCAmelCase = size_divisor __lowerCAmelCase = resample super().__init__(**__lowerCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase )-> Optional[Any]: __lowerCAmelCase = get_image_size(__lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __lowerCAmelCase = height // size_divisor * size_divisor __lowerCAmelCase = width // size_divisor * size_divisor __lowerCAmelCase = resize(__lowerCamelCase , (new_h, new_w) , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) return image def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase )-> List[str]: return rescale(image=__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase=None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , )-> Optional[Any]: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = size_divisor if size_divisor is not None else self.size_divisor __lowerCAmelCase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("size_divisor is required for resizing" ) __lowerCAmelCase = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError("Invalid image(s)" ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowerCamelCase ) for img in images] if do_resize: __lowerCAmelCase = [self.resize(__lowerCamelCase , size_divisor=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(__lowerCamelCase , scale=1 / 2_5_5 ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] __lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
705
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Tuple = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase : Optional[int] = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : List[str] = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : Any = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : str = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } lowerCamelCase : Any = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } lowerCamelCase : Tuple = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } lowerCamelCase : Tuple = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase : int = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCamelCase : List[Any] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _UpperCamelCase (a_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case_ = DPRContextEncoderTokenizer class _UpperCamelCase (a_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case_ = DPRQuestionEncoderTokenizer lowerCamelCase : Union[str, Any] = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCamelCase : List[str] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCamelCase : List[Any] = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(a_ ) class _UpperCamelCase : def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> BatchEncoding: if titles is None and texts is None: return super().__call__( __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) elif titles is None or texts is None: __lowerCAmelCase = titles if texts is None else texts return super().__call__( __UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) __lowerCAmelCase = titles if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [titles] __lowerCAmelCase = texts if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [texts] __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = questions if not isinstance(__UpperCamelCase , __UpperCamelCase ) else [questions] * n_passages assert len(__UpperCamelCase ) == len( __UpperCamelCase ), F"""There should be as many titles than texts but got {len(__UpperCamelCase )} titles and {len(__UpperCamelCase )} texts.""" __lowerCAmelCase = super().__call__(__UpperCamelCase , __UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )["input_ids"] __lowerCAmelCase = super().__call__(__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase )["input_ids"] __lowerCAmelCase = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__UpperCamelCase , __UpperCamelCase ) ] } if return_attention_mask is not False: __lowerCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowerCAmelCase = attention_mask return self.pad(__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors=__UpperCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1_6 , __UpperCamelCase = 6_4 , __UpperCamelCase = 4 , )-> List[DPRSpanPrediction]: __lowerCAmelCase = reader_input["input_ids"] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = reader_output[:3] __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = sorted(range(__UpperCamelCase ) , reverse=__UpperCamelCase , key=relevance_logits.__getitem__ ) __lowerCAmelCase = [] for doc_id in sorted_docs: __lowerCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowerCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowerCAmelCase = sequence_ids.index(self.pad_token_id ) else: __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__UpperCamelCase , top_spans=__UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__UpperCamelCase , start_index=__UpperCamelCase , end_index=__UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> List[DPRSpanPrediction]: __lowerCAmelCase = [] for start_index, start_score in enumerate(__UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowerCAmelCase = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[1] , reverse=__UpperCamelCase ) __lowerCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" __lowerCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a_ ) class _UpperCamelCase (a_ , a_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = READER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = READER_PRETRAINED_INIT_CONFIGURATION snake_case_ = ["""input_ids""", """attention_mask"""] snake_case_ = DPRReaderTokenizer
290
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE_ ( _a , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : List[str] =CTRLTokenizer __lowerCAmelCase : Optional[int] =False __lowerCAmelCase : Any =False def UpperCamelCase__ ( self :Optional[Any]): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase =['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] _lowercase =dict(zip(snake_case, range(len(snake_case)))) _lowercase =['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] _lowercase ={'unk_token': '<unk>'} _lowercase =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) _lowercase =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file, 'w', encoding='utf-8') as fp: fp.write(json.dumps(snake_case) + '\n') with open(self.merges_file, 'w', encoding='utf-8') as fp: fp.write('\n'.join(snake_case)) def UpperCamelCase__ ( self :Optional[int], **snake_case :int): """simple docstring""" kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname, **snake_case) def UpperCamelCase__ ( self :Optional[int], snake_case :List[str]): """simple docstring""" _lowercase ='adapt react readapt apt' _lowercase ='adapt react readapt apt' return input_text, output_text def UpperCamelCase__ ( self :Optional[Any]): """simple docstring""" _lowercase =CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) _lowercase ='adapt react readapt apt' _lowercase ='adapt re@@ a@@ c@@ t re@@ adapt apt'.split() _lowercase =tokenizer.tokenize(snake_case) self.assertListEqual(snake_case, snake_case) _lowercase =tokens + [tokenizer.unk_token] _lowercase =[0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case), snake_case)
181
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class SCREAMING_SNAKE_CASE_ : """simple docstring""" __lowerCAmelCase : Optional[int] =PegasusConfig __lowerCAmelCase : Dict ={} __lowerCAmelCase : List[Any] ='''gelu''' def __init__( self :Optional[int], snake_case :Union[str, Any], snake_case :str=13, snake_case :Tuple=7, snake_case :str=True, snake_case :Dict=False, snake_case :List[Any]=99, snake_case :Any=32, snake_case :Tuple=2, snake_case :Optional[Any]=4, snake_case :List[str]=37, snake_case :str=0.1, snake_case :Any=0.1, snake_case :str=40, snake_case :str=2, snake_case :Union[str, Any]=1, snake_case :Tuple=0, ): """simple docstring""" _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_labels _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =eos_token_id _lowercase =pad_token_id _lowercase =bos_token_id def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" _lowercase =ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size) _lowercase =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) _lowercase =tf.concat([input_ids, eos_tensor], axis=1) _lowercase =ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase =self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) _lowercase =prepare_pegasus_inputs_dict(snake_case, snake_case, snake_case) return config, inputs_dict def UpperCamelCase__ ( self :int, snake_case :int, snake_case :Union[str, Any]): """simple docstring""" _lowercase =TFPegasusModel(config=snake_case).get_decoder() _lowercase =inputs_dict['input_ids'] _lowercase =input_ids[:1, :] _lowercase =inputs_dict['attention_mask'][:1, :] _lowercase =inputs_dict['head_mask'] _lowercase =1 # first forward pass _lowercase =model(snake_case, attention_mask=snake_case, head_mask=snake_case, use_cache=snake_case) _lowercase , _lowercase =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowercase =ids_tensor((self.batch_size, 3), config.vocab_size) _lowercase =tf.cast(ids_tensor((self.batch_size, 3), 2), tf.inta) # append to next input_ids and _lowercase =tf.concat([input_ids, next_tokens], axis=-1) _lowercase =tf.concat([attention_mask, next_attn_mask], axis=-1) _lowercase =model(snake_case, attention_mask=snake_case)[0] _lowercase =model(snake_case, attention_mask=snake_case, past_key_values=snake_case)[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice _lowercase =int(ids_tensor((1,), output_from_past.shape[-1])) _lowercase =output_from_no_past[:, -3:, random_slice_idx] _lowercase =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case, snake_case, rtol=1e-3) def _snake_case (_snake_case : str , _snake_case : Optional[Any] , _snake_case : Tuple , _snake_case : Any=None , _snake_case : Dict=None , _snake_case : Optional[Any]=None , _snake_case : Optional[int]=None , _snake_case : str=None , ) -> List[str]: if attention_mask is None: _lowercase =tf.cast(tf.math.not_equal(_snake_case , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: _lowercase =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: _lowercase =tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: _lowercase =tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: _lowercase =tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE_ ( _a , _a , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Optional[int] =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __lowerCAmelCase : Dict =(TFPegasusForConditionalGeneration,) if is_tf_available() else () __lowerCAmelCase : Union[str, Any] =( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __lowerCAmelCase : List[str] =True __lowerCAmelCase : Optional[int] =False __lowerCAmelCase : List[Any] =False def UpperCamelCase__ ( self :Tuple): """simple docstring""" _lowercase =TFPegasusModelTester(self) _lowercase =ConfigTester(self, config_class=snake_case) def UpperCamelCase__ ( self :Tuple): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self :int): """simple docstring""" _lowercase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case) @require_sentencepiece @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Optional[int] =[ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] __lowerCAmelCase : Union[str, Any] =[ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers __lowerCAmelCase : Tuple ='''google/pegasus-xsum''' @cached_property def UpperCamelCase__ ( self :Optional[Any]): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name) @cached_property def UpperCamelCase__ ( self :Dict): """simple docstring""" _lowercase =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model def UpperCamelCase__ ( self :Any, **snake_case :int): """simple docstring""" _lowercase =self.translate_src_text(**snake_case) assert self.expected_text == generated_words def UpperCamelCase__ ( self :str, **snake_case :Tuple): """simple docstring""" _lowercase =self.tokenizer(self.src_text, **snake_case, padding=snake_case, return_tensors='tf') _lowercase =self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, use_cache=snake_case, ) _lowercase =self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=snake_case) return generated_words @slow def UpperCamelCase__ ( self :Tuple): """simple docstring""" self._assert_generated_batch_equal_expected()
181
1
'''simple docstring''' import math def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(snake_case__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
343
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ = 50 ): '''simple docstring''' A : Any = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
343
1
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker a : List[Any] = '''CompVis/stable-diffusion-v1-1''' a : Optional[Any] = '''CompVis/stable-diffusion-v1-2''' a : Any = '''CompVis/stable-diffusion-v1-3''' a : Optional[int] = '''CompVis/stable-diffusion-v1-4''' class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Optional[int] , a_ : AutoencoderKL , a_ : CLIPTextModel , a_ : CLIPTokenizer , a_ : UNetaDConditionModel , a_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , a_ : StableDiffusionSafetyChecker , a_ : CLIPImageProcessor , a_ : bool = True , ): """simple docstring""" super()._init_() __snake_case = StableDiffusionPipeline.from_pretrained(a_ ) __snake_case = StableDiffusionPipeline.from_pretrained(a_ ) __snake_case = StableDiffusionPipeline.from_pretrained(a_ ) __snake_case = StableDiffusionPipeline( vae=a_ , text_encoder=a_ , tokenizer=a_ , unet=a_ , scheduler=a_ , safety_checker=a_ , feature_extractor=a_ , requires_safety_checker=a_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A ( self : int ): """simple docstring""" return {k: getattr(self , a_ ) for k in self.config.keys() if not k.startswith("_" )} def A ( self : int , a_ : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a_ ) def A ( self : str ): """simple docstring""" self.enable_attention_slicing(a_ ) @torch.no_grad() def A ( self : List[str] , a_ : Union[str, List[str]] , a_ : int = 512 , a_ : int = 512 , a_ : int = 50 , a_ : float = 7.5 , a_ : Optional[Union[str, List[str]]] = None , a_ : Optional[int] = 1 , a_ : float = 0.0 , a_ : Optional[torch.Generator] = None , a_ : Optional[torch.FloatTensor] = None , a_ : Optional[str] = "pil" , a_ : bool = True , a_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a_ : int = 1 , **a_ : Optional[int] , ): """simple docstring""" return self.pipea( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) @torch.no_grad() def A ( self : int , a_ : Union[str, List[str]] , a_ : int = 512 , a_ : int = 512 , a_ : int = 50 , a_ : float = 7.5 , a_ : Optional[Union[str, List[str]]] = None , a_ : Optional[int] = 1 , a_ : float = 0.0 , a_ : Optional[torch.Generator] = None , a_ : Optional[torch.FloatTensor] = None , a_ : Optional[str] = "pil" , a_ : bool = True , a_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a_ : int = 1 , **a_ : Union[str, Any] , ): """simple docstring""" return self.pipea( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) @torch.no_grad() def A ( self : Union[str, Any] , a_ : Union[str, List[str]] , a_ : int = 512 , a_ : int = 512 , a_ : int = 50 , a_ : float = 7.5 , a_ : Optional[Union[str, List[str]]] = None , a_ : Optional[int] = 1 , a_ : float = 0.0 , a_ : Optional[torch.Generator] = None , a_ : Optional[torch.FloatTensor] = None , a_ : Optional[str] = "pil" , a_ : bool = True , a_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a_ : int = 1 , **a_ : Dict , ): """simple docstring""" return self.pipea( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) @torch.no_grad() def A ( self : Any , a_ : Union[str, List[str]] , a_ : int = 512 , a_ : int = 512 , a_ : int = 50 , a_ : float = 7.5 , a_ : Optional[Union[str, List[str]]] = None , a_ : Optional[int] = 1 , a_ : float = 0.0 , a_ : Optional[torch.Generator] = None , a_ : Optional[torch.FloatTensor] = None , a_ : Optional[str] = "pil" , a_ : bool = True , a_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a_ : int = 1 , **a_ : Optional[Any] , ): """simple docstring""" return self.pipea( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) @torch.no_grad() def A ( self : int , a_ : Union[str, List[str]] , a_ : int = 512 , a_ : int = 512 , a_ : int = 50 , a_ : float = 7.5 , a_ : Optional[Union[str, List[str]]] = None , a_ : Optional[int] = 1 , a_ : float = 0.0 , a_ : Optional[torch.Generator] = None , a_ : Optional[torch.FloatTensor] = None , a_ : Optional[str] = "pil" , a_ : bool = True , a_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a_ : int = 1 , **a_ : Union[str, Any] , ): """simple docstring""" __snake_case = "cuda" if torch.cuda.is_available() else "cpu" self.to(a_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 __snake_case = self.textaimg_sda_a( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 __snake_case = self.textaimg_sda_a( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 __snake_case = self.textaimg_sda_a( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 __snake_case = self.textaimg_sda_a( prompt=a_ , height=a_ , width=a_ , num_inference_steps=a_ , guidance_scale=a_ , negative_prompt=a_ , num_images_per_prompt=a_ , eta=a_ , generator=a_ , latents=a_ , output_type=a_ , return_dict=a_ , callback=a_ , callback_steps=a_ , **a_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
69
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = '''align_text_model''' def __init__( self : int , __a : Optional[int]=30522 , __a : int=768 , __a : Optional[Any]=12 , __a : Any=12 , __a : Tuple=3072 , __a : Tuple="gelu" , __a : List[Any]=0.1 , __a : Optional[int]=0.1 , __a : Dict=512 , __a : List[Any]=2 , __a : Dict=0.02 , __a : Optional[int]=1E-12 , __a : int=0 , __a : Optional[int]="absolute" , __a : Tuple=True , **__a : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__(**__a ) __lowercase : Tuple = vocab_size __lowercase : Dict = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : Union[str, Any] = num_attention_heads __lowercase : Optional[Any] = hidden_act __lowercase : Tuple = intermediate_size __lowercase : List[str] = hidden_dropout_prob __lowercase : List[str] = attention_probs_dropout_prob __lowercase : Any = max_position_embeddings __lowercase : str = type_vocab_size __lowercase : List[str] = initializer_range __lowercase : Optional[int] = layer_norm_eps __lowercase : Optional[int] = position_embedding_type __lowercase : Union[str, Any] = use_cache __lowercase : int = pad_token_id @classmethod def lowerCAmelCase ( cls : Tuple , __a : Union[str, os.PathLike] , **__a : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__a ) __lowercase , __lowercase : List[Any] = cls.get_config_dict(__a , **__a ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": __lowercase : Tuple = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''align_vision_model''' def __init__( self : List[str] , __a : int = 3 , __a : int = 600 , __a : float = 2.0 , __a : float = 3.1 , __a : int = 8 , __a : List[int] = [3, 3, 5, 3, 5, 5, 3] , __a : List[int] = [32, 16, 24, 40, 80, 112, 192] , __a : List[int] = [16, 24, 40, 80, 112, 192, 320] , __a : List[int] = [] , __a : List[int] = [1, 2, 2, 2, 1, 2, 1] , __a : List[int] = [1, 2, 2, 3, 3, 4, 1] , __a : List[int] = [1, 6, 6, 6, 6, 6, 6] , __a : float = 0.25 , __a : str = "swish" , __a : int = 2560 , __a : str = "mean" , __a : float = 0.02 , __a : float = 0.001 , __a : float = 0.99 , __a : float = 0.2 , **__a : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(**__a ) __lowercase : Any = num_channels __lowercase : Tuple = image_size __lowercase : Tuple = width_coefficient __lowercase : Any = depth_coefficient __lowercase : str = depth_divisor __lowercase : Union[str, Any] = kernel_sizes __lowercase : int = in_channels __lowercase : List[Any] = out_channels __lowercase : int = depthwise_padding __lowercase : Union[str, Any] = strides __lowercase : Optional[int] = num_block_repeats __lowercase : List[str] = expand_ratios __lowercase : int = squeeze_expansion_ratio __lowercase : str = hidden_act __lowercase : List[str] = hidden_dim __lowercase : Dict = pooling_type __lowercase : Any = initializer_range __lowercase : Tuple = batch_norm_eps __lowercase : int = batch_norm_momentum __lowercase : Tuple = drop_connect_rate __lowercase : Tuple = sum(__a ) * 4 @classmethod def lowerCAmelCase ( cls : str , __a : Union[str, os.PathLike] , **__a : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__a ) __lowercase , __lowercase : Optional[int] = cls.get_config_dict(__a , **__a ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": __lowercase : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class lowerCAmelCase ( __a ): '''simple docstring''' _A : Union[str, Any] = '''align''' _A : Optional[int] = True def __init__( self : Optional[Any] , __a : Optional[int]=None , __a : str=None , __a : int=640 , __a : List[Any]=1.0 , __a : Optional[int]=0.02 , **__a : List[Any] , ) -> Any: """simple docstring""" super().__init__(**__a ) if text_config is None: __lowercase : Optional[Any] = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: __lowercase : Dict = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) __lowercase : str = AlignTextConfig(**__a ) __lowercase : int = AlignVisionConfig(**__a ) __lowercase : str = projection_dim __lowercase : Optional[int] = temperature_init_value __lowercase : Dict = initializer_range @classmethod def lowerCAmelCase ( cls : List[Any] , __a : AlignTextConfig , __a : AlignVisionConfig , **__a : Any ) -> Any: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = copy.deepcopy(self.__dict__ ) __lowercase : Tuple = self.text_config.to_dict() __lowercase : List[Any] = self.vision_config.to_dict() __lowercase : List[str] = self.__class__.model_type return output
149
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__: Union[str, Any] = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: List[Any] = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCamelCase__: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
706
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCamelCase__: List[str] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : str , __snake_case : Tuple , __snake_case : int , __snake_case : List[Any]=None , __snake_case : List[Any]=None ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = self.layer[current_layer](__snake_case , __snake_case , head_mask[current_layer] ) UpperCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , A__ , ) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : int , __snake_case : Any ) -> Any: super().__init__(__snake_case ) UpperCAmelCase : Any = BertEncoderWithPabee(__snake_case ) self.init_weights() UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = 0 def A ( self : List[str] , __snake_case : List[str] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = threshold def A ( self : str , __snake_case : List[str] ) -> Optional[Any]: UpperCAmelCase : List[str] = patience def A ( self : Dict ) -> str: UpperCAmelCase : List[Any] = 0 UpperCAmelCase : Dict = 0 def A ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = self.inference_layers_num / self.inference_instances_num UpperCAmelCase : int = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(__snake_case ) @add_start_docstrings_to_model_forward(__snake_case ) def A ( self : Union[str, Any] , __snake_case : Optional[Any]=None , __snake_case : str=None , __snake_case : int=None , __snake_case : Optional[Any]=None , __snake_case : Tuple=None , __snake_case : Tuple=None , __snake_case : Tuple=None , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=False , ) -> List[str]: if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: UpperCAmelCase : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: UpperCAmelCase : List[Any] = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) UpperCAmelCase : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCAmelCase : Optional[Any] = torch.ones(__snake_case , device=__snake_case ) if token_type_ids is None: UpperCAmelCase : Tuple = torch.zeros(__snake_case , dtype=torch.long , device=__snake_case ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(__snake_case , __snake_case , __snake_case ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = encoder_hidden_states.size() UpperCAmelCase : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: UpperCAmelCase : str = torch.ones(__snake_case , device=__snake_case ) UpperCAmelCase : Tuple = self.invert_attention_mask(__snake_case ) else: UpperCAmelCase : List[str] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCAmelCase : List[Any] = self.get_head_mask(__snake_case , self.config.num_hidden_layers ) UpperCAmelCase : Any = self.embeddings( input_ids=__snake_case , position_ids=__snake_case , token_type_ids=__snake_case , inputs_embeds=__snake_case ) UpperCAmelCase : Optional[int] = embedding_output if self.training: UpperCAmelCase : str = [] for i in range(self.config.num_hidden_layers ): UpperCAmelCase : Optional[int] = self.encoder.adaptive_forward( __snake_case , current_layer=__snake_case , attention_mask=__snake_case , head_mask=__snake_case ) UpperCAmelCase : List[str] = self.pooler(__snake_case ) UpperCAmelCase : Dict = output_layers[i](output_dropout(__snake_case ) ) res.append(__snake_case ) elif self.patience == 0: # Use all layers for inference UpperCAmelCase : Any = self.encoder( __snake_case , attention_mask=__snake_case , head_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) UpperCAmelCase : Dict = self.pooler(encoder_outputs[0] ) UpperCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](__snake_case )] else: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = None UpperCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 UpperCAmelCase : Optional[Any] = self.encoder.adaptive_forward( __snake_case , current_layer=__snake_case , attention_mask=__snake_case , head_mask=__snake_case ) UpperCAmelCase : List[str] = self.pooler(__snake_case ) UpperCAmelCase : Optional[int] = output_layers[i](__snake_case ) if regression: UpperCAmelCase : Union[str, Any] = logits.detach() if patient_result is not None: UpperCAmelCase : List[str] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: UpperCAmelCase : Dict = 0 else: UpperCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: UpperCAmelCase : str = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(__snake_case ) ): patient_counter += 1 else: UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[str] = logits if patient_counter == self.patience: break UpperCAmelCase : List[Any] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , A__ , ) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : str , __snake_case : str ) -> Optional[Any]: super().__init__(__snake_case ) UpperCAmelCase : Optional[int] = config.num_labels UpperCAmelCase : Optional[Any] = BertModelWithPabee(__snake_case ) UpperCAmelCase : Tuple = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase : Dict = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(__snake_case ) def A ( self : Any , __snake_case : Dict=None , __snake_case : str=None , __snake_case : List[Any]=None , __snake_case : List[Any]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : str=None , ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self.bert( input_ids=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , position_ids=__snake_case , head_mask=__snake_case , inputs_embeds=__snake_case , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) UpperCAmelCase : List[str] = (logits[-1],) if labels is not None: UpperCAmelCase : Tuple = None UpperCAmelCase : Any = 0 for ix, logits_item in enumerate(__snake_case ): if self.num_labels == 1: # We are doing regression UpperCAmelCase : Optional[Any] = MSELoss() UpperCAmelCase : Optional[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase : Dict = CrossEntropyLoss() UpperCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: UpperCAmelCase : Dict = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 UpperCAmelCase : Any = (total_loss / total_weights,) + outputs return outputs
528
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: if not is_accelerate_available(): return method _lowercase : int = version.parse(accelerate.__version__ ).base_version if version.parse(lowerCamelCase_ ) < version.parse('0.17.0' ): return method def wrapper(self , *lowerCamelCase_ , **lowerCamelCase_ ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *lowerCamelCase_ , **lowerCamelCase_ ) return wrapper
89
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE_ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] SCREAMING_SNAKE_CASE_ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowercase__ ( lowerCAmelCase : list[float] ) -> list[float]: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = len(lowerCAmelCase ) for i in range(lowerCAmelCase ): UpperCAmelCase = -1 for j in range(i + 1 , lowerCAmelCase ): if arr[i] < arr[j]: UpperCAmelCase = arr[j] break result.append(lowerCAmelCase ) return result def lowercase__ ( lowerCAmelCase : list[float] ) -> list[float]: """simple docstring""" UpperCAmelCase = [] for i, outer in enumerate(lowerCAmelCase ): UpperCAmelCase = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCAmelCase = inner break result.append(lowerCAmelCase ) return result def lowercase__ ( lowerCAmelCase : list[float] ) -> list[float]: """simple docstring""" UpperCAmelCase = len(lowerCAmelCase ) UpperCAmelCase = [] UpperCAmelCase = [-1] * arr_size for index in reversed(range(lowerCAmelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCAmelCase = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) SCREAMING_SNAKE_CASE_ = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
373
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( A__ ): """simple docstring""" snake_case =["""image_processor""", """tokenizer"""] snake_case ="""LayoutLMv2ImageProcessor""" snake_case =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ): if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _snake_case , ) _UpperCAmelCase =kwargs.pop("feature_extractor" ) _UpperCAmelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_snake_case , _snake_case ) def __call__( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = True , _snake_case = False , _snake_case = None , _snake_case = None , _snake_case = 0 , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = False , _snake_case = False , _snake_case = False , _snake_case = False , _snake_case = True , _snake_case = None , **_snake_case , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor _UpperCAmelCase =self.image_processor(images=_snake_case , return_tensors=_snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_snake_case , _snake_case ): _UpperCAmelCase =[text] # add batch dimension (as the image processor always adds a batch dimension) _UpperCAmelCase =features["words"] _UpperCAmelCase =self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_token_type_ids=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) # add pixel values _UpperCAmelCase =features.pop("pixel_values" ) if return_overflowing_tokens is True: _UpperCAmelCase =self.get_overflowing_images(_snake_case , encoded_inputs["overflow_to_sample_mapping"] ) _UpperCAmelCase =images return encoded_inputs def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _UpperCAmelCase =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_snake_case ) != len(_snake_case ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F" {len(_snake_case )} and {len(_snake_case )}" ) return images_with_overflow def SCREAMING_SNAKE_CASE ( self , *_snake_case , **_snake_case ): return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE ( self , *_snake_case , **_snake_case ): return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE ( self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def SCREAMING_SNAKE_CASE ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _snake_case , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _snake_case , ) return self.image_processor
592
from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
592
1
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False, False, False @dataclass class _SCREAMING_SNAKE_CASE : lowerCamelCase_ = None lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = None # Automatically constructed lowerCamelCase_ = "dict" lowerCamelCase_ = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) lowerCamelCase_ = field(default='Audio', init=snake_case, repr=snake_case ) def __call__( self : Tuple ): """simple docstring""" return self.pa_type def _UpperCAmelCase ( self : Optional[int] , snake_case_ : Union[str, bytes, dict] ): """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(snake_case_ , snake_case_ ): return {"bytes": None, "path": value} elif isinstance(snake_case_ , snake_case_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes A : Dict = BytesIO() sf.write(snake_case_ , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) A : Optional[int] = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_2767 else: A : int = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_2767 A : Dict = BytesIO(bytes() ) sf.write(snake_case_ , snake_case_ , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def _UpperCAmelCase ( self : Dict , snake_case_ : dict , snake_case_ : Optional[Dict[str, Union[str, bool, None]]] = None ): """simple docstring""" if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) A , A : Optional[Any] = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err A : Optional[int] = xsplitext(snake_case_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: A : Optional[int] = token_per_repo_id or {} A : List[str] = path.split('''::''' )[-1] try: A : Optional[Any] = string_to_dict(snake_case_ , config.HUB_DATASETS_URL )['''repo_id'''] A : List[Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): A : Union[str, Any] = None with xopen(snake_case_ , '''rb''' , use_auth_token=snake_case_ ) as f: A , A : List[Any] = sf.read(snake_case_ ) else: A , A : List[str] = sf.read(snake_case_ ) A : str = array.T if self.mono: A : Tuple = librosa.to_mono(snake_case_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: A : int = librosa.resample(snake_case_ , orig_sr=snake_case_ , target_sr=self.sampling_rate ) A : int = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def _UpperCAmelCase ( self : Any , snake_case_ : Union[pa.StringArray, pa.StructArray] ): """simple docstring""" if pa.types.is_string(storage.type ): A : Union[str, Any] = pa.array([None] * len(snake_case_ ) , type=pa.binary() ) A : Dict = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): A : Dict = pa.array([None] * len(snake_case_ ) , type=pa.string() ) A : Any = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): A : str = pa.array([Audio().encode_example(snake_case_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: A : str = storage.field('''bytes''' ) else: A : Tuple = pa.array([None] * len(snake_case_ ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: A : List[str] = storage.field('''path''' ) else: A : str = pa.array([None] * len(snake_case_ ) , type=pa.string() ) A : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(snake_case_ , self.pa_type ) def _UpperCAmelCase ( self : Optional[int] , snake_case_ : pa.StructArray ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(snake_case_ : Any ): with xopen(snake_case_ , '''rb''' ) as f: A : Optional[Any] = f.read() return bytes_ A : str = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) A : Union[str, Any] = pa.array( [os.path.basename(snake_case_ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) A : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(snake_case_ , self.pa_type )
256
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available UpperCamelCase_ = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
256
1
from __future__ import annotations import math class __lowercase: """simple docstring""" def __init__( self : str , _lowerCAmelCase : int ) -> None: _lowerCAmelCase = size # approximate the overall size of segment tree with given value _lowerCAmelCase = [0 for i in range(0 , 4 * size )] # create array to store lazy update _lowerCAmelCase = [0 for i in range(0 , 4 * size )] _lowerCAmelCase = [0 for i in range(0 , 4 * size )] # flag for lazy update def SCREAMING_SNAKE_CASE_ ( self : Tuple , _lowerCAmelCase : int ) -> int: return idx * 2 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , _lowerCAmelCase : int ) -> int: return idx * 2 + 1 def SCREAMING_SNAKE_CASE_ ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[int] ) -> None: if left_element == right_element: _lowerCAmelCase = a[left_element - 1] else: _lowerCAmelCase = (left_element + right_element) // 2 self.build(self.left(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.build(self.right(_lowerCAmelCase ) , mid + 1 , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = max( self.segment_tree[self.left(_lowerCAmelCase )] , self.segment_tree[self.right(_lowerCAmelCase )] ) def SCREAMING_SNAKE_CASE_ ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> bool: if self.flag[idx] is True: _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = False if left_element != right_element: _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = True _lowerCAmelCase = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: _lowerCAmelCase = val if left_element != right_element: _lowerCAmelCase = val _lowerCAmelCase = val _lowerCAmelCase = True _lowerCAmelCase = True return True _lowerCAmelCase = (left_element + right_element) // 2 self.update(self.left(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.update(self.right(_lowerCAmelCase ) , mid + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = max( self.segment_tree[self.left(_lowerCAmelCase )] , self.segment_tree[self.right(_lowerCAmelCase )] ) return True def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float: if self.flag[idx] is True: _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = False if left_element != right_element: _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = True _lowerCAmelCase = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] _lowerCAmelCase = (left_element + right_element) // 2 _lowerCAmelCase = self.query(self.left(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = self.query(self.right(_lowerCAmelCase ) , mid + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return max(_lowerCAmelCase , _lowerCAmelCase ) def __str__( self : Optional[Any] ) -> str: return str([self.query(1 , 1 , self.size , _lowerCAmelCase , _lowerCAmelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _UpperCamelCase: Optional[Any] =[1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _UpperCamelCase: Optional[Any] =15 _UpperCamelCase: Union[str, Any] =SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
585
from __future__ import annotations import math class __lowercase: """simple docstring""" def __init__( self : str , _lowerCAmelCase : int ) -> None: _lowerCAmelCase = size # approximate the overall size of segment tree with given value _lowerCAmelCase = [0 for i in range(0 , 4 * size )] # create array to store lazy update _lowerCAmelCase = [0 for i in range(0 , 4 * size )] _lowerCAmelCase = [0 for i in range(0 , 4 * size )] # flag for lazy update def SCREAMING_SNAKE_CASE_ ( self : Tuple , _lowerCAmelCase : int ) -> int: return idx * 2 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , _lowerCAmelCase : int ) -> int: return idx * 2 + 1 def SCREAMING_SNAKE_CASE_ ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : list[int] ) -> None: if left_element == right_element: _lowerCAmelCase = a[left_element - 1] else: _lowerCAmelCase = (left_element + right_element) // 2 self.build(self.left(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.build(self.right(_lowerCAmelCase ) , mid + 1 , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = max( self.segment_tree[self.left(_lowerCAmelCase )] , self.segment_tree[self.right(_lowerCAmelCase )] ) def SCREAMING_SNAKE_CASE_ ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> bool: if self.flag[idx] is True: _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = False if left_element != right_element: _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = True _lowerCAmelCase = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: _lowerCAmelCase = val if left_element != right_element: _lowerCAmelCase = val _lowerCAmelCase = val _lowerCAmelCase = True _lowerCAmelCase = True return True _lowerCAmelCase = (left_element + right_element) // 2 self.update(self.left(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.update(self.right(_lowerCAmelCase ) , mid + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = max( self.segment_tree[self.left(_lowerCAmelCase )] , self.segment_tree[self.right(_lowerCAmelCase )] ) return True def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float: if self.flag[idx] is True: _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = False if left_element != right_element: _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = self.lazy[idx] _lowerCAmelCase = True _lowerCAmelCase = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] _lowerCAmelCase = (left_element + right_element) // 2 _lowerCAmelCase = self.query(self.left(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = self.query(self.right(_lowerCAmelCase ) , mid + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return max(_lowerCAmelCase , _lowerCAmelCase ) def __str__( self : Optional[Any] ) -> str: return str([self.query(1 , 1 , self.size , _lowerCAmelCase , _lowerCAmelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _UpperCamelCase: Optional[Any] =[1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _UpperCamelCase: Optional[Any] =15 _UpperCamelCase: Union[str, Any] =SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
585
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging a = logging.get_logger(__name__) a = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : List[str] = 'bloom' __UpperCamelCase : Optional[Any] = ['past_key_values'] __UpperCamelCase : Optional[int] = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self : Union[str, Any] ,lowerCamelCase : str=25_0880 ,lowerCamelCase : List[Any]=64 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : Tuple=8 ,lowerCamelCase : Union[str, Any]=1E-5 ,lowerCamelCase : Optional[Any]=0.02 ,lowerCamelCase : str=True ,lowerCamelCase : List[Any]=1 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Optional[int]=0.0 ,lowerCamelCase : List[Any]=0.0 ,lowerCamelCase : Optional[Any]=1 ,lowerCamelCase : Tuple=False ,**lowerCamelCase : str ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = vocab_size # Backward compatibility with n_embed kwarg __SCREAMING_SNAKE_CASE = kwargs.pop("""n_embed""" ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_size if n_embed is None else n_embed __SCREAMING_SNAKE_CASE = n_layer __SCREAMING_SNAKE_CASE = n_head __SCREAMING_SNAKE_CASE = layer_norm_epsilon __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = pretraining_tp __SCREAMING_SNAKE_CASE = apply_residual_connection_post_layernorm __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = slow_but_exact super().__init__(bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase ) class __a ( _snake_case ): __UpperCamelCase : int = version.parse('1.12' ) def __init__( self : Optional[int] ,lowerCamelCase : PretrainedConfig ,lowerCamelCase : str = "default" ,lowerCamelCase : List[PatchingSpec] = None ,lowerCamelCase : bool = False ,): '''simple docstring''' super().__init__(lowerCamelCase ,task=lowerCamelCase ,patching_specs=lowerCamelCase ,use_past=lowerCamelCase ) if not getattr(self._config ,"""pad_token_id""" ,lowerCamelCase ): # TODO: how to do that better? __SCREAMING_SNAKE_CASE = 0 @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowerCamelCase ,direction="""inputs""" ,inverted_values_shape=lowerCamelCase ) __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """past_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return self._config.n_layer @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return self._config.n_head @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return 1E-3 def UpperCAmelCase__ ( self : str ,lowerCamelCase : "PreTrainedTokenizer" ,lowerCamelCase : int = -1 ,lowerCamelCase : int = -1 ,lowerCamelCase : bool = False ,lowerCamelCase : Optional["TensorType"] = None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = super(lowerCamelCase ,self ).generate_dummy_inputs( lowerCamelCase ,batch_size=lowerCamelCase ,seq_length=lowerCamelCase ,is_pair=lowerCamelCase ,framework=lowerCamelCase ) # We need to order the input in the way they appears in the forward() __SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE = seqlen + 2 __SCREAMING_SNAKE_CASE = self._config.hidden_size // self.num_attention_heads __SCREAMING_SNAKE_CASE = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __SCREAMING_SNAKE_CASE = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __SCREAMING_SNAKE_CASE = [ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(self.num_layers ) ] __SCREAMING_SNAKE_CASE = common_inputs["""attention_mask"""] if self.use_past: __SCREAMING_SNAKE_CASE = ordered_inputs["""attention_mask"""].dtype __SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowerCamelCase ,lowerCamelCase ,dtype=lowerCamelCase )] ,dim=1 ) return ordered_inputs @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return 13
109
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 600_851_475_143 ): try: SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 while i * i <= n: while n % i == 0: SCREAMING_SNAKE_CASE__ = i n //= i i += 1 if n > 1: SCREAMING_SNAKE_CASE__ = n return int(UpperCamelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
6
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Any = (DEISMultistepScheduler,) _UpperCamelCase : List[str] = (("num_inference_steps", 25),) def __UpperCAmelCase ( self : Union[str, Any] , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : Tuple = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**lowerCamelCase_ ) return config def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[int]=0 , **lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : Any = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) _snake_case : int = self.dummy_sample _snake_case : Optional[Any] = 0.1 * sample _snake_case : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case : Optional[Any] = self.get_scheduler_config(**lowerCamelCase_ ) _snake_case : List[Any] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals _snake_case : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) _snake_case : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase_ ) new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals _snake_case : Any = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case , _snake_case : List[Any] = sample, sample for t in range(lowerCamelCase_ , time_step + scheduler.config.solver_order + 1 ): _snake_case : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample _snake_case : int = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' pass def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Optional[int]=0 , **lowerCamelCase_ : str ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : Any = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) _snake_case : str = self.dummy_sample _snake_case : str = 0.1 * sample _snake_case : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case : Optional[Any] = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) _snake_case : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) _snake_case : Any = scheduler_class.from_pretrained(lowerCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) _snake_case : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case : Tuple = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample _snake_case : Tuple = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self : str , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' if scheduler is None: _snake_case : str = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(**lowerCamelCase_ ) _snake_case : Optional[int] = scheduler_class(**lowerCamelCase_ ) _snake_case : Optional[Any] = self.scheduler_classes[0] _snake_case : str = self.get_scheduler_config(**lowerCamelCase_ ) _snake_case : int = scheduler_class(**lowerCamelCase_ ) _snake_case : str = 10 _snake_case : Tuple = self.dummy_model() _snake_case : int = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Any = model(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample return sample def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Any = dict(self.forward_default_kwargs ) _snake_case : List[str] = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) for scheduler_class in self.scheduler_classes: _snake_case : Optional[int] = self.get_scheduler_config() _snake_case : Optional[int] = scheduler_class(**lowerCamelCase_ ) _snake_case : str = self.dummy_sample _snake_case : Optional[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase_ , 'set_timesteps' ): scheduler.set_timesteps(lowerCamelCase_ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase_ , 'set_timesteps' ): _snake_case : Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] _snake_case : List[str] = dummy_past_residuals[: scheduler.config.solver_order] _snake_case : Dict = scheduler.timesteps[5] _snake_case : Tuple = scheduler.timesteps[6] _snake_case : Union[str, Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample _snake_case : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = DEISMultistepScheduler(**self.get_scheduler_config() ) _snake_case : Union[str, Any] = self.full_loop(scheduler=lowerCamelCase_ ) _snake_case : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 _snake_case : Optional[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _snake_case : str = DPMSolverMultistepScheduler.from_config(scheduler.config ) _snake_case : Optional[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) _snake_case : Optional[Any] = DEISMultistepScheduler.from_config(scheduler.config ) _snake_case : Tuple = self.full_loop(scheduler=lowerCamelCase_ ) _snake_case : str = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def __UpperCAmelCase ( self : int ): '''simple docstring''' self.check_over_configs(thresholding=lowerCamelCase_ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase_ , prediction_type=lowerCamelCase_ , sample_max_value=lowerCamelCase_ , algorithm_type='deis' , solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , algorithm_type=lowerCamelCase_ , ) _snake_case : List[str] = self.full_loop( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , algorithm_type=lowerCamelCase_ , ) assert not torch.isnan(lowerCamelCase_ ).any(), "Samples have nan numbers" def __UpperCAmelCase ( self : Any ): '''simple docstring''' self.check_over_configs(lower_order_final=lowerCamelCase_ ) self.check_over_configs(lower_order_final=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCamelCase_ , time_step=0 ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = self.full_loop() _snake_case : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : int = self.full_loop(prediction_type='v_prediction' ) _snake_case : int = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.scheduler_classes[0] _snake_case : Optional[Any] = self.get_scheduler_config(thresholding=lowerCamelCase_ , dynamic_thresholding_ratio=0 ) _snake_case : Tuple = scheduler_class(**lowerCamelCase_ ) _snake_case : List[Any] = 10 _snake_case : Optional[int] = self.dummy_model() _snake_case : Any = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : List[Any] = model(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample assert sample.dtype == torch.floataa
652
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Optional[int] = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
15
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =42 SCREAMING_SNAKE_CASE__ =42 def __init__( self, _a, _a ) -> Dict: super().__init__() self.register_modules(unet=_a, scheduler=_a ) @torch.no_grad() def __call__( self, _a = 1, _a = 20_00, _a = None, _a = "pil", _a = True, **_a, ) -> Union[ImagePipelineOutput, Tuple]: __SCREAMING_SNAKE_CASE = self.unet.config.sample_size __SCREAMING_SNAKE_CASE = (batch_size, 3, img_size, img_size) __SCREAMING_SNAKE_CASE = self.unet __SCREAMING_SNAKE_CASE = randn_tensor(_a, generator=_a ) * self.scheduler.init_noise_sigma __SCREAMING_SNAKE_CASE = sample.to(self.device ) self.scheduler.set_timesteps(_a ) self.scheduler.set_sigmas(_a ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __SCREAMING_SNAKE_CASE = self.scheduler.sigmas[i] * torch.ones(shape[0], device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __SCREAMING_SNAKE_CASE = self.unet(_a, _a ).sample __SCREAMING_SNAKE_CASE = self.scheduler.step_correct(_a, _a, generator=_a ).prev_sample # prediction step __SCREAMING_SNAKE_CASE = model(_a, _a ).sample __SCREAMING_SNAKE_CASE = self.scheduler.step_pred(_a, _a, _a, generator=_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = output.prev_sample, output.prev_sample_mean __SCREAMING_SNAKE_CASE = sample_mean.clamp(0, 1 ) __SCREAMING_SNAKE_CASE = sample.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE = self.numpy_to_pil(_a ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_a )
693
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
717
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class a : def __init__( self :List[Any] ,__lowercase :Tuple ,__lowercase :List[Any]=1_3 ,__lowercase :List[Any]=7 ,__lowercase :int=True ,__lowercase :int=True ,__lowercase :Tuple=True ,__lowercase :int=True ,__lowercase :Dict=9_9 ,__lowercase :Any=3_2 ,__lowercase :Tuple=2 ,__lowercase :Union[str, Any]=4 ,__lowercase :Tuple=3_7 ,__lowercase :int="gelu" ,__lowercase :int=0.1 ,__lowercase :Dict=0.1 ,__lowercase :Optional[Any]=5_1_2 ,__lowercase :Optional[Any]=1_6 ,__lowercase :Optional[int]=2 ,__lowercase :Optional[int]=0.02 ,__lowercase :str=3 ,__lowercase :int=4 ,__lowercase :List[str]=None ,__lowercase :Union[str, Any]=0 ,): snake_case__ : List[str] = parent snake_case__ : int = batch_size snake_case__ : Any = seq_length snake_case__ : List[Any] = is_training snake_case__ : str = use_input_mask snake_case__ : str = use_token_type_ids snake_case__ : Dict = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Any = hidden_size snake_case__ : str = num_hidden_layers snake_case__ : int = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : int = hidden_act snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : Tuple = type_sequence_label_size snake_case__ : Any = initializer_range snake_case__ : List[str] = num_labels snake_case__ : str = num_choices snake_case__ : Optional[Any] = scope snake_case__ : str = projection_dim def __lowerCamelCase ( self :List[Any] ): snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ : List[Any] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py snake_case__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Any = None if self.use_token_type_ids: snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case__ : List[Any] = None snake_case__ : Optional[Any] = None snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case__ : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) snake_case__ : Optional[int] = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowercase ,initializer_range=self.initializer_range ,) snake_case__ : Optional[int] = DPRConfig(projection_dim=self.projection_dim ,**config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self :Tuple ,__lowercase :List[Any] ,__lowercase :Union[str, Any] ,__lowercase :Optional[int] ,__lowercase :Any ,__lowercase :Optional[int] ,__lowercase :Any ,__lowercase :Tuple ): snake_case__ : List[str] = TFDPRContextEncoder(config=__lowercase ) snake_case__ : Optional[int] = model(__lowercase ,attention_mask=__lowercase ,token_type_ids=__lowercase ) snake_case__ : Optional[int] = model(__lowercase ,token_type_ids=__lowercase ) snake_case__ : Dict = model(__lowercase ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self :Any ,__lowercase :List[str] ,__lowercase :List[str] ,__lowercase :Optional[Any] ,__lowercase :int ,__lowercase :List[Any] ,__lowercase :List[Any] ,__lowercase :Union[str, Any] ): snake_case__ : Dict = TFDPRQuestionEncoder(config=__lowercase ) snake_case__ : Any = model(__lowercase ,attention_mask=__lowercase ,token_type_ids=__lowercase ) snake_case__ : int = model(__lowercase ,token_type_ids=__lowercase ) snake_case__ : Optional[int] = model(__lowercase ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self :Optional[int] ,__lowercase :List[Any] ,__lowercase :str ,__lowercase :Tuple ,__lowercase :Any ,__lowercase :Optional[Any] ,__lowercase :List[Any] ,__lowercase :Tuple ): snake_case__ : int = TFDPRReader(config=__lowercase ) snake_case__ : Any = model(__lowercase ,attention_mask=__lowercase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape ,(self.batch_size,) ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : str = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Optional[int] = config_and_inputs snake_case__ : Optional[Any] = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Tuple = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __lowerCAmelCase : List[str] = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : List[Any] = False __lowerCAmelCase : int = False __lowerCAmelCase : Optional[int] = False def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : str = TFDPRModelTester(self ) snake_case__ : Union[str, Any] = ConfigTester(self ,config_class=__lowercase ,hidden_size=3_7 ) def __lowerCamelCase ( self :List[str] ): self.config_tester.run_common_tests() def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__lowercase ) def __lowerCamelCase ( self :List[str] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__lowercase ) def __lowerCamelCase ( self :str ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__lowercase ) @slow def __lowerCamelCase ( self :Union[str, Any] ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Union[str, Any] = TFDPRContextEncoder.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Tuple = TFDPRContextEncoder.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Tuple = TFDPRQuestionEncoder.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[int] = TFDPRReader.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_tf class a ( unittest.TestCase ): @slow def __lowerCamelCase ( self :List[str] ): snake_case__ : str = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) snake_case__ : Optional[int] = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] snake_case__ : Union[str, Any] = model(__lowercase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. snake_case__ : Optional[Any] = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
219
0
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A_ : str = logging.get_logger(__name__) A_ : Tuple = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A_ : Union[str, Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __snake_case : '''simple docstring''' lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__SCREAMING_SNAKE_CASE )} ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) lowerCamelCase__ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCamelCase__ = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) lowerCamelCase__ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) lowerCamelCase__ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) lowerCamelCase__ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) lowerCamelCase__ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) lowerCamelCase__ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) lowerCamelCase__ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''train''' lowerCamelCase__ = '''dev''' class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = Split.train , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "pt" , ): snake_case__ : int = args snake_case__ : List[Any] = is_language_sensitive snake_case__ : Optional[int] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__lowerCamelCase , __lowerCamelCase ): try: snake_case__ : str = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) snake_case__ : Dict = mode # Load data features from cache or dataset file snake_case__ : Dict = "v2" if args.version_2_with_negative else "v1" snake_case__ : Union[str, Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case__ : Any = cached_features_file + ".lock" with FileLock(__lowerCamelCase ): if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache: snake_case__ : Union[str, Any] = time.time() snake_case__ : Optional[int] = torch.load(__lowerCamelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case__ : List[str] = self.old_features["features"] snake_case__ : int = self.old_features.get("""dataset""" , __lowerCamelCase ) snake_case__ : Optional[int] = self.old_features.get("""examples""" , __lowerCamelCase ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" """ future run""" ) else: if mode == Split.dev: snake_case__ : List[str] = self.processor.get_dev_examples(args.data_dir ) else: snake_case__ : Dict = self.processor.get_train_examples(args.data_dir ) snake_case__ : Optional[Any] = squad_convert_examples_to_features( examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , ) snake_case__ : Optional[Any] = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , __lowerCamelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self ): return len(self.features ) def __getitem__( self , __SCREAMING_SNAKE_CASE ): # Convert to Tensors and build dataset snake_case__ : Dict = self.features[i] snake_case__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long ) snake_case__ : Union[str, Any] = torch.tensor(feature.attention_mask , dtype=torch.long ) snake_case__ : Any = torch.tensor(feature.token_type_ids , dtype=torch.long ) snake_case__ : int = torch.tensor(feature.cls_index , dtype=torch.long ) snake_case__ : Optional[Any] = torch.tensor(feature.p_mask , dtype=torch.float ) snake_case__ : int = torch.tensor(feature.is_impossible , dtype=torch.float ) snake_case__ : Tuple = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long ) snake_case__ : List[str] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
38
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
503
0
def lowerCamelCase_ ( lowerCamelCase__ = 5_0 ): lowerCamelCase_ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
313
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): lowerCAmelCase__ = 'pixel_values' lowerCAmelCase__ = False lowerCAmelCase__ = TimmBackboneConfig def __init__( self , lowercase , **lowercase ) -> Union[str, Any]: requires_backends(self , "timm" ) super().__init__(lowercase ) lowerCamelCase_ = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(f'backbone {config.backbone} is not supported by timm.' ) if hasattr(lowercase , "out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) lowerCamelCase_ = getattr(lowercase , "use_pretrained_backbone" , lowercase ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. lowerCamelCase_ = config.out_indices if getattr(lowercase , "out_indices" , lowercase ) is not None else (-1,) lowerCamelCase_ = timm.create_model( config.backbone , pretrained=lowercase , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowercase , **lowercase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCamelCase_ = self._backbone.return_layers lowerCamelCase_ = {layer["module"]: str(lowercase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowercase ) @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig lowerCamelCase_ = kwargs.pop("config" , TimmBackboneConfig() ) lowerCamelCase_ = kwargs.pop("use_timm_backbone" , lowercase ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) lowerCamelCase_ = kwargs.pop("num_channels" , config.num_channels ) lowerCamelCase_ = kwargs.pop("features_only" , config.features_only ) lowerCamelCase_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone ) lowerCamelCase_ = kwargs.pop("out_indices" , config.out_indices ) lowerCamelCase_ = TimmBackboneConfig( backbone=lowercase , num_channels=lowercase , features_only=lowercase , use_pretrained_backbone=lowercase , out_indices=lowercase , ) return super()._from_config(lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[Any]: pass def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=None , lowercase=None , lowercase=None , **lowercase ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: lowerCamelCase_ = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCamelCase_ = self._all_layers lowerCamelCase_ = self._backbone(lowercase , **lowercase ) lowerCamelCase_ = self._return_layers lowerCamelCase_ = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCamelCase_ = self._backbone(lowercase , **lowercase ) lowerCamelCase_ = None lowerCamelCase_ = tuple(lowercase ) lowerCamelCase_ = tuple(lowercase ) if hidden_states is not None else None if not return_dict: lowerCamelCase_ = (feature_maps,) if output_hidden_states: lowerCamelCase_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowercase , hidden_states=lowercase , attentions=lowercase )
313
1
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=5_1_2, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def a ( snake_case__: Optional[int] ): '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(F'''could not parse string as bool {string}''' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) __a = parser.parse_args() __a = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
97
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: UpperCamelCase : Union[str, Any] = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCamelCase : List[str] = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } UpperCamelCase : str = F"""{src_lang}-{tgt_lang}""" UpperCamelCase : Dict = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , "README.md" ) print(F"""Generating {path}""" ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(_lowerCAmelCase ) # make sure we are under the root of the project __lowerCamelCase : str = Path(__file__).resolve().parent.parent.parent __lowerCamelCase : Optional[Any] = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = model_name.split("""-""") __lowerCamelCase : str = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
629
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = 1 UpperCAmelCase : Any = 3 UpperCAmelCase : List[str] = (3_2, 3_2) UpperCAmelCase : List[str] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case ) return image @property def A_ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) return model @property def A_ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Tuple = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A_ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(snake_case ) @property def A_ ( self ): '''simple docstring''' def extract(*snake_case , **snake_case ): class UpperCamelCase__ : """simple docstring""" def __init__( self ): '''simple docstring''' UpperCAmelCase : str = torch.ones([0] ) def A_ ( self , snake_case ): '''simple docstring''' self.pixel_values.to(snake_case ) return self return Out() return extract def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : List[Any] = self.dummy_cond_unet UpperCAmelCase : List[Any] = PNDMScheduler(skip_prk_steps=snake_case ) UpperCAmelCase : Any = self.dummy_vae UpperCAmelCase : int = self.dummy_text_encoder UpperCAmelCase : Tuple = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCAmelCase : List[Any] = 7_7 UpperCAmelCase : Any = self.dummy_image.to(snake_case ) UpperCAmelCase : Optional[Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk UpperCAmelCase : int = AltDiffusionImgaImgPipeline( unet=snake_case , scheduler=snake_case , vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , safety_checker=snake_case , feature_extractor=self.dummy_extractor , ) UpperCAmelCase : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=snake_case ) UpperCAmelCase : str = alt_pipe.to(snake_case ) alt_pipe.set_progress_bar_config(disable=snake_case ) UpperCAmelCase : Tuple = "A painting of a squirrel eating a burger" UpperCAmelCase : Optional[Any] = torch.Generator(device=snake_case ).manual_seed(0 ) UpperCAmelCase : int = alt_pipe( [prompt] , generator=snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=snake_case , ) UpperCAmelCase : Optional[int] = output.images UpperCAmelCase : Union[str, Any] = torch.Generator(device=snake_case ).manual_seed(0 ) UpperCAmelCase : int = alt_pipe( [prompt] , generator=snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=snake_case , return_dict=snake_case , )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCAmelCase : Union[str, Any] = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet UpperCAmelCase : Dict = PNDMScheduler(skip_prk_steps=snake_case ) UpperCAmelCase : Any = self.dummy_vae UpperCAmelCase : List[Any] = self.dummy_text_encoder UpperCAmelCase : Union[str, Any] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCAmelCase : Tuple = 7_7 UpperCAmelCase : Optional[int] = self.dummy_image.to(snake_case ) # put models in fp16 UpperCAmelCase : Optional[int] = unet.half() UpperCAmelCase : int = vae.half() UpperCAmelCase : Tuple = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase : List[str] = AltDiffusionImgaImgPipeline( unet=snake_case , scheduler=snake_case , vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , safety_checker=snake_case , feature_extractor=self.dummy_extractor , ) UpperCAmelCase : Optional[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=snake_case ) UpperCAmelCase : List[Any] = alt_pipe.to(snake_case ) alt_pipe.set_progress_bar_config(disable=snake_case ) UpperCAmelCase : int = "A painting of a squirrel eating a burger" UpperCAmelCase : List[str] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = alt_pipe( [prompt] , generator=snake_case , num_inference_steps=2 , output_type="np" , image=snake_case , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 UpperCAmelCase : Optional[Any] = init_image.resize((7_6_0, 5_0_4) ) UpperCAmelCase : List[Any] = "BAAI/AltDiffusion" UpperCAmelCase : str = AltDiffusionImgaImgPipeline.from_pretrained( snake_case , safety_checker=snake_case , ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() UpperCAmelCase : Optional[Any] = "A fantasy landscape, trending on artstation" UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase : str = pipe( prompt=snake_case , image=snake_case , strength=0.75 , guidance_scale=7.5 , generator=snake_case , output_type="np" , ) UpperCAmelCase : str = output.images[0] UpperCAmelCase : List[Any] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) UpperCAmelCase : Optional[Any] = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) UpperCAmelCase : Dict = init_image.resize((7_6_8, 5_1_2) ) UpperCAmelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) UpperCAmelCase : Any = "BAAI/AltDiffusion" UpperCAmelCase : Dict = AltDiffusionImgaImgPipeline.from_pretrained( snake_case , safety_checker=snake_case , ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() UpperCAmelCase : int = "A fantasy landscape, trending on artstation" UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe( prompt=snake_case , image=snake_case , strength=0.75 , guidance_scale=7.5 , generator=snake_case , output_type="np" , ) UpperCAmelCase : List[str] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
713
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : torch.FloatTensor SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None def lowercase ( __magic_name__ , __magic_name__=0.9_9_9 , __magic_name__="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__magic_name__ ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__magic_name__ ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) UpperCAmelCase : List[str] = [] for i in range(__magic_name__ ): UpperCAmelCase : str = i / num_diffusion_timesteps UpperCAmelCase : List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__magic_name__ ) / alpha_bar_fn(__magic_name__ ) , __magic_name__ ) ) return torch.tensor(__magic_name__ , dtype=torch.floataa ) class UpperCamelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" @register_to_config def __init__( self , snake_case = 1_0_0_0 , snake_case = "fixed_small_log" , snake_case = True , snake_case = 1.0 , snake_case = "epsilon" , snake_case = "squaredcos_cap_v2" , ): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) UpperCAmelCase : List[str] = betas_for_alpha_bar(snake_case ) UpperCAmelCase : Any = 1.0 - self.betas UpperCAmelCase : str = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase : Tuple = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase : List[Any] = 1.0 # setable values UpperCAmelCase : List[str] = None UpperCAmelCase : Tuple = torch.from_numpy(np.arange(0 , snake_case )[::-1].copy() ) UpperCAmelCase : int = variance_type def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' return sample def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCAmelCase : Dict = num_inference_steps UpperCAmelCase : str = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase : Union[str, Any] = (np.arange(0 , snake_case ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase : int = torch.from_numpy(snake_case ).to(snake_case ) def A_ ( self , snake_case , snake_case=None , snake_case=None , snake_case=None ): '''simple docstring''' if prev_timestep is None: UpperCAmelCase : Optional[int] = t - 1 UpperCAmelCase : Tuple = self.alphas_cumprod[t] UpperCAmelCase : List[str] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : Any = 1 - alpha_prod_t UpperCAmelCase : List[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : Optional[Any] = self.betas[t] else: UpperCAmelCase : Optional[int] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase : List[Any] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase : str = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase : Dict = torch.log(torch.clamp(snake_case , min=1e-20 ) ) UpperCAmelCase : Union[str, Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase : Tuple = variance.log() UpperCAmelCase : int = beta.log() UpperCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 UpperCAmelCase : Dict = frac * max_log + (1 - frac) * min_log return variance def A_ ( self , snake_case , snake_case , snake_case , snake_case = None , snake_case=None , snake_case = True , ): '''simple docstring''' UpperCAmelCase : Any = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase , UpperCAmelCase : str = torch.split(snake_case , sample.shape[1] , dim=1 ) else: UpperCAmelCase : Tuple = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase : List[str] = t - 1 UpperCAmelCase : Tuple = self.alphas_cumprod[t] UpperCAmelCase : Optional[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : Optional[Any] = 1 - alpha_prod_t UpperCAmelCase : Union[str, Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : List[Any] = self.betas[t] UpperCAmelCase : Optional[int] = self.alphas[t] else: UpperCAmelCase : Union[str, Any] = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase : List[Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase : Tuple = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase : Union[str, Any] = torch.clamp( snake_case , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : Tuple = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase : Dict = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase : str = 0 if t > 0: UpperCAmelCase : Union[str, Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=snake_case , device=model_output.device ) UpperCAmelCase : Union[str, Any] = self._get_variance( snake_case , predicted_variance=snake_case , prev_timestep=snake_case , ) if self.variance_type == "fixed_small_log": UpperCAmelCase : Tuple = variance elif self.variance_type == "learned_range": UpperCAmelCase : Dict = (0.5 * variance).exp() else: raise ValueError( f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" " for the UnCLIPScheduler." ) UpperCAmelCase : int = variance * variance_noise UpperCAmelCase : Dict = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=snake_case , pred_original_sample=snake_case ) def A_ ( self , snake_case , snake_case , snake_case , ): '''simple docstring''' UpperCAmelCase : str = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase : str = timesteps.to(original_samples.device ) UpperCAmelCase : List[str] = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase : Optional[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : int = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : Any = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase : int = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : Tuple = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
609
0
'''simple docstring''' from math import pow def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , ): '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count _lowerCAmelCase = int(pow(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n _lowerCAmelCase , _lowerCAmelCase = backtrack( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , current_number + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. _lowerCAmelCase , _lowerCAmelCase = backtrack( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , current_number + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return current_sum, solutions_count def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( "Invalid input\n" "needed_sum must be between 1 and 1000, power between 2 and 10." ) return backtrack(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
18
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : str = logging.get_logger(__name__) def A__( __lowerCAmelCase ): print('Loading config file...' ) def flatten_yaml_as_dict(__lowerCAmelCase , __lowerCAmelCase="" , __lowerCAmelCase="." ): _snake_case : Dict = [] for k, v in d.items(): _snake_case : Dict = parent_key + sep + k if parent_key else k if isinstance(__lowerCAmelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__lowerCAmelCase , __lowerCAmelCase , sep=__lowerCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(__lowerCAmelCase ) _snake_case : int = argparse.Namespace() with open(__lowerCAmelCase , 'r' ) as yaml_file: try: _snake_case : str = yaml.load(__lowerCAmelCase , Loader=yaml.FullLoader ) _snake_case : int = flatten_yaml_as_dict(__lowerCAmelCase ) for k, v in flat_cfg.items(): setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(__lowerCAmelCase , str(__lowerCAmelCase ) ) ) return config def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = MobileViTVaConfig() _snake_case : Optional[int] = False # dataset if task_name.startswith('imagenet1k_' ): _snake_case : Optional[Any] = 10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: _snake_case : Dict = 3_84 else: _snake_case : List[str] = 2_56 _snake_case : Optional[Any] = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): _snake_case : List[str] = 2_10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: _snake_case : Union[str, Any] = 3_84 else: _snake_case : Optional[Any] = 2_56 _snake_case : Tuple = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): _snake_case : int = 1_51 _snake_case : str = 5_12 _snake_case : Optional[Any] = 'ade20k-id2label.json' _snake_case : List[Any] = True elif task_name.startswith('voc_' ): _snake_case : List[str] = 21 _snake_case : Optional[int] = 5_12 _snake_case : Dict = 'pascal-voc-id2label.json' _snake_case : str = True # orig_config _snake_case : Dict = load_orig_config_file(__lowerCAmelCase ) assert getattr(__lowerCAmelCase , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" _snake_case : int = getattr(__lowerCAmelCase , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(__lowerCAmelCase , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _snake_case : Union[str, Any] = getattr(__lowerCAmelCase , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _snake_case : Dict = getattr(__lowerCAmelCase , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: _snake_case : Optional[int] = getattr(__lowerCAmelCase , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) _snake_case : Optional[Any] = getattr(__lowerCAmelCase , 'model.segmentation.deeplabv3.aspp_out_channels' , 5_12 ) _snake_case : str = getattr(__lowerCAmelCase , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label _snake_case : List[Any] = 'huggingface/label-files' _snake_case : Any = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _snake_case : Dict = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _snake_case : str = idalabel _snake_case : List[str] = {v: k for k, v in idalabel.items()} return config def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = dct.pop(__lowerCAmelCase ) _snake_case : List[str] = val def A__( __lowerCAmelCase , __lowerCAmelCase=False ): if base_model: _snake_case : Optional[int] = '' else: _snake_case : Any = 'mobilevitv2.' _snake_case : Optional[Any] = [] for k in state_dict.keys(): if k[:8] == "encoder.": _snake_case : List[str] = k[8:] else: _snake_case : Tuple = k if ".block." in k: _snake_case : List[Any] = k_new.replace('.block.' , '.' ) if ".conv." in k: _snake_case : Any = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: _snake_case : List[Any] = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: _snake_case : Any = k_new.replace('conv_1.' , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: _snake_case : Tuple = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: _snake_case : Optional[Any] = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: _snake_case : str = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: _snake_case : Any = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: _snake_case : Optional[int] = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: _snake_case : Optional[int] = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: _snake_case : Dict = [0, 1] elif i == 4: _snake_case : int = [0, 1, 2, 3] elif i == 5: _snake_case : Tuple = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: _snake_case : Union[str, Any] = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: _snake_case : int = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: _snake_case : Tuple = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: _snake_case : Union[str, Any] = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: _snake_case : List[str] = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: _snake_case : List[Any] = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: _snake_case : Optional[int] = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: _snake_case : Dict = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: _snake_case : Optional[Any] = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: _snake_case : Optional[Any] = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: _snake_case : str = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: _snake_case : str = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def A__( __lowerCAmelCase ): _snake_case : List[str] = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(__lowerCAmelCase ) for k in keys_to_ignore: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__( ): _snake_case : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _snake_case : List[str] = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_mobilevitva_config(__lowerCAmelCase , __lowerCAmelCase ) # load original state_dict _snake_case : Union[str, Any] = torch.load(__lowerCAmelCase , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): _snake_case : str = MobileViTVaForSemanticSegmentation(__lowerCAmelCase ).eval() _snake_case : int = False else: _snake_case : str = MobileViTVaForImageClassification(__lowerCAmelCase ).eval() _snake_case : Optional[int] = False # remove and rename some keys of load the original model _snake_case : List[Any] = checkpoint remove_unused_keys(__lowerCAmelCase ) _snake_case : Union[str, Any] = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load modified state_dict model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor _snake_case : Tuple = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _snake_case : Union[str, Any] = image_processor(images=prepare_img() , return_tensors='pt' ) _snake_case : Optional[Any] = model(**__lowerCAmelCase ) # verify classification model if task_name.startswith('imagenet' ): _snake_case : Tuple = outputs.logits _snake_case : List[str] = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant _snake_case : Tuple = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowercase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) lowercase_ : List[Any] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
304
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase( self ) -> Optional[Any]: __UpperCamelCase = 'ylacombe/bark-small' __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = 'en_speaker_1' __UpperCamelCase = 'This is a test string' __UpperCamelCase = 'speaker_embeddings_path.json' __UpperCamelCase = 'speaker_embeddings' def __lowercase( self , **_SCREAMING_SNAKE_CASE ) -> Dict: return AutoTokenizer.from_pretrained(self.checkpoint , **_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __lowercase( self ) -> Tuple: __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BarkProcessor(tokenizer=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __lowercase( self ) -> List[Any]: __UpperCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __UpperCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __lowercase( self ) -> Tuple: __UpperCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __UpperCamelCase = 35 __UpperCamelCase = 2 __UpperCamelCase = 8 __UpperCamelCase = { 'semantic_prompt': np.ones(_SCREAMING_SNAKE_CASE ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __UpperCamelCase = processor(text=self.input_string , voice_preset=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_SCREAMING_SNAKE_CASE , np.array([] ) ).tolist() ) # test loading voice preset from npz file __UpperCamelCase = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __UpperCamelCase = processor(text=self.input_string , voice_preset=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_SCREAMING_SNAKE_CASE , np.array([] ) ).tolist() ) # test loading voice preset from the hub __UpperCamelCase = processor(text=self.input_string , voice_preset=self.voice_preset ) def __lowercase( self ) -> int: __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BarkProcessor(tokenizer=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = processor(text=self.input_string ) __UpperCamelCase = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
567
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
567
1
"""simple docstring""" import re import string import numpy as np import datasets SCREAMING_SNAKE_CASE_ = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' SCREAMING_SNAKE_CASE_ = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' SCREAMING_SNAKE_CASE_ = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , reference_urls=[] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=False , ) -> Any: if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCamelCase = np.array([re.sub(lowerCamelCase_ , '''''' , lowerCamelCase_) for x in predictions]) UpperCamelCase = np.array([re.sub(lowerCamelCase_ , '''''' , lowerCamelCase_) for x in references]) else: UpperCamelCase = np.asarray(lowerCamelCase_) UpperCamelCase = np.asarray(lowerCamelCase_) if ignore_case: UpperCamelCase = np.char.lower(lowerCamelCase_) UpperCamelCase = np.char.lower(lowerCamelCase_) if ignore_punctuation: UpperCamelCase = string.punctuation.maketrans('''''' , '''''' , string.punctuation) UpperCamelCase = np.char.translate(lowerCamelCase_ , table=lowerCamelCase_) UpperCamelCase = np.char.translate(lowerCamelCase_ , table=lowerCamelCase_) if ignore_numbers: UpperCamelCase = string.digits.maketrans('''''' , '''''' , string.digits) UpperCamelCase = np.char.translate(lowerCamelCase_ , table=lowerCamelCase_) UpperCamelCase = np.char.translate(lowerCamelCase_ , table=lowerCamelCase_) UpperCamelCase = predictions == references return {"exact_match": np.mean(lowerCamelCase_) * 1_0_0}
34
import argparse from collections import defaultdict import yaml a = 'docs/source/en/_toctree.yml' def UpperCAmelCase_ ( UpperCAmelCase__ ): lowercase_ = defaultdict(UpperCAmelCase__ ) for doc in model_doc: counts[doc["local"]] += 1 lowercase_ = [key for key, value in counts.items() if value > 1] lowercase_ = [] for duplicate_key in duplicates: lowercase_ = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(UpperCAmelCase__ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : s["title"].lower() ) def UpperCAmelCase_ ( UpperCAmelCase__=False ): with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: lowercase_ = yaml.safe_load(f.read() ) # Get to the API doc lowercase_ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase_ = content[api_idx]["""sections"""] # Then to the model doc lowercase_ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowercase_ = api_doc[model_idx]["""sections"""] lowercase_ = [(idx, section) for idx, section in enumerate(UpperCAmelCase__ ) if """sections""" in section] lowercase_ = False for idx, modality_doc in modalities_docs: lowercase_ = modality_doc["""sections"""] lowercase_ = clean_model_doc_toc(UpperCAmelCase__ ) if old_modality_doc != new_modality_doc: lowercase_ = True if overwrite: lowercase_ = new_modality_doc if diff: if overwrite: lowercase_ = model_doc lowercase_ = api_doc with open(UpperCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(UpperCAmelCase__ , allow_unicode=UpperCAmelCase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a = parser.parse_args() check_model_doc(args.fix_and_overwrite)
412
0
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __a : str = numpy.array([0, 0]) __a : Dict = numpy.array([0.5, 0.8_66_02_54]) __a : Optional[int] = numpy.array([1, 0]) __a : Optional[int] = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __magic_name__ ( lowercase_ , lowercase_ ) -> list[numpy.ndarray]: '''simple docstring''' UpperCamelCase = initial_vectors for _ in range(lowercase_ ): UpperCamelCase = iteration_step(lowercase_ ) return vectors def __magic_name__ ( lowercase_ ) -> list[numpy.ndarray]: '''simple docstring''' UpperCamelCase = [] for i, start_vector in enumerate(vectors[:-1] ): UpperCamelCase = vectors[i + 1] new_vectors.append(lowercase_ ) UpperCamelCase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __magic_name__ ( lowercase_ , lowercase_ ) -> numpy.ndarray: '''simple docstring''' UpperCamelCase = numpy.radians(lowercase_ ) UpperCamelCase , UpperCamelCase = numpy.cos(lowercase_ ), numpy.sin(lowercase_ ) UpperCamelCase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowercase_ , lowercase_ ) def __magic_name__ ( lowercase_ ) -> None: '''simple docstring''' UpperCamelCase = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCamelCase , UpperCamelCase = zip(*lowercase_ ) plt.plot(lowercase_ , lowercase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __a : str = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
718
import os import jsonlines import numpy as np from tqdm import tqdm __a : int = 2_0_4_8 __a : Optional[int] = 4_0_9_6 __a : Optional[int] = 4_2 __a : Optional[Any] = os.environ.pop("""PROCESS_TRAIN""", """false""") __a : Dict = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def __magic_name__ ( lowercase_ ) -> List[Any]: '''simple docstring''' def choose_first(lowercase_ , lowercase_=False ): assert isinstance(lowercase_ , lowercase_ ) if len(lowercase_ ) == 1: UpperCamelCase = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: UpperCamelCase = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a UpperCamelCase = {"id": example["id"]} UpperCamelCase = example["annotations"] UpperCamelCase = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: UpperCamelCase = ["yes"] if 1 in yes_no_answer else ["no"] UpperCamelCase = UpperCamelCase = [] UpperCamelCase = UpperCamelCase = [] UpperCamelCase = ["<cls>"] else: UpperCamelCase = ["short"] UpperCamelCase = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available UpperCamelCase = ["long"] UpperCamelCase = choose_first(annotation["long_answer"] , is_long_answer=lowercase_ ) UpperCamelCase = [] answer.update(lowercase_ ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: UpperCamelCase = True else: UpperCamelCase = False UpperCamelCase = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k] , lowercase_ ) for k in cols ): raise ValueError("Issue in ID" , example["id"] ) return answer def __magic_name__ ( lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' UpperCamelCase = _get_single_answer(lowercase_ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCamelCase = example["document"]["tokens"] UpperCamelCase = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(lowercase_ ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples UpperCamelCase = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 UpperCamelCase = example["document"]["tokens"] UpperCamelCase = answer["start_token"] UpperCamelCase = answer["end_token"] UpperCamelCase = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 UpperCamelCase = " ".join(context[start_token:end_token] ) # checking above code if assertion: UpperCamelCase = doc["is_html"][answer["start_token"] : answer["end_token"]] UpperCamelCase = doc["token"][answer["start_token"] : answer["end_token"]] UpperCamelCase = " ".join([old[i] for i in range(len(lowercase_ ) ) if not is_html[i]] ) if new != old: print("ID:" , example["id"] ) print("New:" , lowercase_ , end="\n" ) print("Old:" , lowercase_ , end="\n\n" ) return { "context": " ".join(lowercase_ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def __magic_name__ ( lowercase_ , lowercase_ , lowercase_=2048 , lowercase_=4096 , lowercase_=True ) -> int: '''simple docstring''' UpperCamelCase = get_context_and_ans(lowercase_ , assertion=lowercase_ ) UpperCamelCase = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } UpperCamelCase = tokenizer(example["question"]["text"] , out["context"] ).input_ids UpperCamelCase = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = input_ids[:q_len] UpperCamelCase = range(lowercase_ , len(lowercase_ ) , max_length - doc_stride ) for i in doc_start_indices: UpperCamelCase = i + max_length - q_len UpperCamelCase = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowercase_ ), "end_token": [-100] * len(lowercase_ ), "category": category, }, } UpperCamelCase = out["context"].split() UpperCamelCase = splitted_context[answer["end_token"]] UpperCamelCase = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ) , add_special_tokens=lowercase_ , ).input_ids ) UpperCamelCase = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ) , add_special_tokens=lowercase_ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token UpperCamelCase = len(tokenizer(lowercase_ , add_special_tokens=lowercase_ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 UpperCamelCase = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive UpperCamelCase = answer["start_token"] UpperCamelCase = answer["end_token"] if assertion: UpperCamelCase = tokenizer.decode(lowercase_ ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:" , answer["span"] ) print("NEW:" , lowercase_ , end="\n\n" ) if len(lowercase_ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } UpperCamelCase = input_ids[:q_len] UpperCamelCase = range(lowercase_ , len(lowercase_ ) , max_length - doc_stride ) UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] # null, yes, no, long, short for i in doc_start_indices: UpperCamelCase = i + max_length - q_len UpperCamelCase = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: UpperCamelCase = start_token - i + q_len UpperCamelCase = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: UpperCamelCase = -100 UpperCamelCase = -100 answers_category.append("null" ) UpperCamelCase = inputs[-1][start_token : end_token + 1] answers_start_token.append(lowercase_ ) answers_end_token.append(lowercase_ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" , example["id"] ) print("New:" , tokenizer.decode(lowercase_ ) ) print("Old:" , tokenizer.decode(lowercase_ ) , end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def __magic_name__ ( lowercase_ , lowercase_ , lowercase_=2048 , lowercase_=4096 , lowercase_=False ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = get_strided_contexts_and_ans( lowercase_ , lowercase_ , doc_stride=lowercase_ , max_length=lowercase_ , assertion=lowercase_ , ) return example def __magic_name__ ( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' with jsonlines.open(lowercase_ , "a" ) as writer: for example in tqdm(lowercase_ , total=len(lowercase_ ) , desc="Saving samples ... " ): UpperCamelCase = example["labels"] for ids, start, end, cat in zip( example["input_ids"] , labels["start_token"] , labels["end_token"] , labels["category"] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __a : Dict = load_dataset("""natural_questions""") __a : int = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") __a : List[Any] = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] __a : Tuple = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } __a : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __a : Optional[int] = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) __a : List[Any] = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
414
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , lowercase_ : int , lowercase_ : Dict=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Dict=30 , lowercase_ : Tuple=400 , lowercase_ : Any=True , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=True , lowercase_ : List[Any]=[0.5, 0.5, 0.5] , lowercase_ : int=[0.5, 0.5, 0.5] , lowercase_ : Optional[Any]=True , lowercase_ : Dict=1 / 255 , lowercase_ : str=True , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE_ : List[str] = parent SCREAMING_SNAKE_CASE_ : int = batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE_ : Optional[int] = min_resolution SCREAMING_SNAKE_CASE_ : List[Any] = max_resolution SCREAMING_SNAKE_CASE_ : List[str] = do_resize SCREAMING_SNAKE_CASE_ : Optional[int] = size SCREAMING_SNAKE_CASE_ : Optional[int] = do_normalize SCREAMING_SNAKE_CASE_ : List[Any] = image_mean SCREAMING_SNAKE_CASE_ : List[Any] = image_std SCREAMING_SNAKE_CASE_ : str = do_rescale SCREAMING_SNAKE_CASE_ : int = rescale_factor SCREAMING_SNAKE_CASE_ : Optional[Any] = do_pad def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : List[str] , lowercase_ : Union[str, Any]=False): '''simple docstring''' if not batched: SCREAMING_SNAKE_CASE_ : str = image_inputs[0] if isinstance(lowercase_ , Image.Image): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w) SCREAMING_SNAKE_CASE_ : List[str] = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE_ : Dict = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE_ : Any = int(self.size['''shortest_edge'''] * w / h) else: SCREAMING_SNAKE_CASE_ : int = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE_ : List[str] = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE_ : List[str] = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) SCREAMING_SNAKE_CASE_ : Optional[int] = max(lowercase_ , key=lambda lowercase_: item[0])[0] SCREAMING_SNAKE_CASE_ : List[str] = max(lowercase_ , key=lambda lowercase_: item[1])[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = DeformableDetrImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = DeformableDetrImageProcessingTester(self) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase_ , '''image_mean''')) self.assertTrue(hasattr(lowercase_ , '''image_std''')) self.assertTrue(hasattr(lowercase_ , '''do_normalize''')) self.assertTrue(hasattr(lowercase_ , '''do_resize''')) self.assertTrue(hasattr(lowercase_ , '''do_rescale''')) self.assertTrue(hasattr(lowercase_ , '''do_pad''')) self.assertTrue(hasattr(lowercase_ , '''size''')) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333}) self.assertEqual(image_processor.do_pad , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84}) self.assertEqual(image_processor.do_pad , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images SCREAMING_SNAKE_CASE_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processor_tester.get_expected_values(lowercase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processing(lowercase_ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors SCREAMING_SNAKE_CASE_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.image_processor_tester.get_expected_values(lowercase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(lowercase_ , return_tensors='''pt''').pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor) # Test not batched input SCREAMING_SNAKE_CASE_ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.image_processor_tester.get_expected_values(lowercase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processing(lowercase_ , return_tensors='''pt''').pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f: SCREAMING_SNAKE_CASE_ : int = json.loads(f.read()) SCREAMING_SNAKE_CASE_ : Any = {'''image_id''': 39769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE_ : Tuple = DeformableDetrImageProcessor() SCREAMING_SNAKE_CASE_ : Dict = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors='''pt''') # verify pixel values SCREAMING_SNAKE_CASE_ : Tuple = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['''pixel_values'''].shape , lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([0.27_96, 0.31_38, 0.34_81]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowercase_ , atol=1e-4)) # verify area SCREAMING_SNAKE_CASE_ : str = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowercase_)) # verify boxes SCREAMING_SNAKE_CASE_ : Optional[int] = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowercase_ , atol=1e-3)) # verify image_id SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([39769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowercase_)) # verify is_crowd SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowercase_)) # verify class_labels SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowercase_)) # verify orig_size SCREAMING_SNAKE_CASE_ : int = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowercase_)) # verify size SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowercase_)) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f: SCREAMING_SNAKE_CASE_ : Dict = json.loads(f.read()) SCREAMING_SNAKE_CASE_ : List[Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} SCREAMING_SNAKE_CASE_ : Tuple = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''') # encode them SCREAMING_SNAKE_CASE_ : Union[str, Any] = DeformableDetrImageProcessor(format='''coco_panoptic''') SCREAMING_SNAKE_CASE_ : Dict = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors='''pt''') # verify pixel values SCREAMING_SNAKE_CASE_ : List[Any] = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['''pixel_values'''].shape , lowercase_) SCREAMING_SNAKE_CASE_ : Any = torch.tensor([0.27_96, 0.31_38, 0.34_81]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowercase_ , atol=1e-4)) # verify area SCREAMING_SNAKE_CASE_ : str = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowercase_)) # verify boxes SCREAMING_SNAKE_CASE_ : Tuple = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowercase_) SCREAMING_SNAKE_CASE_ : int = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowercase_ , atol=1e-3)) # verify image_id SCREAMING_SNAKE_CASE_ : Any = torch.tensor([39769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowercase_)) # verify is_crowd SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowercase_)) # verify class_labels SCREAMING_SNAKE_CASE_ : int = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowercase_)) # verify masks SCREAMING_SNAKE_CASE_ : List[Any] = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowercase_) # verify orig_size SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowercase_)) # verify size SCREAMING_SNAKE_CASE_ : int = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowercase_))
512
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Any , lowercase_ : str , lowercase_ : Dict=13 , lowercase_ : Dict=32 , lowercase_ : Any=3 , lowercase_ : Any=4 , lowercase_ : int=[10, 20, 30, 40] , lowercase_ : Union[str, Any]=[2, 2, 3, 2] , lowercase_ : Optional[int]=True , lowercase_ : Union[str, Any]=True , lowercase_ : Dict=37 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[int]=0.02 , lowercase_ : Tuple=["stage2", "stage3", "stage4"] , lowercase_ : Optional[Any]=[2, 3, 4] , lowercase_ : Optional[int]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : List[Any] = image_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE_ : List[Any] = num_stages SCREAMING_SNAKE_CASE_ : List[str] = hidden_sizes SCREAMING_SNAKE_CASE_ : Optional[int] = depths SCREAMING_SNAKE_CASE_ : str = is_training SCREAMING_SNAKE_CASE_ : int = use_labels SCREAMING_SNAKE_CASE_ : Dict = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = num_labels SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Dict = out_features SCREAMING_SNAKE_CASE_ : List[str] = out_indices SCREAMING_SNAKE_CASE_ : int = scope def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : Any = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowercase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = ConvNextModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowercase_) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = ConvNextForImageClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = ConvNextBackbone(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(lowercase_) # verify hidden states self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Union[str, Any] = ConvNextBackbone(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowercase_) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __UpperCamelCase = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = ConvNextModelTester(self) SCREAMING_SNAKE_CASE_ : int = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' return @unittest.skip(reason='''ConvNext does not use inputs_embeds''') def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''') def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''') def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Dict = model_class(lowercase_) SCREAMING_SNAKE_CASE_ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : List[str] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' def check_hidden_states_output(lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : str): SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class(lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] = model(**self._prepare_for_class(lowercase_ , lowercase_)) SCREAMING_SNAKE_CASE_ : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.num_stages self.assertEqual(len(lowercase_) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Tuple = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ : str = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : int = ConvNextModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def _A () -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''') if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''').to(lowercase_) SCREAMING_SNAKE_CASE_ : str = self.default_image_processor SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_ : List[Any] = image_processor(images=lowercase_ , return_tensors='''pt''').to(lowercase_) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : str = model(**lowercase_) # verify the logits SCREAMING_SNAKE_CASE_ : List[Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase_) SCREAMING_SNAKE_CASE_ : int = torch.tensor([-0.02_60, -0.47_39, 0.19_11]).to(lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4)) @require_torch class lowerCAmelCase__ ( unittest.TestCase , UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = (ConvNextBackbone,) if is_torch_available() else () __UpperCamelCase = ConvNextConfig __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = ConvNextModelTester(self)
512
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : str = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def __lowerCAmelCase ( lowerCamelCase : List[str] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCAmelCase__ ( UpperCamelCase__ ): @staticmethod def UpperCAmelCase_ ( UpperCamelCase ) -> Tuple: __lowerCAmelCase = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=UpperCamelCase , default=UpperCamelCase , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=UpperCamelCase , help="Name of the model to download" ) download_parser.set_defaults(func=UpperCamelCase ) def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[str]: __lowerCAmelCase = model __lowerCAmelCase = cache __lowerCAmelCase = force __lowerCAmelCase = trust_remote_code def UpperCAmelCase_ ( self ) -> Any: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
39
1
from collections.abc import Callable def a ( snake_case__: Callable[[float], float] , snake_case__: float , snake_case__: float ): '''simple docstring''' lowercase_ = a lowercase_ = b if function(snake_case__ ) == 0: # one of the a or b is a root for the function return a elif function(snake_case__ ) == 0: return b elif ( function(snake_case__ ) * function(snake_case__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: lowercase_ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(snake_case__ ) == 0: return mid elif function(snake_case__ ) * function(snake_case__ ) < 0: lowercase_ = mid else: lowercase_ = mid lowercase_ = start + (end - start) / 2.0 return mid def a ( snake_case__: float ): '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
97
"""simple docstring""" import warnings from .generation import TFGenerationMixin class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" warnings.warn( """Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """ """be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" , SCREAMING_SNAKE_CASE_ , )
437
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def UpperCAmelCase ( a_, a_, a_, a_, a_ ): '''simple docstring''' for attribute in key.split('.' ): lowerCamelCase : Union[str, Any] = getattr(a_, a_ ) if weight_type is not None: lowerCamelCase : List[Any] = getattr(a_, a_ ).shape else: lowerCamelCase : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase : Any = value elif weight_type == "weight_g": lowerCamelCase : int = value elif weight_type == "weight_v": lowerCamelCase : Tuple = value elif weight_type == "bias": lowerCamelCase : List[str] = value else: lowerCamelCase : List[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' lowerCamelCase : List[Any] = [] lowerCamelCase : str = fairseq_model.state_dict() lowerCamelCase : Dict = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase : int = False if "conv_layers" in name: load_conv_layer( a_, a_, a_, a_, hf_model.config.feat_extract_norm == 'group', ) lowerCamelCase : Tuple = True else: for key, mapped_key in MAPPING.items(): lowerCamelCase : Optional[int] = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowerCamelCase : List[str] = True if "*" in mapped_key: lowerCamelCase : Union[str, Any] = name.split(a_ )[0].split('.' )[-2] lowerCamelCase : Any = mapped_key.replace('*', a_ ) if "weight_g" in name: lowerCamelCase : Tuple = 'weight_g' elif "weight_v" in name: lowerCamelCase : Dict = 'weight_v' elif "weight" in name: lowerCamelCase : Dict = 'weight' elif "bias" in name: lowerCamelCase : List[str] = 'bias' else: lowerCamelCase : Optional[int] = None set_recursively(a_, a_, a_, a_, a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def UpperCAmelCase ( a_, a_, a_, a_, a_ ): '''simple docstring''' lowerCamelCase : str = full_name.split('conv_layers.' )[-1] lowerCamelCase : Optional[Any] = name.split('.' ) lowerCamelCase : Optional[int] = int(items[0] ) lowerCamelCase : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase : Optional[int] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(a_ ) def UpperCAmelCase ( a_, a_ ): '''simple docstring''' lowerCamelCase : List[Any] = SEWConfig() if is_finetuned: lowerCamelCase : Union[str, Any] = model.wav_encoder.wav_model.cfg else: lowerCamelCase : str = model.cfg lowerCamelCase : Any = fs_config.conv_bias lowerCamelCase : Any = eval(fs_config.conv_feature_layers ) lowerCamelCase : Any = [x[0] for x in conv_layers] lowerCamelCase : Union[str, Any] = [x[1] for x in conv_layers] lowerCamelCase : Optional[Any] = [x[2] for x in conv_layers] lowerCamelCase : str = 'gelu' lowerCamelCase : str = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' lowerCamelCase : Optional[int] = 0.0 lowerCamelCase : Optional[Any] = fs_config.activation_fn.name lowerCamelCase : Union[str, Any] = fs_config.encoder_embed_dim lowerCamelCase : Any = 0.0_2 lowerCamelCase : Dict = fs_config.encoder_ffn_embed_dim lowerCamelCase : List[str] = 1E-5 lowerCamelCase : Optional[int] = fs_config.encoder_layerdrop lowerCamelCase : Union[str, Any] = fs_config.encoder_attention_heads lowerCamelCase : Optional[int] = fs_config.conv_pos_groups lowerCamelCase : List[str] = fs_config.conv_pos lowerCamelCase : Dict = len(a_ ) lowerCamelCase : List[Any] = fs_config.encoder_layers lowerCamelCase : Dict = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowerCamelCase : Tuple = model.cfg lowerCamelCase : Union[str, Any] = fs_config.final_dropout lowerCamelCase : str = fs_config.layerdrop lowerCamelCase : str = fs_config.activation_dropout lowerCamelCase : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowerCamelCase : str = fs_config.attention_dropout lowerCamelCase : Optional[int] = fs_config.dropout_input lowerCamelCase : Dict = fs_config.dropout lowerCamelCase : Tuple = fs_config.mask_channel_length lowerCamelCase : List[Any] = fs_config.mask_channel_prob lowerCamelCase : Any = fs_config.mask_length lowerCamelCase : List[str] = fs_config.mask_prob lowerCamelCase : int = 'Wav2Vec2FeatureExtractor' lowerCamelCase : str = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def UpperCAmelCase ( a_, a_, a_=None, a_=None, a_=True ): '''simple docstring''' if is_finetuned: lowerCamelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: lowerCamelCase : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowerCamelCase : Optional[Any] = SEWConfig.from_pretrained(a_ ) else: lowerCamelCase : Any = convert_config(model[0], a_ ) lowerCamelCase : Tuple = model[0].eval() lowerCamelCase : str = True if config.feat_extract_norm == 'layer' else False lowerCamelCase : List[str] = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0, do_normalize=a_, return_attention_mask=a_, ) if is_finetuned: if dict_path: lowerCamelCase : Dict = Dictionary.load(a_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase : List[str] = target_dict.pad_index lowerCamelCase : List[Any] = target_dict.bos_index lowerCamelCase : Any = target_dict.pad_index lowerCamelCase : List[str] = target_dict.bos_index lowerCamelCase : Dict = target_dict.eos_index lowerCamelCase : Optional[Any] = len(target_dict.symbols ) lowerCamelCase : List[Any] = os.path.join(a_, 'vocab.json' ) if not os.path.isdir(a_ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(a_ ) ) return os.makedirs(a_, exist_ok=a_ ) with open(a_, 'w', encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices, a_ ) lowerCamelCase : int = WavaVecaCTCTokenizer( a_, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token='|', do_lower_case=a_, ) lowerCamelCase : Tuple = WavaVecaProcessor(feature_extractor=a_, tokenizer=a_ ) processor.save_pretrained(a_ ) lowerCamelCase : Any = SEWForCTC(a_ ) else: lowerCamelCase : Tuple = SEWModel(a_ ) feature_extractor.save_pretrained(a_ ) recursively_load_weights(a_, a_, a_ ) hf_model.save_pretrained(a_ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) _A = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
701
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _A = 2_5_0_0_0_4 _A = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class _lowercase ( __UpperCAmelCase , unittest.TestCase ): lowercase_ = MBartaaTokenizer lowercase_ = MBartaaTokenizerFast lowercase_ = True lowercase_ = True def _UpperCamelCase ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase : int = MBartaaTokenizer(UpperCAmelCase_ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self ) -> Tuple: lowerCamelCase : str = '<s>' lowerCamelCase : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> List[Any]: lowerCamelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(UpperCAmelCase_ ) , 1054 ) def _UpperCamelCase ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def _UpperCamelCase ( self ) -> str: lowerCamelCase : Optional[int] = MBartaaTokenizer(UpperCAmelCase_ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=UpperCAmelCase_ ) lowerCamelCase : Dict = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) lowerCamelCase : Dict = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def _UpperCamelCase ( self ) -> List[Any]: # fmt: off lowerCamelCase : Optional[Any] = {'input_ids': [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def _UpperCamelCase ( self ) -> List[str]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase : int = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase : Tuple = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase : Tuple = tempfile.mkdtemp() lowerCamelCase : Any = tokenizer_r.save_pretrained(UpperCAmelCase_ ) lowerCamelCase : List[str] = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCamelCase : int = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way lowerCamelCase : Dict = tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=True lowerCamelCase : Optional[int] = tempfile.mkdtemp() lowerCamelCase : Union[str, Any] = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) lowerCamelCase : List[Any] = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Checks everything loads correctly in the same way lowerCamelCase : Dict = tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCamelCase : Optional[int] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=False lowerCamelCase : Union[str, Any] = tempfile.mkdtemp() lowerCamelCase : List[str] = tokenizer_r.save_pretrained(UpperCAmelCase_ , legacy_format=UpperCAmelCase_ ) lowerCamelCase : Optional[int] = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase : int = tokenizer_r.from_pretrained(UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): lowercase_ = 'facebook/mbart-large-50-one-to-many-mmt' lowercase_ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowercase_ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowercase_ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def _UpperCamelCase ( cls ) -> int: lowerCamelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) lowerCamelCase : Union[str, Any] = 1 return cls def _UpperCamelCase ( self ) -> int: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 250038 ) def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Dict: self.assertIn(UpperCAmelCase_ , self.tokenizer.all_special_ids ) lowerCamelCase : str = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCamelCase : Union[str, Any] = self.tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) lowerCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Dict: lowerCamelCase : Tuple = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , UpperCAmelCase_ ) lowerCamelCase : str = 10 lowerCamelCase : Optional[int] = self.tokenizer(UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ ).input_ids[0] self.assertEqual(ids[0] , UpperCAmelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> List[str]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250053, 250001] ) def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : List[str] = tempfile.mkdtemp() lowerCamelCase : Any = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase_ ) lowerCamelCase : str = MBartaaTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase_ ) @require_torch def _UpperCamelCase ( self ) -> Any: lowerCamelCase : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , return_tensors='pt' ) lowerCamelCase : Any = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _UpperCamelCase ( self ) -> Optional[int]: lowerCamelCase : int = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) lowerCamelCase : Dict = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Optional[Any] = self.tokenizer(self.src_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=3 , return_tensors='pt' ) lowerCamelCase : Optional[Any] = self.tokenizer( text_target=self.tgt_text , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=10 , return_tensors='pt' ) lowerCamelCase : List[Any] = targets['input_ids'] lowerCamelCase : List[Any] = shift_tokens_right(UpperCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase : List[Any] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , { # en_XX, A, test, EOS 'input_ids': [[250004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, } , )
133
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[str] ): """simple docstring""" # test for the above condition self.test() def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = 0 _snake_case = False while not completed: if counter == 1: self.reset() _snake_case = self.advance() if not self.does_advance(__lowerCamelCase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) _snake_case , _snake_case , _snake_case = self.update(__lowerCamelCase ) counter += 1 if counter > 1_0_0_0_0: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def __UpperCAmelCase ( self : Tuple ): """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : int ): """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : int ): """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __UpperCAmelCase ( self : int ): """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __UpperCAmelCase ( self : int ): """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __UpperCAmelCase ( self : Any , __lowerCamelCase : Optional[Any]=False ): """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Dict , __lowerCamelCase : List[int] ): """simple docstring""" super(__lowerCamelCase , self ).__init__() if not isinstance(__lowerCamelCase , __lowerCamelCase ) or len(__lowerCamelCase ) == 0: raise ValueError(f"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(__lowerCamelCase , __lowerCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) _snake_case = token_ids _snake_case = len(self.token_ids ) _snake_case = -1 # the index of the currently fulfilled step _snake_case = False def __UpperCAmelCase ( self : str ): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __UpperCAmelCase ( self : int , __lowerCamelCase : int ): """simple docstring""" if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(__lowerCamelCase )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : int ): """simple docstring""" if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(__lowerCamelCase )}""" ) _snake_case = False _snake_case = False _snake_case = False if self.does_advance(__lowerCamelCase ): self.fulfilled_idx += 1 _snake_case = True if self.fulfilled_idx == (self.seqlen - 1): _snake_case = True _snake_case = completed else: # failed to make progress. _snake_case = True self.reset() return stepped, completed, reset def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = False _snake_case = 0 def __UpperCAmelCase ( self : Dict ): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : str=False ): """simple docstring""" _snake_case = PhrasalConstraint(self.token_ids ) if stateful: _snake_case = self.seqlen _snake_case = self.fulfilled_idx _snake_case = self.completed return new_constraint class UpperCAmelCase : def __init__( self : Optional[Any] , __lowerCamelCase : List[List[int]] , __lowerCamelCase : Optional[Any]=True ): """simple docstring""" _snake_case = max([len(__lowerCamelCase ) for one in nested_token_ids] ) _snake_case = {} for token_ids in nested_token_ids: _snake_case = root for tidx, token_id in enumerate(__lowerCamelCase ): if token_id not in level: _snake_case = {} _snake_case = level[token_id] if no_subsets and self.has_subsets(__lowerCamelCase , __lowerCamelCase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f""" {nested_token_ids}.""" ) _snake_case = root def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Dict ): """simple docstring""" _snake_case = self.trie for current_token in current_seq: _snake_case = start[current_token] _snake_case = list(start.keys() ) return next_tokens def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Optional[Any] ): """simple docstring""" _snake_case = self.next_tokens(__lowerCamelCase ) return len(__lowerCamelCase ) == 0 def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : int ): """simple docstring""" _snake_case = list(root.values() ) if len(__lowerCamelCase ) == 0: return 1 else: return sum([self.count_leaves(__lowerCamelCase ) for nn in next_nodes] ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : str ): """simple docstring""" _snake_case = self.count_leaves(__lowerCamelCase ) return len(__lowerCamelCase ) != leaf_count class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : int , __lowerCamelCase : List[List[int]] ): """simple docstring""" super(__lowerCamelCase , self ).__init__() if not isinstance(__lowerCamelCase , __lowerCamelCase ) or len(__lowerCamelCase ) == 0: raise ValueError(f"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(__lowerCamelCase , __lowerCamelCase ) for token_ids in nested_token_ids ): raise ValueError(f"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(__lowerCamelCase , __lowerCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) _snake_case = DisjunctiveTrie(__lowerCamelCase ) _snake_case = nested_token_ids _snake_case = self.trie.max_height _snake_case = [] _snake_case = False def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = self.trie.next_tokens(self.current_seq ) if len(__lowerCamelCase ) == 0: return None else: return token_list def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : int ): """simple docstring""" if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowerCamelCase )}""" ) _snake_case = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : int ): """simple docstring""" if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowerCamelCase )}""" ) _snake_case = False _snake_case = False _snake_case = False if self.does_advance(__lowerCamelCase ): self.current_seq.append(__lowerCamelCase ) _snake_case = True else: _snake_case = True self.reset() _snake_case = self.trie.reached_leaf(self.current_seq ) _snake_case = completed return stepped, completed, reset def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = False _snake_case = [] def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Optional[int]=False ): """simple docstring""" _snake_case = DisjunctiveConstraint(self.token_ids ) if stateful: _snake_case = self.seqlen _snake_case = self.current_seq _snake_case = self.completed return new_constraint class UpperCAmelCase : def __init__( self : Optional[int] , __lowerCamelCase : List[Constraint] ): """simple docstring""" _snake_case = constraints # max # of steps required to fulfill a given constraint _snake_case = max([c.seqlen for c in constraints] ) _snake_case = len(__lowerCamelCase ) _snake_case = False self.init_state() def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = [] _snake_case = None _snake_case = [constraint.copy(stateful=__lowerCamelCase ) for constraint in self.constraints] def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _snake_case = constraint.advance() if isinstance(__lowerCamelCase , __lowerCamelCase ): token_list.append(__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): token_list.extend(__lowerCamelCase ) else: _snake_case = self.inprogress_constraint.advance() if isinstance(__lowerCamelCase , __lowerCamelCase ): token_list.append(__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): token_list.extend(__lowerCamelCase ) if len(__lowerCamelCase ) == 0: return None else: return token_list def __UpperCAmelCase ( self : int , __lowerCamelCase : Optional[List[int]] ): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _snake_case , _snake_case = self.add(__lowerCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def __UpperCAmelCase ( self : Any , __lowerCamelCase : int ): """simple docstring""" if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError(f"""`token_id` should be an `int`, but is `{token_id}`.""" ) _snake_case , _snake_case = False, False if self.completed: _snake_case = True _snake_case = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _snake_case , _snake_case , _snake_case = self.inprogress_constraint.update(__lowerCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__lowerCamelCase ) ) _snake_case = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _snake_case = None if len(self.pending_constraints ) == 0: # we're done! _snake_case = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__lowerCamelCase ): _snake_case , _snake_case , _snake_case = pending_constraint.update(__lowerCamelCase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(__lowerCamelCase ) _snake_case = None if not complete and stepped: _snake_case = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _snake_case = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _snake_case = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Union[str, Any]=True ): """simple docstring""" _snake_case = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _snake_case = [ constraint.copy(stateful=__lowerCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _snake_case = self.inprogress_constraint.copy(stateful=__lowerCamelCase ) _snake_case = [constraint.copy() for constraint in self.pending_constraints] return new_state
103
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
59
0
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class UpperCAmelCase_ : def __init__( self , lowercase_ , lowercase_ , lowercase_): if dst_width < 0 or dst_height < 0: raise ValueError("Destination width/height should be > 0") snake_case_ : List[str] = img snake_case_ : str = img.shape[1] snake_case_ : Tuple = img.shape[0] snake_case_ : Union[str, Any] = dst_width snake_case_ : str = dst_height snake_case_ : str = self.src_w / self.dst_w snake_case_ : List[Any] = self.src_h / self.dst_h snake_case_ : str = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta) * 2_55 ) def snake_case__ ( self): for i in range(self.dst_h): for j in range(self.dst_w): snake_case_ : Optional[int] = self.img[self.get_y(lowercase_)][self.get_x(lowercase_)] def snake_case__ ( self , lowercase_): return int(self.ratio_x * x) def snake_case__ ( self , lowercase_): return int(self.ratio_y * y) if __name__ == "__main__": a_ ,a_ = 800, 600 a_ = imread("image_data/lena.jpg", 1) a_ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
713
'''simple docstring''' from __future__ import annotations from statistics import mean def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : Any = [0] * no_of_processes snake_case_ : Optional[int] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__SCREAMING_SNAKE_CASE ): snake_case_ : str = burst_time[i] snake_case_ : list[int] = [] snake_case_ : Tuple = 0 snake_case_ : Optional[int] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case_ : Any = [] snake_case_ : Dict = -1 for i in range(__SCREAMING_SNAKE_CASE ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: snake_case_ : Dict = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case_ : Optional[int] = i total_time += burst_time[target_process] completed += 1 snake_case_ : Tuple = 0 snake_case_ : int = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : Optional[int] = [0] * no_of_processes for i in range(__SCREAMING_SNAKE_CASE ): snake_case_ : Dict = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") a_ = 4 a_ = [2, 5, 3, 7] a_ = [0, 0, 0, 0] a_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) a_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( f"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" f"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(f"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(f"""Average turnaround time = {mean(turn_around_time):.5f}""")
92
0
def lowercase__ ( A_: Tuple ) -> List[Any]: """simple docstring""" __UpperCAmelCase =len(A_ ) for i in range(length - 1 ): __UpperCAmelCase =i for k in range(i + 1 , A_ ): if collection[k] < collection[least]: __UpperCAmelCase =k if least != i: __UpperCAmelCase , __UpperCAmelCase =(collection[i], collection[least]) return collection if __name__ == "__main__": __A = input("Enter numbers separated by a comma:\n").strip() __A = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
68
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class _A ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=13 , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[Any]=99 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : int=5 , __SCREAMING_SNAKE_CASE : Dict=4 , __SCREAMING_SNAKE_CASE : str=37 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : str=512 , __SCREAMING_SNAKE_CASE : Dict=16 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=4 , ) -> Optional[Any]: __UpperCAmelCase =parent __UpperCAmelCase =batch_size __UpperCAmelCase =seq_length __UpperCAmelCase =is_training __UpperCAmelCase =use_attention_mask __UpperCAmelCase =use_token_type_ids __UpperCAmelCase =use_labels __UpperCAmelCase =vocab_size __UpperCAmelCase =hidden_size __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =num_attention_heads __UpperCAmelCase =intermediate_size __UpperCAmelCase =hidden_act __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =max_position_embeddings __UpperCAmelCase =type_vocab_size __UpperCAmelCase =type_sequence_label_size __UpperCAmelCase =initializer_range __UpperCAmelCase =num_choices def _a ( self : List[Any] ) -> List[str]: __UpperCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase =None if self.use_attention_mask: __UpperCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase =None if self.use_token_type_ids: __UpperCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a ( self : Tuple ) -> Optional[int]: __UpperCAmelCase =self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =config_and_inputs __UpperCAmelCase ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def _a ( self : List[str] ) -> Dict: __UpperCAmelCase =self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =config_and_inputs __UpperCAmelCase =True __UpperCAmelCase =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _A ( UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = True lowerCamelCase : Union[str, Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _a ( self : List[Any] ) -> List[str]: __UpperCAmelCase =FlaxRobertaModelTester(self ) @slow def _a ( self : Optional[Any] ) -> List[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase =model_class_name.from_pretrained("""roberta-base""" , from_pt=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model(np.ones((1, 1) ) ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
68
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class _snake_case : def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Any ): SCREAMING_SNAKE_CASE:Any = data SCREAMING_SNAKE_CASE:Node | None = None class _snake_case : def __init__( self : Optional[int] ): SCREAMING_SNAKE_CASE:List[Any] = None SCREAMING_SNAKE_CASE:List[str] = None def __iter__( self : Optional[Any] ): SCREAMING_SNAKE_CASE:Tuple = self.head while self.head: yield node.data SCREAMING_SNAKE_CASE:List[str] = node.next if node == self.head: break def __len__( self : List[str] ): return sum(1 for _ in self ) def __repr__( self : List[Any] ): return "->".join(str(SCREAMING_SNAKE_CASE__ ) for item in iter(self ) ) def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Any ): self.insert_nth(len(self ) ,SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Any ): self.insert_nth(0 ,SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Any ): if index < 0 or index > len(self ): raise IndexError("list index out of range." ) SCREAMING_SNAKE_CASE:List[str] = Node(SCREAMING_SNAKE_CASE__ ) if self.head is None: SCREAMING_SNAKE_CASE:Any = new_node # first node points itself SCREAMING_SNAKE_CASE:Optional[int] = new_node elif index == 0: # insert at head SCREAMING_SNAKE_CASE:Optional[int] = self.head SCREAMING_SNAKE_CASE:Tuple = new_node else: SCREAMING_SNAKE_CASE:List[str] = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE:Optional[Any] = temp.next SCREAMING_SNAKE_CASE:str = temp.next SCREAMING_SNAKE_CASE:Union[str, Any] = new_node if index == len(self ) - 1: # insert at tail SCREAMING_SNAKE_CASE:Dict = new_node def __UpperCamelCase ( self : int ): return self.delete_nth(0 ) def __UpperCamelCase ( self : Union[str, Any] ): return self.delete_nth(len(self ) - 1 ) def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int = 0 ): if not 0 <= index < len(self ): raise IndexError("list index out of range." ) SCREAMING_SNAKE_CASE:List[Any] = self.head if self.head == self.tail: # just one node SCREAMING_SNAKE_CASE:List[str] = None elif index == 0: # delete head node SCREAMING_SNAKE_CASE:Union[str, Any] = self.tail.next.next SCREAMING_SNAKE_CASE:Optional[int] = self.head.next else: SCREAMING_SNAKE_CASE:Any = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE:Tuple = temp.next SCREAMING_SNAKE_CASE:List[Any] = temp.next SCREAMING_SNAKE_CASE:Optional[int] = temp.next.next if index == len(self ) - 1: # delete at tail SCREAMING_SNAKE_CASE:Union[str, Any] = temp return delete_node.data def __UpperCamelCase ( self : List[Any] ): return len(self ) == 0 def A_ ( ): SCREAMING_SNAKE_CASE:Union[str, Any] = CircularLinkedList() assert len(snake_case ) == 0 assert circular_linked_list.is_empty() is True assert str(snake_case ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(snake_case ) == i circular_linked_list.insert_nth(snake_case , i + 1 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
465
'''simple docstring''' import random def A_ ( snake_case , snake_case , snake_case = False ): SCREAMING_SNAKE_CASE:dict = {i: [] for i in range(snake_case )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(snake_case ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(snake_case ): for j in range(i + 1 , snake_case ): if random.random() < probability: graph[i].append(snake_case ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(snake_case ) return graph def A_ ( snake_case ): return { i: [j for j in range(snake_case ) if i != j] for i in range(snake_case ) } if __name__ == "__main__": import doctest doctest.testmod()
465
1
'''simple docstring''' import math def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 3_6_0: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(UpperCamelCase__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
407
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ = 1_0 , UpperCamelCase__ = 1_0_0_0 , UpperCamelCase__ = True ): assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" ) return min_val if option else max_val def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): return int((number_a + number_a) / 2 ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("""argument value for lower and higher must be(lower > higher)""" ) if not lower < to_guess < higher: raise ValueError( """guess value must be within the range of lower and higher value""" ) def answer(UpperCamelCase__ ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("""started...""" ) UpperCAmelCase__ : List[str] = lower UpperCAmelCase__ : Any = higher UpperCAmelCase__ : Tuple = [] while True: UpperCAmelCase__ : Any = get_avg(UpperCamelCase__ , UpperCamelCase__ ) last_numbers.append(UpperCamelCase__ ) if answer(UpperCamelCase__ ) == "low": UpperCAmelCase__ : Optional[Any] = number elif answer(UpperCamelCase__ ) == "high": UpperCAmelCase__ : List[str] = number else: break print(f'''guess the number : {last_numbers[-1]}''' ) print(f'''details : {last_numbers!s}''' ) def _UpperCamelCase ( ): UpperCAmelCase__ : Union[str, Any] = int(input("""Enter lower value : """ ).strip() ) UpperCAmelCase__ : str = int(input("""Enter high value : """ ).strip() ) UpperCAmelCase__ : List[str] = int(input("""Enter value to guess : """ ).strip() ) guess_the_number(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
407
1
"""simple docstring""" class a : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = name lowercase = value lowercase = weight def __repr__( self ): return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def UpperCamelCase_ ( self ): return self.value def UpperCamelCase_ ( self ): return self.name def UpperCamelCase_ ( self ): return self.weight def UpperCamelCase_ ( self ): return self.value / self.weight def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] ): '''simple docstring''' lowercase = [] for i in range(len(__snake_case ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : Any , __snake_case : Any ): '''simple docstring''' lowercase = sorted(__snake_case , key=__snake_case , reverse=__snake_case ) lowercase = [] lowercase , lowercase = 0.0, 0.0 for i in range(len(__snake_case ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
705
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class a ( unittest.TestCase ): def UpperCamelCase_ ( self ): lowercase = tempfile.mkdtemp() lowercase = BlipImageProcessor() lowercase = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) lowercase = BlipaProcessor(_lowerCamelCase , _lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self , **_lowerCamelCase ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).tokenizer def UpperCamelCase_ ( self , **_lowerCamelCase ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).image_processor def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowercase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): lowercase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowercase = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) lowercase = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipaProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase = self.prepare_image_inputs() lowercase = image_processor(_lowerCamelCase , return_tensors='np' ) lowercase = processor(images=_lowerCamelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase_ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipaProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase = 'lower newer' lowercase = processor(text=_lowerCamelCase ) lowercase = tokenizer(_lowerCamelCase , return_token_type_ids=_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipaProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase = 'lower newer' lowercase = self.prepare_image_inputs() lowercase = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def UpperCamelCase_ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipaProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(_lowerCamelCase ) lowercase = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipaProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase = 'lower newer' lowercase = self.prepare_image_inputs() lowercase = processor(text=_lowerCamelCase , images=_lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
134
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class A ( __lowercase ): _snake_case =42 class A ( __lowercase , __lowercase ): _snake_case =True @register_to_config def __init__( self: List[str] , _lowerCAmelCase: int = 3 , _lowerCAmelCase: int = 3 , _lowerCAmelCase: Tuple[str] = ("DownEncoderBlock2D",) , _lowerCAmelCase: Tuple[str] = ("UpDecoderBlock2D",) , _lowerCAmelCase: Tuple[int] = (64,) , _lowerCAmelCase: int = 1 , _lowerCAmelCase: str = "silu" , _lowerCAmelCase: int = 4 , _lowerCAmelCase: int = 32 , _lowerCAmelCase: int = 32 , _lowerCAmelCase: float = 0.1_82_15 , ) -> Tuple: '''simple docstring''' super().__init__() # pass init params to Encoder UpperCAmelCase_ =Encoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , down_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , double_z=_lowerCAmelCase , ) # pass init params to Decoder UpperCAmelCase_ =Decoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , up_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , act_fn=_lowerCAmelCase , ) UpperCAmelCase_ =nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCAmelCase_ =nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) UpperCAmelCase_ =False UpperCAmelCase_ =False # only relevant if vae tiling is enabled UpperCAmelCase_ =self.config.sample_size UpperCAmelCase_ =( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCAmelCase_ =int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCAmelCase_ =0.25 def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[int]=False ) -> Tuple: '''simple docstring''' if isinstance(_lowerCAmelCase , (Encoder, Decoder) ): UpperCAmelCase_ =value def lowerCAmelCase__ ( self: int , _lowerCAmelCase: bool = True ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =use_tiling def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' self.enable_tiling(_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =True def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCAmelCase__ ( self: Any ) -> Dict[str, AttentionProcessor]: '''simple docstring''' UpperCAmelCase_ ={} def fn_recursive_add_processors(_lowerCAmelCase: str , _lowerCAmelCase: torch.nn.Module , _lowerCAmelCase: Dict[str, AttentionProcessor] ): if hasattr(_lowerCAmelCase , "set_processor" ): UpperCAmelCase_ =module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' , _lowerCAmelCase , _lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return processors def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =len(self.attn_processors.keys() ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(_lowerCAmelCase )} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(_lowerCAmelCase: str , _lowerCAmelCase: torch.nn.Module , _lowerCAmelCase: Tuple ): if hasattr(_lowerCAmelCase , "set_processor" ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): module.set_processor(_lowerCAmelCase ) else: module.set_processor(processor.pop(F'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' , _lowerCAmelCase , _lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict ) -> int: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: bool = True ) -> AutoencoderKLOutput: '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_lowerCAmelCase , return_dict=_lowerCAmelCase ) if self.use_slicing and x.shape[0] > 1: UpperCAmelCase_ =[self.encoder(_lowerCAmelCase ) for x_slice in x.split(1 )] UpperCAmelCase_ =torch.cat(_lowerCAmelCase ) else: UpperCAmelCase_ =self.encoder(_lowerCAmelCase ) UpperCAmelCase_ =self.quant_conv(_lowerCAmelCase ) UpperCAmelCase_ =DiagonalGaussianDistribution(_lowerCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_lowerCAmelCase , return_dict=_lowerCAmelCase ) UpperCAmelCase_ =self.post_quant_conv(_lowerCAmelCase ) UpperCAmelCase_ =self.decoder(_lowerCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase ) @apply_forward_hook def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if self.use_slicing and z.shape[0] > 1: UpperCAmelCase_ =[self._decode(_lowerCAmelCase ).sample for z_slice in z.split(1 )] UpperCAmelCase_ =torch.cat(_lowerCAmelCase ) else: UpperCAmelCase_ =self._decode(_lowerCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_lowerCAmelCase ) def lowerCAmelCase__ ( self: str , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =min(a.shape[2] , b.shape[2] , _lowerCAmelCase ) for y in range(_lowerCAmelCase ): UpperCAmelCase_ =a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =min(a.shape[3] , b.shape[3] , _lowerCAmelCase ) for x in range(_lowerCAmelCase ): UpperCAmelCase_ =a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCAmelCase__ ( self: str , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: bool = True ) -> AutoencoderKLOutput: '''simple docstring''' UpperCAmelCase_ =int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ =int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCAmelCase_ =self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCAmelCase_ =[] for i in range(0 , x.shape[2] , _lowerCAmelCase ): UpperCAmelCase_ =[] for j in range(0 , x.shape[3] , _lowerCAmelCase ): UpperCAmelCase_ =x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCAmelCase_ =self.encoder(_lowerCAmelCase ) UpperCAmelCase_ =self.quant_conv(_lowerCAmelCase ) row.append(_lowerCAmelCase ) rows.append(_lowerCAmelCase ) UpperCAmelCase_ =[] for i, row in enumerate(_lowerCAmelCase ): UpperCAmelCase_ =[] for j, tile in enumerate(_lowerCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ =self.blend_v(rows[i - 1][j] , _lowerCAmelCase , _lowerCAmelCase ) if j > 0: UpperCAmelCase_ =self.blend_h(row[j - 1] , _lowerCAmelCase , _lowerCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_lowerCAmelCase , dim=3 ) ) UpperCAmelCase_ =torch.cat(_lowerCAmelCase , dim=2 ) UpperCAmelCase_ =DiagonalGaussianDistribution(_lowerCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_lowerCAmelCase ) def lowerCAmelCase__ ( self: str , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' UpperCAmelCase_ =int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ =int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCAmelCase_ =self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCAmelCase_ =[] for i in range(0 , z.shape[2] , _lowerCAmelCase ): UpperCAmelCase_ =[] for j in range(0 , z.shape[3] , _lowerCAmelCase ): UpperCAmelCase_ =z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCAmelCase_ =self.post_quant_conv(_lowerCAmelCase ) UpperCAmelCase_ =self.decoder(_lowerCAmelCase ) row.append(_lowerCAmelCase ) rows.append(_lowerCAmelCase ) UpperCAmelCase_ =[] for i, row in enumerate(_lowerCAmelCase ): UpperCAmelCase_ =[] for j, tile in enumerate(_lowerCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ =self.blend_v(rows[i - 1][j] , _lowerCAmelCase , _lowerCAmelCase ) if j > 0: UpperCAmelCase_ =self.blend_h(row[j - 1] , _lowerCAmelCase , _lowerCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_lowerCAmelCase , dim=3 ) ) UpperCAmelCase_ =torch.cat(_lowerCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: bool = False , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[torch.Generator] = None , ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' UpperCAmelCase_ =sample UpperCAmelCase_ =self.encode(_lowerCAmelCase ).latent_dist if sample_posterior: UpperCAmelCase_ =posterior.sample(generator=_lowerCAmelCase ) else: UpperCAmelCase_ =posterior.mode() UpperCAmelCase_ =self.decode(_lowerCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase )
54
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed UpperCamelCase__ = logging.getLogger(__name__) def UpperCamelCase__ ( UpperCAmelCase_=2 , UpperCAmelCase_=3 , UpperCAmelCase_=16 , UpperCAmelCase_ = 10 , UpperCAmelCase_ = 2 ) -> str: '''simple docstring''' def get_dataset(UpperCAmelCase_ ): _lowercase : List[str] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(UpperCAmelCase_ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) _lowercase : int = get_dataset(UpperCAmelCase_ ) _lowercase : Optional[Any] = get_dataset(UpperCAmelCase_ ) _lowercase : Tuple = DataLoader(UpperCAmelCase_ , shuffle=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , num_workers=4 ) _lowercase : List[Any] = DataLoader(UpperCAmelCase_ , shuffle=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , num_workers=4 ) return (train_dataloader, valid_dataloader) def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ) -> str: '''simple docstring''' _lowercase : List[Any] = [] for epoch in range(UpperCAmelCase_ ): # Train quickly model.train() for batch in dataloader: _lowercase , _lowercase : int = batch _lowercase : List[str] = model(UpperCAmelCase_ ) _lowercase : Union[str, Any] = torch.nn.functional.mse_loss(UpperCAmelCase_ , UpperCAmelCase_ ) accelerator.backward(UpperCAmelCase_ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class UpperCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ): """simple docstring""" super().__init__() _lowercase : str = nn.Parameter(torch.randn(1 ) ) _lowercase : Dict = nn.Parameter(torch.randn(1 ) ) def lowerCAmelCase_ ( self : List[Any] , UpperCamelCase : Optional[Any] ): """simple docstring""" return x * self.a + self.b class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowercase : int = DummyModel() _lowercase : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase , _lowercase : int = dummy_dataloaders() _lowercase : Optional[Any] = ProjectConfiguration(total_limit=1 , project_dir=UpperCamelCase , automatic_checkpoint_naming=UpperCamelCase ) # Train baseline _lowercase : Optional[Any] = Accelerator(project_config=UpperCamelCase ) _lowercase , _lowercase , _lowercase , _lowercase : List[str] = accelerator.prepare( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowercase : Any = DummyModel() _lowercase : str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase , _lowercase : Any = dummy_dataloaders() # Train baseline _lowercase : Any = Accelerator() _lowercase , _lowercase , _lowercase , _lowercase : Tuple = accelerator.prepare( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Save initial _lowercase : List[Any] = os.path.join(UpperCamelCase , '''initial''' ) accelerator.save_state(UpperCamelCase ) ((_lowercase) , (_lowercase)) : List[Any] = model.a.item(), model.b.item() _lowercase : Dict = optimizer.state_dict() _lowercase : str = train(3 , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ((_lowercase) , (_lowercase)) : Optional[Any] = model.a.item(), model.b.item() _lowercase : int = optimizer.state_dict() # Train partially set_seed(42 ) _lowercase : int = DummyModel() _lowercase : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase , _lowercase : Optional[Any] = dummy_dataloaders() _lowercase : Dict = Accelerator() _lowercase , _lowercase , _lowercase , _lowercase : Dict = accelerator.prepare( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) accelerator.load_state(UpperCamelCase ) ((_lowercase) , (_lowercase)) : str = model.a.item(), model.b.item() _lowercase : List[Any] = optimizer.state_dict() self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) _lowercase : Dict = train(2 , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Save everything _lowercase : Dict = os.path.join(UpperCamelCase , '''checkpoint''' ) accelerator.save_state(UpperCamelCase ) # Load everything back in and make sure all states work accelerator.load_state(UpperCamelCase ) test_rands += train(1 , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ((_lowercase) , (_lowercase)) : Optional[int] = model.a.item(), model.b.item() _lowercase : Optional[int] = optimizer.state_dict() self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowercase : Any = DummyModel() _lowercase : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase , _lowercase : Any = dummy_dataloaders() _lowercase : Any = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase ) # Train baseline _lowercase : Union[str, Any] = Accelerator(project_dir=UpperCamelCase , project_config=UpperCamelCase ) _lowercase , _lowercase , _lowercase , _lowercase : Tuple = accelerator.prepare( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Save initial accelerator.save_state() ((_lowercase) , (_lowercase)) : Optional[int] = model.a.item(), model.b.item() _lowercase : int = optimizer.state_dict() _lowercase : str = train(3 , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ((_lowercase) , (_lowercase)) : List[str] = model.a.item(), model.b.item() _lowercase : Union[str, Any] = optimizer.state_dict() # Train partially set_seed(42 ) _lowercase : Dict = DummyModel() _lowercase : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase , _lowercase : int = dummy_dataloaders() _lowercase : str = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=UpperCamelCase ) _lowercase : Tuple = Accelerator(project_dir=UpperCamelCase , project_config=UpperCamelCase ) _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = accelerator.prepare( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) accelerator.load_state(os.path.join(UpperCamelCase , '''checkpoints''' , '''checkpoint_0''' ) ) ((_lowercase) , (_lowercase)) : Union[str, Any] = model.a.item(), model.b.item() _lowercase : Any = optimizer.state_dict() self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) _lowercase : Optional[int] = train(2 , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCamelCase , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ((_lowercase) , (_lowercase)) : Optional[int] = model.a.item(), model.b.item() _lowercase : int = optimizer.state_dict() self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self : int ): """simple docstring""" _lowercase : Optional[int] = torch.tensor([1, 2, 3] ) _lowercase : Any = torch.tensor([2, 3, 4] ) _lowercase : Dict = DummyModel() _lowercase : Tuple = torch.optim.Adam(net.parameters() ) _lowercase : Tuple = Accelerator() with self.assertRaises(UpperCamelCase ) as ve: accelerator.register_for_checkpointing(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) _lowercase : int = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowercase : Optional[Any] = DummyModel() _lowercase : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase : Optional[int] = torch.optim.lr_scheduler.StepLR(UpperCamelCase , step_size=1 , gamma=0.99 ) _lowercase , _lowercase : int = dummy_dataloaders() _lowercase : int = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase ) # Train baseline _lowercase : int = Accelerator(project_dir=UpperCamelCase , project_config=UpperCamelCase ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = accelerator.prepare( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Save initial accelerator.save_state() _lowercase : Optional[Any] = scheduler.state_dict() train(3 , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) self.assertNotEqual(UpperCamelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCamelCase , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(UpperCamelCase , scheduler.state_dict() ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowercase : List[str] = DummyModel() _lowercase : List[str] = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase , total_limit=2 ) # Train baseline _lowercase : List[Any] = Accelerator(project_dir=UpperCamelCase , project_config=UpperCamelCase ) _lowercase : Union[str, Any] = accelerator.prepare(UpperCamelCase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(UpperCamelCase , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _lowercase : str = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase__ = '/tmp/accelerate/state_checkpointing' UpperCamelCase__ = DummyModel() UpperCamelCase__ = torch.optim.Adam(params=model.parameters(), lr=1e-3) UpperCamelCase__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) UpperCamelCase__ , UpperCamelCase__ = dummy_dataloaders() UpperCamelCase__ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline UpperCamelCase__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) UpperCamelCase__ , UpperCamelCase__ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: UpperCamelCase__ = group['params'][0].device break assert param_device.type == accelerator.device.type UpperCamelCase__ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: UpperCamelCase__ = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: UpperCamelCase__ = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
322
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _a (lowercase_ ): '''simple docstring''' UpperCAmelCase__: List[str] = (DEISMultistepScheduler,) UpperCAmelCase__: Tuple = (('''num_inference_steps''', 25),) def __A ( self , **A__ ): A__ : Dict = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**lowerCamelCase_ ) return config def __A ( self , A__=0 , **A__ ): A__ : Any = dict(self.forward_default_kwargs ) A__ : List[str] = kwargs.pop("""num_inference_steps""" , lowerCamelCase_ ) A__ : Dict = self.dummy_sample A__ : Any = 0.1 * sample A__ : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: A__ : int = self.get_scheduler_config(**lowerCamelCase_ ) A__ : Optional[int] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals A__ : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) A__ : Optional[int] = scheduler_class.from_pretrained(lowerCamelCase_ ) new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals A__ : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] A__ : str = sample, sample for t in range(lowerCamelCase_ , time_step + scheduler.config.solver_order + 1 ): A__ : Tuple = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample A__ : Optional[int] = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __A ( self ): pass def __A ( self , A__=0 , **A__ ): A__ : Tuple = dict(self.forward_default_kwargs ) A__ : Optional[Any] = kwargs.pop("""num_inference_steps""" , lowerCamelCase_ ) A__ : Optional[int] = self.dummy_sample A__ : Optional[Any] = 0.1 * sample A__ : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: A__ : str = self.get_scheduler_config() A__ : Any = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) A__ : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) A__ : List[str] = scheduler_class.from_pretrained(lowerCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) A__ : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] A__ : List[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample A__ : Tuple = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __A ( self , A__=None , **A__ ): if scheduler is None: A__ : Optional[int] = self.scheduler_classes[0] A__ : Optional[Any] = self.get_scheduler_config(**lowerCamelCase_ ) A__ : int = scheduler_class(**lowerCamelCase_ ) A__ : List[Any] = self.scheduler_classes[0] A__ : str = self.get_scheduler_config(**lowerCamelCase_ ) A__ : str = scheduler_class(**lowerCamelCase_ ) A__ : Tuple = 10 A__ : Any = self.dummy_model() A__ : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): A__ : Dict = model(lowerCamelCase_ , lowerCamelCase_ ) A__ : Optional[int] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample return sample def __A ( self ): A__ : Tuple = dict(self.forward_default_kwargs ) A__ : int = kwargs.pop("""num_inference_steps""" , lowerCamelCase_ ) for scheduler_class in self.scheduler_classes: A__ : str = self.get_scheduler_config() A__ : Optional[Any] = scheduler_class(**lowerCamelCase_ ) A__ : Optional[int] = self.dummy_sample A__ : Any = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase_ , """set_timesteps""" ): scheduler.set_timesteps(lowerCamelCase_ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase_ , """set_timesteps""" ): A__ : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A__ : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] A__ : int = dummy_past_residuals[: scheduler.config.solver_order] A__ : int = scheduler.timesteps[5] A__ : int = scheduler.timesteps[6] A__ : List[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample A__ : Tuple = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __A ( self ): A__ : str = DEISMultistepScheduler(**self.get_scheduler_config() ) A__ : Union[str, Any] = self.full_loop(scheduler=lowerCamelCase_ ) A__ : List[Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 A__ : List[str] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A__ : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) A__ : Dict = UniPCMultistepScheduler.from_config(scheduler.config ) A__ : int = DEISMultistepScheduler.from_config(scheduler.config ) A__ : Optional[Any] = self.full_loop(scheduler=lowerCamelCase_ ) A__ : List[str] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def __A ( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def __A ( self ): self.check_over_configs(thresholding=lowerCamelCase_ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase_ , prediction_type=lowerCamelCase_ , sample_max_value=lowerCamelCase_ , algorithm_type="""deis""" , solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , ) def __A ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def __A ( self ): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , algorithm_type=lowerCamelCase_ , ) A__ : Dict = self.full_loop( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , algorithm_type=lowerCamelCase_ , ) assert not torch.isnan(lowerCamelCase_ ).any(), "Samples have nan numbers" def __A ( self ): self.check_over_configs(lower_order_final=lowerCamelCase_ ) self.check_over_configs(lower_order_final=lowerCamelCase_ ) def __A ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowerCamelCase_ , time_step=0 ) def __A ( self ): A__ : List[Any] = self.full_loop() A__ : List[Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def __A ( self ): A__ : List[str] = self.full_loop(prediction_type="""v_prediction""" ) A__ : Any = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3 def __A ( self ): A__ : Optional[int] = self.scheduler_classes[0] A__ : List[str] = self.get_scheduler_config(thresholding=lowerCamelCase_ , dynamic_thresholding_ratio=0 ) A__ : Dict = scheduler_class(**lowerCamelCase_ ) A__ : List[str] = 10 A__ : Optional[int] = self.dummy_model() A__ : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): A__ : List[Any] = model(lowerCamelCase_ , lowerCamelCase_ ) A__ : List[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample assert sample.dtype == torch.floataa
712
def UpperCamelCase (lowercase_: int , lowercase_: int ) -> int: while second != 0: A__ : int = first & second first ^= second A__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Optional[Any] = int(input('Enter the first number: ').strip()) A_ : List[str] = int(input('Enter the second number: ').strip()) print(f'''{add(first, second) = }''')
64
0
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="" UpperCAmelCase =( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) UpperCAmelCase =None # compression type in fsspec. ex: "gzip" UpperCAmelCase =None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , snake_case = "" , snake_case = None , snake_case = None , **snake_case) -> int: '''simple docstring''' super().__init__(self , **snake_case) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode _UpperCAmelCase : Union[str, Any] =fsspec.open( snake_case , mode='rb' , protocol=snake_case , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {}), # To avoid issues if it was already passed. } , **(target_options or {}) , ) _UpperCAmelCase : List[str] =os.path.basename(self.file.path.split('::')[0]) _UpperCAmelCase : Tuple =( self.compressed_name[: self.compressed_name.rindex('.')] if '.' in self.compressed_name else self.compressed_name ) _UpperCAmelCase : List[str] =None @classmethod def lowerCAmelCase ( cls , snake_case) -> Optional[int]: '''simple docstring''' # compressed file paths are always relative to the archive root return super()._strip_protocol(snake_case).lstrip('/') def lowerCAmelCase ( self) -> int: '''simple docstring''' if self.dir_cache is None: _UpperCAmelCase : Union[str, Any] ={**self.file.fs.info(self.file.path), 'name': self.uncompressed_name} _UpperCAmelCase : int ={f['name']: f} def lowerCAmelCase ( self , snake_case) -> Union[str, Any]: '''simple docstring''' return self.file.open().read() def lowerCAmelCase ( self , snake_case , snake_case = "rb" , snake_case=None , snake_case=True , snake_case=None , **snake_case , ) -> Any: '''simple docstring''' _UpperCAmelCase : Tuple =self._strip_protocol(snake_case) if mode != "rb": raise ValueError(f"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'") return self.file.open() class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="bz2" UpperCAmelCase ="bz2" UpperCAmelCase =".bz2" class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="gzip" UpperCAmelCase ="gzip" UpperCAmelCase =".gz" class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="lz4" UpperCAmelCase ="lz4" UpperCAmelCase =".lz4" class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="xz" UpperCAmelCase ="xz" UpperCAmelCase =".xz" class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="zstd" UpperCAmelCase ="zstd" UpperCAmelCase =".zst" def __init__( self , snake_case , snake_case = "rb" , snake_case = None , snake_case = None , snake_case = DEFAULT_BLOCK_SIZE , **snake_case , ) -> Tuple: '''simple docstring''' super().__init__( fo=snake_case , mode=snake_case , target_protocol=snake_case , target_options=snake_case , block_size=snake_case , **snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 _UpperCAmelCase : Any =self.file.__enter__ class __magic_name__ : def __init__( self , snake_case) -> Any: '''simple docstring''' _UpperCAmelCase : Any =file_ def __enter__( self) -> Optional[int]: '''simple docstring''' self._file.__enter__() return self def __exit__( self , *snake_case , **snake_case) -> Any: '''simple docstring''' self._file.__exit__(*snake_case , **snake_case) def __iter__( self) -> Dict: '''simple docstring''' return iter(self._file) def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' return next(self._file) def __getattr__( self , snake_case) -> List[Any]: '''simple docstring''' return getattr(self._file , snake_case) def fixed_enter(*snake_case , **snake_case): return WrappedFile(_enter(*snake_case , **snake_case)) _UpperCAmelCase : Any =fixed_enter
446
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __magic_name__ ( lowerCAmelCase ): def __init__( self , *snake_case , **snake_case) -> Dict: '''simple docstring''' super().__init__(*snake_case , **snake_case) requires_backends(self , 'vision') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def lowerCAmelCase ( self , snake_case=None) -> str: '''simple docstring''' _UpperCAmelCase : Any ={} if top_k is not None: _UpperCAmelCase : Optional[int] =top_k return {}, {}, postprocess_params def __call__( self , snake_case , **snake_case) -> List[str]: '''simple docstring''' return super().__call__(snake_case , **snake_case) def lowerCAmelCase ( self , snake_case) -> List[str]: '''simple docstring''' _UpperCAmelCase : int =load_image(snake_case) _UpperCAmelCase : Tuple =self.image_processor(images=snake_case , return_tensors=self.framework) return model_inputs def lowerCAmelCase ( self , snake_case) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] =self.model(**snake_case) return model_outputs def lowerCAmelCase ( self , snake_case , snake_case=5) -> Any: '''simple docstring''' if top_k > self.model.config.num_labels: _UpperCAmelCase : Optional[Any] =self.model.config.num_labels if self.framework == "pt": _UpperCAmelCase : List[Any] =model_outputs.logits.softmax(-1)[0] _UpperCAmelCase , _UpperCAmelCase : Optional[Any] =probs.topk(snake_case) elif self.framework == "tf": _UpperCAmelCase : int =stable_softmax(model_outputs.logits , axis=-1)[0] _UpperCAmelCase : List[Any] =tf.math.top_k(snake_case , k=snake_case) _UpperCAmelCase , _UpperCAmelCase : List[str] =topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}") _UpperCAmelCase : int =scores.tolist() _UpperCAmelCase : Tuple =ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(snake_case , snake_case)]
446
1
'''simple docstring''' # Lint as: python3 import itertools import os import re UpperCAmelCase_ = re.compile(R'([A-Z]+)([A-Z][a-z])') UpperCAmelCase_ = re.compile(R'([a-z\d])([A-Z])') UpperCAmelCase_ = re.compile(R'(?<!_)_(?!_)') UpperCAmelCase_ = re.compile(R'(_{2,})') UpperCAmelCase_ = R'^\w+(\.\w+)*$' UpperCAmelCase_ = R'<>:/\|?*' def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] ) -> List[Any]: UpperCamelCase__ : int = _uppercase_uppercase_re.sub(r'''\1_\2''' , __UpperCAmelCase ) UpperCamelCase__ : Tuple = _lowercase_uppercase_re.sub(r'''\1_\2''' , __UpperCAmelCase ) return name.lower() def lowerCAmelCase_ ( __UpperCAmelCase: Any ) -> Any: UpperCamelCase__ : Optional[int] = _single_underscore_re.split(__UpperCAmelCase ) UpperCamelCase__ : Dict = [_multiple_underscores_re.split(__UpperCAmelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__UpperCAmelCase ) if n != '''''' ) def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> Union[str, Any]: if os.path.basename(__UpperCAmelCase ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(__UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: Dict , __UpperCAmelCase: Optional[int] ) -> Optional[Any]: if os.path.basename(__UpperCAmelCase ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , __UpperCAmelCase ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(__UpperCAmelCase )}-{split}" def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: Dict , __UpperCAmelCase: List[Any] , __UpperCAmelCase: List[Any]=None ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = filename_prefix_for_split(__UpperCAmelCase , __UpperCAmelCase ) if filetype_suffix: prefix += f".{filetype_suffix}" UpperCamelCase__ : Dict = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) return f"{filepath}*" def lowerCAmelCase_ ( __UpperCAmelCase: List[str] , __UpperCAmelCase: List[str] , __UpperCAmelCase: int , __UpperCAmelCase: str=None , __UpperCAmelCase: Tuple=None ) -> Tuple: UpperCamelCase__ : str = filename_prefix_for_split(__UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : Tuple = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if shard_lengths: UpperCamelCase__ : Optional[Any] = len(__UpperCAmelCase ) UpperCamelCase__ : List[str] = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(__UpperCAmelCase )] if filetype_suffix: UpperCamelCase__ : Union[str, Any] = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: UpperCamelCase__ : Tuple = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
706
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__, __magic_name__ = 13, __magic_name__ = 64, __magic_name__ = 2, __magic_name__ = 3, __magic_name__ = 3, __magic_name__ = True, __magic_name__ = True, __magic_name__ = 128, __magic_name__=[16, 32, 64, 128], __magic_name__ = 7, __magic_name__ = 4, __magic_name__ = 37, __magic_name__ = "gelu", __magic_name__ = 0.1, __magic_name__ = 0.1, __magic_name__ = 10, __magic_name__ = 0.02, __magic_name__ = 2, __magic_name__ = 1, __magic_name__ = 128, __magic_name__ = [2, 2, 2, 2], __magic_name__ = 2, __magic_name__ = 2, ) -> List[str]: """simple docstring""" UpperCamelCase__ : List[str] = parent UpperCamelCase__ : Optional[int] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[int] = patch_size UpperCamelCase__ : Any = num_channels UpperCamelCase__ : int = is_training UpperCamelCase__ : str = use_labels UpperCamelCase__ : Optional[Any] = hidden_size UpperCamelCase__ : Tuple = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : Any = intermediate_size UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Dict = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : Tuple = type_sequence_label_size UpperCamelCase__ : Optional[Any] = initializer_range UpperCamelCase__ : Optional[int] = encoder_stride UpperCamelCase__ : Any = num_attention_outputs UpperCamelCase__ : Dict = embed_dim UpperCamelCase__ : str = embed_dim + 1 UpperCamelCase__ : int = resolution UpperCamelCase__ : List[str] = depths UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : Tuple = dim UpperCamelCase__ : Optional[int] = mlp_expansion_ratio def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : Dict = None if self.use_labels: UpperCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase__ : int = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__magic_name__, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, resolution=self.resolution, depths=self.depths, hidden_sizes=self.hidden_sizes, dim=self.dim, mlp_expansion_ratio=self.mlp_expansion_ratio, ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Any: """simple docstring""" UpperCamelCase__ : Dict = TFEfficientFormerModel(config=__magic_name__ ) UpperCamelCase__ : str = model(__magic_name__, training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Optional[int] = self.type_sequence_label_size UpperCamelCase__ : Dict = TFEfficientFormerForImageClassification(__magic_name__ ) UpperCamelCase__ : Any = model(__magic_name__, labels=__magic_name__, training=__magic_name__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ : Optional[Any] = 1 UpperCamelCase__ : List[str] = TFEfficientFormerForImageClassification(__magic_name__ ) UpperCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ : Union[str, Any] = model(__magic_name__, labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Dict = config_and_inputs UpperCamelCase__ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowercase__ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a : int = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) a : Union[str, Any] = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) a : Any = False a : Tuple = False a : Any = False a : int = False a : Tuple = False def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : Optional[Any] = TFEfficientFormerModelTester(self ) UpperCamelCase__ : int = ConfigTester( self, config_class=__magic_name__, has_text_modality=__magic_name__, hidden_size=37 ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''' ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''' ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(__magic_name__ ) UpperCamelCase__ : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : List[str] = [*signature.parameters.keys()] UpperCamelCase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __magic_name__ ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" def check_hidden_states_output(__magic_name__, __magic_name__, __magic_name__ ): UpperCamelCase__ : Union[str, Any] = model_class(__magic_name__ ) UpperCamelCase__ : str = model(**self._prepare_for_class(__magic_name__, __magic_name__ ), training=__magic_name__ ) UpperCamelCase__ : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ : Optional[int] = getattr( self.model_tester, '''expected_num_hidden_layers''', self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__magic_name__ ), __magic_name__ ) if hasattr(self.model_tester, '''encoder_seq_length''' ): UpperCamelCase__ : Dict = self.model_tester.encoder_seq_length if hasattr(self.model_tester, '''chunk_length''' ) and self.model_tester.chunk_length > 1: UpperCamelCase__ : Tuple = seq_length * self.model_tester.chunk_length else: UpperCamelCase__ : Optional[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: UpperCamelCase__ : List[str] = outputs.decoder_hidden_states self.asseretIsInstance(__magic_name__, (list, tuple) ) self.assertEqual(len(__magic_name__ ), __magic_name__ ) UpperCamelCase__ : str = getattr(self.model_tester, '''seq_length''', __magic_name__ ) UpperCamelCase__ : Optional[Any] = getattr(self.model_tester, '''decoder_seq_length''', __magic_name__ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ), [decoder_seq_length, self.model_tester.hidden_size], ) UpperCamelCase__ ,UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = True check_hidden_states_output(__magic_name__, __magic_name__, __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : List[Any] = True check_hidden_states_output(__magic_name__, __magic_name__, __magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__=False ) -> Any: """simple docstring""" UpperCamelCase__ : List[str] = super()._prepare_for_class(__magic_name__, __magic_name__, return_labels=__magic_name__ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__magic_name__ ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @slow def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Dict = TFEfficientFormerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Dict = True UpperCamelCase__ : Optional[Any] = getattr(self.model_tester, '''seq_length''', __magic_name__ ) UpperCamelCase__ : Any = getattr(self.model_tester, '''encoder_seq_length''', __magic_name__ ) UpperCamelCase__ : Tuple = getattr(self.model_tester, '''key_length''', __magic_name__ ) UpperCamelCase__ : Union[str, Any] = getattr(self.model_tester, '''chunk_length''', __magic_name__ ) if chunk_length is not None and hasattr(self.model_tester, '''num_hashes''' ): UpperCamelCase__ : Dict = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: UpperCamelCase__ : Dict = True UpperCamelCase__ : Optional[int] = False UpperCamelCase__ : Any = True UpperCamelCase__ : str = model_class(__magic_name__ ) UpperCamelCase__ : Optional[int] = model(**self._prepare_for_class(__magic_name__, __magic_name__ ), training=__magic_name__ ) UpperCamelCase__ : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__magic_name__ ), self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase__ : Optional[int] = True UpperCamelCase__ : int = model_class(__magic_name__ ) UpperCamelCase__ : str = model(**self._prepare_for_class(__magic_name__, __magic_name__ ), training=__magic_name__ ) UpperCamelCase__ : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__magic_name__ ), self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction UpperCamelCase__ ,UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model UpperCamelCase__ : str = model_class(__magic_name__ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes UpperCamelCase__ : Tuple = { key: tf.keras.Input(shape=val.shape[1:], dtype=val.dtype, name=__magic_name__ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } UpperCamelCase__ : str = model(__magic_name__ ) self.assertTrue(outputs_dict is not None ) def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase__ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''' ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''' ) UpperCamelCase__ : Dict = self.default_image_processor UpperCamelCase__ : List[str] = prepare_img() UpperCamelCase__ : str = image_processor(images=__magic_name__, return_tensors='''tf''' ) # forward pass UpperCamelCase__ : Dict = model(**__magic_name__, training=__magic_name__ ) # verify the logits UpperCamelCase__ : Tuple = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, __magic_name__ ) UpperCamelCase__ : List[str] = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3], __magic_name__, atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : str = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''' ) UpperCamelCase__ : List[str] = self.default_image_processor UpperCamelCase__ : Union[str, Any] = prepare_img() UpperCamelCase__ : int = image_processor(images=__magic_name__, return_tensors='''tf''' ) # forward pass UpperCamelCase__ : Tuple = model(**__magic_name__, training=__magic_name__ ) # verify the logits UpperCamelCase__ : Tuple = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, __magic_name__ ) UpperCamelCase__ : Optional[int] = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3], __magic_name__, atol=1E-4 ) )
369
0
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCamelCase : int = logging.getLogger() def SCREAMING_SNAKE_CASE__ ( ) -> int: snake_case : Tuple = argparse.ArgumentParser() parser.add_argument("""-f""" ) snake_case : str = parser.parse_args() return args.f def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: snake_case : List[Any] = {} snake_case : List[str] = os.path.join(snake_case__ ,"""all_results.json""" ) if os.path.exists(snake_case__ ): with open(snake_case__ ,"""r""" ) as f: snake_case : Any = json.load(snake_case__ ) else: raise ValueError(f"""can't find {path}""" ) return results def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: snake_case : Tuple = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() lowerCamelCase : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowercase (UpperCamelCase_ ): """simple docstring""" @classmethod def UpperCAmelCase ( cls ) -> Tuple: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU snake_case : Any = tempfile.mkdtemp() snake_case : Tuple = os.path.join(cls.tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) snake_case : List[Any] = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def UpperCAmelCase ( cls ) -> Union[str, Any]: shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : int = self.get_auto_remove_tmp_dir() snake_case : Optional[int] = f"""\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n """.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case : str = get_results(__SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def UpperCAmelCase ( self ) -> List[str]: snake_case : List[str] = self.get_auto_remove_tmp_dir() snake_case : Dict = f"""\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) snake_case : Any = get_results(__SCREAMING_SNAKE_CASE ) self.assertLess(result["""perplexity"""] , 1_0_0 ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : str = self.get_auto_remove_tmp_dir() snake_case : str = f"""\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n """.split() run_command(self._launch_args + testargs ) snake_case : List[Any] = get_results(__SCREAMING_SNAKE_CASE ) self.assertLess(result["""perplexity"""] , 4_2 ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def UpperCAmelCase ( self ) -> int: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case : Optional[int] = 7 if get_gpu_count() > 1 else 2 snake_case : Any = self.get_auto_remove_tmp_dir() snake_case : Dict = f"""\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n """.split() run_command(self._launch_args + testargs ) snake_case : Optional[int] = get_results(__SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertLess(result["""train_loss"""] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def UpperCAmelCase ( self ) -> Dict: snake_case : Optional[int] = self.get_auto_remove_tmp_dir() snake_case : Optional[int] = f"""\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n """.split() run_command(self._launch_args + testargs ) snake_case : Optional[int] = get_results(__SCREAMING_SNAKE_CASE ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] , 2_8 ) self.assertGreaterEqual(result["""eval_exact"""] , 2_8 ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def UpperCAmelCase ( self ) -> Any: snake_case : Any = self.get_auto_remove_tmp_dir() snake_case : List[str] = f"""\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n """.split() run_command(self._launch_args + testargs ) snake_case : Optional[int] = get_results(__SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Union[str, Any] = self.get_auto_remove_tmp_dir() snake_case : List[str] = f"""\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n """.split() run_command(self._launch_args + testargs ) snake_case : Optional[Any] = get_results(__SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_rouge1"""] , 1_0 ) self.assertGreaterEqual(result["""eval_rouge2"""] , 2 ) self.assertGreaterEqual(result["""eval_rougeL"""] , 7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def UpperCAmelCase ( self ) -> int: snake_case : Union[str, Any] = self.get_auto_remove_tmp_dir() snake_case : Tuple = f"""\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n """.split() run_command(self._launch_args + testargs ) snake_case : Optional[Any] = get_results(__SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_bleu"""] , 3_0 ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """translation_no_trainer""" ) ) ) @slow def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Optional[int] = logging.StreamHandler(sys.stdout ) logger.addHandler(__SCREAMING_SNAKE_CASE ) snake_case : int = self.get_auto_remove_tmp_dir() snake_case : str = f"""\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n """.split() run_command(self._launch_args + testargs ) snake_case : str = get_results(__SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.10 ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Optional[Any] = self.get_auto_remove_tmp_dir() snake_case : Optional[int] = f"""\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n """.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case : List[Any] = get_results(__SCREAMING_SNAKE_CASE ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """image_classification_no_trainer""" ) ) )
587
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase_ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : List[str] = KandinskyVaaPipeline UpperCAmelCase_ : List[str] = [ """image_embeds""", """negative_image_embeds""", ] UpperCAmelCase_ : Optional[Any] = ["""image_embeds""", """negative_image_embeds"""] UpperCAmelCase_ : Union[str, Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCAmelCase_ : Tuple = False @property def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: return 32 @property def SCREAMING_SNAKE_CASE_ ( self ) ->str: return 32 @property def SCREAMING_SNAKE_CASE_ ( self ) ->Any: return self.time_input_dim @property def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE_ ( self ) ->int: return 100 @property def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: torch.manual_seed(0 ) lowerCAmelCase = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowerCAmelCase = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: torch.manual_seed(0 ) lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: lowerCAmelCase = self.dummy_unet lowerCAmelCase = self.dummy_movq lowerCAmelCase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__SCREAMING_SNAKE_CASE , ) lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) ->Union[str, Any]: lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: lowerCAmelCase = '''cpu''' lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = output.images lowerCAmelCase = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) , return_dict=__SCREAMING_SNAKE_CASE , )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) lowerCAmelCase = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = '''red cat, 4k photo''' lowerCAmelCase = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowerCAmelCase , lowerCAmelCase = pipe_prior( __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowerCAmelCase = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowerCAmelCase = pipeline( image_embeds=__SCREAMING_SNAKE_CASE , negative_image_embeds=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=100 , output_type='''np''' , ) lowerCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
312
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class _A ( UpperCamelCase ): '''simple docstring''' _lowercase = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) _lowercase = Features({'text': Value('string' )} ) _lowercase = Features({'summary': Value('string' )} ) _lowercase = 'text' _lowercase = 'summary' @property def __lowerCAmelCase ( self : Optional[int] )-> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
717
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _A : '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : str , lowerCamelCase : int=13 , lowerCamelCase : Union[str, Any]=7 , lowerCamelCase : Optional[int]=True , lowerCamelCase : Any=True , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Any=True , lowerCamelCase : Tuple=99 , lowerCamelCase : Optional[Any]=32 , lowerCamelCase : Tuple=2 , lowerCamelCase : Dict=4 , lowerCamelCase : Tuple=37 , lowerCamelCase : Dict="gelu" , lowerCamelCase : str=0.1 , lowerCamelCase : str=0.1 , lowerCamelCase : List[Any]=512 , lowerCamelCase : Union[str, Any]=16 , lowerCamelCase : Tuple=2 , lowerCamelCase : Union[str, Any]=0.02 , lowerCamelCase : Optional[Any]=3 , lowerCamelCase : Tuple=4 , lowerCamelCase : Union[str, Any]=None , )-> List[Any]: snake_case__ : str = parent snake_case__ : Optional[int] = 13 snake_case__ : List[str] = 7 snake_case__ : Tuple = True snake_case__ : List[str] = True snake_case__ : List[str] = True snake_case__ : Tuple = True snake_case__ : List[str] = 99 snake_case__ : str = 384 snake_case__ : int = 2 snake_case__ : int = 4 snake_case__ : str = 37 snake_case__ : Optional[Any] = """gelu""" snake_case__ : Dict = 0.1 snake_case__ : str = 0.1 snake_case__ : str = 512 snake_case__ : List[Any] = 16 snake_case__ : List[Any] = 2 snake_case__ : str = 0.02 snake_case__ : int = 3 snake_case__ : int = 4 snake_case__ : Optional[int] = 128 snake_case__ : Tuple = 2 snake_case__ : str = 9 snake_case__ : Optional[int] = 1 snake_case__ : str = None def __lowerCAmelCase ( self : List[str] )-> Union[str, Any]: snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : int = None if self.use_input_mask: snake_case__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_token_type_ids: snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Union[str, Any] = None snake_case__ : Optional[Any] = None snake_case__ : Optional[int] = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Any = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : Union[str, Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] )-> Optional[int]: snake_case__ : str = TFConvBertModel(config=lowerCamelCase ) snake_case__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case__ : Optional[Any] = [input_ids, input_mask] snake_case__ : Optional[Any] = model(lowerCamelCase ) snake_case__ : Any = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : Optional[int] )-> Tuple: snake_case__ : str = TFConvBertForMaskedLM(config=lowerCamelCase ) snake_case__ : Union[str, Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } snake_case__ : Dict = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] )-> Optional[int]: snake_case__ : Optional[int] = self.num_labels snake_case__ : List[str] = TFConvBertForSequenceClassification(config=lowerCamelCase ) snake_case__ : Tuple = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } snake_case__ : Any = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : Dict , lowerCamelCase : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple )-> Dict: snake_case__ : Optional[Any] = self.num_choices snake_case__ : Tuple = TFConvBertForMultipleChoice(config=lowerCamelCase ) snake_case__ : Optional[Any] = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Dict = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ : str = tf.tile(tf.expand_dims(lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Any = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } snake_case__ : Any = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] )-> Optional[int]: snake_case__ : str = self.num_labels snake_case__ : Dict = TFConvBertForTokenClassification(config=lowerCamelCase ) snake_case__ : List[str] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } snake_case__ : Tuple = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : List[str] )-> Optional[Any]: snake_case__ : int = TFConvBertForQuestionAnswering(config=lowerCamelCase ) snake_case__ : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } snake_case__ : Any = model(lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Any )-> Tuple: snake_case__ : Dict = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : List[Any] = config_and_inputs snake_case__ : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _A ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' _lowercase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowercase = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def __lowerCAmelCase ( self : str )-> Optional[Any]: snake_case__ : Optional[Any] = TFConvBertModelTester(self ) snake_case__ : Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self : int )-> Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self : int )-> Optional[Any]: snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __lowerCAmelCase ( self : List[str] )-> Any: snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase ) def __lowerCAmelCase ( self : Optional[Any] )-> Tuple: snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase ) def __lowerCAmelCase ( self : Optional[int] )-> Union[str, Any]: snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) def __lowerCAmelCase ( self : List[Any] )-> int: snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def __lowerCAmelCase ( self : Union[str, Any] )-> List[str]: snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) @slow def __lowerCAmelCase ( self : Optional[Any] )-> List[str]: snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[str] = True snake_case__ : List[Any] = True if hasattr(lowerCamelCase , """use_cache""" ): snake_case__ : List[Any] = True snake_case__ : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) snake_case__ : List[Any] = getattr(self.model_tester , """key_length""" , lowerCamelCase ) for model_class in self.all_model_classes: snake_case__ : Optional[Any] = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) snake_case__ : str = model_class(lowerCamelCase ) snake_case__ : Any = len(model(lowerCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase , saved_model=lowerCamelCase ) snake_case__ : Any = os.path.join(lowerCamelCase , """saved_model""" , """1""" ) snake_case__ : Dict = tf.keras.models.load_model(lowerCamelCase ) snake_case__ : Any = model(lowerCamelCase ) if self.is_encoder_decoder: snake_case__ : Optional[int] = outputs["""encoder_hidden_states"""] snake_case__ : str = outputs["""encoder_attentions"""] else: snake_case__ : int = outputs["""hidden_states"""] snake_case__ : List[Any] = outputs["""attentions"""] self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) snake_case__ : Any = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __lowerCAmelCase ( self : Any )-> List[Any]: snake_case__ : Dict = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(lowerCamelCase ) def __lowerCAmelCase ( self : List[Any] )-> int: snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = True snake_case__ : int = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) snake_case__ : Optional[Any] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) snake_case__ : Any = getattr(self.model_tester , """key_length""" , lowerCamelCase ) snake_case__ : Any = getattr(self.model_tester , """key_length""" , lowerCamelCase ) def check_decoder_attentions_output(lowerCamelCase : List[Any] ): snake_case__ : Tuple = len(lowerCamelCase ) self.assertEqual(out_len % 2 , 0 ) snake_case__ : str = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCamelCase : List[Any] ): snake_case__ : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: snake_case__ : Dict = True snake_case__ : Any = False snake_case__ : List[Any] = model_class(lowerCamelCase ) snake_case__ : int = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) snake_case__ : Any = len(lowerCamelCase ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) if self.is_encoder_decoder: snake_case__ : List[str] = model_class(lowerCamelCase ) snake_case__ : Dict = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_decoder_attentions_output(lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case__ : Tuple = True snake_case__ : Any = model_class(lowerCamelCase ) snake_case__ : str = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) # Check attention is always last and order is fine snake_case__ : List[Any] = True snake_case__ : List[Any] = True snake_case__ : str = model_class(lowerCamelCase ) snake_case__ : Optional[Any] = model(self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , lowerCamelCase ) check_encoder_attentions_output(lowerCamelCase ) @require_tf class _A ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : str )-> str: snake_case__ : List[Any] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) snake_case__ : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case__ : Optional[Any] = model(lowerCamelCase )[0] snake_case__ : List[str] = [1, 6, 768] self.assertEqual(output.shape , lowerCamelCase ) snake_case__ : int = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase , atol=1e-4 )
172
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowercase_ = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } lowercase_ = logging.WARNING def __lowerCAmelCase ( ): lowercase__ = os.getenv("DATASETS_VERBOSITY" , _SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option DATASETS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def __lowerCAmelCase ( ): return __name__.split("." )[0] def __lowerCAmelCase ( ): return logging.getLogger(_get_library_name() ) def __lowerCAmelCase ( ): # Apply our default configuration to the library root logger. lowercase__ = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def __lowerCAmelCase ( ): lowercase__ = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = None ): if name is None: lowercase__ = _get_library_name() return logging.getLogger(_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( ): return _get_library_root_logger().getEffectiveLevel() def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): _get_library_root_logger().setLevel(_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( ): return set_verbosity(_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( ): return set_verbosity(_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( ): return set_verbosity(_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( ): return set_verbosity(_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( ): lowercase__ = False def __lowerCAmelCase ( ): lowercase__ = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _snake_case : def __init__( self : Optional[Any], *__lowercase : List[Any], **__lowercase : Union[str, Any] ): # pylint: disable=unused-argument lowercase__ = args[0] if args else None def __iter__( self : int ): return iter(self._iterator ) def __getattr__( self : Union[str, Any], __lowercase : Optional[int] ): def empty_fn(*__lowercase : Union[str, Any], **__lowercase : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : List[Any] ): return self def __exit__( self : Optional[int], __lowercase : List[str], __lowercase : int, __lowercase : Optional[Any] ): return lowercase_ = True class _snake_case : def __call__( self : Tuple, *__lowercase : Optional[Any], __lowercase : int=False, **__lowercase : int ): if _tqdm_active and not disable: return tqdm_lib.tqdm(*__UpperCAmelCase, **__UpperCAmelCase ) else: return EmptyTqdm(*__UpperCAmelCase, **__UpperCAmelCase ) def A__ ( self : Optional[Any], *__lowercase : int, **__lowercase : Dict ): lowercase__ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__UpperCAmelCase, **__UpperCAmelCase ) def A__ ( self : Optional[int] ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowercase_ = _tqdm_cls() def __lowerCAmelCase ( ): global _tqdm_active return bool(_tqdm_active ) def __lowerCAmelCase ( ): global _tqdm_active lowercase__ = True def __lowerCAmelCase ( ): global _tqdm_active lowercase__ = False
413
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case_ = logging.get_logger(__name__) snake_case_ = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class a__ ( _lowercase, _lowercase ): __magic_name__ : List[Any] = "resnet" __magic_name__ : Optional[int] = ["basic", "bottleneck"] def __init__(self : Optional[Any], __UpperCAmelCase : Optional[Any]=3, __UpperCAmelCase : Tuple=64, __UpperCAmelCase : str=[256, 512, 1024, 2048], __UpperCAmelCase : Optional[Any]=[3, 4, 6, 3], __UpperCAmelCase : List[str]="bottleneck", __UpperCAmelCase : Dict="relu", __UpperCAmelCase : Any=False, __UpperCAmelCase : List[Any]=None, __UpperCAmelCase : List[str]=None, **__UpperCAmelCase : int, ) -> Any: """simple docstring""" super().__init__(**__UpperCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : Optional[int] = embedding_size SCREAMING_SNAKE_CASE : Tuple = hidden_sizes SCREAMING_SNAKE_CASE : Dict = depths SCREAMING_SNAKE_CASE : List[str] = layer_type SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = downsample_in_first_stage SCREAMING_SNAKE_CASE : str = ['''stem'''] + [F'''stage{idx}''' for idx in range(1, len(__UpperCAmelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase, out_indices=__UpperCAmelCase, stage_names=self.stage_names ) class a__ ( _lowercase ): __magic_name__ : Optional[int] = version.parse("1.11" ) @property def lowercase__ (self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase__ (self : int ) -> float: """simple docstring""" return 1e-3
507
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowercase__ : '''simple docstring''' _UpperCAmelCase = 42 _UpperCAmelCase = None _UpperCAmelCase = None def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Node(1 ) _UpperCAmelCase = Node(2 ) _UpperCAmelCase = Node(3 ) _UpperCAmelCase = Node(4 ) _UpperCAmelCase = Node(5 ) return tree def UpperCAmelCase ( A : Node | None ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCAmelCase ( A : Node | None ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCAmelCase ( A : Node | None ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCAmelCase ( A : Node | None ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCAmelCase ( A : Node | None ): '''simple docstring''' _UpperCAmelCase = [] if root is None: return output _UpperCAmelCase = deque([root] ) while process_queue: _UpperCAmelCase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCAmelCase ( A : Node | None , A : int ): '''simple docstring''' _UpperCAmelCase = [] def populate_output(A : Node | None , A : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(A , A ) return output def UpperCAmelCase ( A : Node | None , A : int ): '''simple docstring''' _UpperCAmelCase = [] def populate_output(A : Node | None , A : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(A , A ) return output def UpperCAmelCase ( A : Node | None ): '''simple docstring''' if root is None: return [] _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = height(A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(A , A ) ) _UpperCAmelCase = 1 else: output.append(get_nodes_from_right_to_left(A , A ) ) _UpperCAmelCase = 0 return output def UpperCAmelCase ( ): # Main function for testing. '''simple docstring''' _UpperCAmelCase = make_tree() print(f'In-order Traversal: {inorder(A )}' ) print(f'Pre-order Traversal: {preorder(A )}' ) print(f'Post-order Traversal: {postorder(A )}' , '\n' ) print(f'Height of Tree: {height(A )}' , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(A ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(A ) + 1 ): print(f'Level {level}:' , get_nodes_from_left_to_right(A , level=A ) ) print('\nZigZag order Traversal: ' ) print(zigzag(A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
24
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase = logging.get_logger(__name__) lowercase = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[List[float]] = None , A : Optional[int] = None , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) else: return _interleave_iterable_datasets( A , A , A , info=A , split=A , stopping_strategy=A ) def UpperCAmelCase ( A : List[DatasetType] , A : Optional[DatasetInfo] = None , A : Optional[NamedSplit] = None , A : int = 0 , ): '''simple docstring''' if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(A ): if not isinstance(A , (Dataset, IterableDataset) ): if isinstance(A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(A )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(A ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A ).__name__}.' ) if i == 0: _UpperCAmelCase , _UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(A , A ) else (IterableDataset, Dataset) ) elif not isinstance(A , A ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(A , info=A , split=A , axis=A ) else: return _concatenate_iterable_datasets(A , info=A , split=A , axis=A )
24
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __magic_name__ = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
254
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase__ : str = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def __lowercase ( _a , _a ): inspect_dataset(_a , _a ) snake_case_ : Optional[int] = path + '''.py''' assert script_name in os.listdir(_a ) assert "__pycache__" not in os.listdir(_a ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def __lowercase ( _a , _a ): inspect_metric(_a , _a ) snake_case_ : List[Any] = path + '''.py''' assert script_name in os.listdir(_a ) assert "__pycache__" not in os.listdir(_a ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def __lowercase ( _a , _a , _a ): snake_case_ : List[str] = get_dataset_config_info(_a , config_name=_a ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def __lowercase ( _a , _a , _a ): with pytest.raises(_a ): get_dataset_config_info(_a , config_name=_a ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def __lowercase ( _a , _a ): snake_case_ : str = get_dataset_config_names(_a ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def __lowercase ( _a , _a , _a ): snake_case_ : Any = get_dataset_infos(_a ) assert list(infos.keys() ) == expected_configs snake_case_ : Tuple = expected_configs[0] assert expected_config in infos snake_case_ : List[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def __lowercase ( _a , _a , _a ): snake_case_ : Any = get_dataset_infos(_a ) assert expected_config in infos snake_case_ : List[str] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def __lowercase ( _a , _a , _a ): with pytest.raises(_a ): get_dataset_split_names(_a , config_name=_a )
123
0
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowercase_: Union[str, Any] = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None): """simple docstring""" if rng is None: snake_case__ : Optional[int] = random.Random() snake_case__ : Optional[int] = 1 for dim in shape: total_dims *= dim snake_case__ : List[Any] = [] for _ in range(UpperCAmelCase_): values.append(rng.randint(0 , vocab_size - 1)) snake_case__ : List[Any] = np.array(UpperCAmelCase_ , dtype=jnp.intaa).reshape(UpperCAmelCase_) return output def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_=None): """simple docstring""" snake_case__ : Union[str, Any] = ids_tensor(UpperCAmelCase_ , vocab_size=2 , rng=UpperCAmelCase_) # make sure that at least one token is attended to for each batch snake_case__ : int = 1 return attn_mask @require_flax class lowercase__ : """simple docstring""" __UpperCamelCase : Optional[int] = None __UpperCamelCase : str = () def lowercase ( self : Optional[Any] ): snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 snake_case__ : List[Any] = 2 snake_case__ : Dict = inputs["""input_ids"""].shape[-1] // 2 snake_case__ : Optional[int] = inputs["""input_ids"""][:max_batch_size, :sequence_length] snake_case__ : str = jnp.ones_like(__a ) snake_case__ : Optional[Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens snake_case__ : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` snake_case__ : Optional[int] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def lowercase ( self : Union[str, Any] ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[Any] = self._get_input_ids_and_config() snake_case__ : Optional[int] = False snake_case__ : Optional[int] = max_length snake_case__ : Tuple = 0 for model_class in self.all_generative_model_classes: snake_case__ : Any = model_class(__a ) snake_case__ : str = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case__ : Optional[int] = getattr(__a , __a ) snake_case__ : str = pt_model_class(__a ).eval() snake_case__ : Tuple = load_flax_weights_in_pytorch_model(__a , flax_model.params ) snake_case__ : List[Any] = flax_model.generate(__a ).sequences snake_case__ : List[Any] = pt_model.generate(torch.tensor(__a , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: snake_case__ : Union[str, Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def lowercase ( self : List[str] ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[Any] = self._get_input_ids_and_config() snake_case__ : List[Any] = False snake_case__ : List[Any] = max_length for model_class in self.all_generative_model_classes: snake_case__ : List[str] = model_class(__a ) snake_case__ : int = model.generate(__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) snake_case__ : Any = jit(model.generate ) snake_case__ : List[str] = jit_generate(__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase ( self : Optional[Any] ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = self._get_input_ids_and_config() snake_case__ : Optional[Any] = True snake_case__ : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: snake_case__ : Tuple = model_class(__a ) snake_case__ : Optional[int] = model.generate(__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) snake_case__ : Union[str, Any] = jit(model.generate ) snake_case__ : List[Any] = jit_generate(__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase ( self : Any ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = self._get_input_ids_and_config() snake_case__ : Union[str, Any] = False snake_case__ : Any = max_length snake_case__ : Optional[int] = 2 for model_class in self.all_generative_model_classes: snake_case__ : Optional[Any] = model_class(__a ) snake_case__ : Any = model.generate(__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) snake_case__ : Union[str, Any] = jit(model.generate ) snake_case__ : Dict = jit_generate(__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase ( self : Optional[Any] ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = self._get_input_ids_and_config() snake_case__ : Optional[Any] = False snake_case__ : List[str] = max_length snake_case__ : Optional[int] = 2 snake_case__ : Tuple = 2 for model_class in self.all_generative_model_classes: snake_case__ : Any = model_class(__a ) snake_case__ : int = model.generate(__a ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def lowercase ( self : List[str] ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = self._get_input_ids_and_config() snake_case__ : Dict = True snake_case__ : Optional[int] = max_length snake_case__ : Dict = 0.8 snake_case__ : int = 1_0 snake_case__ : List[str] = 0.3 snake_case__ : Optional[Any] = 1 snake_case__ : List[Any] = 8 snake_case__ : Any = 9 for model_class in self.all_generative_model_classes: snake_case__ : int = model_class(__a ) snake_case__ : List[str] = model.generate(__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) snake_case__ : str = jit(model.generate ) snake_case__ : Tuple = jit_generate(__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase ( self : List[str] ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = self._get_input_ids_and_config() snake_case__ : int = max_length snake_case__ : Any = 1 snake_case__ : int = 8 snake_case__ : Union[str, Any] = 9 for model_class in self.all_generative_model_classes: snake_case__ : List[Any] = model_class(__a ) snake_case__ : str = model.generate(__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) snake_case__ : List[str] = jit(model.generate ) snake_case__ : List[Any] = jit_generate(__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase ( self : List[Any] ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = self._get_input_ids_and_config() snake_case__ : List[str] = max_length snake_case__ : Optional[Any] = 2 snake_case__ : int = 1 snake_case__ : Optional[Any] = 8 snake_case__ : int = 9 for model_class in self.all_generative_model_classes: snake_case__ : List[str] = model_class(__a ) snake_case__ : List[Any] = model.generate(__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) snake_case__ : Optional[int] = jit(model.generate ) snake_case__ : Optional[Any] = jit_generate(__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase ( self : Any ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left snake_case__ : str = attention_mask.at[(0, 0)].set(0 ) snake_case__ : Dict = False snake_case__ : Optional[int] = max_length for model_class in self.all_generative_model_classes: snake_case__ : int = model_class(__a ) snake_case__ : List[Any] = model.generate(__a , attention_mask=__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) snake_case__ : int = jit(model.generate ) snake_case__ : List[str] = jit_generate(__a , attention_mask=__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase ( self : int ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = self._get_input_ids_and_config() # pad attention mask on the left snake_case__ : Dict = attention_mask.at[(0, 0)].set(0 ) snake_case__ : Union[str, Any] = True snake_case__ : List[Any] = max_length for model_class in self.all_generative_model_classes: snake_case__ : List[str] = model_class(__a ) snake_case__ : List[str] = model.generate(__a , attention_mask=__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) snake_case__ : List[Any] = jit(model.generate ) snake_case__ : int = jit_generate(__a , attention_mask=__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase ( self : List[str] ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = self._get_input_ids_and_config() # pad attention mask on the left snake_case__ : Optional[int] = attention_mask.at[(0, 0)].set(0 ) snake_case__ : Dict = 2 snake_case__ : List[Any] = max_length for model_class in self.all_generative_model_classes: snake_case__ : Union[str, Any] = model_class(__a ) snake_case__ : List[str] = model.generate(__a , attention_mask=__a ).sequences self.assertEqual(generation_outputs.shape[-1] , __a ) snake_case__ : List[str] = jit(model.generate ) snake_case__ : int = jit_generate(__a , attention_mask=__a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class lowercase__ (unittest.TestCase ): """simple docstring""" def lowercase ( self : List[Any] ): snake_case__ : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) snake_case__ : int = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) snake_case__ : str = """Hello world""" snake_case__ : int = tokenizer(__a , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__a , """do_samples""" ): model.generate(__a , do_samples=__a ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__a , """foo""" ): snake_case__ : List[str] = {"""foo""": """bar"""} model.generate(__a , **__a )
127
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowercase_: Union[str, Any] = '<<<<<<< This should probably be modified because it mentions: ' lowercase_: Optional[Any] = '=======\n>>>>>>>\n' lowercase_: List[Any] = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] lowercase_: str = [ # (pattern, replacement) # Order is important here for some replacements (r'tfds\.core', r'datasets'), (r'tf\.io\.gfile\.GFile', r'open'), (r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'), (r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'), (r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'), (r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('), (r'tfds\.features\.FeaturesDict\(', r'dict('), (r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (r'tfds\.', r'datasets.'), (r'dl_manager\.manual_dir', r'self.config.data_dir'), (r'self\.builder_config', r'self.config'), ] def _lowercase ( UpperCAmelCase_): """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory) class lowercase__ (__snake_case ): """simple docstring""" @staticmethod def lowercase ( __a : ArgumentParser ): snake_case__ : Optional[Any] = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=__a , required=__a , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=__a , required=__a , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=__a ) def __init__( self : Tuple , __a : str , __a : str , *__a : Tuple ): snake_case__ : Union[str, Any] = get_logger("""datasets-cli/converting""" ) snake_case__ : Dict = tfds_path snake_case__ : Tuple = datasets_directory def lowercase ( self : Any ): if os.path.isdir(self._tfds_path ): snake_case__ : Union[str, Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): snake_case__ : Any = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) snake_case__ : str = os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) snake_case__ : Union[str, Any] = [] snake_case__ : Union[str, Any] = [] snake_case__ : Dict = {} if os.path.isdir(self._tfds_path ): snake_case__ : List[str] = os.listdir(__a ) else: snake_case__ : Any = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) snake_case__ : List[Any] = os.path.join(__a , __a ) snake_case__ : str = os.path.join(__a , __a ) if not os.path.isfile(__a ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(__a , encoding="""utf-8""" ) as f: snake_case__ : Dict = f.readlines() snake_case__ : int = [] snake_case__ : List[Any] = False snake_case__ : Union[str, Any] = False snake_case__ : Optional[int] = [] for line in lines: snake_case__ : Optional[int] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: snake_case__ : List[str] = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here snake_case__ : Dict = """""" continue elif "from absl import logging" in out_line: snake_case__ : str = """from datasets import logging\n""" elif "getLogger" in out_line: snake_case__ : str = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): snake_case__ : List[str] = True snake_case__ : List[str] = list(filter(lambda __a : e in out_line , __a ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__a ) + """\n""" ) out_lines.append(__a ) out_lines.append(__a ) continue else: for pattern, replacement in TO_CONVERT: snake_case__ : Tuple = re.sub(__a , __a , __a ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: snake_case__ : int = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , __a ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) snake_case__ : Tuple = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: snake_case__ : List[str] = True out_lines.append(__a ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset snake_case__ : str = f_name.replace(""".py""" , """""" ) snake_case__ : List[Any] = os.path.join(__a , __a ) snake_case__ : Dict = os.path.join(__a , __a ) os.makedirs(__a , exist_ok=__a ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__a ) if needs_manual_update: with_manual_update.append(__a ) with open(__a , """w""" , encoding="""utf-8""" ) as f: f.writelines(__a ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: snake_case__ : Any = os.path.basename(__a ) snake_case__ : List[Any] = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(__a , __a ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
127
1
"""simple docstring""" def _snake_case ( snake_case__ : list[list[int | float]] ): A = len(snake_case__ ) A = len(matrix[0] ) A = min(snake_case__ , snake_case__ ) for row in range(snake_case__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , snake_case__ ): A = matrix[col][row] / matrix[row][row] for i in range(snake_case__ , snake_case__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows A = True for i in range(row + 1 , snake_case__ ): if matrix[i][row] != 0: A , A = matrix[i], matrix[row] A = False break if reduce: rank -= 1 for i in range(snake_case__ ): A = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
91
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _lowercase = get_logger(__name__) def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : str=0 ): os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): A = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: A = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' A = os.path.join(snake_case__ , snake_case__ ) if accelerator.process_index == 0: logger.info(F'Saving model to {output_model_file}' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: A = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Saving model to {output_model_file}' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: A = os.path.join(snake_case__ , F'{MODEL_NAME}_{model_index}' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(F'Saving model to {ckpt_dir}' ) A = {'model': state_dict} dist_cp.save_state_dict( state_dict=snake_case__ , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(F'Model saved to {ckpt_dir}' ) def _snake_case ( snake_case__ : int , snake_case__ : List[str] , snake_case__ : str , snake_case__ : str , snake_case__ : Any=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(snake_case__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return A = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Loading model from {input_model_file}' ) A = torch.load(snake_case__ ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: A = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Loading model from {input_model_file}' ) A = torch.load(snake_case__ ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: A = ( os.path.join(snake_case__ , F'{MODEL_NAME}_{model_index}' ) if F'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(F'Loading model from {ckpt_dir}' ) A = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=snake_case__ , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , planner=DefaultLoadPlanner() , ) A = state_dict['model'] logger.info(F'Model loaded from {ckpt_dir}' ) model.load_state_dict(snake_case__ ) def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Any=0 ): os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): A = FSDP.optim_state_dict(snake_case__ , snake_case__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: A = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Saving Optimizer state to {output_optimizer_file}' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'Optimizer state saved in {output_optimizer_file}' ) else: A = os.path.join(snake_case__ , F'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(F'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(F'Optimizer state saved in {ckpt_dir}' ) def _snake_case ( snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Optional[int]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: A = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: A = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Loading Optimizer state from {input_optimizer_file}' ) A = torch.load(snake_case__ ) logger.info(F'Optimizer state loaded from {input_optimizer_file}' ) else: A = ( os.path.join(snake_case__ , F'{OPTIMIZER_NAME}_{optimizer_index}' ) if F'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(F'Loading Optimizer from {ckpt_dir}' ) A = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , ) A = optim_state['optimizer'] logger.info(F'Optimizer loaded from {ckpt_dir}' ) A = FSDP.optim_state_dict_to_load(snake_case__ , snake_case__ , snake_case__ ) optimizer.load_state_dict(snake_case__ )
91
1
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowercase_ : List[str] = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') lowercase_ : str = get_tests_dir('''fixtures/vocab.json''') lowercase_ : Any = get_tests_dir('''fixtures''') class UpperCamelCase ( unittest.TestCase ): A__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = 0 def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(snake_case__ , snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaConfig() _SCREAMING_SNAKE_CASE : Optional[int] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) copyfile(snake_case__ , os.path.join(snake_case__ , "vocab.json" ) ) _SCREAMING_SNAKE_CASE : Tuple = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaFeatureExtractor() _SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) _SCREAMING_SNAKE_CASE : Any = WavaVecaProcessor(snake_case__ , snake_case__ ) # save in new folder processor.save_pretrained(snake_case__ ) # drop `processor_class` in tokenizer with open(os.path.join(snake_case__ , snake_case__ ) , "r" ) as f: _SCREAMING_SNAKE_CASE : Dict = json.load(snake_case__ ) config_dict.pop("processor_class" ) with open(os.path.join(snake_case__ , snake_case__ ) , "w" ) as f: f.write(json.dumps(snake_case__ ) ) _SCREAMING_SNAKE_CASE : Dict = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE : Tuple = WavaVecaFeatureExtractor() _SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) _SCREAMING_SNAKE_CASE : List[str] = WavaVecaProcessor(snake_case__ , snake_case__ ) # save in new folder processor.save_pretrained(snake_case__ ) # drop `processor_class` in feature extractor with open(os.path.join(snake_case__ , snake_case__ ) , "r" ) as f: _SCREAMING_SNAKE_CASE : Optional[Any] = json.load(snake_case__ ) config_dict.pop("processor_class" ) with open(os.path.join(snake_case__ , snake_case__ ) , "w" ) as f: f.write(json.dumps(snake_case__ ) ) _SCREAMING_SNAKE_CASE : List[Any] = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _SCREAMING_SNAKE_CASE : List[str] = WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(snake_case__ ) # copy relevant files copyfile(snake_case__ , os.path.join(snake_case__ , "vocab.json" ) ) # create emtpy sample processor with open(os.path.join(snake_case__ , snake_case__ ) , "w" ) as f: f.write("{}" ) _SCREAMING_SNAKE_CASE : Optional[int] = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" with self.assertRaises(snake_case__ ): _SCREAMING_SNAKE_CASE : Any = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): _SCREAMING_SNAKE_CASE : Tuple = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=snake_case__ ) _SCREAMING_SNAKE_CASE : Dict = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=snake_case__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) _SCREAMING_SNAKE_CASE : str = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version _SCREAMING_SNAKE_CASE : Optional[Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=snake_case__ , use_fast=snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" try: AutoConfig.register("custom" , snake_case__ ) AutoFeatureExtractor.register(snake_case__ , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoProcessor.register(snake_case__ , snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API _SCREAMING_SNAKE_CASE : List[str] = CustomFeatureExtractor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: _SCREAMING_SNAKE_CASE : Any = os.path.join(snake_case__ , "vocab.txt" ) with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) _SCREAMING_SNAKE_CASE : Any = CustomTokenizer(snake_case__ ) _SCREAMING_SNAKE_CASE : int = CustomProcessor(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(snake_case__ ) _SCREAMING_SNAKE_CASE : Any = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): A__ = False class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): A__ = False class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): A__ = """AutoFeatureExtractor""" A__ = """AutoTokenizer""" A__ = False try: AutoConfig.register("custom" , snake_case__ ) AutoFeatureExtractor.register(snake_case__ , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local classes. _SCREAMING_SNAKE_CASE : Optional[Any] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. _SCREAMING_SNAKE_CASE : List[Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=snake_case__ ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. _SCREAMING_SNAKE_CASE : int = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=snake_case__ ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast" ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor" ) @is_staging_test class UpperCamelCase ( unittest.TestCase ): A__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def __SCREAMING_SNAKE_CASE ( cls ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def __SCREAMING_SNAKE_CASE ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-processor" ) except HTTPError: pass def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaProcessor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case__ , "test-processor" ) , push_to_hub=snake_case__ , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE : List[str] = WavaVecaProcessor.from_pretrained(F'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case__ , getattr(new_processor.feature_extractor , snake_case__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaProcessor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case__ , "test-processor-org" ) , push_to_hub=snake_case__ , use_auth_token=self._token , organization="valid_org" , ) _SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case__ , getattr(new_processor.feature_extractor , snake_case__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() _SCREAMING_SNAKE_CASE : Optional[int] = CustomFeatureExtractor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: _SCREAMING_SNAKE_CASE : List[str] = os.path.join(snake_case__ , "vocab.txt" ) with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = CustomTokenizer(snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = CustomProcessor(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'''{USER}/test-dynamic-processor''' , token=self._token ) _SCREAMING_SNAKE_CASE : int = Repository(snake_case__ , clone_from=F'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(snake_case__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(snake_case__ , "tokenizer_config.json" ) ) as f: _SCREAMING_SNAKE_CASE : str = json.load(snake_case__ ) self.assertDictEqual( tokenizer_config["auto_map"] , { "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(snake_case__ , "custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case__ , "custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case__ , "custom_processing.py" ) ) ) repo.push_to_hub() _SCREAMING_SNAKE_CASE : List[str] = AutoProcessor.from_pretrained(F'''{USER}/test-dynamic-processor''' , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor" )
295
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _lowerCAmelCase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : Any=1_0_2_4 ) -> Optional[int]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = [], [] _SCREAMING_SNAKE_CASE : Union[str, Any] = list(zip(lowerCamelCase__, lowerCamelCase__ ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = sorted_examples[0] def is_too_big(lowerCamelCase__ : List[Any] ): return tok(lowerCamelCase__, return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): _SCREAMING_SNAKE_CASE : int = new_src + " " + src _SCREAMING_SNAKE_CASE : Union[str, Any] = new_tgt + " " + tgt if is_too_big(lowerCamelCase__ ) or is_too_big(lowerCamelCase__ ): # cant fit, finalize example finished_src.append(lowerCamelCase__ ) finished_tgt.append(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = src, tgt else: # can fit, keep adding _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(lowerCamelCase__ ) finished_tgt.append(lowerCamelCase__ ) return finished_src, finished_tgt def _lowerCAmelCase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Path, lowerCamelCase__ : Dict, lowerCamelCase__ : List[str] ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = Path(lowerCamelCase__ ) save_path.mkdir(exist_ok=lowerCamelCase__ ) for split in ["train"]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' _SCREAMING_SNAKE_CASE : Any = [x.rstrip() for x in Path(lowerCamelCase__ ).open().readlines()] _SCREAMING_SNAKE_CASE : int = [x.rstrip() for x in Path(lowerCamelCase__ ).open().readlines()] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = pack_examples(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) print(f'''packed {split} split from {len(lowerCamelCase__ )} examples -> {len(lowerCamelCase__ )}.''' ) Path(save_path / f'''{split}.source''' ).open("w" ).write("\n".join(lowerCamelCase__ ) ) Path(save_path / f'''{split}.target''' ).open("w" ).write("\n".join(lowerCamelCase__ ) ) for split in ["val", "test"]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' shutil.copyfile(lowerCamelCase__, save_path / f'''{split}.source''' ) shutil.copyfile(lowerCamelCase__, save_path / f'''{split}.target''' ) def _lowerCAmelCase ( ) -> int: _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--tok_name", type=lowerCamelCase__, help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len", type=lowerCamelCase__, default=1_2_8 ) parser.add_argument("--data_dir", type=lowerCamelCase__ ) parser.add_argument("--save_path", type=lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() _SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(lowerCamelCase__, Path(args.data_dir ), args.max_seq_len, args.save_path ) if __name__ == "__main__": packer_cli()
295
1
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _lowerCAmelCase = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 @dataclass class UpperCAmelCase__ : snake_case_ = 42 snake_case_ = 42 snake_case_ = None snake_case_ = None class UpperCAmelCase__ ( _lowercase ): snake_case_ = """train""" snake_case_ = """dev""" snake_case_ = """test""" class UpperCAmelCase__ : @staticmethod def snake_case_ ( A__ , A__ ): """simple docstring""" raise NotImplementedError @staticmethod def snake_case_ ( A__ ): """simple docstring""" raise NotImplementedError @staticmethod def snake_case_ ( A__ , A__ , A__ , A__ , A__=False , A__="[CLS]" , A__=1 , A__="[SEP]" , A__=False , A__=False , A__=0 , A__=0 , A__=-100 , A__=0 , A__=True , ): """simple docstring""" UpperCAmelCase_: Dict = {label: i for i, label in enumerate(A__ )} UpperCAmelCase_: List[Any] = [] for ex_index, example in enumerate(A__ ): if ex_index % 1_0000 == 0: logger.info("Writing example %d of %d" , A__ , len(A__ ) ) UpperCAmelCase_: List[str] = [] UpperCAmelCase_: Tuple = [] for word, label in zip(example.words , example.labels ): UpperCAmelCase_: List[Any] = tokenizer.tokenize(A__ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(A__ ) > 0: tokens.extend(A__ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(A__ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. UpperCAmelCase_: str = tokenizer.num_special_tokens_to_add() if len(A__ ) > max_seq_length - special_tokens_count: UpperCAmelCase_: str = tokens[: (max_seq_length - special_tokens_count)] UpperCAmelCase_: List[str] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] UpperCAmelCase_: int = [sequence_a_segment_id] * len(A__ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: UpperCAmelCase_: Tuple = [cls_token] + tokens UpperCAmelCase_: List[Any] = [pad_token_label_id] + label_ids UpperCAmelCase_: Dict = [cls_token_segment_id] + segment_ids UpperCAmelCase_: Dict = tokenizer.convert_tokens_to_ids(A__ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. UpperCAmelCase_: Optional[Any] = [1 if mask_padding_with_zero else 0] * len(A__ ) # Zero-pad up to the sequence length. UpperCAmelCase_: Union[str, Any] = max_seq_length - len(A__ ) if pad_on_left: UpperCAmelCase_: Tuple = ([pad_token] * padding_length) + input_ids UpperCAmelCase_: int = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask UpperCAmelCase_: Tuple = ([pad_token_segment_id] * padding_length) + segment_ids UpperCAmelCase_: List[str] = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(A__ ) == max_seq_length assert len(A__ ) == max_seq_length assert len(A__ ) == max_seq_length assert len(A__ ) == max_seq_length if ex_index < 5: logger.info("*** Example ***" ) logger.info("guid: %s" , example.guid ) logger.info("tokens: %s" , " ".join([str(A__ ) for x in tokens] ) ) logger.info("input_ids: %s" , " ".join([str(A__ ) for x in input_ids] ) ) logger.info("input_mask: %s" , " ".join([str(A__ ) for x in input_mask] ) ) logger.info("segment_ids: %s" , " ".join([str(A__ ) for x in segment_ids] ) ) logger.info("label_ids: %s" , " ".join([str(A__ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: UpperCAmelCase_: List[str] = None features.append( InputFeatures( input_ids=A__ , attention_mask=A__ , token_type_ids=A__ , label_ids=A__ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class UpperCAmelCase__ ( _lowercase ): snake_case_ = 42 snake_case_ = nn.CrossEntropyLoss().ignore_index def __init__( self , A__ , A__ , A__ , A__ , A__ , A__ = None , A__=False , A__ = Split.train , ): """simple docstring""" UpperCAmelCase_: List[str] = os.path.join( A__ , "cached_{}_{}_{}".format(mode.value , tokenizer.__class__.__name__ , str(A__ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_: str = cached_features_file + ".lock" with FileLock(A__ ): if os.path.exists(A__ ) and not overwrite_cache: logger.info(F"Loading features from cached file {cached_features_file}" ) UpperCAmelCase_: Optional[int] = torch.load(A__ ) else: logger.info(F"Creating features from dataset file at {data_dir}" ) UpperCAmelCase_: str = token_classification_task.read_examples_from_file(A__ , A__ ) # TODO clean up all this to leverage built-in features of tokenizers UpperCAmelCase_: str = token_classification_task.convert_examples_to_features( A__ , A__ , A__ , A__ , cls_token_at_end=bool(model_type in ["xlnet"] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A__ , pad_on_left=bool(tokenizer.padding_side == "left" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F"Saving features into cached file {cached_features_file}" ) torch.save(self.features , A__ ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , A__ ): """simple docstring""" return self.features[i] if is_tf_available(): import tensorflow as tf class UpperCAmelCase__ : snake_case_ = 42 snake_case_ = -100 def __init__( self , A__ , A__ , A__ , A__ , A__ , A__ = None , A__=False , A__ = Split.train , ): """simple docstring""" UpperCAmelCase_: List[Any] = token_classification_task.read_examples_from_file(A__ , A__ ) # TODO clean up all this to leverage built-in features of tokenizers UpperCAmelCase_: Optional[int] = token_classification_task.convert_examples_to_features( A__ , A__ , A__ , A__ , cls_token_at_end=bool(model_type in ["xlnet"] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A__ , pad_on_left=bool(tokenizer.padding_side == "left" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: UpperCAmelCase_: Tuple = tf.data.Dataset.from_generator( A__ , ({"input_ids": tf.intaa, "attention_mask": tf.intaa}, tf.intaa) , ( {"input_ids": tf.TensorShape([None] ), "attention_mask": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: UpperCAmelCase_: Optional[int] = tf.data.Dataset.from_generator( A__ , ({"input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa}, tf.intaa) , ( { "input_ids": tf.TensorShape([None] ), "attention_mask": tf.TensorShape([None] ), "token_type_ids": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Optional[int] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , A__ ): """simple docstring""" return self.features[i]
137
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case__ : int = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' _snake_case : Optional[Any] = ["""pixel_values"""] def __init__( self : Any , lowerCamelCase : bool = True , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : float = None , lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase : bool = True , lowerCamelCase : Union[int, float] = 1 / 255 , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = size if size is not None else {"shortest_edge": 384} __lowercase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __lowercase = do_resize __lowercase = size # Default value set here for backwards compatibility where the value in config is None __lowercase = crop_pct if crop_pct is not None else 224 / 256 __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self : Dict , lowerCamelCase : np.ndarray , lowerCamelCase : Dict[str, int] , lowerCamelCase : float , lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : List[Any] , ): '''simple docstring''' __lowercase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) __lowercase = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __lowercase = int(shortest_edge / crop_pct ) __lowercase = get_resize_output_image_size(lowerCamelCase , size=lowerCamelCase , default_to_square=lowerCamelCase ) __lowercase = resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCamelCase , size=(shortest_edge, shortest_edge) , data_format=lowerCamelCase , **lowerCamelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCamelCase , size=(shortest_edge, shortest_edge) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Dict , lowerCamelCase : np.ndarray , lowerCamelCase : Union[int, float] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : str , ): '''simple docstring''' return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Optional[Any] , lowerCamelCase : np.ndarray , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Union[float, List[float]] , lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase : Union[str, Any] , ): '''simple docstring''' return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : int , lowerCamelCase : ImageInput , lowerCamelCase : bool = None , lowerCamelCase : Dict[str, int] = None , lowerCamelCase : float = None , lowerCamelCase : PILImageResampling = None , lowerCamelCase : bool = None , lowerCamelCase : float = None , lowerCamelCase : bool = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[float, List[float]]] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase : Any , ): '''simple docstring''' __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = crop_pct if crop_pct is not None else self.crop_pct __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = size if size is not None else self.size __lowercase = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __lowercase = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowerCamelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=lowerCamelCase , size=lowerCamelCase , crop_pct=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) for image in images] __lowercase = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] __lowercase = {"pixel_values": images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
402
0
'''simple docstring''' import math def __lowercase (_lowercase ) -> bool: """simple docstring""" __lowerCamelCase : Union[str, Any] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowercase ) def __lowercase (_lowercase = 1 / 12_345 ) -> int: """simple docstring""" __lowerCamelCase : Tuple = 0 __lowerCamelCase : List[str] = 0 __lowerCamelCase : List[str] = 3 while True: __lowerCamelCase : Tuple = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowercase ): __lowerCamelCase : Optional[int] = int(_lowercase ) total_partitions += 1 if check_partition_perfect(_lowercase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowercase ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
483
'''simple docstring''' from __future__ import annotations from typing import Any def __lowercase (_lowercase ) -> int: """simple docstring""" if not postfix_notation: return 0 __lowerCamelCase : Optional[int] = {"""+""", """-""", """*""", """/"""} __lowerCamelCase : list[Any] = [] for token in postfix_notation: if token in operations: __lowerCamelCase , __lowerCamelCase : List[Any] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_lowercase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
483
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=lowercase__ ): """simple docstring""" __UpperCAmelCase : List[str] = ['''keras_nlp'''] def __init__( self : Union[str, Any] ,*_a : List[Any] ,**_a : int ): '''simple docstring''' requires_backends(self ,['keras_nlp'] )
229
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ (): """simple docstring""" raise RuntimeError('CUDA out of memory.' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any ): '''simple docstring''' super().__init__() _a : Union[str, Any] = nn.Linear(3 ,4 ) _a : Optional[int] = nn.BatchNormad(4 ) _a : List[Any] = nn.Linear(4 ,5 ) def __lowercase ( self : Dict ,_a : Any ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(_a ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : List[Any] ): '''simple docstring''' _a : int = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_a : Any ): nonlocal batch_sizes batch_sizes.append(_a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_a ,[128, 64, 32, 16, 8] ) def __lowercase ( self : Dict ): '''simple docstring''' _a : List[str] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_a : Tuple ,_a : str ): nonlocal batch_sizes batch_sizes.append(_a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _a, _a : int = mock_training_loop_function('hello' ) self.assertListEqual(_a ,[128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] ,[8, 'hello'] ) def __lowercase ( self : int ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_a : Optional[Any] ): pass with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' ,cm.exception.args[0] ) def __lowercase ( self : Dict ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_a : List[str] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' ,cm.exception.args[0] ) def __lowercase ( self : Dict ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_a : Optional[int] ,_a : Tuple ,_a : List[str] ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_a ) as cm: mock_training_loop_function(128 ,'hello' ,'world' ) self.assertIn('Batch size was passed into `f`' ,cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' ,cm.exception.args[0] ) def __lowercase ( self : str ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_a : int ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' ,cm.exception.args[0] ) @require_cuda def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Union[str, Any] = torch.cuda.memory_allocated() _a : Optional[int] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() ,_a ) _a : Dict = release_memory(_a ) self.assertEqual(torch.cuda.memory_allocated() ,_a )
229
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" _UpperCAmelCase : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase : str = "" else: _UpperCAmelCase : Any = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) _UpperCAmelCase : str = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Any = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] _UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : Any = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = dct.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Any = val def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = ViTMSNConfig() _UpperCAmelCase : int = 1_0_0_0 _UpperCAmelCase : str = "datasets/huggingface/label-files" _UpperCAmelCase : int = "imagenet-1k-id2label.json" _UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , "r" ) ) _UpperCAmelCase : Dict = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _UpperCAmelCase : List[Any] = idalabel _UpperCAmelCase : Any = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _UpperCAmelCase : Union[str, Any] = 3_8_4 _UpperCAmelCase : Any = 1_5_3_6 _UpperCAmelCase : Optional[Any] = 6 elif "l16" in checkpoint_url: _UpperCAmelCase : Optional[int] = 1_0_2_4 _UpperCAmelCase : Union[str, Any] = 4_0_9_6 _UpperCAmelCase : Any = 2_4 _UpperCAmelCase : Any = 1_6 _UpperCAmelCase : List[Any] = 0.1 elif "b4" in checkpoint_url: _UpperCAmelCase : Optional[Any] = 4 elif "l7" in checkpoint_url: _UpperCAmelCase : str = 7 _UpperCAmelCase : List[str] = 1_0_2_4 _UpperCAmelCase : int = 4_0_9_6 _UpperCAmelCase : List[str] = 2_4 _UpperCAmelCase : Any = 1_6 _UpperCAmelCase : Optional[int] = 0.1 _UpperCAmelCase : Any = ViTMSNModel(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="cpu" )["target_encoder"] _UpperCAmelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) remove_projection_head(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : str = create_rename_keys(_SCREAMING_SNAKE_CASE , base_model=_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , base_model=_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Any = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) _UpperCAmelCase : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) _UpperCAmelCase : int = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Tuple = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _UpperCAmelCase : Dict = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: _UpperCAmelCase : Union[str, Any] = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: _UpperCAmelCase : Dict = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: _UpperCAmelCase : Any = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: _UpperCAmelCase : List[Any] = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __lowerCamelCase = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
328
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" _UpperCAmelCase : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase : str = "" else: _UpperCAmelCase : Any = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) _UpperCAmelCase : str = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Any = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] _UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : Any = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = dct.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Any = val def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = ViTMSNConfig() _UpperCAmelCase : int = 1_0_0_0 _UpperCAmelCase : str = "datasets/huggingface/label-files" _UpperCAmelCase : int = "imagenet-1k-id2label.json" _UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , "r" ) ) _UpperCAmelCase : Dict = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _UpperCAmelCase : List[Any] = idalabel _UpperCAmelCase : Any = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _UpperCAmelCase : Union[str, Any] = 3_8_4 _UpperCAmelCase : Any = 1_5_3_6 _UpperCAmelCase : Optional[Any] = 6 elif "l16" in checkpoint_url: _UpperCAmelCase : Optional[int] = 1_0_2_4 _UpperCAmelCase : Union[str, Any] = 4_0_9_6 _UpperCAmelCase : Any = 2_4 _UpperCAmelCase : Any = 1_6 _UpperCAmelCase : List[Any] = 0.1 elif "b4" in checkpoint_url: _UpperCAmelCase : Optional[Any] = 4 elif "l7" in checkpoint_url: _UpperCAmelCase : str = 7 _UpperCAmelCase : List[str] = 1_0_2_4 _UpperCAmelCase : int = 4_0_9_6 _UpperCAmelCase : List[str] = 2_4 _UpperCAmelCase : Any = 1_6 _UpperCAmelCase : Optional[int] = 0.1 _UpperCAmelCase : Any = ViTMSNModel(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="cpu" )["target_encoder"] _UpperCAmelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) remove_projection_head(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : str = create_rename_keys(_SCREAMING_SNAKE_CASE , base_model=_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , base_model=_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Any = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) _UpperCAmelCase : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) _UpperCAmelCase : int = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Tuple = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _UpperCAmelCase : Dict = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: _UpperCAmelCase : Union[str, Any] = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: _UpperCAmelCase : Dict = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: _UpperCAmelCase : Any = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: _UpperCAmelCase : List[Any] = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __lowerCamelCase = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
328
1
'''simple docstring''' def _lowerCAmelCase ( __magic_name__ : float , __magic_name__ : float ) -> float: if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(__magic_name__ ) * abs(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
92
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str=13 , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[Any]=99 , UpperCAmelCase__ : Any=16 , UpperCAmelCase__ : Optional[Any]=36 , UpperCAmelCase__ : str=6 , UpperCAmelCase__ : Any=6 , UpperCAmelCase__ : Optional[int]=6 , UpperCAmelCase__ : Any=37 , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : List[str]=512 , UpperCAmelCase__ : List[str]=16 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : Tuple=None , ): '''simple docstring''' lowercase : str =parent lowercase : int =batch_size lowercase : Any =seq_length lowercase : int =is_training lowercase : str =use_input_mask lowercase : int =use_token_type_ids lowercase : Dict =use_labels lowercase : int =vocab_size lowercase : str =embedding_size lowercase : Union[str, Any] =hidden_size lowercase : Tuple =num_hidden_layers lowercase : Any =num_hidden_groups lowercase : Union[str, Any] =num_attention_heads lowercase : Any =intermediate_size lowercase : Tuple =hidden_act lowercase : Optional[int] =hidden_dropout_prob lowercase : Union[str, Any] =attention_probs_dropout_prob lowercase : List[Any] =max_position_embeddings lowercase : int =type_vocab_size lowercase : int =type_sequence_label_size lowercase : Any =initializer_range lowercase : List[Any] =num_labels lowercase : int =num_choices lowercase : Optional[int] =scope def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Optional[int] =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Dict =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : Tuple =None lowercase : Any =None lowercase : Dict =None if self.use_labels: lowercase : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : str =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Any =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str ): '''simple docstring''' lowercase : int =AlbertModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : int =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowercase : Dict =model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowercase : int =model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple ): '''simple docstring''' lowercase : Tuple =AlbertForPreTraining(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : int =model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , sentence_order_label=UpperCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int ): '''simple docstring''' lowercase : Tuple =AlbertForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : str =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ): '''simple docstring''' lowercase : List[str] =AlbertForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : List[str] =model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] ): '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Any =AlbertForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : Dict =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict ): '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : str =AlbertForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : int =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] ): '''simple docstring''' lowercase : Optional[int] =self.num_choices lowercase : List[Any] =AlbertForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : List[Any] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : int =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : int =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] =model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Union[str, Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Dict =config_and_inputs lowercase : Optional[Any] ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): lowerCamelCase_ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase_ = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase_ = True def lowerCamelCase_ ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int=False ): '''simple docstring''' lowercase : Optional[int] =super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) if return_labels: if model_class in get_values(UpperCAmelCase__ ): lowercase : Any =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase__ ) lowercase : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) return inputs_dict def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Tuple =AlbertModelTester(self ) lowercase : Optional[Any] =ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowercase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : str ): '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase : Tuple =type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) @slow def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : str =AlbertModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowercase : int =AlbertModel.from_pretrained('''albert-base-v2''' ) lowercase : Optional[int] =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase : Any =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase : Any =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] lowercase : int =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCAmelCase__ ) lowercase : Union[str, Any] =torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1E-4 ) )
92
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : Optional[int] , _A : Optional[int] ): _UpperCamelCase = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) _UpperCamelCase = VideoClassificationPipeline(model=_A , image_processor=_A , top_k=2 ) _UpperCamelCase = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def UpperCamelCase_ ( self : str , _A : Optional[Any] , _A : Optional[int] ): for example in examples: _UpperCamelCase = video_classifier(_A ) self.assertEqual( _A , [ {'''score''': ANY(_A ), '''label''': ANY(_A )}, {'''score''': ANY(_A ), '''label''': ANY(_A )}, ] , ) @require_torch def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' _UpperCamelCase = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) _UpperCamelCase = pipeline( '''video-classification''' , model=_A , feature_extractor=_A , frame_sampling_rate=4 ) _UpperCamelCase = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) _UpperCamelCase = video_classifier(_A , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}] , ) _UpperCamelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def UpperCamelCase_ ( self : List[Any] ): pass
705
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ ( enum.Enum ): UpperCAmelCase = 0 UpperCAmelCase = 1 UpperCAmelCase = 2 @add_end_docstrings(__lowercase ) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : Tuple , *_A : List[str] , **_A : str ): super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _UpperCamelCase = None if self.model.config.prefix is not None: _UpperCamelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _UpperCamelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._sanitize_parameters(prefix=_A , **self._forward_params ) _UpperCamelCase = {**self._preprocess_params, **preprocess_params} _UpperCamelCase = {**self._forward_params, **forward_params} def UpperCamelCase_ ( self : Dict , _A : Optional[int]=None , _A : Any=None , _A : Optional[int]=None , _A : List[str]=None , _A : List[Any]=None , _A : int=None , _A : Tuple=None , _A : Optional[Any]=None , **_A : Optional[int] , ): _UpperCamelCase = {} if prefix is not None: _UpperCamelCase = prefix if prefix: _UpperCamelCase = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) _UpperCamelCase = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) _UpperCamelCase = handle_long_generation preprocess_params.update(_A ) _UpperCamelCase = generate_kwargs _UpperCamelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _UpperCamelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _UpperCamelCase = ReturnType.TENSORS if return_type is not None: _UpperCamelCase = return_type if clean_up_tokenization_spaces is not None: _UpperCamelCase = clean_up_tokenization_spaces if stop_sequence is not None: _UpperCamelCase = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _UpperCamelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCamelCase_ ( self : int , *_A : Union[str, Any] , **_A : Union[str, Any] ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[str] , _A : str , **_A : Any ): return super().__call__(_A , **_A ) def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : int="" , _A : Optional[Any]=None , **_A : Optional[Any] ): _UpperCamelCase = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) _UpperCamelCase = prompt_text if handle_long_generation == "hole": _UpperCamelCase = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _UpperCamelCase = generate_kwargs['''max_new_tokens'''] else: _UpperCamelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _UpperCamelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _UpperCamelCase = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _UpperCamelCase = inputs['''attention_mask'''][:, -keep_length:] return inputs def UpperCamelCase_ ( self : Dict , _A : Optional[int] , **_A : str ): _UpperCamelCase = model_inputs['''input_ids'''] _UpperCamelCase = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = 1 else: _UpperCamelCase = input_ids.shape[0] _UpperCamelCase = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _UpperCamelCase = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _UpperCamelCase = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _UpperCamelCase = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _UpperCamelCase = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _UpperCamelCase = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) _UpperCamelCase = generated_sequence.shape[0] if self.framework == "pt": _UpperCamelCase = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _UpperCamelCase = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def UpperCamelCase_ ( self : List[str] , _A : Dict , _A : Optional[Any]=ReturnType.FULL_TEXT , _A : Dict=True ): _UpperCamelCase = model_outputs['''generated_sequence'''][0] _UpperCamelCase = model_outputs['''input_ids'''] _UpperCamelCase = model_outputs['''prompt_text'''] _UpperCamelCase = generated_sequence.numpy().tolist() _UpperCamelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _UpperCamelCase = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _UpperCamelCase = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _UpperCamelCase = 0 else: _UpperCamelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: _UpperCamelCase = prompt_text + text[prompt_length:] else: _UpperCamelCase = text[prompt_length:] _UpperCamelCase = {'''generated_text''': all_text} records.append(_A ) return records
71
0
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((__UpperCAmelCase) , (__UpperCAmelCase)) : Union[str, Any] = extended_euclid(lowercase_ , a % b ) __UpperCAmelCase : List[str] = a // b return (y, x - k * y) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' ((__UpperCAmelCase) , (__UpperCAmelCase)) : str = extended_euclid(lowercase_ , lowercase_ ) __UpperCAmelCase : str = na * na __UpperCAmelCase : Union[str, Any] = ra * x * na + ra * y * na return (n % m + m) % m def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' ((__UpperCAmelCase) , (__UpperCAmelCase)) : Tuple = extended_euclid(lowercase_ , lowercase_ ) if b < 0: __UpperCAmelCase : List[Any] = (b % n + n) % n return b def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[str] = invert_modulo(lowercase_ , lowercase_ ), invert_modulo(lowercase_ , lowercase_ ) __UpperCAmelCase : Dict = na * na __UpperCAmelCase : str = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
462
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : torch.FloatTensor _lowerCAmelCase : torch.FloatTensor _lowerCAmelCase : Optional[torch.FloatTensor] = None class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): _lowerCAmelCase : Tuple = 2 @register_to_config def __init__( self , lowercase__ = 0.0_2 , lowercase__ = 1_0_0 , lowercase__ = 1.0_0_7 , lowercase__ = 8_0 , lowercase__ = 0.0_5 , lowercase__ = 5_0 , ): # standard deviation of the initial noise distribution __UpperCAmelCase : Union[str, Any] = sigma_max # setable values __UpperCAmelCase : int = None __UpperCAmelCase : np.IntTensor = None __UpperCAmelCase : torch.FloatTensor = None # sigma(t_i) def A( self , lowercase__ , lowercase__ = None): return sample def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : int = num_inference_steps __UpperCAmelCase : List[str] = np.arange(0 , self.num_inference_steps)[::-1].copy() __UpperCAmelCase : Any = torch.from_numpy(lowercase__).to(lowercase__) __UpperCAmelCase : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __UpperCAmelCase : Tuple = torch.tensor(lowercase__ , dtype=torch.floataa , device=lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ = None): if self.config.s_min <= sigma <= self.config.s_max: __UpperCAmelCase : int = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1) else: __UpperCAmelCase : int = 0 # sample eps ~ N(0, S_noise^2 * I) __UpperCAmelCase : List[str] = self.config.s_noise * randn_tensor(sample.shape , generator=lowercase__).to(sample.device) __UpperCAmelCase : Optional[int] = sigma + gamma * sigma __UpperCAmelCase : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = True , ): __UpperCAmelCase : str = sample_hat + sigma_hat * model_output __UpperCAmelCase : Tuple = (sample_hat - pred_original_sample) / sigma_hat __UpperCAmelCase : str = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowercase__ , derivative=lowercase__ , pred_original_sample=lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = True , ): __UpperCAmelCase : Any = sample_prev + sigma_prev * model_output __UpperCAmelCase : List[str] = (sample_prev - pred_original_sample) / sigma_prev __UpperCAmelCase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowercase__ , derivative=lowercase__ , pred_original_sample=lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__): raise NotImplementedError()
462
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Optional[Any] = "encoder-decoder" UpperCAmelCase_ :Any = True def __init__( self , **__A ) -> Tuple: super().__init__(**__A ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowerCAmelCase_ :Optional[Any] = kwargs.pop("""encoder""" ) lowerCAmelCase_ :int = encoder_config.pop("""model_type""" ) lowerCAmelCase_ :Optional[int] = kwargs.pop("""decoder""" ) lowerCAmelCase_ :Union[str, Any] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig lowerCAmelCase_ :List[str] = AutoConfig.for_model(__A , **__A ) lowerCAmelCase_ :Optional[int] = AutoConfig.for_model(__A , **__A ) lowerCAmelCase_ :int = True @classmethod def __lowerCAmelCase ( cls , __A , __A , **__A ) -> PretrainedConfig: logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) lowerCAmelCase_ :List[str] = True lowerCAmelCase_ :Optional[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Union[str, Any] = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ :str = self.encoder.to_dict() lowerCAmelCase_ :Tuple = self.decoder.to_dict() lowerCAmelCase_ :Tuple = self.__class__.model_type return output
256
"""simple docstring""" __UpperCAmelCase = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def _snake_case ( lowercase__ : int ) -> int: '''simple docstring''' lowerCAmelCase_ :str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __UpperCAmelCase = [None] * 10_00_00_00 __UpperCAmelCase = True __UpperCAmelCase = False def _snake_case ( lowercase__ : int ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCAmelCase_ :Optional[int] = chain(next_number(lowercase__ ) ) lowerCAmelCase_ :Tuple = number_chain while number < 1_0_0_0_0_0_0_0: lowerCAmelCase_ :List[Any] = number_chain number *= 1_0 return number_chain def _snake_case ( lowercase__ : int = 1_0_0_0_0_0_0_0 ) -> int: '''simple docstring''' for i in range(1 , lowercase__ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
256
1
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __lowerCAmelCase : def __init__( self , lowerCAmelCase , lowerCAmelCase=3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ) -> Optional[int]: '''simple docstring''' _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_input_mask _lowercase =use_token_type_ids _lowercase =use_labels _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =type_vocab_size _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =num_labels _lowercase =num_choices _lowercase =scope def A__ ( self ) -> Any: '''simple docstring''' _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase =None if self.use_input_mask: _lowercase =random_attention_mask([self.batch_size, self.seq_length] ) _lowercase =None _lowercase =None _lowercase =None _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase =ids_tensor([self.batch_size] , self.num_choices ) _lowercase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self ) -> Any: '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=_SCREAMING_SNAKE_CASE , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Dict: '''simple docstring''' _lowercase =FalconModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _lowercase =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) _lowercase =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) -> List[str]: '''simple docstring''' _lowercase =True _lowercase =FalconModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _lowercase =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , ) _lowercase =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , ) _lowercase =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) -> List[str]: '''simple docstring''' _lowercase =FalconForCausalLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _lowercase =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) -> List[str]: '''simple docstring''' _lowercase =True _lowercase =True _lowercase =FalconForCausalLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # first forward pass _lowercase =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE , ) _lowercase =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowercase =ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowercase =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowercase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowercase =torch.cat([input_mask, next_mask] , dim=-1 ) _lowercase =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , )['hidden_states'][0] _lowercase =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , )['hidden_states'][0] # select random slice _lowercase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowercase =output_from_no_past[:, -3:, random_slice_idx].detach() _lowercase =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase =self.prepare_config_and_inputs() ( _lowercase ) =config_and_inputs _lowercase ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _a = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _a = (FalconForCausalLM,) if is_torch_available() else () _a = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = False def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =FalconModelTester(self ) _lowercase =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def A__ ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Union[str, Any]: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: _lowercase =alibi self.model_tester.create_and_check_model(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =3 _lowercase =input_dict['input_ids'] _lowercase =input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) _lowercase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowercase =FalconForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _lowercase =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A__ ( self ) -> Tuple: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =3 _lowercase ='single_label_classification' _lowercase =input_dict['input_ids'] _lowercase =input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) _lowercase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowercase =FalconForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _lowercase =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A__ ( self ) -> Any: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =input_dict['input_ids'] _lowercase =FalconForCausalLM(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _lowercase =model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) _lowercase =input_ids.shape[0] _lowercase =model._convert_to_rw_cache(result.past_key_values ) _lowercase =model._convert_cache_to_standard_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for layer in range(len(_SCREAMING_SNAKE_CASE ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =3 _lowercase ='multi_label_classification' _lowercase =input_dict['input_ids'] _lowercase =input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) _lowercase =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowercase =FalconForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _lowercase =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A__ ( self ) -> Tuple: '''simple docstring''' for model_class in self.all_generative_model_classes: _lowercase =self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_SCREAMING_SNAKE_CASE , 'use_cache' ): return _lowercase =model_class(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) if "use_cache" not in inputs: _lowercase =True _lowercase =model(**_SCREAMING_SNAKE_CASE ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return _lowercase =( getattr(_SCREAMING_SNAKE_CASE , 'decoder_layers' , _SCREAMING_SNAKE_CASE ) or getattr(_SCREAMING_SNAKE_CASE , 'num_decoder_layers' , _SCREAMING_SNAKE_CASE ) or config.num_hidden_layers ) _lowercase =getattr(_SCREAMING_SNAKE_CASE , 'num_kv_heads' , config.num_attention_heads ) _lowercase =getattr(_SCREAMING_SNAKE_CASE , 'd_model' , config.hidden_size ) _lowercase =embed_dim // num_attention_heads _lowercase =outputs['past_key_values'] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) _lowercase =inputs['input_ids'].shape for i in range(_SCREAMING_SNAKE_CASE ): if config.new_decoder_architecture: _lowercase =config.num_attention_heads elif config.multi_query: _lowercase =1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' _lowercase =AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) _lowercase =FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(_SCREAMING_SNAKE_CASE ) _lowercase =tokenizer('My favorite food is' , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) _lowercase =( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) _lowercase =model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=19 ) _lowercase =tokenizer.batch_decode(_SCREAMING_SNAKE_CASE )[0] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def A__ ( self ) -> str: '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: _lowercase =AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _lowercase =FalconForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) model.eval() model.to(_SCREAMING_SNAKE_CASE ) _lowercase =tokenizer('My favorite food is' , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=4 ) model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=4 ) model.generate(**_SCREAMING_SNAKE_CASE , num_beams=2 , max_new_tokens=4 ) @slow def A__ ( self ) -> int: '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: _lowercase =AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _lowercase =FalconForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) model.eval() model.to(device=_SCREAMING_SNAKE_CASE ) _lowercase =tokenizer('My favorite food is' , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # Test results are the same with and without cache _lowercase =model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=20 , use_cache=_SCREAMING_SNAKE_CASE ) _lowercase =model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=20 , use_cache=_SCREAMING_SNAKE_CASE ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
291
from __future__ import annotations lowerCAmelCase : List[Any] = list[list[int]] # assigning initial values to the grid lowerCAmelCase : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowerCAmelCase : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def A_ ( a , a , a , a ): """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def A_ ( a ): """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def A_ ( a ): """simple docstring""" if location := find_empty_location(a ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 1_0 ): if is_safe(a , a , a , a ): SCREAMING_SNAKE_CASE_ : List[str] = digit if sudoku(a ) is not None: return grid SCREAMING_SNAKE_CASE_ : List[Any] = 0 return None def A_ ( a ): """simple docstring""" for row in grid: for cell in row: print(a , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') lowerCAmelCase : Any = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
511
0
def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->int: return number | (1 << position) def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->int: return number & ~(1 << position) def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->int: return number ^ (1 << position) def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->bool: return ((number >> position) & 1) == 1 def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
710
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __lowercase : def __init__( self : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any]=1_3 , __lowerCamelCase : Optional[Any]=3_0 , __lowerCamelCase : Any=2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : str=True , __lowerCamelCase : str=True , __lowerCamelCase : Union[str, Any]=3_2 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : Union[str, Any]=3_7 , __lowerCamelCase : str="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=1_0 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Any=2 , ) -> Tuple: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = scope UpperCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase = (image_size // patch_size) ** 2 UpperCAmelCase = num_patches + 2 def _lowercase ( self : Tuple ) -> int: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowercase ( self : Tuple ) -> str: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowercase ( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : int ) -> Any: """simple docstring""" UpperCAmelCase = TFDeiTModel(config=__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = TFDeiTForMaskedImageModeling(config=__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = TFDeiTForMaskedImageModeling(__lowerCamelCase ) UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowercase ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int ) -> Any: """simple docstring""" UpperCAmelCase = self.type_sequence_label_size UpperCAmelCase = TFDeiTForImageClassification(__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = TFDeiTForImageClassification(__lowerCamelCase ) UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __lowercase ( __snake_case , __snake_case , unittest.TestCase ): UpperCamelCase = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowercase ( self : str ) -> str: """simple docstring""" UpperCAmelCase = TFDeiTModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _lowercase ( self : List[Any] ) -> Dict: """simple docstring""" pass def _lowercase ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , tf.keras.layers.Dense ) ) def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(__lowerCamelCase ) UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowercase ( self : Optional[int] ) -> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowercase ( self : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase ) def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _lowercase ( self : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any=False ) -> int: """simple docstring""" UpperCAmelCase = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _lowercase ( self : Optional[int] ) -> str: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFDeiTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) ->Tuple: UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __lowercase ( unittest.TestCase ): @cached_property def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _lowercase ( self : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=__lowerCamelCase , return_tensors="""tf""" ) # forward pass UpperCAmelCase = model(**__lowerCamelCase ) # verify the logits UpperCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) UpperCAmelCase = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
627
0
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE_ = { 'AI-Sweden/gpt-sw3-126m': 2048, 'AI-Sweden/gpt-sw3-350m': 2048, 'AI-Sweden/gpt-sw3-1.6b': 2048, 'AI-Sweden/gpt-sw3-6.7b': 2048, 'AI-Sweden/gpt-sw3-20b': 2048, } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> None: UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase = kwargs.get('''name_or_path''') if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''') UpperCamelCase = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing UpperCamelCase = '''<|endoftext|>''' if eos_token is None else eos_token UpperCamelCase = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: UpperCamelCase = unk_token if pad_token is None else pad_token UpperCamelCase = eos_token if bos_token is None else bos_token else: UpperCamelCase = '''<pad>''' if pad_token is None else pad_token UpperCamelCase = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCamelCase_) # Used for whitespace normalization in input texts # fmt : off UpperCamelCase = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing UpperCamelCase = re.compile( F'[{"".join(map(lowerCamelCase_ , list(range(0 , 9)) + list(range(1_1 , 3_2)) + list(range(1_2_7 , 1_6_0)) + [1_6_0, 1_7_3, 8_2_0_3]))}]') def __getstate__( self) -> Union[str, Any]: UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , lowerCamelCase_) -> List[str]: UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase__ ( self) -> int: return len(self.sp_model) def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: UpperCamelCase = self.non_printing_characters_re.sub('''''' , lowerCamelCase_) # Normalize whitespaces UpperCamelCase = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text]) # NFC Unicode normalization UpperCamelCase = unicodedata.normalize('''NFC''' , lowerCamelCase_) return text def UpperCAmelCase__ ( self , lowerCamelCase_ , **lowerCamelCase_) -> List[str]: UpperCamelCase = self.preprocess_text(lowerCamelCase_) return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> int: return self.sp_model.PieceToId(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return self.sp_model.IdToPiece(lowerCamelCase_) @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> str: return out_string def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: UpperCamelCase = [] UpperCamelCase = '''''' UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase_) + token UpperCamelCase = True UpperCamelCase = [] else: current_sub_tokens.append(lowerCamelCase_) UpperCamelCase = False out_string += self.sp_model.decode(lowerCamelCase_) return out_string def UpperCAmelCase__ ( self) -> Dict[str, int]: UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCamelCase_) elif not os.path.isfile(self.vocab_file): with open(lowerCamelCase_ , '''wb''') as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_) return (out_vocab_file,) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = False) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = self.preprocess_text(lowerCamelCase_) UpperCamelCase = self.sp_model.encode(lowerCamelCase_) else: UpperCamelCase = [self.preprocess_text(lowerCamelCase_) for t in text] UpperCamelCase = self.sp_model.encode(lowerCamelCase_) if return_tensors is True or return_tensors == "pt": UpperCamelCase = torch.tensor(lowerCamelCase_) return token_ids def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: return self.sp_model.decode(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[int]: UpperCamelCase = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] UpperCamelCase = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(lowerCamelCase_) + F'{self.bos_token}Bot:' ) return self.encode(text=lowerCamelCase_)
34
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ): UpperCAmelCase__ : Optional[int] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Tuple = seq_length UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : Optional[Any] = use_input_mask UpperCAmelCase__ : Union[str, Any] = use_token_type_ids UpperCAmelCase__ : Optional[Any] = use_labels UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : Any = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob UpperCAmelCase__ : Dict = attention_probs_dropout_prob UpperCAmelCase__ : int = max_position_embeddings UpperCAmelCase__ : int = type_vocab_size UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Any = num_labels UpperCAmelCase__ : Optional[int] = num_choices UpperCAmelCase__ : Dict = scope def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase__ : Tuple = None if self.use_input_mask: UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase__ : Any = None if self.use_token_type_ids: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : Optional[Any] = None if self.use_labels: UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase__ : Any = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Dict = NystromformerModel(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = model(_lowerCamelCase , token_type_ids=_lowerCamelCase) UpperCAmelCase__ : List[Any] = model(_lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : str = NystromformerForMaskedLM(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : List[str] = NystromformerForQuestionAnswering(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Dict = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : List[Any] = self.num_labels UpperCAmelCase__ : Union[str, Any] = NystromformerForSequenceClassification(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : List[Any] = self.num_labels UpperCAmelCase__ : str = NystromformerForTokenClassification(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : List[str] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : int = self.num_choices UpperCAmelCase__ : Any = NystromformerForMultipleChoice(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : List[str] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase__ : List[str] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase__ : List[str] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCAmelCase__ : Union[str, Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : List[Any] = config_and_inputs UpperCAmelCase__ : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case ( a__ , a__ , unittest.TestCase ): lowerCAmelCase :int = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase :List[str] = ( { '''feature-extraction''': NystromformerModel, '''fill-mask''': NystromformerForMaskedLM, '''question-answering''': NystromformerForQuestionAnswering, '''text-classification''': NystromformerForSequenceClassification, '''token-classification''': NystromformerForTokenClassification, '''zero-shot''': NystromformerForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase :int = False lowerCAmelCase :List[str] = False def snake_case__ ( self): UpperCAmelCase__ : str = NystromformerModelTester(self) UpperCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37) def snake_case__ ( self): self.config_tester.run_common_tests() def snake_case__ ( self): UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : Dict = type self.model_tester.create_and_check_model(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase) @slow def snake_case__ ( self): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Union[str, Any] = NystromformerModel.from_pretrained(_lowerCamelCase) self.assertIsNotNone(_lowerCamelCase) @require_torch class _snake_case ( unittest.TestCase ): @slow def snake_case__ ( self): UpperCAmelCase__ : int = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""") UpperCAmelCase__ : Dict = torch.tensor([[0, 1, 2, 3, 4, 5]]) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase)[0] UpperCAmelCase__ : List[str] = torch.Size((1, 6, 768)) self.assertEqual(output.shape , _lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1e-4)) @slow def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = """the [MASK] of Belgium is Brussels""" UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""") UpperCAmelCase__ : Optional[int] = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""") UpperCAmelCase__ : Any = tokenizer(_lowerCamelCase , return_tensors="""pt""") with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(encoding.input_ids).logits UpperCAmelCase__ : Tuple = token_logits[:, 2, :].argmax(-1)[0] self.assertEqual(tokenizer.decode(_lowerCamelCase) , """capital""")
407
0
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): @register_to_config def __init__( self : Any , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : float , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : str , __snake_case : bool = False , ): '''simple docstring''' super().__init__() _snake_case: Union[str, Any] = nn.Embedding(__snake_case , __snake_case ) _snake_case: List[Any] = nn.Embedding(__snake_case , __snake_case ) _snake_case: Dict = False _snake_case: str = nn.Dropout(p=__snake_case ) _snake_case: Optional[int] = TaConfig( vocab_size=__snake_case , d_model=__snake_case , num_heads=__snake_case , d_kv=__snake_case , d_ff=__snake_case , dropout_rate=__snake_case , feed_forward_proj=__snake_case , is_decoder=__snake_case , is_encoder_decoder=__snake_case , ) _snake_case: Dict = nn.ModuleList() for lyr_num in range(__snake_case ): _snake_case: Optional[Any] = TaBlock(__snake_case ) self.encoders.append(__snake_case ) _snake_case: Tuple = TaLayerNorm(__snake_case ) _snake_case: Union[str, Any] = nn.Dropout(p=__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , __snake_case : Dict , __snake_case : Optional[Any] ): '''simple docstring''' _snake_case: int = self.token_embedder(__snake_case ) _snake_case: Optional[Any] = encoder_input_tokens.shape[1] _snake_case: Optional[int] = torch.arange(__snake_case , device=encoder_input_tokens.device ) x += self.position_encoding(__snake_case ) _snake_case: List[str] = self.dropout_pre(__snake_case ) # inverted the attention mask _snake_case: int = encoder_input_tokens.size() _snake_case: Dict = self.get_extended_attention_mask(__snake_case , __snake_case ) for lyr in self.encoders: _snake_case: Any = lyr(__snake_case , __snake_case )[0] _snake_case: Union[str, Any] = self.layer_norm(__snake_case ) return self.dropout_post(__snake_case ), encoder_inputs_mask
273
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping A : Optional[Any] = tuple[int, int] class lowerCamelCase : def __init__( self : Tuple , __snake_case : set[int] , __snake_case : Mapping[EdgeT, int] ): '''simple docstring''' _snake_case: set[int] = vertices _snake_case: dict[EdgeT, int] = { (min(__snake_case ), max(__snake_case )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE_ ( self : int , __snake_case : EdgeT , __snake_case : int ): '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) _snake_case: Dict = weight def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: Graph = Graph({min(self.vertices )} , {} ) _snake_case: EdgeT _snake_case: int _snake_case: EdgeT _snake_case: int while len(subgraph.vertices ) < len(self.vertices ): _snake_case: List[str] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: _snake_case: Optional[Any] = edge _snake_case: Optional[int] = weight subgraph.add_edge(__snake_case , __snake_case ) return subgraph def lowercase_ ( lowercase__ = "p107_network.txt" ) ->int: _snake_case: str = os.path.abspath(os.path.dirname(lowercase__ ) ) _snake_case: str = os.path.join(lowercase__ , lowercase__ ) _snake_case: dict[EdgeT, int] = {} _snake_case: list[str] _snake_case: int _snake_case: int with open(lowercase__ ) as f: _snake_case: Tuple = f.read().strip().split('\n' ) _snake_case: Tuple = [line.split(',' ) for line in data] for edgea in range(1 , len(lowercase__ ) ): for edgea in range(lowercase__ ): if adjaceny_matrix[edgea][edgea] != "-": _snake_case: int = int(adjaceny_matrix[edgea][edgea] ) _snake_case: Graph = Graph(set(range(len(lowercase__ ) ) ) , lowercase__ ) _snake_case: Graph = graph.prims_algorithm() _snake_case: int = sum(graph.edges.values() ) _snake_case: int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
273
1
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : Union[str, Any] = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _UpperCamelCase : Any = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } _UpperCamelCase : List[str] = F'''{src_lang}-{tgt_lang}''' _UpperCamelCase : Optional[Any] = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=lowercase_ ,exist_ok=lowercase_ ) _UpperCamelCase : List[Any] = os.path.join(lowercase_ ,"README.md" ) print(F'''Generating {path}''' ) with open(lowercase_ ,"w" ,encoding="utf-8" ) as f: f.write(lowercase_ ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: lowerCamelCase__ = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
624
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowercase__ ( lowercase_ ,lowercase_=10 ) -> Tuple: """simple docstring""" _UpperCamelCase : str = [] for _ in range(lowercase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowercase__ ( lowercase_ ,lowercase_=10 ) -> str: """simple docstring""" _UpperCamelCase : Optional[int] = [] for step in range(lowercase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase : List[str] = os.path.join(lowercase_ ,"schedule.bin" ) torch.save(scheduler.state_dict() ,lowercase_ ) _UpperCamelCase : Optional[int] = torch.load(lowercase_ ) scheduler.load_state_dict(lowercase_ ) return lrs @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Dict , __a : Any , __a : List[str] ) -> List[str]: self.assertEqual(len(__a ) , len(__a ) ) for a, b in zip(__a , __a ): self.assertAlmostEqual(__a , __a , delta=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> str: _UpperCamelCase : Optional[int] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__a ) _UpperCamelCase : List[Any] = torch.tensor([0.4, 0.2, -0.5] ) _UpperCamelCase : Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCamelCase : Dict = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): _UpperCamelCase : List[Any] = criterion(__a , __a ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: _UpperCamelCase : List[Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__a ) _UpperCamelCase : Any = torch.tensor([0.4, 0.2, -0.5] ) _UpperCamelCase : List[str] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCamelCase : Dict = Adafactor( params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__a , weight_decay=0.0 , relative_step=__a , scale_parameter=__a , warmup_init=__a , ) for _ in range(1000 ): _UpperCamelCase : Optional[Any] = criterion(__a , __a ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = nn.Linear(50 , 50 ) if is_torch_available() else None SCREAMING_SNAKE_CASE__ :List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None SCREAMING_SNAKE_CASE__ :List[str] = 10 def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple , __a : List[Any] , __a : Dict , __a : str=None ) -> List[Any]: self.assertEqual(len(__a ) , len(__a ) ) for a, b in zip(__a , __a ): self.assertAlmostEqual(__a , __a , delta=__a , msg=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Union[str, Any] = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _UpperCamelCase : Optional[Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1e-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): _UpperCamelCase, _UpperCamelCase : List[str] = data _UpperCamelCase : List[str] = scheduler_func(self.optimizer , **__a ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _UpperCamelCase : Optional[int] = unwrap_schedule(__a , self.num_steps ) self.assertListAlmostEqual( __a , __a , tol=1e-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) _UpperCamelCase : List[str] = scheduler_func(self.optimizer , **__a ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__a ) # wrap to test picklability of the schedule _UpperCamelCase : int = unwrap_and_save_reload_schedule(__a , self.num_steps ) self.assertListEqual(__a , __a , msg=F'''failed for {scheduler_func} in save and reload''' ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> Tuple: _UpperCamelCase : Any = fn def __call__( self : Tuple , *__a : Optional[Any] , **__a : str ) -> Any: return self.fn(*__a , **__a ) @classmethod def __SCREAMING_SNAKE_CASE ( self : Any , __a : Any ) -> Tuple: _UpperCamelCase : Any = list(map(self , scheduler.lr_lambdas ) )
624
1
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = {} def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , )-> Tuple: """simple docstring""" UpperCamelCase = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) UpperCamelCase = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) UpperCamelCase = format_type def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None )-> Any: """simple docstring""" UpperCamelCase = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): UpperCamelCase = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["""python"""]) _register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""]) _register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""]) _register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""]) _register_formatter(CustomFormatter, """custom""") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""]) else: SCREAMING_SNAKE_CASE = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""") _register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""]) else: SCREAMING_SNAKE_CASE = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""") _register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, """jax""", aliases=[]) else: SCREAMING_SNAKE_CASE = ValueError("""JAX needs to be installed to be able to return JAX arrays.""") _register_unavailable_formatter(_jax_error, """jax""", aliases=[]) def lowerCamelCase__ ( UpperCAmelCase_ )-> Optional[str]: """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def lowerCamelCase__ ( UpperCAmelCase_ , **UpperCAmelCase_ )-> Formatter: """simple docstring""" UpperCamelCase = get_format_type_from_alias(UpperCAmelCase_ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCAmelCase_ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
556
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass(frozen=_lowerCAmelCase ) class __a : UpperCamelCase_ : str UpperCamelCase_ : str UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None @dataclass(frozen=_lowerCAmelCase ) class __a : UpperCamelCase_ : List[int] UpperCamelCase_ : Optional[List[int]] = None UpperCamelCase_ : Optional[List[int]] = None UpperCamelCase_ : Optional[Union[int, float]] = None UpperCamelCase_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __a ( _lowerCAmelCase ): UpperCamelCase_ : List[InputFeatures] def __init__( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : bool = False , )-> Dict: """simple docstring""" UpperCamelCase = hans_processors[task]() UpperCamelCase = os.path.join( UpperCAmelCase_ , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(UpperCAmelCase_ ) , UpperCAmelCase_ , ) , ) UpperCamelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase , UpperCamelCase = label_list[2], label_list[1] UpperCamelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase = cached_features_file + ".lock" with FileLock(UpperCAmelCase_ ): if os.path.exists(UpperCAmelCase_ ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) UpperCamelCase = torch.load(UpperCAmelCase_ ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) UpperCamelCase = ( processor.get_dev_examples(UpperCAmelCase_ ) if evaluate else processor.get_train_examples(UpperCAmelCase_ ) ) logger.info("Training examples: %s" , len(UpperCAmelCase_ ) ) UpperCamelCase = hans_convert_examples_to_features(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) logger.info("Saving features into cached file %s" , UpperCAmelCase_ ) torch.save(self.features , UpperCAmelCase_ ) def __len__( self : Optional[Any] )-> List[Any]: """simple docstring""" return len(self.features ) def __getitem__( self : Optional[Any] , UpperCAmelCase_ : Any )-> InputFeatures: """simple docstring""" return self.features[i] def _SCREAMING_SNAKE_CASE ( self : str )-> List[Any]: """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class __a : UpperCamelCase_ : List[InputFeatures] def __init__( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = 128 , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : bool = False , )-> Union[str, Any]: """simple docstring""" UpperCamelCase = hans_processors[task]() UpperCamelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase , UpperCamelCase = label_list[2], label_list[1] UpperCamelCase = label_list UpperCamelCase = processor.get_dev_examples(UpperCAmelCase_ ) if evaluate else processor.get_train_examples(UpperCAmelCase_ ) UpperCamelCase = hans_convert_examples_to_features(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10_000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(UpperCAmelCase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCamelCase = tf.data.Dataset.from_generator( UpperCAmelCase_ , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def _SCREAMING_SNAKE_CASE ( self : Tuple )-> Tuple: """simple docstring""" return self.dataset def __len__( self : List[Any] )-> List[Any]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , UpperCAmelCase_ : List[str] )-> InputFeatures: """simple docstring""" return self.features[i] def _SCREAMING_SNAKE_CASE ( self : List[str] )-> List[str]: """simple docstring""" return self.label_list class __a ( _lowerCAmelCase ): def _SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase_ : Tuple )-> Tuple: """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase_ , "heuristics_train_set.txt" ) ) , "train" ) def _SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase_ : List[str] )-> Dict: """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase_ , "heuristics_evaluation_set.txt" ) ) , "dev" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Optional[Any]: """simple docstring""" return ["contradiction", "entailment", "neutral"] def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str )-> str: """simple docstring""" UpperCamelCase = [] for i, line in enumerate(UpperCAmelCase_ ): if i == 0: continue UpperCamelCase = "%s-%s" % (set_type, line[0]) UpperCamelCase = line[5] UpperCamelCase = line[6] UpperCamelCase = line[7][2:] if line[7].startswith("ex" ) else line[7] UpperCamelCase = line[0] examples.append(InputExample(guid=UpperCAmelCase_ , text_a=UpperCAmelCase_ , text_b=UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) return examples def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , )-> Union[str, Any]: """simple docstring""" UpperCamelCase = {label: i for i, label in enumerate(UpperCAmelCase_ )} UpperCamelCase = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCAmelCase_ ) , desc="convert examples to features" ): if ex_index % 1_00_00 == 0: logger.info("Writing example %d" % (ex_index) ) UpperCamelCase = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="max_length" , truncation=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , ) UpperCamelCase = label_map[example.label] if example.label in label_map else 0 UpperCamelCase = int(example.pairID ) features.append(InputFeatures(**UpperCAmelCase_ , label=UpperCAmelCase_ , pairID=UpperCAmelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(F"guid: {example}" ) logger.info(F"features: {features[i]}" ) return features SCREAMING_SNAKE_CASE = { """hans""": 3, } SCREAMING_SNAKE_CASE = { """hans""": HansProcessor, }
556
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __UpperCamelCase : List[Any] = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
448
from math import factorial def A__ ( snake_case_ : int , snake_case_ : int ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(snake_case_ ) // (factorial(snake_case_ ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f'''fifty-two card deck is: {combinations(5_2, 5)}\n''', ) print( 'If a class of 40 students must be arranged into groups of', f'''4 for group projects, there are {combinations(4_0, 4)} ways''', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f'''are {combinations(1_0, 3)} ways that first, second and''', 'third place can be awarded.', )
64
0
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class _a: lowerCamelCase__ :str = field( metadata={'help': 'The output directory where the model will be written.'} , ) lowerCamelCase__ :str = field( metadata={ 'help': ( 'The encoder model checkpoint for weights initialization.' 'Don\'t set if you want to train an encoder model from scratch.' ) } , ) lowerCamelCase__ :str = field( metadata={ 'help': ( 'The decoder model checkpoint for weights initialization.' 'Don\'t set if you want to train a decoder model from scratch.' ) } , ) lowerCamelCase__ :Optional[str] = field( default=__A , metadata={'help': 'Pretrained encoder config name or path if not the same as encoder_model_name'} ) lowerCamelCase__ :Optional[str] = field( default=__A , metadata={'help': 'Pretrained decoder config name or path if not the same as decoder_model_name'} ) def A ( ): _snake_case : Optional[int] = HfArgumentParser((ModelArguments,) ) (_snake_case ) : Optional[int] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: _snake_case : int = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: _snake_case : Tuple = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: _snake_case : Dict = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: _snake_case : List[str] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed _snake_case : str = True _snake_case : Optional[int] = True _snake_case : List[str] = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=UpperCAmelCase , decoder_config=UpperCAmelCase , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens _snake_case : Tuple = decoder_config.decoder_start_token_id _snake_case : Optional[Any] = decoder_config.pad_token_id if decoder_start_token_id is None: _snake_case : Any = decoder_config.bos_token_id if pad_token_id is None: _snake_case : int = decoder_config.eos_token_id # This is necessary to make Flax's generate() work _snake_case : Dict = decoder_config.eos_token_id _snake_case : Tuple = decoder_start_token_id _snake_case : Tuple = pad_token_id _snake_case : Dict = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) _snake_case : List[str] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) _snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
721
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def A ( UpperCAmelCase=None ): _snake_case : Union[str, Any] = argparse.ArgumentParser(add_help=UpperCAmelCase , allow_abbrev=UpperCAmelCase ) # The main config parser _snake_case : Tuple = config_command_parser(UpperCAmelCase ) # The subparser to add commands to _snake_case : Any = config_parser.add_subparsers(title="subcommands" , dest="subcommand" ) # Then add other parsers with the parent parser default_command_parser(UpperCAmelCase , parents=[parent_parser] ) update_command_parser(UpperCAmelCase , parents=[parent_parser] ) return config_parser def A ( ): _snake_case : str = get_config_parser() _snake_case : Union[str, Any] = config_parser.parse_args() if not hasattr(UpperCAmelCase , "func" ): config_parser.print_help() exit(1 ) # Run args.func(UpperCAmelCase ) if __name__ == "__main__": main()
278
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a__ ( UpperCAmelCase__ ): __magic_name__ : Tuple = (DPMSolverSinglestepScheduler,) __magic_name__ : List[str] = (('num_inference_steps', 25),) def lowercase__ (self : List[Any], **__UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float('''inf''' ), "variance_type": None, } config.update(**lowerCamelCase__ ) return config def lowercase__ (self : Tuple, __UpperCAmelCase : Union[str, Any]=0, **__UpperCAmelCase : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('''num_inference_steps''', lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = self.dummy_sample SCREAMING_SNAKE_CASE : Any = 0.1 * sample SCREAMING_SNAKE_CASE : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : int = self.get_scheduler_config(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE : str = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = scheduler_class.from_pretrained(lowerCamelCase__ ) new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE : str = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE : Union[str, Any] = sample, sample for t in range(lowerCamelCase__, time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE : Optional[int] = scheduler.step(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ).prev_sample SCREAMING_SNAKE_CASE : List[Any] = new_scheduler.step(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ (self : Tuple ) -> Tuple: """simple docstring""" pass def lowercase__ (self : Dict, __UpperCAmelCase : str=0, **__UpperCAmelCase : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : Dict = kwargs.pop('''num_inference_steps''', lowerCamelCase__ ) SCREAMING_SNAKE_CASE : int = self.dummy_sample SCREAMING_SNAKE_CASE : List[Any] = 0.1 * sample SCREAMING_SNAKE_CASE : int = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) SCREAMING_SNAKE_CASE : int = scheduler_class.from_pretrained(lowerCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE : str = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ).prev_sample SCREAMING_SNAKE_CASE : Optional[int] = new_scheduler.step(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ (self : List[str], __UpperCAmelCase : Optional[Any]=None, **__UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" if scheduler is None: SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = 10 SCREAMING_SNAKE_CASE : Dict = self.dummy_model() SCREAMING_SNAKE_CASE : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase__, lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ).prev_sample return sample def lowercase__ (self : Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE : Dict = 50 SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase__, lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Any = scheduler.step(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ).prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2574 ) < 1e-3 def lowercase__ (self : List[Any] ) -> int: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def lowercase__ (self : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE : Optional[Any] = self.full_loop(scheduler=lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 SCREAMING_SNAKE_CASE : int = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE : Any = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE : Any = self.full_loop(scheduler=lowerCamelCase__ ) SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def lowercase__ (self : Any ) -> Dict: """simple docstring""" self.check_over_configs(thresholding=lowerCamelCase__ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase__, prediction_type=lowerCamelCase__, sample_max_value=lowerCamelCase__, algorithm_type='''dpmsolver++''', solver_order=lowerCamelCase__, solver_type=lowerCamelCase__, ) def lowercase__ (self : Tuple ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def lowercase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase__, solver_type=lowerCamelCase__, prediction_type=lowerCamelCase__, algorithm_type=lowerCamelCase__, ) SCREAMING_SNAKE_CASE : str = self.full_loop( solver_order=lowerCamelCase__, solver_type=lowerCamelCase__, prediction_type=lowerCamelCase__, algorithm_type=lowerCamelCase__, ) assert not torch.isnan(lowerCamelCase__ ).any(), "Samples have nan numbers" def lowercase__ (self : Optional[int] ) -> Dict: """simple docstring""" self.check_over_configs(lower_order_final=lowerCamelCase__ ) self.check_over_configs(lower_order_final=lowerCamelCase__ ) def lowercase__ (self : str ) -> List[Any]: """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def lowercase__ (self : Tuple ) -> Optional[int]: """simple docstring""" self.check_over_configs(variance_type=lowerCamelCase__ ) self.check_over_configs(variance_type='''learned_range''' ) def lowercase__ (self : Union[str, Any] ) -> int: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowerCamelCase__, time_step=0 ) def lowercase__ (self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.full_loop() SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def lowercase__ (self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.full_loop(use_karras_sigmas=lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2248 ) < 1e-3 def lowercase__ (self : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.full_loop(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.1453 ) < 1e-3 def lowercase__ (self : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.full_loop(prediction_type='''v_prediction''', use_karras_sigmas=lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.0649 ) < 1e-3 def lowercase__ (self : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config(thresholding=lowerCamelCase__, dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Any = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_model() SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase__, lowerCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = scheduler.step(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ).prev_sample assert sample.dtype == torch.floataa
507
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def snake_case__ ( lowercase , lowercase ): assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def snake_case__ ( lowercase , lowercase , lowercase , lowercase ): lowerCAmelCase_: Any = tmp_path / "cache" lowerCAmelCase_: int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase_: Optional[int] = SqlDatasetReader( "dataset" , "sqlite:///" + sqlite_path , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_sql_dataset(lowercase , lowercase ) @require_sqlalchemy @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def snake_case__ ( lowercase , lowercase , lowercase , lowercase ): lowerCAmelCase_: List[str] = tmp_path / "cache" lowerCAmelCase_: int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase_: List[str] = features.copy() if features else default_expected_features lowerCAmelCase_: Any = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase_: int = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , features=lowercase , cache_dir=lowercase ).read() _check_sql_dataset(lowercase , lowercase ) def snake_case__ ( lowercase ): with contextlib.closing(sqlitea.connect(lowercase ) ) as con: lowerCAmelCase_: Any = con.cursor() cur.execute("SELECT * FROM dataset" ) for row in cur: yield row @require_sqlalchemy def snake_case__ ( lowercase , lowercase , lowercase ): lowerCAmelCase_: Optional[int] = tmp_path / "cache" lowerCAmelCase_: Optional[Any] = os.path.join(lowercase , "tmp.sql" ) lowerCAmelCase_: str = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=lowercase ).read() SqlDatasetWriter(lowercase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=1 ).write() lowerCAmelCase_: Union[str, Any] = iter_sql_file(lowercase ) lowerCAmelCase_: str = iter_sql_file(lowercase ) for rowa, rowa in zip(lowercase , lowercase ): assert rowa == rowa @require_sqlalchemy def snake_case__ ( lowercase , lowercase , lowercase ): lowerCAmelCase_: str = tmp_path / "cache" lowerCAmelCase_: Optional[int] = os.path.join(lowercase , "tmp.sql" ) lowerCAmelCase_: Optional[Any] = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=lowercase ).read() SqlDatasetWriter(lowercase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=2 ).write() lowerCAmelCase_: Optional[Any] = iter_sql_file(lowercase ) lowerCAmelCase_: Optional[int] = iter_sql_file(lowercase ) for rowa, rowa in zip(lowercase , lowercase ): assert rowa == rowa @require_sqlalchemy def snake_case__ ( lowercase , lowercase , lowercase ): lowerCAmelCase_: Union[str, Any] = tmp_path / "cache" lowerCAmelCase_: int = os.path.join(lowercase , "tmp.sql" ) lowerCAmelCase_: Any = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=lowercase ).read() with pytest.raises(lowercase ): SqlDatasetWriter(lowercase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=0 ).write()
613
0
def SCREAMING_SNAKE_CASE__ ( lowercase = 600851475143 ) -> int: try: snake_case : Optional[int] = int(lowercase ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) snake_case : str = 2 snake_case : str = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 snake_case : Any = i while n % i == 0: snake_case : Dict = n // i i += 1 return int(lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
684
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
1
"""simple docstring""" import math def lowercase (_snake_case ,_snake_case ) -> int: '''simple docstring''' if initial_intensity < 0: raise ValueError("The value of intensity cannot be negative" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(lowercase__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
505
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case ( UpperCamelCase_ ): lowercase_ = ['image_processor', 'tokenizer'] lowercase_ = 'AutoImageProcessor' lowercase_ = 'AutoTokenizer' def __init__( self : List[Any] , a_ : int , a_ : Union[str, Any] )-> List[Any]: """simple docstring""" super().__init__(a_ , a_ ) SCREAMING_SNAKE_CASE__ : str = self.image_processor def __call__( self : Tuple , a_ : str=None , a_ : List[Any]=None , a_ : Optional[Any]=None , **a_ : Dict )-> Tuple: """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: SCREAMING_SNAKE_CASE__ : Any = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if images is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def __lowercase( self : Dict , *a_ : Any , **a_ : Any )-> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*a_ , **a_ ) def __lowercase( self : Dict , *a_ : Union[str, Any] , **a_ : Optional[int] )-> Dict: """simple docstring""" return self.tokenizer.decode(*a_ , **a_ ) @property def __lowercase( self : Any )-> Any: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
85
0
"""simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE_ : str = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def UpperCAmelCase__ ( A__ , A__ , A__ ) -> str: """simple docstring""" assert len(str(A__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: lowerCamelCase__ = year // 100 lowerCamelCase__ = (5 * (century % 4) + 2) % 7 lowerCamelCase__ = year % 100 lowerCamelCase__ = centurian % 12 lowerCamelCase__ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 lowerCamelCase__ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) lowerCamelCase__ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
274
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE_ : int = 16 SCREAMING_SNAKE_CASE_ : int = 32 def UpperCAmelCase__ ( A__ ) -> Optional[int]: """simple docstring""" return int(x / 2**20 ) class _A : def __enter__( self ) -> Dict: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowerCamelCase__ = torch.cuda.memory_allocated() return self def __exit__( self , *SCREAMING_SNAKE_CASE__ ) -> Dict: gc.collect() torch.cuda.empty_cache() lowerCamelCase__ = torch.cuda.memory_allocated() lowerCamelCase__ = torch.cuda.max_memory_allocated() lowerCamelCase__ = bamb(self.end - self.begin ) lowerCamelCase__ = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCAmelCase__ ( A__ , A__ = 16 , A__ = "bert-base-cased" , A__ = 320 , A__ = 160 , ) -> Dict: """simple docstring""" lowerCamelCase__ = AutoTokenizer.from_pretrained(A__ ) lowerCamelCase__ = load_dataset( "glue" , "mrpc" , split={"train": f'train[:{n_train}]', "validation": f'validation[:{n_val}]'} ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase__ = datasets.map( A__ , batched=A__ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(A__ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowerCamelCase__ = DataLoader( tokenized_datasets["train"] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) lowerCamelCase__ = DataLoader( tokenized_datasets["validation"] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def UpperCAmelCase__ ( A__ , A__ ) -> Optional[int]: """simple docstring""" # Initialize accelerator lowerCamelCase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ = config["lr"] lowerCamelCase__ = int(config["num_epochs"] ) lowerCamelCase__ = int(config["seed"] ) lowerCamelCase__ = int(config["batch_size"] ) lowerCamelCase__ = args.model_name_or_path set_seed(A__ ) lowerCamelCase__ , lowerCamelCase__ = get_dataloaders(A__ , A__ , A__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer lowerCamelCase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase__ = optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowerCamelCase__ = 1 lowerCamelCase__ = (len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase__ = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: lowerCamelCase__ = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over lowerCamelCase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase__ = 0 # Now we train the model lowerCamelCase__ = {} for epoch in range(A__ , A__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(A__ ): lowerCamelCase__ = model(**A__ ) lowerCamelCase__ = outputs.loss lowerCamelCase__ = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) ) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) ) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) ) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowerCamelCase__ = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'epoch-{epoch}'] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "peak_memory_utilization.json" ) , "w" ) as f: json.dump(A__ , A__ ) def UpperCAmelCase__ ( ) -> Any: """simple docstring""" lowerCamelCase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=A__ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A__ , ) parser.add_argument( "--output_dir" , type=A__ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--peak_memory_upper_bound" , type=A__ , default=A__ , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , ) parser.add_argument( "--n_train" , type=A__ , default=320 , help="Number of training examples to use." , ) parser.add_argument( "--n_val" , type=A__ , default=160 , help="Number of validation examples to use." , ) parser.add_argument( "--num_epochs" , type=A__ , default=1 , help="Number of train epochs." , ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
274
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _snake_case ( snake_case__ : str , snake_case__ : float | Decimal , snake_case__ : float = 10**-10 ): A = a while True: A = Decimal(snake_case__ ) - ( Decimal(eval(snake_case__ ) ) / Decimal(eval(str(diff(snake_case__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(snake_case__ ) ) < precision: # noqa: S307 return float(snake_case__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial print(F"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}""") # Find Square Root of 5 print(F"""The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}""") # Exponential Roots print(F"""The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}""")
91
def _lowerCAmelCase ( __magic_name__ :str ): UpperCAmelCase_ = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _lowerCAmelCase ( __magic_name__ :str ): UpperCAmelCase_ = [chr(i + 6_5 ) for i in range(2_6 )] # Remove duplicate characters from key UpperCAmelCase_ = remove_duplicates(key.upper() ) UpperCAmelCase_ = len(__magic_name__ ) # First fill cipher with key characters UpperCAmelCase_ = {alphabet[i]: char for i, char in enumerate(__magic_name__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__magic_name__ ) , 2_6 ): UpperCAmelCase_ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 UpperCAmelCase_ = alphabet[i - offset] UpperCAmelCase_ = char return cipher_alphabet def _lowerCAmelCase ( __magic_name__ :str , __magic_name__ :dict[str, str] ): return "".join(cipher_map.get(__magic_name__ , __magic_name__ ) for ch in message.upper() ) def _lowerCAmelCase ( __magic_name__ :str , __magic_name__ :dict[str, str] ): UpperCAmelCase_ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__magic_name__ , __magic_name__ ) for ch in message.upper() ) def _lowerCAmelCase ( ): UpperCAmelCase_ = input('''Enter message to encode or decode: ''' ).strip() UpperCAmelCase_ = input('''Enter keyword: ''' ).strip() UpperCAmelCase_ = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: UpperCAmelCase_ = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) UpperCAmelCase_ = create_cipher_map(__magic_name__ ) print(func(__magic_name__ , __magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
121
0
"""simple docstring""" import math def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False lowercase = range(3 , int(math.sqrt(__snake_case ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] , __snake_case : int=1 , **__snake_case : Optional[int] ): '''simple docstring''' lowercase = factor * value lowercase = value while not is_prime(__snake_case ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__snake_case ) return value
134
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : Tuple = logging.get_logger(__name__) _UpperCamelCase : Dict = torch.device('cpu') def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Any ): '''simple docstring''' lowercase = dct.pop(__snake_case ) lowercase = val def _SCREAMING_SNAKE_CASE ( __snake_case : Any ): '''simple docstring''' lowercase = [] for k in state_dict.keys(): lowercase = k if ".pwconv" in k: lowercase = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: lowercase = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: lowercase = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: lowercase = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: lowercase = k_new.split('.' ) if ls[2].isdigit(): lowercase = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: lowercase = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : List[str] ): '''simple docstring''' lowercase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowercase = 10_00 lowercase = 'huggingface/label-files' lowercase = 'imagenet-1k-id2label.json' lowercase = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='dataset' ) , 'r' ) ) lowercase = {int(__snake_case ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowercase = [3, 3, 6, 4] lowercase = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": lowercase = [3, 3, 9, 6] lowercase = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": lowercase = [4, 3, 10, 5] lowercase = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": lowercase = [4, 4, 12, 6] lowercase = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): lowercase = torch.hub.load_state_dict_from_url(__snake_case , map_location='cpu' , check_hash=__snake_case ) else: lowercase = torch.load(__snake_case , map_location='cpu' ) lowercase = checkpoint lowercase = create_rename_keys(__snake_case ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) # load HuggingFace model lowercase = SwiftFormerForImageClassification(__snake_case ).eval() hf_model.load_state_dict(__snake_case ) # prepare test inputs lowercase = prepare_img() lowercase = ViTImageProcessor.from_pretrained('preprocessor_config' ) lowercase = processor(images=__snake_case , return_tensors='pt' ) # compare outputs from both models lowercase = get_expected_output(__snake_case ) lowercase = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , __snake_case , atol=1e-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(__snake_case ) if __name__ == "__main__": _UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _UpperCamelCase : Union[str, Any] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
134
1
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[Any]=13 , _snake_case : Tuple=10 , _snake_case : str=3 , _snake_case : Dict=2 , _snake_case : int=2 , _snake_case : Union[str, Any]=True , _snake_case : int=True , _snake_case : Optional[int]=32 , _snake_case : Optional[Any]=5 , _snake_case : int=4 , _snake_case : Any=37 , _snake_case : Optional[Any]="gelu" , _snake_case : Dict=0.1 , _snake_case : Dict=0.1 , _snake_case : str=10 , _snake_case : Union[str, Any]=0.02 , _snake_case : Dict="divided_space_time" , _snake_case : Tuple=None , ) -> Tuple: '''simple docstring''' a__ = parent a__ = batch_size a__ = image_size a__ = num_channels a__ = patch_size a__ = num_frames a__ = is_training a__ = use_labels a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = attention_type a__ = initializer_range a__ = scope a__ = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token a__ = (image_size // patch_size) ** 2 a__ = (num_frames) * self.num_patches_per_frame + 1 def _lowerCAmelCase ( self : Tuple ) -> str: '''simple docstring''' a__ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.num_labels ) a__ = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self : Any ) -> Tuple: '''simple docstring''' a__ = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) a__ = self.num_labels return config def _lowerCAmelCase ( self : Union[str, Any] , _snake_case : Dict , _snake_case : int , _snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' a__ = TimesformerModel(config=_snake_case ) model.to(_snake_case ) model.eval() a__ = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Dict , _snake_case : Any , _snake_case : List[Any] , _snake_case : int ) -> Any: '''simple docstring''' a__ = TimesformerForVideoClassification(_snake_case ) model.to(_snake_case ) model.eval() a__ = model(_snake_case ) # verify the logits shape a__ = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , _snake_case ) def _lowerCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( a , a , unittest.TestCase ): """simple docstring""" a_ : Optional[Any] =(TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () a_ : str =( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) a_ : Any =False a_ : Dict =False a_ : Dict =False a_ : Union[str, Any] =False def _lowerCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' a__ = TimesformerModelTester(self ) a__ = ConfigTester( self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def _lowerCAmelCase ( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : List[Any]=False ) -> Optional[Any]: '''simple docstring''' a__ = copy.deepcopy(_snake_case ) if return_labels: if model_class in get_values(_snake_case ): a__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def _lowerCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' pass def _lowerCAmelCase ( self : List[str] ) -> Dict: '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear ) ) def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(_snake_case ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _lowerCAmelCase ( self : List[Any] ) -> Any: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _lowerCAmelCase ( self : str ) -> int: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*_snake_case ) @slow def _lowerCAmelCase ( self : int ) -> Dict: '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = TimesformerModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _lowerCAmelCase ( self : List[str] ) -> Any: '''simple docstring''' if not self.has_attentions: pass else: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = True for model_class in self.all_model_classes: a__ = self.model_tester.seq_length a__ = self.model_tester.num_frames a__ = True a__ = False a__ = True a__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) a__ = outputs.attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a__ = True a__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) a__ = outputs.attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) a__ = len(_snake_case ) # Check attention is always last and order is fine a__ = True a__ = True a__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(out_len + 1 , len(_snake_case ) ) a__ = outputs.attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _lowerCAmelCase ( self : str ) -> Tuple: '''simple docstring''' def check_hidden_states_output(_snake_case : str , _snake_case : Any , _snake_case : Optional[Any] ): a__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): a__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) a__ = outputs.hidden_states a__ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_snake_case ) , _snake_case ) a__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def _lowerCamelCase ( ) -> Optional[Any]: '''simple docstring''' a__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video',filename='eating_spaghetti.npy',repo_type='dataset' ) a__ = np.load(UpperCAmelCase__ ) return list(UpperCAmelCase__ ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowerCAmelCase ( self : Tuple ) -> Dict: '''simple docstring''' a__ = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( _snake_case ) a__ = self.default_image_processor a__ = prepare_video() a__ = image_processor(video[:8] , return_tensors='pt' ).to(_snake_case ) # forward pass with torch.no_grad(): a__ = model(**_snake_case ) # verify the logits a__ = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _snake_case ) a__ = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) )
232
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__=None ) -> int: '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' a__ = nn.Parameter(UpperCAmelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' a__ = nn.Parameter(UpperCAmelCase__ ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> Dict: '''simple docstring''' a__ = np.asarray(weights[0] ) a__ = np.asarray(weights[1] ) a__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key,torch.tensor(UpperCAmelCase__ ).transpose(1,2 ).contiguous().view(-1,UpperCAmelCase__ ),) set_param( torch_layer.self_attention.value,torch.tensor(UpperCAmelCase__ ).transpose(1,2 ).contiguous().view(-1,UpperCAmelCase__ ),) set_param( torch_layer.output.dense,torch.tensor(UpperCAmelCase__ ).view(-1,UpperCAmelCase__ ).contiguous().transpose(0,1 ),) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> Dict: '''simple docstring''' a__ = np.asarray(weights[0] ) a__ = np.asarray(weights[1] ) a__ = np.asarray(weights[2] ) a__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query,torch.tensor(UpperCAmelCase__ ).transpose(1,2 ).contiguous().view(-1,UpperCAmelCase__ ),) set_param( torch_layer.self_attention.key,torch.tensor(UpperCAmelCase__ ).transpose(1,2 ).contiguous().view(-1,UpperCAmelCase__ ),) set_param( torch_layer.self_attention.value,torch.tensor(UpperCAmelCase__ ).transpose(1,2 ).contiguous().view(-1,UpperCAmelCase__ ),) set_param( torch_layer.output.dense,torch.tensor(UpperCAmelCase__ ).view(-1,UpperCAmelCase__ ).contiguous().transpose(0,1 ),) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> Optional[Any]: '''simple docstring''' a__ = weights[0][0][0] a__ = np.asarray(layer_norm_a[0] ) a__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm,torch.tensor(UpperCAmelCase__ ),torch.tensor(UpperCAmelCase__ ),) # lsh weights + output a__ = weights[0][1] if len(UpperCAmelCase__ ) < 4: set_layer_weights_in_torch_lsh(UpperCAmelCase__,torch_block.attention,UpperCAmelCase__ ) else: set_layer_weights_in_torch_local(UpperCAmelCase__,torch_block.attention,UpperCAmelCase__ ) # intermediate weighs a__ = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCAmelCase__ ) == 4: a__ = intermediate_weights[2] # layernorm 2 a__ = np.asarray(intermediate_weights[0][0] ) a__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm,torch.tensor(UpperCAmelCase__ ),torch.tensor(UpperCAmelCase__ ),) # intermediate dense a__ = np.asarray(intermediate_weights[1][0] ) a__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense,torch.tensor(UpperCAmelCase__ ).transpose(0,1 ).contiguous(),torch.tensor(UpperCAmelCase__ ),) # intermediate out a__ = np.asarray(intermediate_weights[4][0] ) a__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense,torch.tensor(UpperCAmelCase__ ).transpose(0,1 ).contiguous(),torch.tensor(UpperCAmelCase__ ),) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ = torch_model.reformer # word embeds a__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings,torch.tensor(UpperCAmelCase__ ),) if isinstance(weights[3],UpperCAmelCase__ ): a__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): a__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' a__ = nn.Parameter(torch.tensor(UpperCAmelCase__ ) ) a__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCAmelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): a__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) # output layer norm a__ = np.asarray(weights[7][0] ) a__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm,torch.tensor(UpperCAmelCase__ ),torch.tensor(UpperCAmelCase__ ),) # output embeddings a__ = np.asarray(weights[9][0] ) a__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder,torch.tensor(UpperCAmelCase__ ).transpose(0,1 ).contiguous(),torch.tensor(UpperCAmelCase__ ),) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> Optional[int]: '''simple docstring''' a__ = ReformerConfig.from_json_file(UpperCAmelCase__ ) print(f'''Building PyTorch model from configuration: {config}''' ) a__ = ReformerModelWithLMHead(UpperCAmelCase__ ) with open(UpperCAmelCase__,'rb' ) as f: a__ = pickle.load(UpperCAmelCase__ )['weights'] set_model_weights_in_torch(UpperCAmelCase__,UpperCAmelCase__,config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(),UpperCAmelCase__ ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
232
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Any = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __lowercase ( snake_case__ ): __UpperCAmelCase = '''gpt_neo''' __UpperCAmelCase = ['''past_key_values'''] __UpperCAmelCase = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , lowercase_=5_0_2_5_7 , lowercase_=2_0_4_8 , lowercase_=2_0_4_8 , lowercase_=2_4 , lowercase_=[[["global", "local"], 1_2]] , lowercase_=1_6 , lowercase_=None , lowercase_=2_5_6 , lowercase_="gelu_new" , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.1 , lowercase_=1e-5 , lowercase_=0.02 , lowercase_=True , lowercase_=5_0_2_5_6 , lowercase_=5_0_2_5_6 , **lowercase_ , ) -> Optional[int]: __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = hidden_size __snake_case = num_layers __snake_case = num_heads __snake_case = intermediate_size __snake_case = window_size __snake_case = activation_function __snake_case = resid_dropout __snake_case = embed_dropout __snake_case = attention_dropout __snake_case = classifier_dropout __snake_case = layer_norm_epsilon __snake_case = initializer_range __snake_case = use_cache __snake_case = bos_token_id __snake_case = eos_token_id __snake_case = attention_types __snake_case = self.expand_attention_types_params(_A) if len(self.attention_layers) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F"but is `len(config.attention_layers) = {len(self.attention_layers)}`, " F"`config.num_layers = {self.num_layers}`. " '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.') super().__init__(bos_token_id=_A , eos_token_id=_A , **_A) @staticmethod def _a ( lowercase_) -> List[str]: __snake_case = [] for item in attention_types: for _ in range(item[1]): attentions.extend(item[0]) return attentions def A ( snake_case__ : int , snake_case__ : Tuple , snake_case__ : int , snake_case__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' import torch __snake_case = input.size() __snake_case = len(snake_case__ ) __snake_case = shape[dimension] __snake_case = torch.arange(0 , snake_case__ , snake_case__ ) __snake_case = torch.div(sizedim - size , snake_case__ , rounding_mode='floor' ) + 1 __snake_case = torch.arange(snake_case__ ) + low_indices[:min_length][:, None] __snake_case = [slice(snake_case__ )] * rank __snake_case = indices __snake_case = input[s] __snake_case = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(snake_case__ ) def A ( snake_case__ : Any , snake_case__ : Optional[Any] ) -> List[Any]: '''simple docstring''' import torch __snake_case = torch.arange(1 , snake_case__ ) __snake_case = torch.remainder(snake_case__ , snake_case__ ) __snake_case = remainders == 0 __snake_case = candidates[divisor_indices] __snake_case = torch.max(snake_case__ ) return largest_divisor, torch.div(snake_case__ , snake_case__ , rounding_mode='floor' ) class __lowercase ( snake_case__ ): @property def _a ( self) -> int: __snake_case = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}}) if self.use_past: self.fill_with_past_key_values_(_A , direction='inputs') __snake_case = {0: 'batch', 1: 'past_sequence + sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return common_inputs @property def _a ( self) -> Dict: return self._config.num_heads def _a ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ) -> int: __snake_case = super(_A , self).generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A) # We need to order the input in the way they appears in the forward() __snake_case = OrderedDict({'input_ids': common_inputs['input_ids']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch __snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values __snake_case = seqlen + 2 __snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case = [ (torch.zeros(_A), torch.zeros(_A)) for _ in range(self.num_layers) ] __snake_case = common_inputs['attention_mask'] if self.use_past: __snake_case = ordered_inputs['attention_mask'].dtype __snake_case = torch.cat( [ordered_inputs['attention_mask'], torch.ones(_A , _A , dtype=_A)] , dim=1) return ordered_inputs @property def _a ( self) -> Tuple: return 1_3
711
import numpy as np def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
676
0
lowerCAmelCase__ : List[Any] ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase__ : List[Any] =[{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase__ : str ={ '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
101
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( __lowercase , __lowercase ): @register_to_config def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None ) -> List[str]: super().__init__() __lowerCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __lowerCamelCase = torch.zeros(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase = None __lowerCamelCase = torch.nn.Parameter(SCREAMING_SNAKE_CASE__ ) class lowerCAmelCase__ ( __lowercase ): a__ : VQModel a__ : CLIPTextModel a__ : CLIPTokenizer a__ : TransformeraDModel a__ : LearnedClassifierFreeSamplingEmbeddings a__ : VQDiffusionScheduler def __init__( self : int , SCREAMING_SNAKE_CASE__ : VQModel , SCREAMING_SNAKE_CASE__ : CLIPTextModel , SCREAMING_SNAKE_CASE__ : CLIPTokenizer , SCREAMING_SNAKE_CASE__ : TransformeraDModel , SCREAMING_SNAKE_CASE__ : VQDiffusionScheduler , SCREAMING_SNAKE_CASE__ : LearnedClassifierFreeSamplingEmbeddings , ) -> Any: super().__init__() self.register_modules( vqvae=SCREAMING_SNAKE_CASE__ , transformer=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , learned_classifier_free_sampling_embeddings=SCREAMING_SNAKE_CASE__ , ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: __lowerCamelCase = len(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else 1 # get prompt text embeddings __lowerCamelCase = self.tokenizer( SCREAMING_SNAKE_CASE__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=SCREAMING_SNAKE_CASE__ ) # duplicate text embeddings for each generation per prompt __lowerCamelCase = prompt_embeds.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings __lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(SCREAMING_SNAKE_CASE__ , 1 , 1 ) else: __lowerCamelCase = [''''''] * batch_size __lowerCamelCase = text_input_ids.shape[-1] __lowerCamelCase = self.tokenizer( SCREAMING_SNAKE_CASE__ , padding='''max_length''' , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , ) __lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=SCREAMING_SNAKE_CASE__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase = negative_prompt_embeds.shape[1] __lowerCamelCase = negative_prompt_embeds.repeat(1 , SCREAMING_SNAKE_CASE__ , 1 ) __lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : int , SCREAMING_SNAKE_CASE__ : Union[str, List[str]] , SCREAMING_SNAKE_CASE__ : int = 1_00 , SCREAMING_SNAKE_CASE__ : float = 5.0 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE__ : int = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = 1 elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = len(SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE__ )}''' ) __lowerCamelCase = batch_size * num_images_per_prompt __lowerCamelCase = guidance_scale > 1.0 __lowerCamelCase = self._encode_prompt(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(SCREAMING_SNAKE_CASE__ )}.''' ) # get the initial completely masked latents unless the user supplied it __lowerCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __lowerCamelCase = self.transformer.num_vector_embeds - 1 __lowerCamelCase = torch.full(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) __lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , device=self.device ) __lowerCamelCase = self.scheduler.timesteps.to(self.device ) __lowerCamelCase = latents for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE__ ) ): # expand the sample if we are doing classifier free guidance __lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __lowerCamelCase = self.transformer(SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ ).sample if do_classifier_free_guidance: __lowerCamelCase , __lowerCamelCase = model_output.chunk(2 ) __lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(SCREAMING_SNAKE_CASE__ , dim=1 , keepdim=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.truncate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # remove `log(0)`'s (`-inf`s) __lowerCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , sample=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.vqvae.config.vq_embed_dim __lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __lowerCamelCase = self.vqvae.quantize.get_codebook_entry(SCREAMING_SNAKE_CASE__ , shape=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.vqvae.decode(SCREAMING_SNAKE_CASE__ , force_not_quantize=SCREAMING_SNAKE_CASE__ ).sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : float ) -> torch.FloatTensor: __lowerCamelCase , __lowerCamelCase = torch.sort(SCREAMING_SNAKE_CASE__ , 1 , descending=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.exp(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) __lowerCamelCase = keep_mask[:, :-1, :] __lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) __lowerCamelCase = log_p_x_0.clone() __lowerCamelCase = -torch.inf # -inf = log(0) return rv
298
0
import string from math import logaa def lowerCAmelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __lowercase = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) __lowercase = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCAmelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" __lowercase = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split("""\n""" ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(UpperCamelCase__ )) def lowerCAmelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : List[Any]=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def lowerCAmelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" return round(tf * idf , 3 )
704
"""simple docstring""" def lowerCAmelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" assert x is not None assert y is not None __lowercase = len(UpperCamelCase__ ) __lowercase = len(UpperCamelCase__ ) # declaring the array for storing the dp values __lowercase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): __lowercase = 1 if x[i - 1] == y[j - 1] else 0 __lowercase = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) __lowercase = """""" __lowercase , __lowercase = m, n while i > 0 and j > 0: __lowercase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __lowercase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": UpperCAmelCase__ ="AGGTAB" UpperCAmelCase__ ="GXTXAYB" UpperCAmelCase__ =4 UpperCAmelCase__ ="GTAB" UpperCAmelCase__ , UpperCAmelCase__ =longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
442
0
'''simple docstring''' def a__ ( lowercase : int, lowercase : int ) -> str: """simple docstring""" return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1, number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
98
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _snake_case (__lowercase=32 , __lowercase=10 , __lowercase=100 , __lowercase=1026 , __lowercase=True , __lowercase="data/tokenized_stories_train_wikitext103.jbl" , __lowercase="igf_context_pairs.jbl" , ): set_seed(3) # generate train_data and objective_set UpperCamelCase_ , UpperCamelCase_ = generate_datasets( __lowercase , __lowercase , number=__lowercase , min_len=1026 , trim=__lowercase) # keeps model same across runs set_seed(4) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # load pretrained model UpperCamelCase_ = load_gpta('gpt2').to(__lowercase) print('computing perplexity on objective set') UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase).item() print('perplexity on objective set:' , __lowercase) # collect igf pairs and save to file demo.jbl collect_objective_set(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _snake_case (__lowercase , __lowercase=15 , __lowercase=128 , __lowercase=100 , __lowercase="igf_model.pt" , ): set_seed(42) # Load pre-trained model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') # Initialize secondary learner to use embedding weights of model UpperCamelCase_ = SecondaryLearner(__lowercase) # Train secondary learner UpperCamelCase_ = train_secondary_learner( __lowercase , __lowercase , max_epochs=__lowercase , batch_size=__lowercase , eval_freq=100 , igf_model_path=__lowercase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=32 , __lowercase=1000 , __lowercase=16 , __lowercase=1.0 , __lowercase=recopy_gpta , __lowercase=None , __lowercase=10 , __lowercase="gpt2_finetuned.pt" , ): UpperCamelCase_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') UpperCamelCase_ = RandomSampler(__lowercase) UpperCamelCase_ = DataLoader(__lowercase , sampler=__lowercase) UpperCamelCase_ = max_steps // (len(__lowercase)) + 1 UpperCamelCase_ = 0 UpperCamelCase_ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowercase) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = recopy_model(__lowercase , __lowercase , __lowercase) model.train() if secondary_learner is not None: secondary_learner.to(__lowercase) secondary_learner.eval() UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = [] UpperCamelCase_ = [] # Compute the performance of the transformer model at the beginning UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) for epoch in range(int(__lowercase)): for step, example in enumerate(__lowercase): torch.cuda.empty_cache() UpperCamelCase_ = random.randint(0 , example.size(2) - context_len - 1) UpperCamelCase_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCamelCase_ = model(__lowercase , labels=__lowercase) UpperCamelCase_ = True if secondary_learner is not None: UpperCamelCase_ = secondary_learner.forward( torch.tensor(__lowercase , dtype=torch.long , device=__lowercase).unsqueeze(0))[0].item() observed_qs.append(float(__lowercase)) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCamelCase_ = -1 if predicted_q < threshold: UpperCamelCase_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu())) UpperCamelCase_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCamelCase_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCamelCase_ = compute_perplexity(__lowercase , __lowercase , __lowercase) test_perps.append(__lowercase) print('Test perplexity, step' , __lowercase , ':' , __lowercase) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __lowercase) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task') # Required parameters parser.add_argument( '--data_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=__lowercase , type=__lowercase , required=__lowercase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=__lowercase , default=__lowercase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=__lowercase , default=__lowercase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=__lowercase , type=__lowercase , required=__lowercase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=__lowercase , type=__lowercase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=__lowercase , default=__lowercase , help='A seed for reproducible training.') parser.add_argument( '--context_len' , default=32 , type=__lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=__lowercase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=__lowercase , help='secondary model evaluation is triggered at eval_freq') parser.add_argument('--max_steps' , default=1000 , type=__lowercase , help='To calculate training epochs') parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=__lowercase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=__lowercase , help='batch size of training data of language model(gpt2) ') parser.add_argument( '--eval_interval' , default=10 , type=__lowercase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=__lowercase , help='The number of examples split to be used as objective_set/test_data') parser.add_argument( '--min_len' , default=1026 , type=__lowercase , help='The minimum length of the article to be used as objective set') parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=__lowercase , help='number of epochs to train secondary learner') parser.add_argument('--trim' , default=__lowercase , type=__lowercase , help='truncate the example if it exceeds context length') parser.add_argument( '--threshold' , default=1.0 , type=__lowercase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=__lowercase , help='finetuned_model_name') parser.add_argument( '--recopy_model' , default=__lowercase , type=__lowercase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowercase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner UpperCamelCase_ = joblib.load('data/IGF_values.jbl') # Train secondary learner UpperCamelCase_ = training_secondary_learner( __lowercase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model UpperCamelCase_ = GPTaLMHeadModel.from_pretrained('gpt2') set_seed(42) # Generate train and test data to train and evaluate gpt2 model UpperCamelCase_ , UpperCamelCase_ = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=__lowercase) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __lowercase , __lowercase , __lowercase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowercase , secondary_learner=__lowercase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
23
0
def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: '''simple docstring''' UpperCAmelCase_ = int(__UpperCAmelCase ) # Initialize Result UpperCAmelCase_ = [] # Traverse through all denomination for denomination in reversed(__UpperCAmelCase ): # Find denominations while int(__UpperCAmelCase ) >= int(__UpperCAmelCase ): total_value -= int(__UpperCAmelCase ) answer.append(__UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase_ = [] UpperCamelCase_ = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): UpperCamelCase_ = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(f"Denomination {i}: ").strip())) UpperCamelCase_ = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase_ = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] UpperCamelCase_ = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(f"Following is minimal change for {value}: ") UpperCamelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
561
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : List[Any] =SpeechTaTokenizer UpperCamelCase__ : Optional[Any] =False UpperCamelCase__ : List[Any] =True def __a ( self :Union[str, Any]) -> int: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = SpeechTaTokenizer(_lowercase) UpperCAmelCase_ = AddedToken('''<mask>''' , lstrip=_lowercase , rstrip=_lowercase) UpperCAmelCase_ = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token}) tokenizer.add_tokens(['''<ctc_blank>''']) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Tuple , _lowercase :Optional[int]) -> Optional[int]: UpperCAmelCase_ = '''this is a test''' UpperCAmelCase_ = '''this is a test''' return input_text, output_text def __a ( self :List[Any] , _lowercase :str , _lowercase :List[str]=False , _lowercase :Union[str, Any]=20 , _lowercase :Any=5) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ = self.get_input_output_texts(_lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = tokenizer.decode(_lowercase , clean_up_tokenization_spaces=_lowercase) return text, ids def __a ( self :Dict) -> str: UpperCAmelCase_ = '''<pad>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :int) -> Dict: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<s>''') self.assertEqual(vocab_keys[1] , '''<pad>''') self.assertEqual(vocab_keys[-4] , '''œ''') self.assertEqual(vocab_keys[-2] , '''<mask>''') self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''') self.assertEqual(len(_lowercase) , 81) def __a ( self :Dict) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 79) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.get_tokenizers(do_lower_case=_lowercase) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = len(_lowercase) self.assertNotEqual(_lowercase , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCAmelCase_ = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] UpperCAmelCase_ = tokenizer.add_tokens(_lowercase) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = len(_lowercase) self.assertNotEqual(_lowercase , 0) self.assertEqual(_lowercase , _lowercase) self.assertEqual(_lowercase , len(_lowercase)) self.assertEqual(_lowercase , all_size + len(_lowercase)) UpperCAmelCase_ = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=_lowercase) self.assertGreaterEqual(len(_lowercase) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) UpperCAmelCase_ = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} UpperCAmelCase_ = tokenizer.add_special_tokens(_lowercase) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = len(_lowercase) self.assertNotEqual(_lowercase , 0) self.assertEqual(_lowercase , _lowercase) self.assertEqual(_lowercase , len(_lowercase)) self.assertEqual(_lowercase , all_size_a + len(_lowercase)) UpperCAmelCase_ = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=_lowercase) self.assertGreaterEqual(len(_lowercase) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) def __a ( self :Any) -> List[str]: pass def __a ( self :Any) -> Tuple: pass def __a ( self :Dict) -> Dict: UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') # fmt: off self.assertListEqual(_lowercase , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t''']) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) # fmt: off self.assertListEqual(_lowercase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26]) # fmt: on UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.''']) @slow def __a ( self :Any) -> List[Any]: # Use custom sequence because this tokenizer does not handle numbers. UpperCAmelCase_ = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off UpperCAmelCase_ = { '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=_lowercase , )
561
1
'''simple docstring''' __UpperCAmelCase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def _snake_case ( A ) -> str: assert type(A ) in (int, float) and decimal == int(A ) lowerCAmelCase__ = int(A ) lowerCAmelCase__ = '''''' lowerCAmelCase__ = False if decimal < 0: lowerCAmelCase__ = True decimal *= -1 while decimal > 0: lowerCAmelCase__ , lowerCAmelCase__ = divmod(A , 16 ) lowerCAmelCase__ = values[remainder] + hexadecimal lowerCAmelCase__ = '''0x''' + hexadecimal if negative: lowerCAmelCase__ = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
90
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : Tuple = """Hello world! cécé herlolip""" def _A ( A ,A ,A ) -> str: lowercase : Optional[Any] = FairseqRobertaModel.from_pretrained(A ) roberta.eval() # disable dropout lowercase : int = roberta.model.encoder.sentence_encoder lowercase : Tuple = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=5_1_4 ,type_vocab_size=1 ,layer_norm_eps=1e-5 ,) if classification_head: lowercase : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" ,A ) lowercase : Union[str, Any] = XLMRobertaXLForSequenceClassification(A ) if classification_head else XLMRobertaXLForMaskedLM(A ) model.eval() # Now let's copy all the weights. # Embeddings lowercase : Optional[Any] = roberta_sent_encoder.embed_tokens.weight lowercase : Dict = roberta_sent_encoder.embed_positions.weight lowercase : str = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowercase : Dict = roberta_sent_encoder.layer_norm.weight lowercase : str = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowercase : BertLayer = model.roberta.encoder.layer[i] lowercase : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] lowercase : RobertaAttention = layer.attention lowercase : str = roberta_layer.self_attn_layer_norm.weight lowercase : List[str] = roberta_layer.self_attn_layer_norm.bias # self attention lowercase : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowercase : str = roberta_layer.self_attn.q_proj.weight lowercase : List[str] = roberta_layer.self_attn.q_proj.bias lowercase : Union[str, Any] = roberta_layer.self_attn.k_proj.weight lowercase : List[Any] = roberta_layer.self_attn.k_proj.bias lowercase : Dict = roberta_layer.self_attn.v_proj.weight lowercase : Tuple = roberta_layer.self_attn.v_proj.bias # self-attention output lowercase : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowercase : Tuple = roberta_layer.self_attn.out_proj.weight lowercase : str = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowercase : List[Any] = roberta_layer.final_layer_norm.weight lowercase : Optional[Any] = roberta_layer.final_layer_norm.bias # intermediate lowercase : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowercase : Optional[int] = roberta_layer.fca.weight lowercase : Dict = roberta_layer.fca.bias # output lowercase : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowercase : Optional[int] = roberta_layer.fca.weight lowercase : str = roberta_layer.fca.bias # end of layer if classification_head: lowercase : int = roberta.model.classification_heads["mnli"].dense.weight lowercase : List[Any] = roberta.model.classification_heads["mnli"].dense.bias lowercase : Union[str, Any] = roberta.model.classification_heads["mnli"].out_proj.weight lowercase : Any = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head lowercase : str = roberta.model.encoder.lm_head.dense.weight lowercase : List[Any] = roberta.model.encoder.lm_head.dense.bias lowercase : str = roberta.model.encoder.lm_head.layer_norm.weight lowercase : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.bias lowercase : int = roberta.model.encoder.lm_head.weight lowercase : Optional[int] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowercase : torch.Tensor = roberta.encode(A ).unsqueeze(0 ) # batch of size 1 lowercase : Tuple = model(A )[0] if classification_head: lowercase : Union[str, Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(A ) ) else: lowercase : Optional[Any] = roberta.model(A )[0] print(our_output.shape ,their_output.shape ) lowercase : Optional[Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 lowercase : Dict = torch.allclose(A ,A ,atol=1e-3 ) print("Do both models output the same tensors?" ,"🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(A ).mkdir(parents=A ,exist_ok=A ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) lowerCAmelCase : Optional[Any] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
372
0
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a = logging.getLogger(__name__) a = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__magic_name__ )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class UpperCamelCase__ : __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The input training data file (a text file).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=__magic_name__ , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __SCREAMING_SNAKE_CASE : bool = field(default=__magic_name__ , metadata={'help': 'Whether ot not to use whole word mask.'} ) __SCREAMING_SNAKE_CASE : float = field( default=0.1_5 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __SCREAMING_SNAKE_CASE : float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __SCREAMING_SNAKE_CASE : int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __SCREAMING_SNAKE_CASE : int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __SCREAMING_SNAKE_CASE : bool = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False , UpperCAmelCase__ = None , ): def _dataset(UpperCAmelCase__ , UpperCAmelCase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=UpperCAmelCase__ , file_path=UpperCAmelCase__ , block_size=args.block_size , ref_path=UpperCAmelCase__ , ) return LineByLineTextDataset(tokenizer=UpperCAmelCase__ , file_path=UpperCAmelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=UpperCAmelCase__ , file_path=UpperCAmelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=UpperCAmelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(UpperCAmelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def UpperCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCAmelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowercase_ = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowercase_ = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowercase_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: lowercase_ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowercase_ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: lowercase_ = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) lowercase_ = AutoModelWithLMHead.from_config(UpperCAmelCase__ ) model.resize_token_embeddings(len(UpperCAmelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: lowercase_ = tokenizer.max_len # Our input block size will be the max possible for the model else: lowercase_ = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowercase_ = ( get_dataset(UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowercase_ = ( get_dataset(UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , evaluate=UpperCAmelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowercase_ = DataCollatorForPermutationLanguageModeling( tokenizer=UpperCAmelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowercase_ = DataCollatorForWholeWordMask( tokenizer=UpperCAmelCase__ , mlm_probability=data_args.mlm_probability ) else: lowercase_ = DataCollatorForLanguageModeling( tokenizer=UpperCAmelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase_ = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , prediction_loss_only=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase_ = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=UpperCAmelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase_ = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase_ = trainer.evaluate() lowercase_ = math.exp(eval_output["""eval_loss"""] ) lowercase_ = {"""perplexity""": perplexity} lowercase_ = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(UpperCAmelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , UpperCAmelCase__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(UpperCAmelCase__ ) return results def UpperCAmelCase_ ( UpperCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
650
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
650
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ ={ 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowercase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
521
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : @staticmethod def lowerCAmelCase (*snake_case_ : int , **snake_case_ : List[str] ): pass @is_pipeline_test @require_vision @require_timm @require_torch class UpperCamelCase__ ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = MODEL_FOR_OBJECT_DETECTION_MAPPING def lowerCAmelCase (self : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Dict ): __a : Union[str, Any] = ObjectDetectionPipeline(model=snake_case_ , image_processor=snake_case_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowerCAmelCase (self : Tuple , snake_case_ : List[str] , snake_case_ : Any ): __a : Any = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 ) self.assertGreater(len(snake_case_ ) , 0 ) for detected_object in outputs: self.assertEqual( snake_case_ , { '''score''': ANY(snake_case_ ), '''label''': ANY(snake_case_ ), '''box''': {'''xmin''': ANY(snake_case_ ), '''ymin''': ANY(snake_case_ ), '''xmax''': ANY(snake_case_ ), '''ymax''': ANY(snake_case_ )}, } , ) import datasets __a : List[Any] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) __a : List[str] = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] __a : Optional[int] = object_detector(snake_case_ , threshold=0.0 ) self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for outputs in batch_outputs: self.assertGreater(len(snake_case_ ) , 0 ) for detected_object in outputs: self.assertEqual( snake_case_ , { '''score''': ANY(snake_case_ ), '''label''': ANY(snake_case_ ), '''box''': {'''xmin''': ANY(snake_case_ ), '''ymin''': ANY(snake_case_ ), '''xmax''': ANY(snake_case_ ), '''ymax''': ANY(snake_case_ )}, } , ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def lowerCAmelCase (self : int ): pass @require_torch def lowerCAmelCase (self : Tuple ): __a : str = '''hf-internal-testing/tiny-detr-mobilenetsv3''' __a : int = AutoModelForObjectDetection.from_pretrained(snake_case_ ) __a : int = AutoFeatureExtractor.from_pretrained(snake_case_ ) __a : Union[str, Any] = ObjectDetectionPipeline(model=snake_case_ , feature_extractor=snake_case_ ) __a : List[str] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ] , ) __a : Dict = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ], [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ], ] , ) @require_torch @slow def lowerCAmelCase (self : List[Any] ): __a : Optional[Any] = '''facebook/detr-resnet-50''' __a : int = AutoModelForObjectDetection.from_pretrained(snake_case_ ) __a : str = AutoFeatureExtractor.from_pretrained(snake_case_ ) __a : Tuple = ObjectDetectionPipeline(model=snake_case_ , feature_extractor=snake_case_ ) __a : Union[str, Any] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) __a : Optional[Any] = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], ] , ) @require_torch @slow def lowerCAmelCase (self : Optional[int] ): __a : Any = '''facebook/detr-resnet-50''' __a : Optional[Any] = pipeline('''object-detection''' , model=snake_case_ ) __a : Optional[int] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) __a : List[str] = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], ] , ) @require_torch @slow def lowerCAmelCase (self : Union[str, Any] ): __a : Tuple = 0.9985 __a : Tuple = '''facebook/detr-resnet-50''' __a : int = pipeline('''object-detection''' , model=snake_case_ ) __a : Optional[Any] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=snake_case_ ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) @require_torch @require_pytesseract @slow def lowerCAmelCase (self : List[str] ): __a : Optional[int] = '''Narsil/layoutlmv3-finetuned-funsd''' __a : Any = 0.9993 __a : Tuple = pipeline('''object-detection''' , model=snake_case_ , threshold=snake_case_ ) __a : Optional[Any] = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_9_4, '''ymin''': 2_5_4, '''xmax''': 3_4_3, '''ymax''': 2_6_4}}, {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_9_4, '''ymin''': 2_5_4, '''xmax''': 3_4_3, '''ymax''': 2_6_4}}, ] , )
521
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : int): if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=_UpperCamelCase , ) assert hasattr(self , "env") def UpperCAmelCase__ ( self : Union[str, Any] , _UpperCamelCase : Dict): # configuration for running training on smdistributed Model Parallel _lowercase: Union[str, Any] = { "enabled": True, "processes_per_host": 8, } _lowercase: Union[str, Any] = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } _lowercase: str = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} _lowercase: Optional[Any] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" , instance_count=_UpperCamelCase , instance_type=self.instance_type , debugger_hook_config=_UpperCamelCase , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=_UpperCamelCase , py_version="py36" , ) def UpperCAmelCase__ ( self : str , _UpperCamelCase : List[str]): TrainingJobAnalytics(_UpperCamelCase).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(1,)]) def UpperCAmelCase__ ( self : Dict , _UpperCamelCase : Dict): # create estimator _lowercase: Dict = self.create_estimator(_UpperCamelCase) # run training estimator.fit() # result dataframe _lowercase: Tuple = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _lowercase: List[str] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) _lowercase: int = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowercase: Optional[Any] = ( Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds" , 999_999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) assert all(t <= self.results["eval_loss"] for t in eval_loss) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json" , "w") as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , _UpperCamelCase)
713
def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): return abs(__magic_name__ ) if a == 0 else greatest_common_divisor(b % a , __magic_name__ ) def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): while y: # --> when y=0 then loop will terminate and return x as final GCD. _lowercase , _lowercase: Any = y, x % y return abs(__magic_name__ ) def __lowerCAmelCase ( ): try: _lowercase: Optional[int] = input("Enter two integers separated by comma (,): " ).split("," ) _lowercase: Any = int(nums[0] ) _lowercase: int = int(nums[1] ) print( f"greatest_common_divisor({num_a}, {num_a}) = " f"{greatest_common_divisor(__magic_name__ , __magic_name__ )}" ) print(f"By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__magic_name__ , __magic_name__ )}" ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
206
0
import socket def a_ ( ): lowerCAmelCase__ = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowerCAmelCase__ = socket.gethostname() lowerCAmelCase__ = 1_23_12 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: lowerCAmelCase__ = sock.recv(10_24 ) if not data: break out_file.write(__lowerCAmelCase ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
615
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ : Optional[Any] = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : int = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __magic_name__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
615
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging A = logging.get_logger(__name__) def lowerCamelCase ( UpperCamelCase : Any , UpperCamelCase : Optional[int] ) -> Any: try: with open(UpperCamelCase , 'rb' ) as flax_state_f: _lowerCamelCase = from_bytes(UpperCamelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(UpperCamelCase ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(UpperCamelCase , UpperCamelCase ) def lowerCamelCase ( UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] ) -> Tuple: try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights _lowerCamelCase = flatten_dict(jax.tree_util.tree_map(lambda UpperCamelCase : x.dtype == jnp.bfloataa , UpperCamelCase ) ).values() if any(UpperCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) _lowerCamelCase = jax.tree_util.tree_map( lambda UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCamelCase ) _lowerCamelCase = '' _lowerCamelCase = flatten_dict(UpperCamelCase , sep='.' ) _lowerCamelCase = pt_model.state_dict() # keep track of unexpected & missing keys _lowerCamelCase = [] _lowerCamelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _lowerCamelCase = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: _lowerCamelCase = flax_key_tuple_array[:-1] + ['weight'] _lowerCamelCase = jnp.transpose(UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": _lowerCamelCase = flax_key_tuple_array[:-1] + ['weight'] _lowerCamelCase = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": _lowerCamelCase = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(UpperCamelCase ): _lowerCamelCase = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) _lowerCamelCase = '.'.join(UpperCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict _lowerCamelCase = np.asarray(UpperCamelCase ) if not isinstance(UpperCamelCase , np.ndarray ) else flax_tensor _lowerCamelCase = torch.from_numpy(UpperCamelCase ) # remove from missing keys missing_keys.remove(UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCamelCase ) pt_model.load_state_dict(UpperCamelCase ) # re-transform missing_keys to list _lowerCamelCase = list(UpperCamelCase ) if len(UpperCamelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(UpperCamelCase ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ' use it for predictions and inference.' ) return pt_model
234
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase ( ) -> tuple[list[int], int]: _lowerCamelCase = [randint(-10_00 , 10_00 ) for i in range(10 )] _lowerCamelCase = randint(-50_00 , 50_00 ) return (arr, r) A = make_dataset() def lowerCamelCase ( UpperCamelCase : list[int] , UpperCamelCase : int ) -> tuple[int, ...]: for triplet in permutations(UpperCamelCase , 3 ): if sum(UpperCamelCase ) == target: return tuple(sorted(UpperCamelCase ) ) return (0, 0, 0) def lowerCamelCase ( UpperCamelCase : list[int] , UpperCamelCase : int ) -> tuple[int, int, int]: arr.sort() _lowerCamelCase = len(UpperCamelCase ) for i in range(n - 1 ): _lowerCamelCase , _lowerCamelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase ( ) -> tuple[float, float]: _lowerCamelCase = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' _lowerCamelCase = '\ntriplet_sum1(*dataset)\n' _lowerCamelCase = '\ntriplet_sum2(*dataset)\n' _lowerCamelCase = repeat(setup=UpperCamelCase , stmt=UpperCamelCase , repeat=5 , number=1_00_00 ) _lowerCamelCase = repeat(setup=UpperCamelCase , stmt=UpperCamelCase , repeat=5 , number=1_00_00 ) return (min(UpperCamelCase ), min(UpperCamelCase )) if __name__ == "__main__": from doctest import testmod testmod() A = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
234
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
199
'''simple docstring''' import math def snake_case_ ( lowercase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( lowercase__ = 0.1 ): UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : Tuple = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
199
1
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" def lowerCAmelCase_ ( self : Any ): a__ = tempfile.mkdtemp() a__ = 8 # DPR tok a__ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a__ = os.path.join(self.tmpdirname ,"dpr_tokenizer" ) os.makedirs(a__ ,exist_ok=a__ ) a__ = os.path.join(a__ ,DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok a__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] a__ = dict(zip(a__ ,range(len(a__ ) ) ) ) a__ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] a__ = {"unk_token": "<unk>"} a__ = os.path.join(self.tmpdirname ,"bart_tokenizer" ) os.makedirs(a__ ,exist_ok=a__ ) a__ = os.path.join(a__ ,BART_VOCAB_FILES_NAMES["vocab_file"] ) a__ = os.path.join(a__ ,BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(a__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(a__ ) ) def lowerCAmelCase_ ( self : List[str] ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"dpr_tokenizer" ) ) def lowerCAmelCase_ ( self : Optional[int] ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"dpr_tokenizer" ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"bart_tokenizer" ) ) def lowerCAmelCase_ ( self : Optional[Any] ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self : Optional[Any] ): a__ = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" ,string_factory="Flat" ,metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def lowerCAmelCase_ ( self : Dict ): a__ = self.get_dummy_dataset() a__ = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: a__ = dataset a__ = RagRetriever( a__ ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) return retriever def lowerCAmelCase_ ( self : Optional[int] ,a__ : bool ): a__ = self.get_dummy_dataset() a__ = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name="custom" ,) if from_disk: a__ = os.path.join(self.tmpdirname ,"dataset" ) a__ = os.path.join(self.tmpdirname ,"index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname ,"index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname ,"dataset" ) ) del dataset a__ = RagRetriever( a__ ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) else: a__ = RagRetriever( a__ ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,index=CustomHFIndex(config.retrieval_vector_size ,a__ ) ,) return retriever def lowerCAmelCase_ ( self : List[str] ): a__ = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" ,string_factory="Flat" ,metric_type=faiss.METRIC_INNER_PRODUCT ) a__ = os.path.join(self.tmpdirname ,"hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" ,index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] ,open(index_file_name + ".index_meta.dpr" ,"wb" ) ) a__ = os.path.join(self.tmpdirname ,"psgs_w100.tsv.pkl" ) a__ = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(a__ ,open(a__ ,"wb" ) ) a__ = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name="legacy" ,index_path=self.tmpdirname ,) a__ = RagRetriever( a__ ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ) return retriever def lowerCAmelCase_ ( self : List[str] ): a__ = 1 a__ = self.get_dummy_canonical_hf_index_retriever() a__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) a__ , a__ , a__ = retriever.retrieve(a__ ,n_docs=a__ ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(a__ ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) ,a__ ) self.assertEqual(doc_dicts[0]["id"][0] ,"1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] ,"0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def lowerCAmelCase_ ( self : Optional[Any] ): a__ = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: a__ = self.get_dummy_dataset() retriever.save_pretrained(a__ ) a__ = RagRetriever.from_pretrained(a__ ) self.assertIsInstance(a__ ,a__ ) a__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) a__ = retriever.retrieve(a__ ,n_docs=1 ) self.assertTrue(out is not None ) def lowerCAmelCase_ ( self : Optional[int] ): a__ = 1 a__ = self.get_dummy_custom_hf_index_retriever(from_disk=a__ ) a__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) a__ , a__ , a__ = retriever.retrieve(a__ ,n_docs=a__ ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(a__ ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) ,a__ ) self.assertEqual(doc_dicts[0]["id"][0] ,"1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] ,"0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def lowerCAmelCase_ ( self : Union[str, Any] ): a__ = self.get_dummy_custom_hf_index_retriever(from_disk=a__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(a__ ) a__ = RagRetriever.from_pretrained(a__ ) self.assertIsInstance(a__ ,a__ ) a__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) a__ = retriever.retrieve(a__ ,n_docs=1 ) self.assertTrue(out is not None ) def lowerCAmelCase_ ( self : List[str] ): a__ = 1 a__ = self.get_dummy_custom_hf_index_retriever(from_disk=a__ ) a__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) a__ , a__ , a__ = retriever.retrieve(a__ ,n_docs=a__ ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(a__ ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) ,a__ ) self.assertEqual(doc_dicts[0]["id"][0] ,"1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] ,"0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def lowerCAmelCase_ ( self : Dict ): a__ = self.get_dummy_custom_hf_index_retriever(from_disk=a__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(a__ ) a__ = RagRetriever.from_pretrained(a__ ) self.assertIsInstance(a__ ,a__ ) a__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) a__ = retriever.retrieve(a__ ,n_docs=1 ) self.assertTrue(out is not None ) def lowerCAmelCase_ ( self : Optional[Any] ): a__ = 1 a__ = self.get_dummy_legacy_index_retriever() a__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) a__ , a__ , a__ = retriever.retrieve(a__ ,n_docs=a__ ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(a__ ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) ,a__ ) self.assertEqual(doc_dicts[0]["text"][0] ,"bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] ,"foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def lowerCAmelCase_ ( self : List[Any] ): a__ = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(a__ ) a__ = RagRetriever.from_pretrained(a__ ) self.assertIsInstance(a__ ,a__ ) a__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) a__ = retriever.retrieve(a__ ,n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def lowerCAmelCase_ ( self : List[Any] ): import torch a__ = 1 a__ = self.get_dummy_canonical_hf_index_retriever() a__ = [[5, 7], [10, 11]] a__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) a__ = retriever(a__ ,a__ ,prefix=retriever.config.generator.prefix ,n_docs=a__ ) a__ , a__ , a__ = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(a__ ,a__ ) self.assertIsInstance(a__ ,a__ ) self.assertIsInstance(a__ ,np.ndarray ) a__ = retriever( a__ ,a__ ,prefix=retriever.config.generator.prefix ,n_docs=a__ ,return_tensors="pt" ,) a__ , a__ , a__ , a__ = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(a__ ,torch.Tensor ) self.assertIsInstance(a__ ,torch.Tensor ) self.assertIsInstance(a__ ,torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def lowerCAmelCase_ ( self : Dict ): a__ = self.get_dpr_ctx_encoder_tokenizer() a__ = 1 a__ = self.get_dummy_custom_hf_index_retriever(from_disk=a__ ) retriever.set_ctx_encoder_tokenizer(a__ ) a__ = [[5, 7], [10, 11]] a__ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) a__ = retriever(a__ ,a__ ,prefix=retriever.config.generator.prefix ,n_docs=a__ ) self.assertEqual( len(a__ ) ,6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) ,a__ ) # check for doc token related keys in dictionary.
394
'''simple docstring''' def _lowerCAmelCase (_lowercase ): """simple docstring""" if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence a__ = gray_code_sequence_string(_lowercase ) # # convert them to integers for i in range(len(_lowercase ) ): a__ = int(sequence[i] , 2 ) return sequence def _lowerCAmelCase (_lowercase ): """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] a__ = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits a__ = gray_code_sequence_string(bit_count - 1 ) a__ = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): a__ = "0" + smaller_sequence[i] sequence.append(_lowercase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): a__ = "1" + smaller_sequence[i] sequence.append(_lowercase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
394
1
"""simple docstring""" from sklearn.metrics import recall_score import datasets __snake_case = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' __snake_case = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' __snake_case = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=1 , lowerCamelCase__="binary" , lowerCamelCase__=None , lowerCamelCase__="warn" , ) -> Tuple: lowercase__ : int = recall_score( lowerCamelCase__ , lowerCamelCase__ , labels=lowerCamelCase__ , pos_label=lowerCamelCase__ , average=lowerCamelCase__ , sample_weight=lowerCamelCase__ , zero_division=lowerCamelCase__ , ) return {"recall": float(lowerCamelCase__ ) if score.size == 1 else score}
200
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = '▁' __snake_case = {'vocab_file': 'sentencepiece.bpe.model'} __snake_case = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } __snake_case = { 'facebook/xglm-564M': 2048, } class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" _a : Optional[int] = VOCAB_FILES_NAMES _a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Any = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__ , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> None: lowercase__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Dict = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] lowercase__ : Tuple = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) lowercase__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) lowercase__ : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Any = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} lowercase__ : Optional[int] = len(self.sp_model ) lowercase__ : Union[str, Any] = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(lowerCamelCase__ ) lowercase__ : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Dict: lowercase__ : Any = self.__dict__.copy() lowercase__ : List[str] = None lowercase__ : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCamelCase__ ) -> Optional[int]: lowercase__ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase__ : Union[str, Any] = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : List[str] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: lowercase__ : str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase__( self ) -> Union[str, Any]: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase__( self ) -> int: lowercase__ : Optional[Any] = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__( self , lowerCamelCase__ ) -> List[str]: return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : List[Any] = self.sp_model.PieceToId(lowerCamelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__( self , lowerCamelCase__ ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> int: lowercase__ : Dict = """""".join(lowerCamelCase__ ).replace(lowerCamelCase__ , """ """ ).strip() return out_string def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ : int = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , """wb""" ) as fi: lowercase__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
200
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowercase : int = logging.get_logger(__name__) class lowerCAmelCase ( a ): """simple docstring""" def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
709
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __lowercase : Optional[Any] = logging.get_logger(__name__) __lowercase : Optional[Any] = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Optional[Any] = "van" def __init__( self , UpperCamelCase__=224 , UpperCamelCase__=3 , UpperCamelCase__=[7, 3, 3, 3] , UpperCamelCase__=[4, 2, 2, 2] , UpperCamelCase__=[64, 128, 320, 512] , UpperCamelCase__=[3, 3, 12, 3] , UpperCamelCase__=[8, 8, 4, 4] , UpperCamelCase__="gelu" , UpperCamelCase__=0.02 , UpperCamelCase__=1e-6 , UpperCamelCase__=1e-2 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = patch_sizes lowerCamelCase_ = strides lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = mlp_ratios lowerCamelCase_ = hidden_act lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = layer_scale_init_value lowerCamelCase_ = drop_path_rate lowerCamelCase_ = dropout_rate
66
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = '''facebook/bart-large-mnli''' lowercase__ : Optional[Any] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) lowercase__ : Tuple = '''text_classifier''' lowercase__ : int = AutoTokenizer lowercase__ : Optional[Any] = AutoModelForSequenceClassification lowercase__ : Optional[Any] = ['''text''', ['''text''']] lowercase__ : Union[str, Any] = ['''text'''] def __magic_name__ ( self ) -> Tuple: super().setup() __magic_name__ : List[Any] = self.model.config __magic_name__ : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): __magic_name__ : List[str] = int(lowerCAmelCase__ ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Optional[Any] = labels return self.pre_processor( [text] * len(lowerCAmelCase__ ) , [F'This example is {label}' for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: __magic_name__ : int = outputs.logits __magic_name__ : Optional[int] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
324
import math def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Optional[int] = len(_A ) __magic_name__ : Tuple = int(math.floor(math.sqrt(_A ) ) ) __magic_name__ : Optional[int] = 0 while arr[min(_A, _A ) - 1] < x: __magic_name__ : Tuple = step step += int(math.floor(math.sqrt(_A ) ) ) if prev >= n: return -1 while arr[prev] < x: __magic_name__ : Union[str, Any] = prev + 1 if prev == min(_A, _A ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": __magic_name__: List[Any] = input("Enter numbers separated by a comma:\n").strip() __magic_name__: List[str] = [int(item) for item in user_input.split(",")] __magic_name__: Optional[int] = int(input("Enter the number to be searched:\n")) __magic_name__: str = jump_search(arr, x) if res == -1: print("Number not found!") else: print(F"""Number {x} is at index {res}""")
324
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,unittest.TestCase ): lowerCAmelCase_ : Optional[int] = StableDiffusionInstructPixaPixPipeline lowerCAmelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} lowerCAmelCase_ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase_ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def A_ ( self : str ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = PNDMScheduler(skip_prk_steps=snake_case ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(snake_case ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A_ ( self : str , snake_case : Optional[int] , snake_case : Optional[int]=0 ) -> Optional[int]: '''simple docstring''' A = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) A = image.cpu().permute(0 , 2 , 3 , 1 )[0] A = Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ) if str(snake_case ).startswith('mps' ): A = torch.manual_seed(snake_case ) else: A = torch.Generator(device=snake_case ).manual_seed(snake_case ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def A_ ( self : int ) -> List[Any]: '''simple docstring''' A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = StableDiffusionInstructPixaPixPipeline(**snake_case ) A = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) A = self.get_dummy_inputs(snake_case ) A = sd_pipe(**snake_case ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A_ ( self : Any ) -> Any: '''simple docstring''' A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = StableDiffusionInstructPixaPixPipeline(**snake_case ) A = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) A = self.get_dummy_inputs(snake_case ) A = 'french fries' A = sd_pipe(**snake_case , negative_prompt=snake_case ) A = output.images A = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = StableDiffusionInstructPixaPixPipeline(**snake_case ) A = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) A = self.get_dummy_inputs(snake_case ) A = [inputs['prompt']] * 2 A = np.array(inputs['image'] ).astype(np.floataa ) / 255.0 A = torch.from_numpy(snake_case ).unsqueeze(0 ).to(snake_case ) A = image / 2 + 0.5 A = image.permute(0 , 3 , 1 , 2 ) A = image.repeat(2 , 1 , 1 , 1 ) A = sd_pipe(**snake_case ).images A = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) A = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A_ ( self : Optional[int] ) -> str: '''simple docstring''' A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' ) A = StableDiffusionInstructPixaPixPipeline(**snake_case ) A = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) A = self.get_dummy_inputs(snake_case ) A = sd_pipe(**snake_case ).images A = image[0, -3:, -3:, -1] A = [round(snake_case , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(snake_case ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) A = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A_ ( self : int ) -> List[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def A_ ( self : Any ) -> Any: '''simple docstring''' A = self.get_dummy_components() A = StableDiffusionInstructPixaPixPipeline(**snake_case ) A = VaeImageProcessor(do_resize=snake_case , do_normalize=snake_case ) A = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) A = pipe(**self.get_dummy_inputs_by_type(snake_case , input_image_type='pt' ) )[0] A = components['vae'] A = self.get_dummy_inputs_by_type(snake_case , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): A = vae.encode(inputs[image_param] ).latent_dist.mode() A = pipe(**snake_case )[0] A = np.abs(out - out_latents_inputs ).max() self.assertLess(snake_case , 1E-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def A_ ( self : Optional[int] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Any , snake_case : List[Any]=0 ) -> Optional[Any]: '''simple docstring''' A = torch.manual_seed(snake_case ) A = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) A = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def A_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' A = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() A = self.get_inputs() A = pipe(**snake_case ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def A_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' A = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() A = self.get_inputs() A = pipe(**snake_case ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def A_ ( self : List[Any] ) -> List[str]: '''simple docstring''' A = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case ) A = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() A = self.get_inputs() A = pipe(**snake_case ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def A_ ( self : List[Any] ) -> Any: '''simple docstring''' A = 0 def callback_fn(snake_case : int , snake_case : int , snake_case : torch.FloatTensor ) -> None: A = True nonlocal number_of_steps number_of_steps += 1 if step == 1: A = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A = latents[0, -3:, -3:, -1] A = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: A = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A = latents[0, -3:, -3:, -1] A = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 A = False A = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case , torch_dtype=torch.floataa ) A = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() A = self.get_inputs() pipe(**snake_case , callback=snake_case , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def A_ ( self : Union[str, Any] ) -> int: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=snake_case , torch_dtype=torch.floataa ) A = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A = self.get_inputs() A = pipe(**snake_case ) A = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def A_ ( self : int ) -> Optional[int]: '''simple docstring''' A = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 A = inputs['image'].resize((504, 504) ) A = 'timbrooks/instruct-pix2pix' A = StableDiffusionInstructPixaPixPipeline.from_pretrained( snake_case , safety_checker=snake_case , ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() A = pipe(**snake_case ) A = output.images[0] A = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) A = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
717
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A = logging.get_logger(__name__) A = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : str = field( default=UpperCamelCase ,metadata={"""help""": """Model type selected in the list: """ + """, """.join(UpperCamelCase )} ) lowerCAmelCase_ : str = field( default=UpperCamelCase ,metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) lowerCAmelCase_ : int = field( default=1_28 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) lowerCAmelCase_ : int = field( default=1_28 ,metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} ,) lowerCAmelCase_ : int = field( default=64 ,metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } ,) lowerCAmelCase_ : int = field( default=30 ,metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } ,) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) lowerCAmelCase_ : float = field( default=0.0 ,metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) lowerCAmelCase_ : int = field( default=20 ,metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) lowerCAmelCase_ : int = field( default=0 ,metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } ,) lowerCAmelCase_ : int = field(default=1 ,metadata={"""help""": """multiple threads for converting example to features"""} ) class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : str = """train""" lowerCAmelCase_ : Union[str, Any] = """dev""" class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : SquadDataTrainingArguments lowerCAmelCase_ : List[SquadFeatures] lowerCAmelCase_ : Split lowerCAmelCase_ : bool def __init__( self : List[Any] , snake_case : SquadDataTrainingArguments , snake_case : PreTrainedTokenizer , snake_case : Optional[int] = None , snake_case : Union[str, Split] = Split.train , snake_case : Optional[bool] = False , snake_case : Optional[str] = None , snake_case : Optional[str] = "pt" , ) -> Optional[Any]: '''simple docstring''' A = args A = is_language_sensitive A = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(snake_case , snake_case ): try: A = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) A = mode # Load data features from cache or dataset file A = 'v2' if args.version_2_with_negative else 'v1' A = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A = cached_features_file + '.lock' with FileLock(snake_case ): if os.path.exists(snake_case ) and not args.overwrite_cache: A = time.time() A = torch.load(snake_case ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. A = self.old_features['features'] A = self.old_features.get('dataset' , snake_case ) A = self.old_features.get('examples' , snake_case ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" ' future run' ) else: if mode == Split.dev: A = self.processor.get_dev_examples(args.data_dir ) else: A = self.processor.get_train_examples(args.data_dir ) A , A = squad_convert_examples_to_features( examples=self.examples , tokenizer=snake_case , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=snake_case , ) A = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , snake_case , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Any ) -> Dict: '''simple docstring''' return len(self.features ) def __getitem__( self : Union[str, Any] , snake_case : List[str] ) -> Dict[str, torch.Tensor]: '''simple docstring''' A = self.features[i] A = torch.tensor(feature.input_ids , dtype=torch.long ) A = torch.tensor(feature.attention_mask , dtype=torch.long ) A = torch.tensor(feature.token_type_ids , dtype=torch.long ) A = torch.tensor(feature.cls_index , dtype=torch.long ) A = torch.tensor(feature.p_mask , dtype=torch.float ) A = torch.tensor(feature.is_impossible , dtype=torch.float ) A = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: A = torch.tensor(feature.start_position , dtype=torch.long ) A = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
109
0
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowercase_ ( _lowercase : Dict ): '''simple docstring''' for param in module.parameters(): UpperCAmelCase : Optional[Any] = False def lowercase_ ( ): '''simple docstring''' UpperCAmelCase : str = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowercase_ ( _lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase : int = plt.imshow(_lowercase ) fig.axes.get_xaxis().set_visible(_lowercase ) fig.axes.get_yaxis().set_visible(_lowercase ) plt.show() def lowercase_ ( ): '''simple docstring''' UpperCAmelCase : Any = datetime.now() UpperCAmelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
595
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging snake_case__ = logging.get_logger(__name__) snake_case__ = r''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class lowerCAmelCase_ ( _a): @add_start_docstrings(__A ) def __call__( self : Dict , __A : torch.LongTensor , __A : torch.FloatTensor , **__A : Union[str, Any] ) ->bool: """simple docstring""" raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class lowerCAmelCase_ ( _a): def __init__( self : Dict , __A : int , __A : Optional[int] = None ) ->Dict: """simple docstring""" a__ :List[str] = max_length a__ :Union[str, Any] = max_position_embeddings @add_start_docstrings(__A ) def __call__( self : int , __A : torch.LongTensor , __A : torch.FloatTensor , **__A : List[str] ) ->bool: """simple docstring""" a__ :Optional[int] = input_ids.shape[-1] a__ :Dict = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " F'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' "exceptions, performance degradation, or nothing at all." ) return is_done class lowerCAmelCase_ ( _a): def __init__( self : Any , __A : int , __A : int ) ->Optional[int]: """simple docstring""" warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " F'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' "with `max_length = start_length + max_new_tokens` instead." , __A , ) a__ :Tuple = start_length a__ :List[Any] = max_new_tokens a__ :int = start_length + max_new_tokens @add_start_docstrings(__A ) def __call__( self : Any , __A : torch.LongTensor , __A : torch.FloatTensor , **__A : List[str] ) ->bool: """simple docstring""" return input_ids.shape[-1] >= self.max_length class lowerCAmelCase_ ( _a): def __init__( self : Any , __A : float , __A : Optional[float] = None ) ->Tuple: """simple docstring""" a__ :Any = max_time a__ :List[str] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__A ) def __call__( self : Any , __A : torch.LongTensor , __A : torch.FloatTensor , **__A : Union[str, Any] ) ->bool: """simple docstring""" return time.time() - self.initial_timestamp > self.max_time class lowerCAmelCase_ ( _a): @add_start_docstrings(__A ) def __call__( self : List[str] , __A : torch.LongTensor , __A : torch.FloatTensor , **__A : Optional[Any] ) ->bool: """simple docstring""" return any(criteria(__A , __A ) for criteria in self ) @property def _snake_case ( self : int ) ->Optional[int]: """simple docstring""" for stopping_criterium in self: if isinstance(__A , __A ): return stopping_criterium.max_length elif isinstance(__A , __A ): return stopping_criterium.max_length return None def lowerCamelCase__ ( a : StoppingCriteriaList , a : int ) -> StoppingCriteriaList: """simple docstring""" a__ :Tuple = stopping_criteria.max_length a__ :str = deepcopy(a ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , a ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=a ) ) return new_stopping_criteria
395
0
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar a_ = TypeVar("""T""") class __lowerCAmelCase ( Generic[T] ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = data __lowerCamelCase = None def __str__( self ): '''simple docstring''' return F"""{self.data}""" class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' __lowerCamelCase = None def __iter__( self ): '''simple docstring''' __lowerCamelCase = self.top while node: yield node.data __lowerCamelCase = node.next def __str__( self ): '''simple docstring''' return "->".join([str(__UpperCAmelCase ) for item in self] ) def __len__( self ): '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCamelCase ( self ): '''simple docstring''' return self.top is None def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = Node(__UpperCAmelCase ) if not self.is_empty(): __lowerCamelCase = self.top __lowerCamelCase = node def lowerCamelCase ( self ): '''simple docstring''' if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , __UpperCAmelCase ) __lowerCamelCase = self.top __lowerCamelCase = self.top.next return pop_node.data def lowerCamelCase ( self ): '''simple docstring''' if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = None if __name__ == "__main__": from doctest import testmod testmod()
622
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params a_ = getLogger(__name__) a_ = """cuda""" if torch.cuda.is_available() else """cpu""" def a__ ( _UpperCamelCase : List[str] ,_UpperCamelCase : str ,_UpperCamelCase : str ,_UpperCamelCase : int = 8 ,_UpperCamelCase : str = DEFAULT_DEVICE ,_UpperCamelCase : Dict=False ,_UpperCamelCase : Dict="summarization" ,_UpperCamelCase : Optional[int]=None ,**_UpperCamelCase : Dict ,): __lowerCamelCase = Path(_UpperCamelCase ).open('''w''' ,encoding='''utf-8''' ) __lowerCamelCase = str(_UpperCamelCase ) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ).to(_UpperCamelCase ) if fpaa: __lowerCamelCase = model.half() __lowerCamelCase = AutoTokenizer.from_pretrained(_UpperCamelCase ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowerCamelCase = time.time() # update config with task specific params use_task_specific_params(_UpperCamelCase ,_UpperCamelCase ) if prefix is None: __lowerCamelCase = prefix or getattr(model.config ,'''prefix''' ,'''''' ) or '''''' for examples_chunk in tqdm(list(chunks(_UpperCamelCase ,_UpperCamelCase ) ) ): __lowerCamelCase = [prefix + text for text in examples_chunk] __lowerCamelCase = tokenizer(_UpperCamelCase ,return_tensors='''pt''' ,truncation=_UpperCamelCase ,padding='''longest''' ).to(_UpperCamelCase ) __lowerCamelCase = model.generate( input_ids=batch.input_ids ,attention_mask=batch.attention_mask ,**_UpperCamelCase ,) __lowerCamelCase = tokenizer.batch_decode(_UpperCamelCase ,skip_special_tokens=_UpperCamelCase ,clean_up_tokenization_spaces=_UpperCamelCase ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __lowerCamelCase = int(time.time() - start_time ) # seconds __lowerCamelCase = len(_UpperCamelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs ,4 )} def a__ ( ): return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def a__ ( _UpperCamelCase : Union[str, Any]=True ): __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''model_name''' ,type=_UpperCamelCase ,help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' ,type=_UpperCamelCase ,help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' ,type=_UpperCamelCase ,help='''where to save summaries''' ) parser.add_argument('''--reference_path''' ,type=_UpperCamelCase ,required=_UpperCamelCase ,help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' ,type=_UpperCamelCase ,required=_UpperCamelCase ,default='''metrics.json''' ,help='''where to save metrics''' ) parser.add_argument('''--device''' ,type=_UpperCamelCase ,required=_UpperCamelCase ,default=_UpperCamelCase ,help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' ,type=_UpperCamelCase ,required=_UpperCamelCase ,default=_UpperCamelCase ,help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' ,type=_UpperCamelCase ,default='''summarization''' ,help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' ,type=_UpperCamelCase ,default=8 ,required=_UpperCamelCase ,help='''batch size''' ) parser.add_argument( '''--n_obs''' ,type=_UpperCamelCase ,default=-1 ,required=_UpperCamelCase ,help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' ,action='''store_true''' ) parser.add_argument('''--dump-args''' ,action='''store_true''' ,help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' ,nargs='''?''' ,type=_UpperCamelCase ,const=datetime_now() ,help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) ,) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowerCamelCase ,__lowerCamelCase = parser.parse_known_args() __lowerCamelCase = parse_numeric_n_bool_cl_kwargs(_UpperCamelCase ) if parsed_args and verbose: print(F"""parsed the following generate kwargs: {parsed_args}""" ) __lowerCamelCase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowerCamelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_UpperCamelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __lowerCamelCase = generate_summaries_or_translations( _UpperCamelCase ,args.save_path ,args.model_name ,batch_size=args.bs ,device=args.device ,fpaa=args.fpaa ,task=args.task ,prefix=args.prefix ,**_UpperCamelCase ,) if args.reference_path is None: return {} # Compute scores __lowerCamelCase = calculate_bleu if '''translation''' in args.task else calculate_rouge __lowerCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowerCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_UpperCamelCase )] __lowerCamelCase = score_fn(_UpperCamelCase ,_UpperCamelCase ) scores.update(_UpperCamelCase ) if args.dump_args: scores.update(_UpperCamelCase ) if args.info: __lowerCamelCase = args.info if verbose: print(_UpperCamelCase ) if args.score_path is not None: json.dump(_UpperCamelCase ,open(args.score_path ,'''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
622
1
'''simple docstring''' def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : float ,lowerCamelCase : float ): return round(float(moles / volume ) * nfactor ) def lowerCAmelCase__ ( lowerCamelCase : float ,lowerCamelCase : float ,lowerCamelCase : float ): return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def lowerCAmelCase__ ( lowerCamelCase : float ,lowerCamelCase : float ,lowerCamelCase : float ): return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def lowerCAmelCase__ ( lowerCamelCase : float ,lowerCamelCase : float ,lowerCamelCase : float ): return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
128
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase__ ( lowerCamelCase : Tuple ,lowerCamelCase : List[Any] ): assert isinstance(lowerCamelCase ,lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' ,[False, True] ) def lowerCAmelCase__ ( lowerCamelCase : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Optional[Any] ): _A : Union[str, Any] = tmp_path / 'cache' _A : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _A : Optional[Any] = ParquetDatasetReader(lowerCamelCase ,cache_dir=lowerCamelCase ,keep_in_memory=lowerCamelCase ).read() _check_parquet_dataset(lowerCamelCase ,lowerCamelCase ) @pytest.mark.parametrize( 'features' ,[ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] ,) def lowerCAmelCase__ ( lowerCamelCase : Optional[Any] ,lowerCamelCase : str ,lowerCamelCase : List[str] ): _A : List[str] = tmp_path / 'cache' _A : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _A : List[str] = features.copy() if features else default_expected_features _A : List[Any] = ( Features({feature: Value(lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _A : Union[str, Any] = ParquetDatasetReader(lowerCamelCase ,features=lowerCamelCase ,cache_dir=lowerCamelCase ).read() _check_parquet_dataset(lowerCamelCase ,lowerCamelCase ) @pytest.mark.parametrize('split' ,[None, NamedSplit('train' ), 'train', 'test'] ) def lowerCAmelCase__ ( lowerCamelCase : Tuple ,lowerCamelCase : Optional[int] ,lowerCamelCase : str ): _A : Dict = tmp_path / 'cache' _A : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _A : str = ParquetDatasetReader(lowerCamelCase ,cache_dir=lowerCamelCase ,split=lowerCamelCase ).read() _check_parquet_dataset(lowerCamelCase ,lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' ,[str, list] ) def lowerCAmelCase__ ( lowerCamelCase : Dict ,lowerCamelCase : Dict ,lowerCamelCase : Tuple ): if issubclass(lowerCamelCase ,lowerCamelCase ): _A : Tuple = parquet_path elif issubclass(lowerCamelCase ,lowerCamelCase ): _A : List[Any] = [parquet_path] _A : Optional[int] = tmp_path / 'cache' _A : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _A : List[str] = ParquetDatasetReader(lowerCamelCase ,cache_dir=lowerCamelCase ).read() _check_parquet_dataset(lowerCamelCase ,lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : str ,lowerCamelCase : Tuple ,lowerCamelCase : Dict=("train",) ): assert isinstance(lowerCamelCase ,lowerCamelCase ) for split in splits: _A : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' ,[False, True] ) def lowerCAmelCase__ ( lowerCamelCase : Optional[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Optional[int] ): _A : str = tmp_path / 'cache' _A : int = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _A : Dict = ParquetDatasetReader( {'train': parquet_path} ,cache_dir=lowerCamelCase ,keep_in_memory=lowerCamelCase ).read() _check_parquet_datasetdict(lowerCamelCase ,lowerCamelCase ) @pytest.mark.parametrize( 'features' ,[ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] ,) def lowerCAmelCase__ ( lowerCamelCase : str ,lowerCamelCase : str ,lowerCamelCase : Optional[int] ): _A : List[Any] = tmp_path / 'cache' _A : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _A : str = features.copy() if features else default_expected_features _A : Tuple = ( Features({feature: Value(lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _A : List[str] = ParquetDatasetReader({'train': parquet_path} ,features=lowerCamelCase ,cache_dir=lowerCamelCase ).read() _check_parquet_datasetdict(lowerCamelCase ,lowerCamelCase ) @pytest.mark.parametrize('split' ,[None, NamedSplit('train' ), 'train', 'test'] ) def lowerCAmelCase__ ( lowerCamelCase : str ,lowerCamelCase : List[str] ,lowerCamelCase : Dict ): if split: _A : Optional[int] = {split: parquet_path} else: _A : Tuple = 'train' _A : Union[str, Any] = {'train': parquet_path, 'test': parquet_path} _A : str = tmp_path / 'cache' _A : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _A : Optional[int] = ParquetDatasetReader(lowerCamelCase ,cache_dir=lowerCamelCase ).read() _check_parquet_datasetdict(lowerCamelCase ,lowerCamelCase ,splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase__ ( lowerCamelCase : Union[str, Any] ,lowerCamelCase : Tuple ): _A : int = ParquetDatasetWriter(lowerCamelCase ,tmp_path / 'foo.parquet' ) assert writer.write() > 0 _A : Optional[Any] = pq.ParquetFile(tmp_path / 'foo.parquet' ) _A : Tuple = pf.read() assert dataset.data.table == output_table def lowerCAmelCase__ ( lowerCamelCase : List[Any] ,lowerCamelCase : str ): _A : str = str(shared_datadir / 'test_image_rgb.jpg' ) _A : Optional[Any] = {'image': [image_path]} _A : Optional[int] = Features({'image': Image()} ) _A : Union[str, Any] = Dataset.from_dict(lowerCamelCase ,features=lowerCamelCase ) _A : List[str] = ParquetDatasetWriter(lowerCamelCase ,tmp_path / 'foo.parquet' ) assert writer.write() > 0 _A : List[str] = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features _A : Optional[Any] = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) ,streaming=lowerCamelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' ,[ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] ,) def lowerCAmelCase__ ( lowerCamelCase : Tuple ,lowerCamelCase : List[Any] ): assert get_writer_batch_size(lowerCamelCase ) == expected
128
1
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __snake_case (_UpperCamelCase ): def __init__( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any]=13 , _UpperCAmelCase : int=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : Union[str, Any]=32 , _UpperCAmelCase : Optional[int]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Union[str, Any]=512 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : List[Any]=None , ) -> Any: '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : Optional[int] = seq_length _lowerCAmelCase : Optional[Any] = is_training _lowerCAmelCase : int = use_input_mask _lowerCAmelCase : Any = use_token_type_ids _lowerCAmelCase : Any = use_labels _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : Dict = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Optional[int] = type_vocab_size _lowerCAmelCase : Dict = type_sequence_label_size _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : Union[str, Any] = num_labels _lowerCAmelCase : Optional[Any] = num_choices _lowerCAmelCase : int = scope def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: '''simple docstring''' _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: _lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Any = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Tuple = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Any ) -> str: '''simple docstring''' _lowerCAmelCase : Any = DistilBertModel(config=__a ) model.to(__a ) model.eval() _lowerCAmelCase : Dict = model(__a , __a ) _lowerCAmelCase : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any ) -> int: '''simple docstring''' _lowerCAmelCase : List[Any] = DistilBertForMaskedLM(config=__a ) model.to(__a ) model.eval() _lowerCAmelCase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = DistilBertForQuestionAnswering(config=__a ) model.to(__a ) model.eval() _lowerCAmelCase : Union[str, Any] = model( __a , attention_mask=__a , start_positions=__a , end_positions=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : str = self.num_labels _lowerCAmelCase : List[str] = DistilBertForSequenceClassification(__a ) model.to(__a ) model.eval() _lowerCAmelCase : List[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ) -> str: '''simple docstring''' _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : Dict = DistilBertForTokenClassification(config=__a ) model.to(__a ) model.eval() _lowerCAmelCase : Optional[int] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Tuple = self.num_choices _lowerCAmelCase : List[Any] = DistilBertForMultipleChoice(config=__a ) model.to(__a ) model.eval() _lowerCAmelCase : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : int = model( __a , attention_mask=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Any = self.prepare_config_and_inputs() (_lowerCAmelCase) : List[str] = config_and_inputs _lowerCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __snake_case (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): lowerCAmelCase__ = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCAmelCase__ = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: '''simple docstring''' _lowerCAmelCase : Tuple = DistilBertModelTester(self ) _lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=__a , dim=37 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) @slow def SCREAMING_SNAKE_CASE ( self : str ) -> str: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = DistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _lowerCAmelCase : Tuple = True _lowerCAmelCase : Tuple = model_class(config=__a ) _lowerCAmelCase : int = self._prepare_for_class(__a , __a ) _lowerCAmelCase : str = torch.jit.trace( __a , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__a , os.path.join(__a , """traced_model.pt""" ) ) _lowerCAmelCase : Optional[int] = torch.jit.load(os.path.join(__a , """traced_model.pt""" ) , map_location=__a ) loaded(inputs_dict["""input_ids"""].to(__a ) , inputs_dict["""attention_mask"""].to(__a ) ) @require_torch class __snake_case (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : List[Any] = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _lowerCAmelCase : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowerCAmelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase : Any = model(__a , attention_mask=__a )[0] _lowerCAmelCase : str = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __a ) _lowerCAmelCase : Optional[int] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1E-4 ) )
707
def _UpperCAmelCase (UpperCamelCase_ : str ): '''simple docstring''' _lowerCAmelCase : Dict = [0] * len(UpperCamelCase_ ) for i in range(1 , len(UpperCamelCase_ ) ): # use last results for better performance - dynamic programming _lowerCAmelCase : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _lowerCAmelCase : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _lowerCAmelCase : Optional[int] = j return prefix_result def _UpperCAmelCase (UpperCamelCase_ : str ): '''simple docstring''' return max(prefix_function(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
196
0
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = """M-CLIP""" def __init__( self , lowerCAmelCase=1_024 , lowerCAmelCase=768 , **lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowercase =transformerDimSize _lowercase =imageDimSize super().__init__(**lowerCAmelCase ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = MCLIPConfig def __init__( self , lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ) _lowercase =XLMRobertaModel(lowerCAmelCase ) _lowercase =torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: '''simple docstring''' _lowercase =self.transformer(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase )[0] _lowercase =(embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowerCAmelCase ), embs
291
from __future__ import annotations from statistics import mean def a ( A__ : list[int] , A__ : list[int] , A__ : int ) -> list[int]: """simple docstring""" _lowercase =[0] * no_of_processes _lowercase =[0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(A__ ): _lowercase =burst_time[i] _lowercase =[] _lowercase =0 _lowercase =0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _lowercase =[] _lowercase =-1 for i in range(A__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(A__ ) if len(A__ ) > 0: _lowercase =ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _lowercase =i total_time += burst_time[target_process] completed += 1 _lowercase =0 _lowercase =( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def a ( A__ : list[int] , A__ : int , A__ : list[int] ) -> list[int]: """simple docstring""" _lowercase =[0] * no_of_processes for i in range(A__ ): _lowercase =burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') lowercase_ = 4 lowercase_ = [2, 5, 3, 7] lowercase_ = [0, 0, 0, 0] lowercase_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowercase_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( f"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" f"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(f"\nAverage waiting time = {mean(waiting_time):.5f}") print(f"Average turnaround time = {mean(turn_around_time):.5f}")
291
1
import os from distutils.util import strtobool def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : Optional[Any] ): for e in env_keys: __a : Optional[Any] = int(os.environ.get(lowercase__ , -1 ) ) if val >= 0: return val return default def __magic_name__ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any]=False ): __a : Optional[Any] = os.environ.get(lowercase__ , str(lowercase__ ) ) return strtobool(lowercase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def __magic_name__ ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple="no" ): __a : str = os.environ.get(lowercase__ , str(lowercase__ ) ) return value
702
"""simple docstring""" def __magic_name__ ( _lowerCamelCase : list[int] ): if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) __a : Any = sum(_lowerCamelCase ) / len(_lowerCamelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
63
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : PreTrainedTokenizer, lowerCAmelCase : int, lowerCAmelCase : Optional[int] = None, ) -> Dict: A = {} if train_file is not None: A = [train_file] if eval_file is not None: A = [eval_file] if test_file is not None: A = [test_file] A = datasets.load_dataset('csv', data_files=lowerCAmelCase ) A = list(ds[list(files.keys() )[0]].features.keys() ) A = features_name.pop(lowerCAmelCase ) A = list(set(ds[list(files.keys() )[0]][label_name] ) ) A = {label: i for i, label in enumerate(lowerCAmelCase )} A = tokenizer.model_input_names A = {} if len(lowerCAmelCase ) == 1: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]], truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length' ), batched=lowerCAmelCase, ) elif len(lowerCAmelCase ) == 2: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]), truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length', ), batched=lowerCAmelCase, ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: A = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: A = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: A = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : int = field(metadata={'''help''': '''Which column contains the label'''} ) SCREAMING_SNAKE_CASE : str = field(default=__lowercase , metadata={'''help''': '''The path of the training file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the development file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the test file'''} ) SCREAMING_SNAKE_CASE : int = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : bool = field(default=__lowercase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def __UpperCamelCase () -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) A , A , A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) A , A , A , A = get_tfds( train_file=data_args.train_file, eval_file=data_args.dev_file, test_file=data_args.test_file, tokenizer=lowerCAmelCase, label_column_id=data_args.label_column_id, max_seq_length=data_args.max_seq_length, ) A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=len(lowerCAmelCase ), labelaid=lowerCAmelCase, idalabel={id: label for label, id in labelaid.items()}, finetuning_task='text-classification', cache_dir=model_args.cache_dir, ) with training_args.strategy.scope(): A = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_pt=bool('.bin' in model_args.model_name_or_path ), config=lowerCAmelCase, cache_dir=model_args.cache_dir, ) def compute_metrics(lowerCAmelCase : EvalPrediction ) -> Dict: A = np.argmax(p.predictions, axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer A = TFTrainer( model=lowerCAmelCase, args=lowerCAmelCase, train_dataset=lowerCAmelCase, eval_dataset=lowerCAmelCase, compute_metrics=lowerCAmelCase, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) A = trainer.evaluate() A = os.path.join(training_args.output_dir, 'eval_results.txt' ) with open(lowerCAmelCase, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(lowerCAmelCase ) return results if __name__ == "__main__": main()
699
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Optional[int]: if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) else: return a * actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> float: if b < 0: return 1 / actual_power(lowerCAmelCase, lowerCAmelCase ) return actual_power(lowerCAmelCase, lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
699
1
'''simple docstring''' UpperCamelCase_ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def lowerCamelCase ( UpperCAmelCase__ : dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict ) -> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = set() # keep track of all the paths to be checked SCREAMING_SNAKE_CASE__ :Any = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue SCREAMING_SNAKE_CASE__ :List[str] = queue.pop(0 ) # get the last node from the path SCREAMING_SNAKE_CASE__ :Any = path[-1] if node not in explored: SCREAMING_SNAKE_CASE__ :List[str] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: SCREAMING_SNAKE_CASE__ :Optional[int] = list(UpperCAmelCase__ ) new_path.append(UpperCAmelCase__ ) queue.append(UpperCAmelCase__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(UpperCAmelCase__ ) # in case there's no path between the 2 nodes return [] def lowerCamelCase ( UpperCAmelCase__ : dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ) -> int: '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 SCREAMING_SNAKE_CASE__ :Union[str, Any] = [start] SCREAMING_SNAKE_CASE__ :Union[str, Any] = set(UpperCAmelCase__ ) # Keep tab on distances from `start` node. SCREAMING_SNAKE_CASE__ :Union[str, Any] = {start: 0, target: -1} while queue: SCREAMING_SNAKE_CASE__ :Tuple = queue.pop(0 ) if node == target: SCREAMING_SNAKE_CASE__ :Optional[Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(UpperCAmelCase__ ) queue.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
320
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ : int = LongformerTokenizer A_ : int = True A_ : Optional[Any] = LongformerTokenizerFast A_ : Tuple = True def __lowerCamelCase ( self : int ) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ :Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE__ :Optional[int] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) SCREAMING_SNAKE_CASE__ :Dict = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE__ :Any = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE__ :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase_ ) ) def __lowerCamelCase ( self : Tuple , **UpperCamelCase_ : Union[str, Any] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __lowerCamelCase ( self : Union[str, Any] , **UpperCamelCase_ : Union[str, Any] ) -> Any: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __lowerCamelCase ( self : List[str] , UpperCamelCase_ : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ :Tuple = 'lower newer' SCREAMING_SNAKE_CASE__ :Tuple = 'lower newer' return input_text, output_text def __lowerCamelCase ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ :str = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE__ :Any = 'lower newer' SCREAMING_SNAKE_CASE__ :Optional[Any] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE__ :Optional[Any] = tokenizer.tokenize(UpperCamelCase_ ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ :List[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) def __lowerCamelCase ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ :Optional[int] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=UpperCamelCase_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=UpperCamelCase_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def __lowerCamelCase ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :int = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = tokenizer.encode('sequence builders' , add_special_tokens=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[int] = tokenizer.encode( 'sequence builders' , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __lowerCamelCase ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ :List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ :Any = 'Encode this sequence.' SCREAMING_SNAKE_CASE__ :int = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE__ :str = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE__ :List[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE__ :Optional[int] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ )} ) # mask token has a left space SCREAMING_SNAKE_CASE__ :Any = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[Any] = 'Encode <mask> sequence' SCREAMING_SNAKE_CASE__ :Optional[Any] = 'Encode <mask>sequence' SCREAMING_SNAKE_CASE__ :Tuple = tokenizer.encode(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = encoded.index(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = tokenizer.encode(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Any = encoded.index(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) def __lowerCamelCase ( self : Dict ) -> List[str]: pass def __lowerCamelCase ( self : List[Any] ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE__ :str = tokenizer_r.encode_plus(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[Any] = tokenizer_p.encode_plus(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) SCREAMING_SNAKE_CASE__ :int = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE__ :str = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCamelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( UpperCamelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def __lowerCamelCase ( self : Dict ) -> List[str]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): SCREAMING_SNAKE_CASE__ :int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE__ :str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , UpperCamelCase_ ) self.assertEqual(post_processor_state['add_prefix_space'] , UpperCamelCase_ ) self.assertEqual(post_processor_state['trim_offsets'] , UpperCamelCase_ ) def __lowerCamelCase ( self : Dict ) -> List[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ :Tuple = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE__ :Any = f'''{text_of_1_token} {text_of_1_token}''' SCREAMING_SNAKE_CASE__ :Optional[Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ) + 1, len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) SCREAMING_SNAKE_CASE__ :Tuple = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ) + 1, len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) SCREAMING_SNAKE_CASE__ :str = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Tuple = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ), len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) SCREAMING_SNAKE_CASE__ :int = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ), len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) SCREAMING_SNAKE_CASE__ :int = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE__ :int = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase_ ) + 1, 1 + len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) SCREAMING_SNAKE_CASE__ :Any = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase_ ), 1 + len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) SCREAMING_SNAKE_CASE__ :Tuple = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[str] = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase_ ), 1 + len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , )
320
1
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __magic_name__ ( _lowerCamelCase: int ) -> bool: '''simple docstring''' lowerCAmelCase = int(number**0.5 ) return number == sq * sq def __magic_name__ ( _lowerCamelCase: int, _lowerCamelCase: int, _lowerCamelCase: int, _lowerCamelCase: int, _lowerCamelCase: int, _lowerCamelCase: int ) -> tuple[int, int]: '''simple docstring''' lowerCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowerCAmelCase = x_den * y_den * z_den lowerCAmelCase = gcd(_lowerCamelCase, _lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def __magic_name__ ( _lowerCamelCase: int = 35 ) -> int: '''simple docstring''' lowerCAmelCase = set() lowerCAmelCase = 42 lowerCAmelCase = Fraction(0 ) lowerCAmelCase = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 lowerCAmelCase = x_num * y_den + x_den * y_num lowerCAmelCase = x_den * y_den lowerCAmelCase = gcd(_lowerCamelCase, _lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase = add_three( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) unique_s.add(_lowerCamelCase ) # n=2 lowerCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowerCAmelCase = x_den * x_den * y_den * y_den if is_sq(_lowerCamelCase ) and is_sq(_lowerCamelCase ): lowerCAmelCase = int(sqrt(_lowerCamelCase ) ) lowerCAmelCase = int(sqrt(_lowerCamelCase ) ) lowerCAmelCase = gcd(_lowerCamelCase, _lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase = add_three( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) unique_s.add(_lowerCamelCase ) # n=-1 lowerCAmelCase = x_num * y_num lowerCAmelCase = x_den * y_num + x_num * y_den lowerCAmelCase = gcd(_lowerCamelCase, _lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase = add_three( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) unique_s.add(_lowerCamelCase ) # n=2 lowerCAmelCase = x_num * x_num * y_num * y_num lowerCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_lowerCamelCase ) and is_sq(_lowerCamelCase ): lowerCAmelCase = int(sqrt(_lowerCamelCase ) ) lowerCAmelCase = int(sqrt(_lowerCamelCase ) ) lowerCAmelCase = gcd(_lowerCamelCase, _lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase = add_three( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) unique_s.add(_lowerCamelCase ) for num, den in unique_s: total += Fraction(_lowerCamelCase, _lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
535
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __magic_name__ ( _lowerCamelCase: Optional[Any] ) -> Dict: '''simple docstring''' def wrapper(*_lowerCamelCase: Any, **_lowerCamelCase: Union[str, Any] ): lowerCAmelCase = timeit.default_timer() lowerCAmelCase = func(*_lowerCamelCase, **_lowerCamelCase ) lowerCAmelCase = timeit.default_timer() - starttime return delta lowerCAmelCase = func.__name__ return wrapper def __magic_name__ ( _lowerCamelCase: dict, _lowerCamelCase: List[Any]=100, _lowerCamelCase: int=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase = [] lowerCAmelCase = seq_shapes or {} for i in range(_lowerCamelCase ): lowerCAmelCase = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_lowerCamelCase, _ArrayXD ): lowerCAmelCase = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_lowerCamelCase, datasets.Value ): if v.dtype == "string": lowerCAmelCase = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCAmelCase = np.random.randint(10, size=1 ).astype(v.dtype ).item() elif isinstance(_lowerCamelCase, datasets.Sequence ): while isinstance(_lowerCamelCase, datasets.Sequence ): lowerCAmelCase = v.feature lowerCAmelCase = seq_shapes[k] lowerCAmelCase = np.random.rand(*_lowerCamelCase ).astype(v.dtype ) lowerCAmelCase = data dummy_data.append((i, example) ) return dummy_data def __magic_name__ ( _lowerCamelCase: Tuple, _lowerCamelCase: Tuple, _lowerCamelCase: Union[str, Any]=100, _lowerCamelCase: List[Any]=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase = generate_examples(_lowerCamelCase, num_examples=_lowerCamelCase, seq_shapes=_lowerCamelCase ) with ArrowWriter(features=_lowerCamelCase, path=_lowerCamelCase ) as writer: for key, record in dummy_data: lowerCAmelCase = features.encode_example(_lowerCamelCase ) writer.write(_lowerCamelCase ) lowerCAmelCase , lowerCAmelCase = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) lowerCAmelCase = datasets.Dataset.from_file(filename=_lowerCamelCase, info=datasets.DatasetInfo(features=_lowerCamelCase ) ) return dataset
535
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCAmelCase ( __a ): __A : int = ['image_processor', 'tokenizer'] __A : Union[str, Any] = 'ViltImageProcessor' __A : Any = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ): lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _lowerCamelCase , ) lowerCAmelCase_ = kwargs.pop('''feature_extractor''' ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = self.image_processor def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = None , **_lowerCamelCase , ): lowerCAmelCase_ = self.tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) # add pixel_values + pixel_mask lowerCAmelCase_ = self.image_processor(_lowerCamelCase , return_tensors=_lowerCamelCase ) encoding.update(_lowerCamelCase ) return encoding def UpperCAmelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.tokenizer.model_input_names lowerCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase_ ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _lowerCamelCase , ) return self.image_processor_class @property def UpperCAmelCase_ ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _lowerCamelCase , ) return self.image_processor
606
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def snake_case_ ( __snake_case : str = "laptop") -> DataFrame: lowerCAmelCase_ = F'''https://www.amazon.in/laptop/s?k={product}''' lowerCAmelCase_ = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } lowerCAmelCase_ = BeautifulSoup(requests.get(__snake_case , headers=__snake_case).text) # Initialize a Pandas dataframe with the column titles lowerCAmelCase_ = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: lowerCAmelCase_ = item.ha.text lowerCAmelCase_ = '''https://www.amazon.in/''' + item.ha.a['''href'''] lowerCAmelCase_ = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: lowerCAmelCase_ = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: lowerCAmelCase_ = '''Not available''' try: lowerCAmelCase_ = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: lowerCAmelCase_ = '''''' try: lowerCAmelCase_ = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: lowerCAmelCase_ = float('''nan''') except AttributeError: pass lowerCAmelCase_ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] lowerCAmelCase_ = ''' ''' lowerCAmelCase_ = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": A_ : Optional[int] ='''headphones''' get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
606
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = { """facebook/wav2vec2-base-960h""": """https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json""", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class lowerCAmelCase__ ( _lowerCAmelCase ): A = "wav2vec2" def __init__( self : List[Any] , UpperCamelCase_ : Dict=32 , UpperCamelCase_ : List[str]=768 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : Dict=12 , UpperCamelCase_ : Tuple=3_072 , UpperCamelCase_ : Tuple="gelu" , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Optional[Any]=0.0 , UpperCamelCase_ : List[str]=0.0 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : int=0.02 , UpperCamelCase_ : List[Any]=1e-5 , UpperCamelCase_ : int="group" , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : str=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase_ : List[Any]=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase_ : Dict=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : List[str]=128 , UpperCamelCase_ : int=16 , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : int=True , UpperCamelCase_ : Union[str, Any]=0.05 , UpperCamelCase_ : str=10 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Dict=0.0 , UpperCamelCase_ : Tuple=10 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Tuple=320 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Tuple=100 , UpperCamelCase_ : List[str]=256 , UpperCamelCase_ : Union[str, Any]=256 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Optional[Any]="sum" , UpperCamelCase_ : Dict=False , UpperCamelCase_ : Any=False , UpperCamelCase_ : List[Any]=256 , UpperCamelCase_ : Optional[int]=(512, 512, 512, 512, 1_500) , UpperCamelCase_ : int=(5, 3, 3, 1, 1) , UpperCamelCase_ : List[Any]=(1, 2, 3, 1, 1) , UpperCamelCase_ : Tuple=512 , UpperCamelCase_ : str=0 , UpperCamelCase_ : Dict=1 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : List[str]=3 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , **UpperCamelCase_ : Tuple , ) -> str: """simple docstring""" super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) lowerCamelCase_ : Tuple = hidden_size lowerCamelCase_ : Tuple = feat_extract_norm lowerCamelCase_ : List[Any] = feat_extract_activation lowerCamelCase_ : str = list(UpperCamelCase_ ) lowerCamelCase_ : int = list(UpperCamelCase_ ) lowerCamelCase_ : int = list(UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = conv_bias lowerCamelCase_ : List[str] = num_conv_pos_embeddings lowerCamelCase_ : int = num_conv_pos_embedding_groups lowerCamelCase_ : Tuple = len(self.conv_dim ) lowerCamelCase_ : str = num_hidden_layers lowerCamelCase_ : Optional[Any] = intermediate_size lowerCamelCase_ : Dict = hidden_act lowerCamelCase_ : Any = num_attention_heads lowerCamelCase_ : List[str] = hidden_dropout lowerCamelCase_ : int = attention_dropout lowerCamelCase_ : List[str] = activation_dropout lowerCamelCase_ : Tuple = feat_proj_dropout lowerCamelCase_ : Optional[Any] = final_dropout lowerCamelCase_ : Union[str, Any] = layerdrop lowerCamelCase_ : Optional[int] = layer_norm_eps lowerCamelCase_ : List[str] = initializer_range lowerCamelCase_ : Tuple = vocab_size lowerCamelCase_ : Any = do_stable_layer_norm lowerCamelCase_ : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase_ : Optional[int] = apply_spec_augment lowerCamelCase_ : List[Any] = mask_time_prob lowerCamelCase_ : Tuple = mask_time_length lowerCamelCase_ : Union[str, Any] = mask_time_min_masks lowerCamelCase_ : Union[str, Any] = mask_feature_prob lowerCamelCase_ : str = mask_feature_length lowerCamelCase_ : Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase_ : Union[str, Any] = num_codevectors_per_group lowerCamelCase_ : Any = num_codevector_groups lowerCamelCase_ : Optional[Any] = contrastive_logits_temperature lowerCamelCase_ : int = feat_quantizer_dropout lowerCamelCase_ : str = num_negatives lowerCamelCase_ : int = codevector_dim lowerCamelCase_ : Any = proj_codevector_dim lowerCamelCase_ : Optional[int] = diversity_loss_weight # ctc loss lowerCamelCase_ : int = ctc_loss_reduction lowerCamelCase_ : int = ctc_zero_infinity # adapter lowerCamelCase_ : int = add_adapter lowerCamelCase_ : Any = adapter_kernel_size lowerCamelCase_ : List[Any] = adapter_stride lowerCamelCase_ : List[str] = num_adapter_layers lowerCamelCase_ : List[Any] = output_hidden_size or hidden_size lowerCamelCase_ : Optional[Any] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCamelCase_ : Any = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCamelCase_ : str = list(UpperCamelCase_ ) lowerCamelCase_ : Any = list(UpperCamelCase_ ) lowerCamelCase_ : str = list(UpperCamelCase_ ) lowerCamelCase_ : Dict = xvector_output_dim @property def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
501
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __lowerCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( _lowerCAmelCase ): def __init__( self : int , UpperCamelCase_ : CLIPSegForImageSegmentation , UpperCamelCase_ : CLIPSegProcessor , UpperCamelCase_ : AutoencoderKL , UpperCamelCase_ : CLIPTextModel , UpperCamelCase_ : CLIPTokenizer , UpperCamelCase_ : UNetaDConditionModel , UpperCamelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCamelCase_ : StableDiffusionSafetyChecker , UpperCamelCase_ : CLIPImageProcessor , ) -> Optional[int]: """simple docstring""" super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: lowerCamelCase_ : int = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = dict(scheduler.config ) lowerCamelCase_ : Optional[Any] = 1 lowerCamelCase_ : List[Any] = FrozenDict(UpperCamelCase_ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: lowerCamelCase_ : Any = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) lowerCamelCase_ : Dict = dict(scheduler.config ) lowerCamelCase_ : Union[str, Any] = True lowerCamelCase_ : Any = FrozenDict(UpperCamelCase_ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=UpperCamelCase_ , segmentation_processor=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , ) def __UpperCamelCase ( self : str , UpperCamelCase_ : Optional[Union[str, int]] = "auto" ) -> int: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase_ ) def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" self.enable_attention_slicing(UpperCamelCase_ ) def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowerCamelCase_ : List[str] = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[str, List[str]] , UpperCamelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , UpperCamelCase_ : str , UpperCamelCase_ : int = 512 , UpperCamelCase_ : int = 512 , UpperCamelCase_ : int = 50 , UpperCamelCase_ : float = 7.5 , UpperCamelCase_ : Optional[Union[str, List[str]]] = None , UpperCamelCase_ : Optional[int] = 1 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[torch.Generator] = None , UpperCamelCase_ : Optional[torch.FloatTensor] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_ : int = 1 , **UpperCamelCase_ : Dict , ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Optional[Any] = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) lowerCamelCase_ : Union[str, Any] = self.segmentation_model(**UpperCamelCase_ ) lowerCamelCase_ : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowerCamelCase_ : int = self.numpy_to_pil(UpperCamelCase_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowerCamelCase_ : List[str] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , height=UpperCamelCase_ , width=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ , eta=UpperCamelCase_ , generator=UpperCamelCase_ , latents=UpperCamelCase_ , output_type=UpperCamelCase_ , return_dict=UpperCamelCase_ , callback=UpperCamelCase_ , callback_steps=UpperCamelCase_ , )
501
1
def lowerCamelCase( a__): if num < 0: return False _SCREAMING_SNAKE_CASE =num _SCREAMING_SNAKE_CASE =0 while num > 0: _SCREAMING_SNAKE_CASE =rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
191
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig snake_case_ : List[Any] = logging.get_logger(__name__) snake_case_ : Optional[Any] = '''T5Config''' class A__ ( UpperCamelCase__ ): UpperCAmelCase = "mt5" UpperCAmelCase = MTaConfig class A__ ( UpperCamelCase__ ): UpperCAmelCase = "mt5" UpperCAmelCase = MTaConfig class A__ ( UpperCamelCase__ ): UpperCAmelCase = "mt5" UpperCAmelCase = MTaConfig
191
1
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _UpperCamelCase ( A__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = CustomTokenizer pass
548
'''simple docstring''' from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
369
0
'''simple docstring''' def __a ( A__ ) -> bool: return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def __a ( A__ ) -> bool: lowerCAmelCase = credit_card_number lowerCAmelCase = 0 lowerCAmelCase = len(A__ ) - 2 for i in range(A__ , -1 , -2 ): # double the value of every second digit lowerCAmelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowerCAmelCase = cc_number[:i] + str(A__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(A__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __a ( A__ ) -> bool: lowerCAmelCase = f"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(f"{error_message} it has nonnumerical characters." ) return False if not 13 <= len(A__ ) <= 16: print(f"{error_message} of its length." ) return False if not validate_initial_digits(A__ ): print(f"{error_message} of its first two digits." ) return False if not luhn_validation(A__ ): print(f"{error_message} it fails the Luhn check." ) return False print(f"{credit_card_number} is a valid credit card number." ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
159
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str]=1_3 , SCREAMING_SNAKE_CASE : Optional[Any]=7 , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Optional[int]=9_9 , SCREAMING_SNAKE_CASE : Dict=3_2 , SCREAMING_SNAKE_CASE : Dict=5 , SCREAMING_SNAKE_CASE : Optional[int]=4 , SCREAMING_SNAKE_CASE : Optional[Any]=3_7 , SCREAMING_SNAKE_CASE : int="gelu" , SCREAMING_SNAKE_CASE : Any=0.1 , SCREAMING_SNAKE_CASE : int=0.1 , SCREAMING_SNAKE_CASE : Dict=5_1_2 , SCREAMING_SNAKE_CASE : Union[str, Any]=1_6 , SCREAMING_SNAKE_CASE : Dict=2 , SCREAMING_SNAKE_CASE : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE : Optional[int]=4 , ) -> Optional[int]: """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_attention_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_choices def __A ( self : List[str] ) -> List[str]: """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_attention_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __A ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def __A ( self : List[Any] ) -> Any: """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __A ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCAmelCase = FlaxRobertaModelTester(self ) @slow def __A ( self : str ) -> Optional[Any]: """simple docstring""" for model_class_name in self.all_model_classes: lowerCAmelCase = model_class_name.from_pretrained("roberta-base" , from_pt=SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE )
159
1