code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def lowerCAmelCase__( lowercase : str ) -> Optional[Any]: __snake_case : str = 1 __snake_case : int = 2 while i * i <= n: __snake_case : int = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowerCAmelCase__( ) -> List[Any]: __snake_case : Union[str, Any] = 1 __snake_case : Dict = 1 while True: i += 1 t_num += i if count_divisors(lowercase ) > 500: break return t_num if __name__ == "__main__": print(solution())
243
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _UpperCamelCase = datasets.utils.logging.get_logger(__name__) _UpperCamelCase = ['''names''', '''prefix'''] _UpperCamelCase = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] _UpperCamelCase = ['''encoding_errors''', '''on_bad_lines'''] _UpperCamelCase = ['''date_format'''] @dataclass class _lowerCamelCase ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase_ : str ="," UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : Optional[Union[int, List[int], str]] ="infer" UpperCAmelCase_ : Optional[List[str]] =None UpperCAmelCase_ : Optional[List[str]] =None UpperCAmelCase_ : Optional[Union[int, str, List[int], List[str]]] =None UpperCAmelCase_ : Optional[Union[List[int], List[str]]] =None UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : bool =True UpperCAmelCase_ : Optional[Literal["c", "python", "pyarrow"]] =None UpperCAmelCase_ : Dict[Union[int, str], Callable[[Any], Any]] =None UpperCAmelCase_ : Optional[list] =None UpperCAmelCase_ : Optional[list] =None UpperCAmelCase_ : bool =False UpperCAmelCase_ : Optional[Union[int, List[int]]] =None UpperCAmelCase_ : Optional[int] =None UpperCAmelCase_ : Optional[Union[str, List[str]]] =None UpperCAmelCase_ : bool =True UpperCAmelCase_ : bool =True UpperCAmelCase_ : bool =False UpperCAmelCase_ : bool =True UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : str ="." UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : str ='"' UpperCAmelCase_ : int =0 UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : bool =True UpperCAmelCase_ : bool =True UpperCAmelCase_ : int =0 UpperCAmelCase_ : bool =True UpperCAmelCase_ : bool =False UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : int =10_000 UpperCAmelCase_ : Optional[datasets.Features] =None UpperCAmelCase_ : Optional[str] ="strict" UpperCAmelCase_ : Literal["error", "warn", "skip"] ="error" UpperCAmelCase_ : Optional[str] =None def UpperCAmelCase ( self ) -> int: '''simple docstring''' if self.delimiter is not None: __snake_case : List[str] = self.delimiter if self.column_names is not None: __snake_case : Optional[Any] = self.column_names @property def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Any = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , UpperCAmelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCamelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase_ : Dict =CsvConfig def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase , (str, list, tuple) ): __snake_case : int = data_files if isinstance(UpperCAmelCase , UpperCAmelCase ): __snake_case : Any = [files] __snake_case : Optional[int] = [dl_manager.iter_files(UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] __snake_case : Optional[int] = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): __snake_case : str = [files] __snake_case : int = [dl_manager.iter_files(UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase , gen_kwargs={"files": files} ) ) return splits def UpperCAmelCase ( self , UpperCAmelCase ) -> pa.Table: '''simple docstring''' if self.config.features is not None: __snake_case : str = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase ) for feature in self.config.features.values() ): # cheaper cast __snake_case : Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=UpperCAmelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __snake_case : List[str] = table_cast(UpperCAmelCase , UpperCAmelCase ) return pa_table def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __snake_case : Union[str, Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase ) ): __snake_case : Tuple = pd.read_csv(UpperCAmelCase , iterator=UpperCAmelCase , dtype=UpperCAmelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase ): __snake_case : List[str] = pa.Table.from_pandas(UpperCAmelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase )}: {e}""" ) raise
243
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', '''stage2.cls_token''') ) return token def lowerCAmelCase ( ): """simple docstring""" __A = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = '''imagenet-1k-id2label.json''' __A = 1_0_0_0 __A = '''huggingface/label-files''' __A = num_labels __A = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) __A = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = __A = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": __A = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": __A = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __A = [2, 2, 2_0] __A = [3, 1_2, 1_6] __A = [1_9_2, 7_6_8, 1_0_2_4] __A = CvtForImageClassification(__UpperCamelCase ) __A = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) __A = image_size __A = torch.load(__UpperCamelCase , map_location=torch.device('''cpu''' ) ) __A = OrderedDict() __A = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __A = list_of_state_dict + cls_token(__UpperCamelCase ) __A = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): __A = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) __A = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): __A = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowercase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
215
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": snake_case = pd.read_csv("sample_data.csv", header=None) snake_case = df.shape[:1][0] # If you're using some other dataset input the target column snake_case = df.iloc[:, 1:2] snake_case = actual_data.values.reshape(len_data, 1) snake_case = MinMaxScaler().fit_transform(actual_data) snake_case = 10 snake_case = 5 snake_case = 20 snake_case = len_data - periods * look_back snake_case = actual_data[:division] snake_case = actual_data[division - look_back :] snake_case, snake_case = [], [] snake_case, snake_case = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) snake_case = np.array(train_x) snake_case = np.array(test_x) snake_case = np.array([list(i.ravel()) for i in train_y]) snake_case = np.array([list(i.ravel()) for i in test_y]) snake_case = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") snake_case = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) snake_case = model.predict(x_test)
424
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
424
1
"""simple docstring""" def a ( __UpperCAmelCase : int | float | str ) -> tuple[int, int]: try: __magic_name__: Dict = float(__UpperCAmelCase ) except ValueError: raise ValueError("""Please enter a valid number""" ) __magic_name__: Tuple = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __magic_name__: Tuple = len(str(__UpperCAmelCase ).split(""".""" )[1] ) __magic_name__: int = int(decimal * (1_0**number_of_frac_digits) ) __magic_name__: List[Any] = 1_0**number_of_frac_digits __magic_name__, __magic_name__: Union[str, Any] = denominator, numerator while True: __magic_name__: Tuple = dividend % divisor if remainder == 0: break __magic_name__, __magic_name__: Dict = divisor, remainder __magic_name__, __magic_name__: Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(f'''{decimal_to_fraction(2) = }''') print(f'''{decimal_to_fraction(8_9.0) = }''') print(f'''{decimal_to_fraction('67') = }''') print(f'''{decimal_to_fraction('45.0') = }''') print(f'''{decimal_to_fraction(1.5) = }''') print(f'''{decimal_to_fraction('6.25') = }''') print(f'''{decimal_to_fraction('78td') = }''')
213
"""simple docstring""" from ...processing_utils import ProcessorMixin class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "SpeechT5FeatureExtractor" UpperCAmelCase__ = "SpeechT5Tokenizer" def __init__( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ) -> Tuple: super().__init__(__snake_case , __snake_case ) def __call__( self : Tuple , *__snake_case : Tuple , **__snake_case : Tuple ) -> Any: __magic_name__: List[Any] = kwargs.pop("""audio""" , __snake_case ) __magic_name__: Optional[int] = kwargs.pop("""text""" , __snake_case ) __magic_name__: Tuple = kwargs.pop("""text_target""" , __snake_case ) __magic_name__: List[str] = kwargs.pop("""audio_target""" , __snake_case ) __magic_name__: Dict = kwargs.pop("""sampling_rate""" , __snake_case ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: __magic_name__: str = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) elif text is not None: __magic_name__: List[str] = self.tokenizer(__snake_case , **__snake_case ) else: __magic_name__: Tuple = None if audio_target is not None: __magic_name__: List[str] = self.feature_extractor(audio_target=__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) __magic_name__: Any = targets["""input_values"""] elif text_target is not None: __magic_name__: List[str] = self.tokenizer(__snake_case , **__snake_case ) __magic_name__: Dict = targets["""input_ids"""] else: __magic_name__: Union[str, Any] = None if inputs is None: return targets if targets is not None: __magic_name__: Optional[int] = labels __magic_name__: Optional[int] = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: __magic_name__: Tuple = decoder_attention_mask return inputs def lowerCamelCase__ ( self : Tuple , *__snake_case : Dict , **__snake_case : int ) -> List[str]: __magic_name__: List[Any] = kwargs.pop("""input_values""" , __snake_case ) __magic_name__: Any = kwargs.pop("""input_ids""" , __snake_case ) __magic_name__: Tuple = kwargs.pop("""labels""" , __snake_case ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: __magic_name__: Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case ) elif input_ids is not None: __magic_name__: int = self.tokenizer.pad(__snake_case , **__snake_case ) else: __magic_name__: Any = None if labels is not None: if "input_ids" in labels or (isinstance(__snake_case , __snake_case ) and "input_ids" in labels[0]): __magic_name__: Union[str, Any] = self.tokenizer.pad(__snake_case , **__snake_case ) __magic_name__: Any = targets["""input_ids"""] else: __magic_name__: Optional[Any] = self.feature_extractor.feature_size __magic_name__: Optional[int] = self.feature_extractor.num_mel_bins __magic_name__: str = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case ) __magic_name__: Tuple = feature_size_hack __magic_name__: Tuple = targets["""input_values"""] else: __magic_name__: int = None if inputs is None: return targets if targets is not None: __magic_name__: List[Any] = labels __magic_name__: Dict = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: __magic_name__: Tuple = decoder_attention_mask return inputs def lowerCamelCase__ ( self : Dict , *__snake_case : Optional[int] , **__snake_case : Union[str, Any] ) -> Any: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCamelCase__ ( self : List[str] , *__snake_case : List[str] , **__snake_case : str ) -> Union[str, Any]: return self.tokenizer.decode(*__snake_case , **__snake_case )
213
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __a : def __init__( self , a__ , a__=13 , a__=30 , a__=2 , a__=3 , a__=True , a__=True , a__=32 , a__=2 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.02 , a__=3 , a__=None , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = image_size _lowerCamelCase = patch_size _lowerCamelCase = num_channels _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCamelCase = (image_size // patch_size) ** 2 _lowerCamelCase = num_patches + 1 def snake_case_ ( self ): _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = self.get_config() return config, pixel_values, labels def snake_case_ ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , ) def snake_case_ ( self , a__ , a__ , a__ ): _lowerCamelCase = TFViTModel(config=a__ ) _lowerCamelCase = model(a__ , training=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _lowerCamelCase = self.image_size // 2 _lowerCamelCase = pixel_values[:, :, :image_size, :image_size] _lowerCamelCase = model(a__ , interpolate_pos_encoding=a__ , training=a__ ) _lowerCamelCase = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def snake_case_ ( self , a__ , a__ , a__ ): _lowerCamelCase = self.type_sequence_label_size _lowerCamelCase = TFViTForImageClassification(a__ ) _lowerCamelCase = model(a__ , labels=a__ , training=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _lowerCamelCase = self.image_size // 2 _lowerCamelCase = pixel_values[:, :, :image_size, :image_size] _lowerCamelCase = model(a__ , interpolate_pos_encoding=a__ , training=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase = 1 _lowerCamelCase = TFViTForImageClassification(a__ ) _lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case_ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __a ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : int = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : Tuple = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = False def snake_case_ ( self ): _lowerCamelCase = TFViTModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def snake_case_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def snake_case_ ( self ): pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def snake_case_ ( self ): pass def snake_case_ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , tf.keras.layers.Layer ) ) def snake_case_ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(a__ ) _lowerCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , a__ ) def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def snake_case_ ( self ): _lowerCamelCase = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(a__ ) def SCREAMING_SNAKE_CASE_ ( )-> Any: _lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __a ( unittest.TestCase ): @cached_property def snake_case_ ( self ): return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def snake_case_ ( self ): _lowerCamelCase = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=a__ , return_tensors='tf' ) # forward pass _lowerCamelCase = model(**a__ ) # verify the logits _lowerCamelCase = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , a__ ) _lowerCamelCase = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , a__ , atol=1e-4 )
650
"""simple docstring""" from ..utils import DummyObject, requires_backends class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[str] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[str] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : str = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : int = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Any = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) class __a ( metaclass=lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = ["flax"] def __init__( self , *a__ , **a__ ): requires_backends(self , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] ) @classmethod def snake_case_ ( cls , *a__ , **a__ ): requires_backends(cls , ['flax'] )
650
1
'''simple docstring''' import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = RoFormerTokenizer __lowerCamelCase : List[Any] = RoFormerTokenizerFast __lowerCamelCase : Any = True __lowerCamelCase : str = True def a__ (self ) -> Tuple: """simple docstring""" super().setUp() def a__ (self , **A ) -> List[str]: """simple docstring""" return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **A ) def a__ (self , **A ) -> int: """simple docstring""" return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **A ) def a__ (self ) -> int: """simple docstring""" _a = '''永和服装饰品有限公司,今天天气非常好''' _a = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.get_tokenizer() _a , _a = self.get_chinese_input_output_texts() _a = tokenizer.tokenize(A ) self.assertListEqual(A , output_text.split() ) _a = tokens + [tokenizer.unk_token] _a = [22_943, 21_332, 34_431, 45_904, 117, 306, 1_231, 1_231, 2_653, 33_994, 1_266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def a__ (self ) -> int: """simple docstring""" _a = self.get_rust_tokenizer() _a , _a = self.get_chinese_input_output_texts() _a = tokenizer.tokenize(A ) self.assertListEqual(A , output_text.split() ) _a = tokens + [tokenizer.unk_token] _a = [22_943, 21_332, 34_431, 45_904, 117, 306, 1_231, 1_231, 2_653, 33_994, 1_266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass def a__ (self ) -> int: """simple docstring""" pass def a__ (self ) -> str: """simple docstring""" pass
352
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase (__A , __A , __A , __A , __A): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''') if not scores: raise ValueError('''Scores cannot be empty''') if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __A , __A , __A) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __A , __A , __A) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A) , ) ) def lowerCAmelCase (): """simple docstring""" _a = [90, 23, 6, 33, 21, 65, 123, 34_423] _a = math.log(len(__A) , 2) print(F'''Optimal value : {minimax(0 , 0 , __A , __A , __A)}''') if __name__ == "__main__": import doctest doctest.testmod() main()
352
1
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __lowerCAmelCase : int =5_0000 __lowerCAmelCase : Union[str, Any] =5000 __lowerCAmelCase , __lowerCAmelCase : Tuple =os.path.split(__file__) __lowerCAmelCase : int =os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def UpperCamelCase ( _lowerCamelCase : datasets.Dataset , _lowerCamelCase : int ): for i in range(_lowerCamelCase ): A__ = dataset[i] @get_duration def UpperCamelCase ( _lowerCamelCase : datasets.Dataset , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any ): for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ): A__ = dataset[i : i + batch_size] @get_duration def UpperCamelCase ( _lowerCamelCase : datasets.Dataset , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] ): with dataset.formatted_as(type=_lowerCamelCase ): for i in range(_lowerCamelCase ): A__ = dataset[i] @get_duration def UpperCamelCase ( _lowerCamelCase : datasets.Dataset , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Dict ): with dataset.formatted_as(type=_lowerCamelCase ): for i in range(0 , _lowerCamelCase , _lowerCamelCase ): A__ = dataset[i : i + batch_size] def UpperCamelCase ( ): A__ = {"num examples": SPEED_TEST_N_EXAMPLES} A__ = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_00}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10_00}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10_00}), ] A__ = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1_00}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10_00}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10_00}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) A__ = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) A__ = generate_example_dataset( os.path.join(_lowerCamelCase , "dataset.arrow" ) , _lowerCamelCase , num_examples=_lowerCamelCase , seq_shapes={"list": (1_00,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(_lowerCamelCase ) ) A__ = func(_lowerCamelCase , **_lowerCamelCase ) print("shuffling dataset" ) A__ = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(_lowerCamelCase ) ) A__ = func( _lowerCamelCase , **_lowerCamelCase ) with open(_lowerCamelCase , "wb" ) as f: f.write(json.dumps(_lowerCamelCase ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
440
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Any =logging.get_logger(__name__) __lowerCAmelCase : int ="https://openaipublic.azureedge.net/jukebox/models/" __lowerCAmelCase : Any ={ "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def UpperCamelCase ( _lowerCamelCase : str ): if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: A__ = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: A__ = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: A__ = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: A__ = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: A__ = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: A__ = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: A__ = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: A__ = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def UpperCamelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : str ): A__ = {} import re A__ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) A__ = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) A__ = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) A__ = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): A__ = re_encoder_block_conv_in.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) A__ = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" A__ = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): A__ = re_encoder_block_resnet.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) A__ = {"1": 1, "3": 2}[groups[-2]] A__ = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." A__ = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" A__ = prefix + resnet_block A__ = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): A__ = re_encoder_block_proj_out.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" A__ = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): A__ = re_decoder_block_conv_out.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 A__ = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" A__ = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): A__ = re_decoder_block_resnet.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 A__ = {"1": 1, "3": 2}[groups[-2]] A__ = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." A__ = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" A__ = prefix + resnet_block A__ = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): A__ = re_decoder_block_proj_in.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" A__ = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): A__ = re_prior_cond_conv_out.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 A__ = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" A__ = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): A__ = re_prior_cond_resnet.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 A__ = {"1": 1, "3": 2}[groups[-2]] A__ = F"conditioner_blocks.upsampler.upsample_block.{block_index}." A__ = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" A__ = prefix + resnet_block A__ = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): A__ = re_prior_cond_proj_in.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" A__ = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: A__ = original_key A__ = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: A__ = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) A__ = original_key A__ = original_key A__ = value return new_dict @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : str=None , _lowerCamelCase : Dict=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): A__ = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) A__ = MODEL_MAPPING[model_name.split("/" )[-1]] A__ = JukeboxConfig.from_pretrained(_lowerCamelCase ) A__ = JukeboxModel(_lowerCamelCase ) A__ = [] A__ = {} for i, dict_name in enumerate(_lowerCamelCase ): A__ = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] A__ = {} for k in old_dic.keys(): if k.endswith(".b" ): A__ = old_dic[k] elif k.endswith(".w" ): A__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: A__ = old_dic[k] else: A__ = old_dic[k] A__ = "vqvae" if i == 0 else F"priors.{3 - i}" A__ = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) A__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) __lowerCAmelCase : int =parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
440
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' def is_in_circle(lowerCamelCase_ : float ,lowerCamelCase_ : float) -> bool: lowerCAmelCase__ : Any = sqrt((x**2) + (y**2)) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowerCAmelCase__ : List[Any] = mean( int(is_in_circle(uniform(-1.0 ,1.0) ,uniform(-1.0 ,1.0))) for _ in range(lowerCamelCase_)) # The ratio of the area for circle to square is pi/4. lowerCAmelCase__ : int = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""") print(f"""The numpy value of pi is {pi}""") print(f"""The total error is {abs(pi - pi_estimate)}""") def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : Callable[[float], float] ,lowerCamelCase_ : float = 0.0 ,lowerCamelCase_ : float = 1.0 ,): '''simple docstring''' return mean( function_to_integrate(uniform(lowerCamelCase_ ,lowerCamelCase_)) for _ in range(lowerCamelCase_)) * (max_value - min_value) def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : float = 0.0 ,lowerCamelCase_ : float = 1.0): '''simple docstring''' def identity_function(lowerCamelCase_ : float) -> float: return x lowerCAmelCase__ : Dict = area_under_curve_estimator( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ : int = (max_value * max_value - min_value * min_value) / 2 print('''******************''') print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""") print(f"""Estimated value is {estimated_value}""") print(f"""Expected value is {expected_value}""") print(f"""Total error is {abs(estimated_value - expected_value)}""") print('''******************''') def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' def function_to_integrate(lowerCamelCase_ : float) -> float: return sqrt(4.0 - x * x) lowerCAmelCase__ : Optional[Any] = area_under_curve_estimator( lowerCamelCase_ ,lowerCamelCase_ ,0.0 ,2.0) print('''******************''') print('''Estimating pi using area_under_curve_estimator''') print(f"""Estimated value is {estimated_value}""") print(f"""Expected value is {pi}""") print(f"""Total error is {abs(estimated_value - pi)}""") print('''******************''') if __name__ == "__main__": import doctest doctest.testmod()
703
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Any =logging.get_logger(__name__) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""encoder-decoder""" snake_case_ =True def __init__(self ,**__lowerCamelCase ) -> Union[str, Any]: """simple docstring""" super().__init__(**__lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowerCAmelCase__ : Optional[Any] = kwargs.pop('''encoder''' ) lowerCAmelCase__ : Any = encoder_config.pop('''model_type''' ) lowerCAmelCase__ : str = kwargs.pop('''decoder''' ) lowerCAmelCase__ : Tuple = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowerCAmelCase__ : Tuple = AutoConfig.for_model(__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : Any = AutoConfig.for_model(__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : str = True @classmethod def lowerCAmelCase__ (cls ,__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ) -> PretrainedConfig: """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : List[str] = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : Optional[Any] = self.encoder.to_dict() lowerCAmelCase__ : str = self.decoder.to_dict() lowerCAmelCase__ : Optional[int] = self.__class__.model_type return output
90
0
"""simple docstring""" import re def __A ( a_ :str) -> str: if len(re.findall('''[ATCG]''' , a_)) != len(a_): raise ValueError('''Invalid Strand''') return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''')) if __name__ == "__main__": import doctest doctest.testmod()
52
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowerCamelCase__ : def __init__( self ,A = None ): if components is None: UpperCAmelCase = [] UpperCAmelCase = list(A ) def __len__( self ): return len(self.__components ) def __str__( self ): return "(" + ",".join(map(A ,self.__components ) ) + ")" def __add__( self ,A ): UpperCAmelCase = len(self ) if size == len(A ): UpperCAmelCase = [self.__components[i] + other.component(A ) for i in range(A )] return Vector(A ) else: raise Exception("""must have the same size""" ) def __sub__( self ,A ): UpperCAmelCase = len(self ) if size == len(A ): UpperCAmelCase = [self.__components[i] - other.component(A ) for i in range(A )] return Vector(A ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self ,A ): ... @overload def __mul__( self ,A ): ... def __mul__( self ,A ): if isinstance(A ,(float, int) ): UpperCAmelCase = [c * other for c in self.__components] return Vector(A ) elif isinstance(A ,A ) and len(self ) == len(A ): UpperCAmelCase = len(self ) UpperCAmelCase = [self.__components[i] * other.component(A ) for i in range(A )] return sum(A ) else: # error case raise Exception("""invalid operand!""" ) def _UpperCamelCase ( self ): return Vector(self.__components ) def _UpperCamelCase ( self ,A ): if isinstance(A ,A ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def _UpperCamelCase ( self ,A ,A ): assert -len(self.__components ) <= pos < len(self.__components ) UpperCAmelCase = value def _UpperCamelCase ( self ): if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) UpperCAmelCase = [c**2 for c in self.__components] return math.sqrt(sum(A ) ) def _UpperCamelCase ( self ,A ,A = False ): UpperCAmelCase = self * other UpperCAmelCase = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _a ( _snake_case ): """simple docstring""" assert isinstance(_snake_case , _snake_case ) return Vector([0] * dimension ) def _a ( _snake_case , _snake_case ): """simple docstring""" assert isinstance(_snake_case , _snake_case ) and (isinstance(_snake_case , _snake_case )) UpperCAmelCase = [0] * dimension UpperCAmelCase = 1 return Vector(_snake_case ) def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and (isinstance(_snake_case , (int, float) )) ) return x * scalar + y def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" random.seed(_snake_case ) UpperCAmelCase = [random.randint(_snake_case , _snake_case ) for _ in range(_snake_case )] return Vector(_snake_case ) class lowerCamelCase__ : def __init__( self ,A ,A ,A ): UpperCAmelCase = matrix UpperCAmelCase = w UpperCAmelCase = h def __str__( self ): UpperCAmelCase = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self ,A ): if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase = [] for i in range(self.__height ): UpperCAmelCase = [ self.__matrix[i][j] + other.component(A ,A ) for j in range(self.__width ) ] matrix.append(A ) return Matrix(A ,self.__width ,self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self ,A ): if self.__width == other.width() and self.__height == other.height(): UpperCAmelCase = [] for i in range(self.__height ): UpperCAmelCase = [ self.__matrix[i][j] - other.component(A ,A ) for j in range(self.__width ) ] matrix.append(A ) return Matrix(A ,self.__width ,self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self ,A ): ... @overload def __mul__( self ,A ): ... def __mul__( self ,A ): if isinstance(A ,A ): # matrix-vector if len(A ) == self.__width: UpperCAmelCase = zero_vector(self.__height ) for i in range(self.__height ): UpperCAmelCase = [ self.__matrix[i][j] * other.component(A ) for j in range(self.__width ) ] ans.change_component(A ,sum(A ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(A ,(int, float) ): # matrix-scalar UpperCAmelCase = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A ,self.__width ,self.__height ) return None def _UpperCamelCase ( self ): return self.__height def _UpperCamelCase ( self ): return self.__width def _UpperCamelCase ( self ,A ,A ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def _UpperCamelCase ( self ,A ,A ,A ): if 0 <= x < self.__height and 0 <= y < self.__width: UpperCAmelCase = value else: raise Exception("""change_component: indices out of bounds""" ) def _UpperCamelCase ( self ,A ,A ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) UpperCAmelCase = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A ) ): UpperCAmelCase = minor[i][:y] + minor[i][y + 1 :] return Matrix(A ,self.__width - 1 ,self.__height - 1 ).determinant() def _UpperCamelCase ( self ,A ,A ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A ,A ) else: raise Exception("""Indices out of bounds""" ) def _UpperCamelCase ( self ): if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: UpperCAmelCase = [ self.__matrix[0][y] * self.cofactor(0 ,A ) for y in range(self.__width ) ] return sum(A ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = [[0] * n for _ in range(_snake_case )] return Matrix(_snake_case , _snake_case , _snake_case ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" random.seed(_snake_case ) UpperCAmelCase = [ [random.randint(_snake_case , _snake_case ) for _ in range(_snake_case )] for _ in range(_snake_case ) ] return Matrix(_snake_case , _snake_case , _snake_case )
341
0
import logging import os from .state import PartialState class __SCREAMING_SNAKE_CASE ( logging.LoggerAdapter ): @staticmethod def _lowerCamelCase ( __lowerCAmelCase ): UpperCamelCase__ = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ): if PartialState._shared_state == {}: raise RuntimeError( """You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" ) UpperCamelCase__ = kwargs.pop("""main_process_only""" , __lowerCAmelCase ) UpperCamelCase__ = kwargs.pop("""in_order""" , __lowerCAmelCase ) if self.isEnabledFor(__lowerCAmelCase ): if self._should_log(__lowerCAmelCase ): UpperCamelCase__ , UpperCamelCase__ = self.process(__lowerCAmelCase , __lowerCAmelCase ) self.logger.log(__lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) elif in_order: UpperCamelCase__ = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCamelCase__ , UpperCamelCase__ = self.process(__lowerCAmelCase , __lowerCAmelCase ) self.logger.log(__lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) state.wait_for_everyone() def _UpperCamelCase (a__ :str , a__ :str = None ): """simple docstring""" if log_level is None: UpperCamelCase__ = os.environ.get("""ACCELERATE_LOG_LEVEL""" , a__ ) UpperCamelCase__ = logging.getLogger(a__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(a__ , {} )
710
import argparse import datetime def _UpperCamelCase (a__ :str ): """simple docstring""" UpperCamelCase__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } UpperCamelCase__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(a__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month UpperCamelCase__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) UpperCamelCase__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day UpperCamelCase__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator UpperCamelCase__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year UpperCamelCase__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation UpperCamelCase__ = datetime.date(int(a__ ) , int(a__ ) , int(a__ ) ) # Start math if m <= 2: UpperCamelCase__ = y - 1 UpperCamelCase__ = m + 12 # maths var UpperCamelCase__ = int(str(a__ )[:2] ) UpperCamelCase__ = int(str(a__ )[2:] ) UpperCamelCase__ = int(2.6 * m - 5.39 ) UpperCamelCase__ = int(c / 4 ) UpperCamelCase__ = int(k / 4 ) UpperCamelCase__ = int(d + k ) UpperCamelCase__ = int(t + u + v + x ) UpperCamelCase__ = int(z - (2 * c) ) UpperCamelCase__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response UpperCamelCase__ = f"""Your date {date_input}, is a {days[str(a__ )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) UpperCamelCase__ = parser.parse_args() zeller(args.date_input)
548
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = inspect.getfile(accelerate.test_utils ) lowercase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) lowercase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) lowercase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self ): print(F'''Found {torch.cuda.device_count()} devices.''' ) lowercase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self ): print(F'''Found {torch.cuda.device_count()} devices.''' ) lowercase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def SCREAMING_SNAKE_CASE__ ( self ): print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) lowercase = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(snake_case , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase = Accelerator() UpperCAmelCase = (accelerator.state.process_index + 2, 10) UpperCAmelCase = torch.randint(0, 10, shape).to(accelerator.device) UpperCAmelCase = '''''' UpperCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
84
import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): """simple docstring""" @staticmethod def _UpperCAmelCase ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: a__ = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[int]: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) a__ = kwargs.pop('''main_process_only''' , SCREAMING_SNAKE_CASE ) a__ = kwargs.pop('''in_order''' , SCREAMING_SNAKE_CASE ) if self.isEnabledFor(SCREAMING_SNAKE_CASE ): if self._should_log(SCREAMING_SNAKE_CASE ): a__ , a__ = self.process(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.logger.log(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif in_order: a__ = PartialState() for i in range(state.num_processes ): if i == state.process_index: a__ , a__ = self.process(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.logger.log(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) state.wait_for_everyone() def __a ( __UpperCAmelCase , __UpperCAmelCase = None ): if log_level is None: a__ = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __UpperCAmelCase ) a__ = logging.getLogger(__UpperCAmelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__UpperCAmelCase , {} )
194
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Dict = "The Nymphenburg Palace is a beautiful palace in Munich!" def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): """simple docstring""" UpperCamelCase__ : Any = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 1024, '''hidden_size''': 768, '''max_length''': 512, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 1024, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } UpperCamelCase__ : Dict = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py UpperCamelCase__ : Tuple = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=SCREAMING_SNAKE_CASE , output_all_encodings=SCREAMING_SNAKE_CASE , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , SCREAMING_SNAKE_CASE ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later UpperCamelCase__ : int = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab UpperCamelCase__ : Union[str, Any] = os.path.join(get_home_dir() , '''models''' ) UpperCamelCase__ : Union[str, Any] = _load_vocab(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , cls=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = nlp.model.BERTModel( SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=SCREAMING_SNAKE_CASE , use_token_type_embed=SCREAMING_SNAKE_CASE , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=SCREAMING_SNAKE_CASE , use_decoder=SCREAMING_SNAKE_CASE , ) original_bort.load_parameters(SCREAMING_SNAKE_CASE , cast_dtype=SCREAMING_SNAKE_CASE , ignore_extra=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = original_bort._collect_params_with_prefix() # Build our config 🤗 UpperCamelCase__ : Optional[int] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(SCREAMING_SNAKE_CASE ), } UpperCamelCase__ : Union[str, Any] = BertConfig.from_dict(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = BertForMaskedLM(SCREAMING_SNAKE_CASE ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(SCREAMING_SNAKE_CASE : str ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ): UpperCamelCase__ : Optional[int] = hf_param.shape UpperCamelCase__ : List[Any] = to_torch(params[gluon_param] ) UpperCamelCase__ : List[Any] = gluon_param.shape assert ( shape_hf == shape_gluon ), F"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers" return gluon_param UpperCamelCase__ : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) UpperCamelCase__ : Dict = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) UpperCamelCase__ : int = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) UpperCamelCase__ : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) UpperCamelCase__ : int = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): UpperCamelCase__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention UpperCamelCase__ : BertSelfAttention = layer.attention.self UpperCamelCase__ : int = check_and_map_params( self_attn.key.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_key.bias" ) UpperCamelCase__ : Optional[Any] = check_and_map_params( self_attn.key.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_key.weight" ) UpperCamelCase__ : Tuple = check_and_map_params( self_attn.query.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_query.bias" ) UpperCamelCase__ : str = check_and_map_params( self_attn.query.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_query.weight" ) UpperCamelCase__ : List[str] = check_and_map_params( self_attn.value.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_value.bias" ) UpperCamelCase__ : Dict = check_and_map_params( self_attn.value.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_value.weight" ) # self attention output UpperCamelCase__ : BertSelfOutput = layer.attention.output UpperCamelCase__ : Any = check_and_map_params( self_output.dense.bias , F"encoder.transformer_cells.{i}.proj.bias" ) UpperCamelCase__ : Optional[int] = check_and_map_params( self_output.dense.weight , F"encoder.transformer_cells.{i}.proj.weight" ) UpperCamelCase__ : List[str] = check_and_map_params( self_output.LayerNorm.bias , F"encoder.transformer_cells.{i}.layer_norm.beta" ) UpperCamelCase__ : Dict = check_and_map_params( self_output.LayerNorm.weight , F"encoder.transformer_cells.{i}.layer_norm.gamma" ) # intermediate UpperCamelCase__ : BertIntermediate = layer.intermediate UpperCamelCase__ : Optional[int] = check_and_map_params( intermediate.dense.bias , F"encoder.transformer_cells.{i}.ffn.ffn_1.bias" ) UpperCamelCase__ : Tuple = check_and_map_params( intermediate.dense.weight , F"encoder.transformer_cells.{i}.ffn.ffn_1.weight" ) # output UpperCamelCase__ : BertOutput = layer.output UpperCamelCase__ : str = check_and_map_params( bert_output.dense.bias , F"encoder.transformer_cells.{i}.ffn.ffn_2.bias" ) UpperCamelCase__ : Any = check_and_map_params( bert_output.dense.weight , F"encoder.transformer_cells.{i}.ffn.ffn_2.weight" ) UpperCamelCase__ : List[Any] = check_and_map_params( bert_output.LayerNorm.bias , F"encoder.transformer_cells.{i}.ffn.layer_norm.beta" ) UpperCamelCase__ : List[str] = check_and_map_params( bert_output.LayerNorm.weight , F"encoder.transformer_cells.{i}.ffn.layer_norm.gamma" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models UpperCamelCase__ : Dict = RobertaTokenizer.from_pretrained('''roberta-base''' ) UpperCamelCase__ : Union[str, Any] = tokenizer.encode_plus(SCREAMING_SNAKE_CASE )['''input_ids'''] # Get gluon output UpperCamelCase__ : Any = mx.nd.array([input_ids] ) UpperCamelCase__ : int = original_bort(inputs=SCREAMING_SNAKE_CASE , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = BertModel.from_pretrained(SCREAMING_SNAKE_CASE ) hf_bort_model.eval() UpperCamelCase__ : Union[str, Any] = tokenizer.encode_plus(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) UpperCamelCase__ : Any = hf_bort_model(**SCREAMING_SNAKE_CASE )[0] UpperCamelCase__ : str = output_gluon[0].asnumpy() UpperCamelCase__ : int = output_hf[0].detach().numpy() UpperCamelCase__ : Dict = np.max(np.abs(hf_layer - gluon_layer ) ).item() UpperCamelCase__ : Optional[int] = np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCamelCase : Tuple = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
106
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __UpperCamelCase : int = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def _a ( SCREAMING_SNAKE_CASE : str = "mumbai" ): """simple docstring""" UpperCamelCase__ : Optional[int] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): UpperCamelCase__ : Optional[Any] = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() UpperCamelCase__ : Union[str, Any] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f"Job {i:>2} is {job[0]} at {job[1]}")
106
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) def UpperCamelCase__ ( _A: int ): '''simple docstring''' __lowerCamelCase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __lowerCamelCase = 128 elif "12-12" in model_name: __lowerCamelCase = 12 __lowerCamelCase = 12 elif "14-14" in model_name: __lowerCamelCase = 14 __lowerCamelCase = 14 elif "16-16" in model_name: __lowerCamelCase = 16 __lowerCamelCase = 16 else: raise ValueError("""Model not supported""" ) __lowerCamelCase = "huggingface/label-files" if "speech-commands" in model_name: __lowerCamelCase = 35 __lowerCamelCase = "speech-commands-v2-id2label.json" else: __lowerCamelCase = 527 __lowerCamelCase = "audioset-id2label.json" __lowerCamelCase = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) ) __lowerCamelCase = {int(__A ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} return config def UpperCamelCase__ ( _A: Union[str, Any] ): '''simple docstring''' if "module.v" in name: __lowerCamelCase = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: __lowerCamelCase = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: __lowerCamelCase = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: __lowerCamelCase = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCamelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: __lowerCamelCase = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: __lowerCamelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __lowerCamelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __lowerCamelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCamelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCamelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCamelCase = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __lowerCamelCase = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: __lowerCamelCase = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: __lowerCamelCase = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def UpperCamelCase__ ( _A: Optional[Any] , _A: Union[str, Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): __lowerCamelCase = orig_state_dict.pop(__A ) if "qkv" in key: __lowerCamelCase = key.split(""".""" ) __lowerCamelCase = int(key_split[3] ) __lowerCamelCase = config.hidden_size if "weight" in key: __lowerCamelCase = val[:dim, :] __lowerCamelCase = val[dim : dim * 2, :] __lowerCamelCase = val[-dim:, :] else: __lowerCamelCase = val[:dim] __lowerCamelCase = val[dim : dim * 2] __lowerCamelCase = val[-dim:] else: __lowerCamelCase = val return orig_state_dict def UpperCamelCase__ ( _A: Dict ): '''simple docstring''' __lowerCamelCase = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(__A , __A ) @torch.no_grad() def UpperCamelCase__ ( _A: int , _A: Union[str, Any] , _A: List[str]=False ): '''simple docstring''' __lowerCamelCase = get_audio_spectrogram_transformer_config(__A ) __lowerCamelCase = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict __lowerCamelCase = model_name_to_url[model_name] __lowerCamelCase = torch.hub.load_state_dict_from_url(__A , map_location="""cpu""" ) # remove some keys remove_keys(__A ) # rename some keys __lowerCamelCase = convert_state_dict(__A , __A ) # load 🤗 model __lowerCamelCase = ASTForAudioClassification(__A ) model.eval() model.load_state_dict(__A ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __lowerCamelCase = -4.267_7393 if "speech-commands" not in model_name else -6.84_5978 __lowerCamelCase = 4.568_9974 if "speech-commands" not in model_name else 5.565_4526 __lowerCamelCase = 1024 if "speech-commands" not in model_name else 128 __lowerCamelCase = ASTFeatureExtractor(mean=__A , std=__A , max_length=__A ) if "speech-commands" in model_name: __lowerCamelCase = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) __lowerCamelCase = dataset[0]["audio"]["array"] else: __lowerCamelCase = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) __lowerCamelCase = torchaudio.load(__A ) __lowerCamelCase = waveform.squeeze().numpy() __lowerCamelCase = feature_extractor(__A , sampling_rate=16000 , return_tensors="""pt""" ) # forward pass __lowerCamelCase = model(**__A ) __lowerCamelCase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __lowerCamelCase = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __lowerCamelCase = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __lowerCamelCase = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __lowerCamelCase = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __lowerCamelCase = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __lowerCamelCase = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __lowerCamelCase = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": __lowerCamelCase = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , __A , atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__A ).mkdir(exist_ok=__A ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(__A ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a : Optional[int] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
479
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case_ : """simple docstring""" def __init__(self: Optional[int] , __UpperCAmelCase: int , __UpperCAmelCase: List[Any]=13 , __UpperCAmelCase: Any=30 , __UpperCAmelCase: List[str]=2 , __UpperCAmelCase: Optional[int]=3 , __UpperCAmelCase: Tuple=True , __UpperCAmelCase: str=True , __UpperCAmelCase: int=32 , __UpperCAmelCase: Tuple=5 , __UpperCAmelCase: Optional[Any]=4 , __UpperCAmelCase: Dict=37 , __UpperCAmelCase: List[Any]="gelu" , __UpperCAmelCase: List[Any]=0.1 , __UpperCAmelCase: Any=0.1 , __UpperCAmelCase: Optional[Any]=10 , __UpperCAmelCase: str=0.02 , __UpperCAmelCase: Any=3 , __UpperCAmelCase: Tuple=0.6 , __UpperCAmelCase: str=None , ) -> List[Any]: '''simple docstring''' __a : int = parent __a : Any = batch_size __a : int = image_size __a : Tuple = patch_size __a : str = num_channels __a : List[Any] = is_training __a : Tuple = use_labels __a : str = hidden_size __a : List[Any] = num_hidden_layers __a : str = num_attention_heads __a : Any = intermediate_size __a : str = hidden_act __a : Union[str, Any] = hidden_dropout_prob __a : Optional[int] = attention_probs_dropout_prob __a : Tuple = type_sequence_label_size __a : Any = initializer_range __a : Dict = mask_ratio __a : Union[str, Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __a : Any = (image_size // patch_size) ** 2 __a : Optional[int] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase__ (self: Any ) -> str: '''simple docstring''' __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Optional[Any] = None if self.use_labels: __a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ (self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase__ (self: List[Any] , __UpperCAmelCase: str , __UpperCAmelCase: Tuple , __UpperCAmelCase: List[str] ) -> List[str]: '''simple docstring''' __a : str = ViTMAEModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __a : int = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ (self: Tuple , __UpperCAmelCase: Dict , __UpperCAmelCase: Tuple , __UpperCAmelCase: Dict ) -> Dict: '''simple docstring''' __a : Optional[Any] = ViTMAEForPreTraining(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __a : List[str] = model(__UpperCAmelCase ) __a : Union[str, Any] = (self.image_size // self.patch_size) ** 2 __a : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __a : Optional[Any] = 1 __a : int = ViTMAEForPreTraining(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __a : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a : Optional[int] = model(__UpperCAmelCase ) __a : List[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase__ (self: Optional[int] ) -> Optional[Any]: '''simple docstring''' __a : List[Any] = self.prepare_config_and_inputs() __a , __a , __a : Dict = config_and_inputs __a : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () snake_case__ = {"""feature-extraction""": ViTMAEModel} if is_torch_available() else {} snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def UpperCAmelCase__ (self: int ) -> Dict: '''simple docstring''' __a : List[str] = ViTMAEModelTester(self ) __a : str = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase__ (self: Tuple ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def UpperCAmelCase__ (self: str ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ (self: Dict ) -> str: '''simple docstring''' __a , __a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Tuple = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase__ (self: Dict ) -> Tuple: '''simple docstring''' __a , __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Any = model_class(__UpperCAmelCase ) __a : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Optional[Any] = [*signature.parameters.keys()] __a : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase__ (self: Any ) -> Optional[int]: '''simple docstring''' __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase__ (self: List[str] ) -> Tuple: '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase ) def UpperCAmelCase__ (self: Dict , __UpperCAmelCase: int , __UpperCAmelCase: Dict , __UpperCAmelCase: str ) -> Dict: '''simple docstring''' np.random.seed(2 ) __a : Union[str, Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __a : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __a : Tuple = torch.from_numpy(__UpperCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __a : Union[str, Any] = pt_noise super().check_pt_tf_models(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__ (self: str ) -> Dict: '''simple docstring''' __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Union[str, Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __a : Any = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __a : Dict = outputs[0].cpu().numpy() __a : str = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) __a : Any = model_class.from_pretrained(__UpperCAmelCase ) model.to(__UpperCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __a : Optional[int] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) # Make sure we don't have nans __a : Dict = after_outputs[0].cpu().numpy() __a : str = 0 __a : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCAmelCase , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCAmelCase__ (self: Union[str, Any] ) -> Any: '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCAmelCase__ (self: Optional[int] ) -> Dict: '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCAmelCase__ (self: Optional[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def UpperCAmelCase__ (self: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCAmelCase__ (self: List[str] ) -> List[Any]: '''simple docstring''' pass @slow def UpperCAmelCase__ (self: Tuple ) -> int: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Tuple = ViTMAEModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def a_ () -> Optional[Any]: """simple docstring""" __a : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ (self: Optional[int] ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def UpperCAmelCase__ (self: str ) -> Union[str, Any]: '''simple docstring''' np.random.seed(2 ) __a : int = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__UpperCAmelCase ) __a : Dict = self.default_image_processor __a : List[str] = prepare_img() __a : Tuple = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __a : Optional[Any] = ViTMAEConfig() __a : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __a : int = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __a : Union[str, Any] = model(**__UpperCAmelCase , noise=torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase ) ) # verify the logits __a : Optional[Any] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __a : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__UpperCAmelCase ) , atol=1E-4 ) )
351
0
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Union[str, Any] =logging.get_logger(__name__) A_ : Optional[Any] ={ """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class __a ( _snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = """align_text_model""" def __init__( self , a__=3_05_22 , a__=7_68 , a__=12 , a__=12 , a__=30_72 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=2 , a__=0.02 , a__=1e-12 , a__=0 , a__="absolute" , a__=True , **a__ , ): super().__init__(**snake_case_ ) _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = hidden_act _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps _lowerCamelCase = position_embedding_type _lowerCamelCase = use_cache _lowerCamelCase = pad_token_id @classmethod def snake_case_ ( cls , a__ , **a__ ): cls._set_token_in_kwargs(snake_case_ ) _lowerCamelCase = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": _lowerCamelCase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class __a ( _snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = """align_vision_model""" def __init__( self , a__ = 3 , a__ = 6_00 , a__ = 2.0 , a__ = 3.1 , a__ = 8 , a__ = [3, 3, 5, 3, 5, 5, 3] , a__ = [32, 16, 24, 40, 80, 1_12, 1_92] , a__ = [16, 24, 40, 80, 1_12, 1_92, 3_20] , a__ = [] , a__ = [1, 2, 2, 2, 1, 2, 1] , a__ = [1, 2, 2, 3, 3, 4, 1] , a__ = [1, 6, 6, 6, 6, 6, 6] , a__ = 0.25 , a__ = "swish" , a__ = 25_60 , a__ = "mean" , a__ = 0.02 , a__ = 0.001 , a__ = 0.99 , a__ = 0.2 , **a__ , ): super().__init__(**snake_case_ ) _lowerCamelCase = num_channels _lowerCamelCase = image_size _lowerCamelCase = width_coefficient _lowerCamelCase = depth_coefficient _lowerCamelCase = depth_divisor _lowerCamelCase = kernel_sizes _lowerCamelCase = in_channels _lowerCamelCase = out_channels _lowerCamelCase = depthwise_padding _lowerCamelCase = strides _lowerCamelCase = num_block_repeats _lowerCamelCase = expand_ratios _lowerCamelCase = squeeze_expansion_ratio _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dim _lowerCamelCase = pooling_type _lowerCamelCase = initializer_range _lowerCamelCase = batch_norm_eps _lowerCamelCase = batch_norm_momentum _lowerCamelCase = drop_connect_rate _lowerCamelCase = sum(snake_case_ ) * 4 @classmethod def snake_case_ ( cls , a__ , **a__ ): cls._set_token_in_kwargs(snake_case_ ) _lowerCamelCase = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": _lowerCamelCase = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class __a ( _snake_case ): SCREAMING_SNAKE_CASE__ : Tuple = """align""" SCREAMING_SNAKE_CASE__ : Dict = True def __init__( self , a__=None , a__=None , a__=6_40 , a__=1.0 , a__=0.02 , **a__ , ): super().__init__(**snake_case_ ) if text_config is None: _lowerCamelCase = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: _lowerCamelCase = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) _lowerCamelCase = AlignTextConfig(**snake_case_ ) _lowerCamelCase = AlignVisionConfig(**snake_case_ ) _lowerCamelCase = projection_dim _lowerCamelCase = temperature_init_value _lowerCamelCase = initializer_range @classmethod def snake_case_ ( cls , a__ , a__ , **a__ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case_ ) def snake_case_ ( self ): _lowerCamelCase = copy.deepcopy(self.__dict__ ) _lowerCamelCase = self.text_config.to_dict() _lowerCamelCase = self.vision_config.to_dict() _lowerCamelCase = self.__class__.model_type return output
721
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : float )-> float: if edge <= 0 or not isinstance(snake_case , snake_case ): raise ValueError('Length must be a positive.' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def SCREAMING_SNAKE_CASE_ ( snake_case : float )-> float: if edge <= 0 or not isinstance(snake_case , snake_case ): raise ValueError('Length must be a positive.' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
222
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
71
"""simple docstring""" from bisect import bisect from itertools import accumulate def __lowerCamelCase ( a_ : Optional[int] , a_ : Tuple , a_ : Union[str, Any] , a_ : Union[str, Any] ) -> int: __SCREAMING_SNAKE_CASE :int = sorted(zip(a_ , a_ ) , key=lambda a_ : x[0] / x[1] , reverse=a_ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[Any] = [i[0] for i in r], [i[1] for i in r] __SCREAMING_SNAKE_CASE :Union[str, Any] = list(accumulate(a_ ) ) __SCREAMING_SNAKE_CASE :Dict = bisect(a_ , a_ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
498
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
1
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __a(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return max(metric_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for gt in ground_truths ) def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' _lowerCAmelCase = [line.strip() for line in open(SCREAMING_SNAKE_CASE_ , "r" ).readlines()] _lowerCAmelCase = [] if args.gold_data_mode == "qa": _lowerCAmelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , sep="\t" , header=SCREAMING_SNAKE_CASE_ ) for answer_list in data[1]: _lowerCAmelCase = ast.literal_eval(SCREAMING_SNAKE_CASE_ ) answers.append(SCREAMING_SNAKE_CASE_ ) else: _lowerCAmelCase = [line.strip() for line in open(SCREAMING_SNAKE_CASE_ , "r" ).readlines()] _lowerCAmelCase = [[reference] for reference in references] _lowerCAmelCase = _lowerCAmelCase = _lowerCAmelCase = 0 for prediction, ground_truths in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): total += 1 em += metric_max_over_ground_truths(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) fa += metric_max_over_ground_truths(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = 100.0 * em / total _lowerCAmelCase = 100.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = args.k _lowerCAmelCase = [line.strip() for line in open(SCREAMING_SNAKE_CASE_ , "r" ).readlines()] _lowerCAmelCase = [line.strip() for line in open(SCREAMING_SNAKE_CASE_ , "r" ).readlines()] _lowerCAmelCase = _lowerCAmelCase = 0 for hypo, reference in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = set(hypo.split("\t" )[:k] ) _lowerCAmelCase = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _lowerCAmelCase = 100.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' def strip_title(SCREAMING_SNAKE_CASE_ : List[str] ): if title.startswith("\"" ): _lowerCAmelCase = title[1:] if title.endswith("\"" ): _lowerCAmelCase = title[:-1] return title _lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( SCREAMING_SNAKE_CASE_ , return_tensors="pt" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , )["input_ids"].to(args.device ) _lowerCAmelCase = rag_model.rag.question_encoder(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = question_enc_outputs[0] _lowerCAmelCase = rag_model.retriever( SCREAMING_SNAKE_CASE_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) _lowerCAmelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _lowerCAmelCase = [] for docs in all_docs: _lowerCAmelCase = [strip_title(SCREAMING_SNAKE_CASE_ ) for title in docs["title"]] provenance_strings.append("\t".join(SCREAMING_SNAKE_CASE_ ) ) return provenance_strings def __a(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( SCREAMING_SNAKE_CASE_ , return_tensors="pt" , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = inputs_dict.input_ids.to(args.device ) _lowerCAmelCase = inputs_dict.attention_mask.to(args.device ) _lowerCAmelCase = rag_model.generate( # rag_model overwrites generate SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=SCREAMING_SNAKE_CASE_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _lowerCAmelCase = rag_model.retriever.generator_tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) if args.print_predictions: for q, a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): logger.info("Q: {} - A: {}".format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) return answers def __a(): '''simple docstring''' _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=SCREAMING_SNAKE_CASE_ , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=SCREAMING_SNAKE_CASE_ , choices=["exact", "compressed", "legacy"] , type=SCREAMING_SNAKE_CASE_ , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=SCREAMING_SNAKE_CASE_ , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=SCREAMING_SNAKE_CASE_ , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=SCREAMING_SNAKE_CASE_ , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=SCREAMING_SNAKE_CASE_ , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=SCREAMING_SNAKE_CASE_ , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=SCREAMING_SNAKE_CASE_ , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=SCREAMING_SNAKE_CASE_ , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=SCREAMING_SNAKE_CASE_ , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=SCREAMING_SNAKE_CASE_ , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def __a(SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' _lowerCAmelCase = {} if args.model_type is None: _lowerCAmelCase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): _lowerCAmelCase = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration _lowerCAmelCase = args.n_docs if args.index_name is not None: _lowerCAmelCase = args.index_name if args.index_path is not None: _lowerCAmelCase = args.index_path else: _lowerCAmelCase = BartForConditionalGeneration _lowerCAmelCase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = get_scores if args.eval_mode == "e2e" else get_precision_at_k _lowerCAmelCase = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(SCREAMING_SNAKE_CASE_ , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(SCREAMING_SNAKE_CASE_ ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): _lowerCAmelCase = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , retriever=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) model.retriever.init_retrieval() else: _lowerCAmelCase = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: _lowerCAmelCase = [] for line in tqdm(SCREAMING_SNAKE_CASE_ ): questions.append(line.strip() ) if len(SCREAMING_SNAKE_CASE_ ) == args.eval_batch_size: _lowerCAmelCase = evaluate_batch_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) preds_file.write("\n".join(SCREAMING_SNAKE_CASE_ ) + "\n" ) preds_file.flush() _lowerCAmelCase = [] if len(SCREAMING_SNAKE_CASE_ ) > 0: _lowerCAmelCase = evaluate_batch_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) preds_file.write("\n".join(SCREAMING_SNAKE_CASE_ ) ) preds_file.flush() score_fn(SCREAMING_SNAKE_CASE_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = get_args() main(args)
18
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Optional[int] = "deit" def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=16 , **_lowerCAmelCase , ) -> Dict: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = qkv_bias _lowerCAmelCase = encoder_stride class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self ) -> float: return 1E-4
18
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
711
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ : int = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Union[str, Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowerCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
329
0
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowercase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # load base model UpperCAmelCase__ = StableDiffusionPipeline.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors UpperCAmelCase__ = load_file(_lowerCAmelCase ) UpperCAmelCase__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: UpperCAmelCase__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) UpperCAmelCase__ = pipeline.text_encoder else: UpperCAmelCase__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) UpperCAmelCase__ = pipeline.unet # find the target layer UpperCAmelCase__ = layer_infos.pop(0 ) while len(_lowerCAmelCase ) > -1: try: UpperCAmelCase__ = curr_layer.__getattr__(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCAmelCase__ = layer_infos.pop(0 ) elif len(_lowerCAmelCase ) == 0: break except Exception: if len(_lowerCAmelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: UpperCAmelCase__ = layer_infos.pop(0 ) UpperCAmelCase__ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(_lowerCAmelCase ) else: pair_keys.append(_lowerCAmelCase ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: UpperCAmelCase__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) UpperCAmelCase__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_lowerCAmelCase , _lowerCAmelCase ).unsqueeze(2 ).unsqueeze(3 ) else: UpperCAmelCase__ = state_dict[pair_keys[0]].to(torch.floataa ) UpperCAmelCase__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_lowerCAmelCase , _lowerCAmelCase ) # update visited list for item in pair_keys: visited.append(_lowerCAmelCase ) return pipeline if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') snake_case__ : str = parser.parse_args() snake_case__ : Union[str, Any] = args.base_model_path snake_case__ : str = args.checkpoint_path snake_case__ : Tuple = args.dump_path snake_case__ : Optional[Any] = args.lora_prefix_unet snake_case__ : str = args.lora_prefix_text_encoder snake_case__ : Tuple = args.alpha snake_case__ : List[str] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) snake_case__ : Any = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
392
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image snake_case__ : Optional[int] = ['''text''', '''image''', '''audio'''] def lowercase ( _lowerCAmelCase ): UpperCAmelCase__ = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): inputs.append(create_inputs(_lowerCAmelCase ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def lowercase ( _lowerCAmelCase ): UpperCAmelCase__ = [] for output in outputs: if isinstance(_lowerCAmelCase , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(_lowerCAmelCase , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(_lowerCAmelCase , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class snake_case : '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) ->List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) UpperCAmelCase__ = self.tool.inputs for _input in inputs: if isinstance(_input , lowerCamelCase_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) UpperCAmelCase__ = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase ( self : List[Any] ) ->Tuple: '''simple docstring''' UpperCAmelCase__ = create_inputs(self.tool.inputs ) UpperCAmelCase__ = self.tool(*lowerCamelCase_ ) # There is a single output if len(self.tool.outputs ) == 1: UpperCAmelCase__ = [outputs] self.assertListEqual(output_types(lowerCamelCase_ ) , self.tool.outputs ) def UpperCAmelCase ( self : Tuple ) ->Any: '''simple docstring''' self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def UpperCAmelCase ( self : List[Any] ) ->str: '''simple docstring''' UpperCAmelCase__ = create_inputs(self.tool.inputs ) UpperCAmelCase__ = self.tool(*lowerCamelCase_ ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ = [outputs] self.assertEqual(len(lowerCamelCase_ ) , len(self.tool.outputs ) ) for output, output_type in zip(lowerCamelCase_ , self.tool.outputs ): UpperCAmelCase__ = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_ ) ) def UpperCAmelCase ( self : List[str] ) ->str: '''simple docstring''' UpperCAmelCase__ = create_inputs(self.tool.inputs ) UpperCAmelCase__ = [] for _input, input_type in zip(lowerCamelCase_ , self.tool.inputs ): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error UpperCAmelCase__ = self.tool(*lowerCamelCase_ ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ = [outputs] self.assertEqual(len(lowerCamelCase_ ) , len(self.tool.outputs ) )
392
1
def lowerCamelCase__ ( a : int = 50 ) -> int: """simple docstring""" a__ :int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
373
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig snake_case__ = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class lowerCAmelCase_ ( _a): lowerCamelCase_ = 'albert' def __init__( self : Any , __A : Optional[int]=30000 , __A : List[str]=128 , __A : int=4096 , __A : Any=12 , __A : Union[str, Any]=1 , __A : Optional[int]=64 , __A : Dict=16384 , __A : List[str]=1 , __A : Any="gelu_new" , __A : List[Any]=0 , __A : str=0 , __A : List[str]=512 , __A : Optional[Any]=2 , __A : Tuple=0.02 , __A : int=1E-12 , __A : str=0.1 , __A : Optional[Any]="absolute" , __A : Tuple=0 , __A : str=2 , __A : Union[str, Any]=3 , **__A : Union[str, Any] , ) ->str: """simple docstring""" super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) a__ :Tuple = vocab_size a__ :Dict = embedding_size a__ :Union[str, Any] = hidden_size a__ :int = num_hidden_layers a__ :List[Any] = num_hidden_groups a__ :str = num_attention_heads a__ :Optional[Any] = inner_group_num a__ :Any = hidden_act a__ :Optional[int] = intermediate_size a__ :Optional[Any] = hidden_dropout_prob a__ :Optional[int] = attention_probs_dropout_prob a__ :int = max_position_embeddings a__ :List[Any] = type_vocab_size a__ :Dict = initializer_range a__ :Optional[int] = layer_norm_eps a__ :Optional[Any] = classifier_dropout_prob a__ :Optional[Any] = position_embedding_type class lowerCAmelCase_ ( _a): @property def _snake_case ( self : Optional[int] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": a__ :List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: a__ :Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
373
1
class __A : def __init__( self :Optional[int] , __snake_case :int ): '''simple docstring''' __magic_name__ : Optional[Any] =size __magic_name__ : Union[str, Any] =[0] * size __magic_name__ : Optional[int] =[0] * size @staticmethod def A__ ( __snake_case :int ): '''simple docstring''' return index | (index + 1) @staticmethod def A__ ( __snake_case :int ): '''simple docstring''' return (index & (index + 1)) - 1 def A__ ( self :Optional[Any] , __snake_case :int , __snake_case :int ): '''simple docstring''' __magic_name__ : Optional[int] =value while index < self.size: __magic_name__ : List[Any] =self.get_prev(__snake_case ) + 1 if current_left_border == index: __magic_name__ : str =value else: __magic_name__ : Tuple =max(__snake_case , __snake_case , __snake_case ) __magic_name__ : Tuple =self.get_next(__snake_case ) def A__ ( self :List[Any] , __snake_case :int , __snake_case :int ): '''simple docstring''' right -= 1 # Because of right is exclusive __magic_name__ : Optional[Any] =0 while left <= right: __magic_name__ : int =self.get_prev(__snake_case ) if left <= current_left: __magic_name__ : str =max(__snake_case , self.tree[right] ) __magic_name__ : int =current_left else: __magic_name__ : int =max(__snake_case , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
21
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : List[str] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Optional[Any] =tf.cast(math.pi , x.dtype ) __magic_name__ : int =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Any =tf.convert_to_tensor(lowerCamelCase ) return x * tf.tanh(tf.math.softplus(lowerCamelCase ) ) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Optional[Any] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Union[str, Any] =tf.cast(0.0_4_4_7_1_5 , x.dtype ) __magic_name__ : Tuple =tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =tf.convert_to_tensor(lowerCamelCase ) __magic_name__ : Dict =tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( lowerCamelCase ): return tf.clip_by_value(_gelu(lowerCamelCase ) , -10 , 10 ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=-1 ): __magic_name__ , __magic_name__ : List[Any] =tf.split(lowerCamelCase , 2 , axis=lowerCamelCase ) return a * tf.math.sigmoid(lowerCamelCase ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowerCAmelCase_ ( lowerCamelCase ): return tf.keras.activations.gelu(lowerCamelCase , approximate=lowerCamelCase ) UpperCAmelCase_ : List[str] = tf.keras.activations.gelu UpperCAmelCase_ : Dict = approximate_gelu_wrap else: UpperCAmelCase_ : Dict = _gelu UpperCAmelCase_ : str = _gelu_new UpperCAmelCase_ : Any = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowerCAmelCase_ ( lowerCamelCase ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
21
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __A : Dict = get_tests_dir('fixtures') class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Dict ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE = mock.Mock() SCREAMING_SNAKE_CASE = 500 SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = HTTPError SCREAMING_SNAKE_CASE = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__lowerCamelCase ) as mock_head: SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self : int ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @classmethod def _snake_case ( cls : Optional[int] ): SCREAMING_SNAKE_CASE = TOKEN HfFolder.save_token(__lowerCamelCase ) @classmethod def _snake_case ( cls : List[str] ): try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCamelCase , repo_id="test-feature-extractor" , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCamelCase , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) def _snake_case ( self : Optional[Any] ): CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE = CustomFeatureExtractor.from_pretrained(__lowerCamelCase ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=__lowerCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
698
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __a ( A__ : str=None ): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser("test" ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=A__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: SCREAMING_SNAKE_CASE = script_name else: SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split() SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __a ( ): SCREAMING_SNAKE_CASE = test_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() test_command(A__ ) if __name__ == "__main__": main()
698
1
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file UpperCAmelCase = """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def _snake_case ( __snake_case : Tuple=None ): """simple docstring""" if subparsers is not None: _lowerCamelCase : str = subparsers.add_parser("""tpu-config""" , description=_description ) else: _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments _lowerCamelCase : Optional[int] = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=__snake_case , default=__snake_case , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=__snake_case , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=__snake_case , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) _lowerCamelCase : List[Any] = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=__snake_case , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=__snake_case ) return parser def _snake_case ( __snake_case : int ): """simple docstring""" _lowerCamelCase : str = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__snake_case ): _lowerCamelCase : Optional[int] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _lowerCamelCase : Dict = defaults.command_file if not args.command and defaults.commands is not None: _lowerCamelCase : List[Any] = defaults.commands if not args.tpu_name: _lowerCamelCase : Optional[Any] = defaults.tpu_name if not args.tpu_zone: _lowerCamelCase : Optional[Any] = defaults.tpu_zone if args.accelerate_version == "dev": _lowerCamelCase : Optional[int] = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": _lowerCamelCase : Dict = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) , __snake_case ): _lowerCamelCase : Any = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: _lowerCamelCase : Dict = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __snake_case ): _lowerCamelCase : Tuple = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _lowerCamelCase : Optional[int] = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command _lowerCamelCase : List[str] = """; """.join(__snake_case ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _lowerCamelCase : Dict = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(__snake_case )}' ) return subprocess.run(__snake_case ) print("""Successfully setup pod.""" ) def _snake_case ( ): """simple docstring""" _lowerCamelCase : Optional[int] = tpu_command_parser() _lowerCamelCase : Optional[Any] = parser.parse_args() tpu_command_launcher(__snake_case )
88
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowercase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=32 * 8 , SCREAMING_SNAKE_CASE=32 * 8 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=64 , ) -> Optional[int]: _lowerCamelCase : List[str] = parent _lowerCamelCase : List[Any] = batch_size _lowerCamelCase : Tuple = is_training _lowerCamelCase : Tuple = use_auxiliary_loss _lowerCamelCase : Any = num_queries _lowerCamelCase : List[str] = num_channels _lowerCamelCase : List[str] = min_size _lowerCamelCase : Tuple = max_size _lowerCamelCase : str = num_labels _lowerCamelCase : Any = hidden_dim _lowerCamelCase : Dict = hidden_dim def UpperCamelCase_ ( self) -> List[str]: _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=SCREAMING_SNAKE_CASE) > 0.5 ).float() _lowerCamelCase : Dict = (torch.rand((self.batch_size, self.num_labels) , device=SCREAMING_SNAKE_CASE) > 0.5).long() _lowerCamelCase : Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCamelCase_ ( self) -> str: _lowerCamelCase : List[str] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _lowerCamelCase : Any = self.num_queries _lowerCamelCase : int = self.num_labels _lowerCamelCase : int = [1, 1, 1, 1] _lowerCamelCase : Any = self.num_channels _lowerCamelCase : Optional[Any] = 64 _lowerCamelCase : str = 128 _lowerCamelCase : Optional[Any] = self.hidden_dim _lowerCamelCase : Any = self.hidden_dim _lowerCamelCase : List[Any] = self.hidden_dim return config def UpperCamelCase_ ( self) -> Any: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase : str = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Optional[int]: _lowerCamelCase : str = output.encoder_hidden_states _lowerCamelCase : int = output.pixel_decoder_hidden_states _lowerCamelCase : Optional[int] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(SCREAMING_SNAKE_CASE) , len(config.backbone_config.depths)) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE) , len(config.backbone_config.depths)) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE) , config.decoder_layers) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False) -> List[str]: with torch.no_grad(): _lowerCamelCase : Optional[int] = MaskaFormerModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _lowerCamelCase : Optional[int] = model(pixel_values=SCREAMING_SNAKE_CASE , pixel_mask=SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = model(SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> str: _lowerCamelCase : str = MaskaFormerForUniversalSegmentation(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() def comm_check_on_output(SCREAMING_SNAKE_CASE): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): _lowerCamelCase : List[Any] = model(pixel_values=SCREAMING_SNAKE_CASE , pixel_mask=SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE) comm_check_on_output(SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = model( pixel_values=SCREAMING_SNAKE_CASE , pixel_mask=SCREAMING_SNAKE_CASE , mask_labels=SCREAMING_SNAKE_CASE , class_labels=SCREAMING_SNAKE_CASE) comm_check_on_output(SCREAMING_SNAKE_CASE) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class lowercase__ ( A_ ,A_ ,unittest.TestCase ): __UpperCAmelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __UpperCAmelCase = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : Optional[int] = MaskaFormerModelTester(self) _lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> List[str]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self) -> int: _lowerCamelCase , _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Tuple: _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*SCREAMING_SNAKE_CASE) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""") def UpperCamelCase_ ( self) -> Optional[int]: pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""") def UpperCamelCase_ ( self) -> Tuple: pass @unittest.skip(reason="""Mask2Former is not a generative model""") def UpperCamelCase_ ( self) -> List[Any]: pass @unittest.skip(reason="""Mask2Former does not use token embeddings""") def UpperCamelCase_ ( self) -> Any: pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""") def UpperCamelCase_ ( self) -> Dict: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def UpperCamelCase_ ( self) -> Optional[int]: pass def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE) _lowerCamelCase : Any = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : str = [*signature.parameters.keys()] _lowerCamelCase : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE) @slow def UpperCamelCase_ ( self) -> Optional[int]: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _lowerCamelCase : Optional[int] = MaskaFormerModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Dict = (self.model_tester.min_size,) * 2 _lowerCamelCase : str = { """pixel_values""": torch.randn((2, 3, *size) , device=SCREAMING_SNAKE_CASE), """mask_labels""": torch.randn((2, 10, *size) , device=SCREAMING_SNAKE_CASE), """class_labels""": torch.zeros(2 , 10 , device=SCREAMING_SNAKE_CASE).long(), } _lowerCamelCase : List[str] = self.model_tester.get_config() _lowerCamelCase : Tuple = MaskaFormerForUniversalSegmentation(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = model(**SCREAMING_SNAKE_CASE) self.assertTrue(outputs.loss is not None) def UpperCamelCase_ ( self) -> Tuple: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Optional[int]: _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = model(**SCREAMING_SNAKE_CASE , output_attentions=SCREAMING_SNAKE_CASE) self.assertTrue(outputs.attentions is not None) def UpperCamelCase_ ( self) -> Optional[Any]: if not self.model_tester.is_training: return _lowerCamelCase : Any = self.all_model_classes[1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() _lowerCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.train() _lowerCamelCase : int = model(SCREAMING_SNAKE_CASE , mask_labels=SCREAMING_SNAKE_CASE , class_labels=SCREAMING_SNAKE_CASE).loss loss.backward() def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Any = self.all_model_classes[1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() _lowerCamelCase : int = True _lowerCamelCase : Optional[Any] = True _lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE) model.train() _lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE , mask_labels=SCREAMING_SNAKE_CASE , class_labels=SCREAMING_SNAKE_CASE) _lowerCamelCase : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowerCamelCase : int = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _lowerCamelCase : str = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowerCamelCase : Optional[int] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=SCREAMING_SNAKE_CASE) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) UpperCAmelCase = 1e-4 def _snake_case ( ): """simple docstring""" _lowerCamelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class lowercase__ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self) -> int: return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCamelCase_ ( self) -> Union[str, Any]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Tuple = MaskaFormerModel.from_pretrained(self.model_checkpoints).to(SCREAMING_SNAKE_CASE) _lowerCamelCase : str = self.default_image_processor _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Union[str, Any] = image_processor(SCREAMING_SNAKE_CASE , return_tensors="""pt""").to(SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(SCREAMING_SNAKE_CASE , (1, 3, 384, 384)) with torch.no_grad(): _lowerCamelCase : Dict = model(**SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]]).to(SCREAMING_SNAKE_CASE) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE)) _lowerCamelCase : Any = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]]).to(SCREAMING_SNAKE_CASE) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE)) _lowerCamelCase : Dict = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]]).to(SCREAMING_SNAKE_CASE) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE)) def UpperCamelCase_ ( self) -> Any: _lowerCamelCase : Optional[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(SCREAMING_SNAKE_CASE).eval() _lowerCamelCase : Optional[Any] = self.default_image_processor _lowerCamelCase : Any = prepare_img() _lowerCamelCase : Dict = image_processor(SCREAMING_SNAKE_CASE , return_tensors="""pt""").to(SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(SCREAMING_SNAKE_CASE , (1, 3, 384, 384)) with torch.no_grad(): _lowerCamelCase : List[str] = model(**SCREAMING_SNAKE_CASE) # masks_queries_logits _lowerCamelCase : str = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4)) _lowerCamelCase : Any = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] _lowerCamelCase : List[Any] = torch.tensor(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE)) # class_queries_logits _lowerCamelCase : List[str] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1)) _lowerCamelCase : Optional[Any] = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ]).to(SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=SCREAMING_SNAKE_CASE)) def UpperCamelCase_ ( self) -> int: _lowerCamelCase : Tuple = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(SCREAMING_SNAKE_CASE).eval() _lowerCamelCase : str = self.default_image_processor _lowerCamelCase : Tuple = image_processor( [np.zeros((3, 800, 1333)), np.zeros((3, 800, 1333))] , segmentation_maps=[np.zeros((384, 384)).astype(np.floataa), np.zeros((384, 384)).astype(np.floataa)] , return_tensors="""pt""" , ) _lowerCamelCase : Optional[Any] = inputs["""pixel_values"""].to(SCREAMING_SNAKE_CASE) _lowerCamelCase : Any = [el.to(SCREAMING_SNAKE_CASE) for el in inputs["""mask_labels"""]] _lowerCamelCase : Union[str, Any] = [el.to(SCREAMING_SNAKE_CASE) for el in inputs["""class_labels"""]] with torch.no_grad(): _lowerCamelCase : Any = model(**SCREAMING_SNAKE_CASE) self.assertTrue(outputs.loss is not None)
88
1
'''simple docstring''' import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch a__ = True except ImportError: a__ = False try: from torch.hub import _get_torch_home a__ = _get_torch_home() except ImportError: a__ = os.path.expanduser( os.getenv('''TORCH_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''torch''')) ) a__ = os.path.join(torch_cache_home, '''transformers''') a__ = '''https://cdn.huggingface.co''' a__ = '''https://s3.amazonaws.com/models.huggingface.co/bert''' a__ = '''/'''.join(str(Path(__file__).resolve()).split('''/''')[:-1]) a__ = os.path.join(PATH, '''config.yaml''') a__ = os.path.join(PATH, '''attributes.txt''') a__ = os.path.join(PATH, '''objects.txt''') a__ = os.getenv('''PYTORCH_PRETRAINED_BERT_CACHE''', default_cache_path) a__ = os.getenv('''PYTORCH_TRANSFORMERS_CACHE''', PYTORCH_PRETRAINED_BERT_CACHE) a__ = os.getenv('''TRANSFORMERS_CACHE''', PYTORCH_TRANSFORMERS_CACHE) a__ = '''pytorch_model.bin''' a__ = '''config.yaml''' def snake_case__ ( a=OBJECTS , a=ATTRIBUTES ) -> int: '''simple docstring''' snake_case__ = [] with open(_lowerCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(""",""" )[0].lower().strip() ) snake_case__ = [] with open(_lowerCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(""",""" )[0].lower().strip() ) return vg_classes, vg_attrs def snake_case__ ( a ) -> Dict: '''simple docstring''' snake_case__ = OrderedDict() with open(_lowerCamelCase , """rb""" ) as f: snake_case__ = pkl.load(_lowerCamelCase )["""model"""] for k in copy.deepcopy(list(ckp.keys() ) ): snake_case__ = ckp.pop(_lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): snake_case__ = torch.tensor(_lowerCamelCase ) else: assert isinstance(_lowerCamelCase , torch.tensor ), type(_lowerCamelCase ) snake_case__ = v return r class __magic_name__: UpperCAmelCase_ : List[str] = {} def __init__( self : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any = "root" , __UpperCamelCase : Tuple=0 ): '''simple docstring''' snake_case__ = name snake_case__ = level snake_case__ = {} for k, v in dictionary.items(): if v is None: raise ValueError() snake_case__ = copy.deepcopy(_lowercase ) snake_case__ = copy.deepcopy(_lowercase ) if isinstance(_lowercase , _lowercase ): snake_case__ = Config(_lowercase , name=_lowercase , level=level + 1 ) snake_case__ = v setattr(self , _lowercase , _lowercase ) snake_case__ = d def __repr__( self : Optional[Any] ): '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] ): '''simple docstring''' snake_case__ = val snake_case__ = val snake_case__ = key.split(""".""" ) snake_case__ = len(_lowercase ) - 1 snake_case__ = self._pointer if len(_lowercase ) > 1: for i, l in enumerate(_lowercase ): if hasattr(self , _lowercase ) and isinstance(getattr(self , _lowercase ) , _lowercase ): setattr(getattr(self , _lowercase ) , """.""".join(levels[i:] ) , _lowercase ) if l == last_level: snake_case__ = val else: snake_case__ = pointer[l] def __lowerCAmelCase( self : Optional[Any] ): '''simple docstring''' return self._pointer def __lowerCAmelCase( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' with open(f"""{file_name}""" , """w""" ) as stream: dump(_lowercase , _lowercase ) def __lowerCAmelCase( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple ): '''simple docstring''' with open(f"""{file_name}""" , """w""" ) as stream: json.dump(_lowercase , _lowercase ) @staticmethod def __lowerCAmelCase( __UpperCamelCase : Optional[int] ): '''simple docstring''' with open(_lowercase ) as stream: snake_case__ = load(_lowercase , Loader=_lowercase ) return data def __str__( self : Any ): '''simple docstring''' snake_case__ = """ """ if self._name != "root": snake_case__ = f"""{t * (self._level-1)}{self._name}:\n""" else: snake_case__ = """""" snake_case__ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_lowercase , _lowercase ): r += f"""{t * (self._level)}{v}\n""" self._level += 1 else: r += f"""{t * (self._level)}{k}: {v} ({type(_lowercase ).__name__})\n""" snake_case__ = level return r[:-1] @classmethod def __lowerCAmelCase( cls : Optional[int] , __UpperCamelCase : List[str] , **__UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case__ = cls.get_config_dict(_lowercase , **_lowercase ) return cls(_lowercase ) @classmethod def __lowerCAmelCase( cls : Any , __UpperCamelCase : List[Any] , **__UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case__ = kwargs.pop("""cache_dir""" , _lowercase ) snake_case__ = kwargs.pop("""force_download""" , _lowercase ) snake_case__ = kwargs.pop("""resume_download""" , _lowercase ) snake_case__ = kwargs.pop("""proxies""" , _lowercase ) snake_case__ = kwargs.pop("""local_files_only""" , _lowercase ) if os.path.isdir(_lowercase ): snake_case__ = os.path.join(_lowercase , _lowercase ) elif os.path.isfile(_lowercase ) or is_remote_url(_lowercase ): snake_case__ = pretrained_model_name_or_path else: snake_case__ = hf_bucket_url(_lowercase , filename=_lowercase , use_cdn=_lowercase ) try: # Load from URL or cache if already cached snake_case__ = cached_path( _lowercase , cache_dir=_lowercase , force_download=_lowercase , proxies=_lowercase , resume_download=_lowercase , local_files_only=_lowercase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError snake_case__ = Config.load_yaml(_lowercase ) except EnvironmentError: snake_case__ = """Can't load config for""" raise EnvironmentError(_lowercase ) if resolved_config_file == config_file: print("""loading configuration file from path""" ) else: print("""loading configuration file cache""" ) return Config.load_yaml(_lowercase ), kwargs def snake_case__ ( a ) -> int: '''simple docstring''' snake_case__ = torch.load("""dump.pt""" , map_location=in_tensor.device ) snake_case__ = in_tensor.numpy() snake_case__ = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(_lowerCamelCase , _lowerCamelCase , rtol=0.01 , atol=0.1 ), ( F"""{sum([1 for x in np.isclose(_lowerCamelCase , _lowerCamelCase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %""" " element-wise mismatch" ) raise Exception("""tensors are all good""" ) # Hugging face functions below def snake_case__ ( a ) -> int: '''simple docstring''' snake_case__ = urlparse(_lowerCamelCase ) return parsed.scheme in ("http", "https") def snake_case__ ( a , a , a=True ) -> Dict: '''simple docstring''' snake_case__ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX snake_case__ = """/""" not in model_id if legacy_format: return F"""{endpoint}/{model_id}-{filename}""" else: return F"""{endpoint}/{model_id}/{filename}""" def snake_case__ ( a , a , a=None , a=0 , a=None , ) -> Tuple: '''simple docstring''' snake_case__ = """python/{}""".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(_lowerCamelCase , _lowerCamelCase ): ua += "; " + "; ".join("""{}/{}""".format(_lowerCamelCase , _lowerCamelCase ) for k, v in user_agent.items() ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): ua += "; " + user_agent snake_case__ = {"""user-agent""": ua} if resume_size > 0: snake_case__ = """bytes=%d-""" % (resume_size,) snake_case__ = requests.get(_lowerCamelCase , stream=_lowerCamelCase , proxies=_lowerCamelCase , headers=_lowerCamelCase ) if response.status_code == 416: # Range not satisfiable return snake_case__ = response.headers.get("""Content-Length""" ) snake_case__ = resume_size + int(_lowerCamelCase ) if content_length is not None else None snake_case__ = tqdm( unit="""B""" , unit_scale=_lowerCamelCase , total=_lowerCamelCase , initial=_lowerCamelCase , desc="""Downloading""" , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(_lowerCamelCase ) ) temp_file.write(_lowerCamelCase ) progress.close() def snake_case__ ( a , a=None , a=False , a=None , a=10 , a=False , a=None , a=False , ) -> Union[str, Any]: '''simple docstring''' if cache_dir is None: snake_case__ = TRANSFORMERS_CACHE if isinstance(_lowerCamelCase , _lowerCamelCase ): snake_case__ = str(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) snake_case__ = None if not local_files_only: try: snake_case__ = requests.head(_lowerCamelCase , allow_redirects=_lowerCamelCase , proxies=_lowerCamelCase , timeout=_lowerCamelCase ) if response.status_code == 200: snake_case__ = response.headers.get("""ETag""" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass snake_case__ = url_to_filename(_lowerCamelCase , _lowerCamelCase ) # get cache path to put the file snake_case__ = os.path.join(_lowerCamelCase , _lowerCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(_lowerCamelCase ): return cache_path else: snake_case__ = [ file for file in fnmatch.filter(os.listdir(_lowerCamelCase ) , filename + """.*""" ) if not file.endswith(""".json""" ) and not file.endswith(""".lock""" ) ] if len(_lowerCamelCase ) > 0: return os.path.join(_lowerCamelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( """Cannot find the requested files in the cached path and outgoing traffic has been""" """ disabled. To enable model look-ups and downloads online, set 'local_files_only'""" """ to False.""" ) return None # From now on, etag is not None. if os.path.exists(_lowerCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. snake_case__ = cache_path + """.lock""" with FileLock(_lowerCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(_lowerCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: snake_case__ = cache_path + """.incomplete""" @contextmanager def _resumable_file_manager(): with open(_lowerCamelCase , """a+b""" ) as f: yield f snake_case__ = _resumable_file_manager if os.path.exists(_lowerCamelCase ): snake_case__ = os.stat(_lowerCamelCase ).st_size else: snake_case__ = 0 else: snake_case__ = partial(tempfile.NamedTemporaryFile , dir=_lowerCamelCase , delete=_lowerCamelCase ) snake_case__ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( """%s not found in cache or force_download set to True, downloading to %s""" , _lowerCamelCase , temp_file.name , ) http_get( _lowerCamelCase , _lowerCamelCase , proxies=_lowerCamelCase , resume_size=_lowerCamelCase , user_agent=_lowerCamelCase , ) os.replace(temp_file.name , _lowerCamelCase ) snake_case__ = {"""url""": url, """etag""": etag} snake_case__ = cache_path + """.json""" with open(_lowerCamelCase , """w""" ) as meta_file: json.dump(_lowerCamelCase , _lowerCamelCase ) return cache_path def snake_case__ ( a , a=None ) -> Tuple: '''simple docstring''' snake_case__ = url.encode("""utf-8""" ) snake_case__ = shaaaa(_lowerCamelCase ) snake_case__ = url_hash.hexdigest() if etag: snake_case__ = etag.encode("""utf-8""" ) snake_case__ = shaaaa(_lowerCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(""".h5""" ): filename += ".h5" return filename def snake_case__ ( a , a=None , a=False , a=None , a=False , a=None , a=False , a=False , a=False , ) -> Union[str, Any]: '''simple docstring''' if cache_dir is None: snake_case__ = TRANSFORMERS_CACHE if isinstance(_lowerCamelCase , _lowerCamelCase ): snake_case__ = str(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): snake_case__ = str(_lowerCamelCase ) if is_remote_url(_lowerCamelCase ): # URL, so get it from the cache (downloading if necessary) snake_case__ = get_from_cache( _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , proxies=_lowerCamelCase , resume_download=_lowerCamelCase , user_agent=_lowerCamelCase , local_files_only=_lowerCamelCase , ) elif os.path.exists(_lowerCamelCase ): # File, and it exists. snake_case__ = url_or_filename elif urlparse(_lowerCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("""file {} not found""".format(_lowerCamelCase ) ) else: # Something unknown raise ValueError("""unable to parse {} as a URL or as a local path""".format(_lowerCamelCase ) ) if extract_compressed_file: if not is_zipfile(_lowerCamelCase ) and not tarfile.is_tarfile(_lowerCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" snake_case__ = os.path.split(_lowerCamelCase ) snake_case__ = output_file.replace(""".""" , """-""" ) + """-extracted""" snake_case__ = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.isdir(_lowerCamelCase ) and os.listdir(_lowerCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions snake_case__ = output_path + """.lock""" with FileLock(_lowerCamelCase ): shutil.rmtree(_lowerCamelCase , ignore_errors=_lowerCamelCase ) os.makedirs(_lowerCamelCase ) if is_zipfile(_lowerCamelCase ): with ZipFile(_lowerCamelCase , """r""" ) as zip_file: zip_file.extractall(_lowerCamelCase ) zip_file.close() elif tarfile.is_tarfile(_lowerCamelCase ): snake_case__ = tarfile.open(_lowerCamelCase ) tar_file.extractall(_lowerCamelCase ) tar_file.close() else: raise EnvironmentError("""Archive format of {} could not be identified""".format(_lowerCamelCase ) ) return output_path_extracted return output_path def snake_case__ ( a , a="," ) -> int: '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) if os.path.isfile(_lowerCamelCase ): with open(_lowerCamelCase ) as f: snake_case__ = eval(f.read() ) else: snake_case__ = requests.get(_lowerCamelCase ) try: snake_case__ = requests.json() except Exception: snake_case__ = req.content.decode() assert data is not None, "could not connect" try: snake_case__ = eval(_lowerCamelCase ) except Exception: snake_case__ = data.split("""\n""" ) req.close() return data def snake_case__ ( a ) -> Tuple: '''simple docstring''' snake_case__ = requests.get(_lowerCamelCase ) snake_case__ = np.array(Image.open(BytesIO(response.content ) ) ) return img def snake_case__ ( a ) -> Optional[int]: '''simple docstring''' snake_case__ = url.split("""/""" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(_lowerCamelCase ) with open(_lowerCamelCase , """rb""" ) as stream: snake_case__ = pkl.load(_lowerCamelCase ) snake_case__ = weights.pop("""model""" ) snake_case__ = {} for k, v in model.items(): snake_case__ = torch.from_numpy(_lowerCamelCase ) if "running_var" in k: snake_case__ = torch.tensor([0] ) snake_case__ = k.replace("""running_var""" , """num_batches_tracked""" ) snake_case__ = zero return new def snake_case__ ( ) -> List[str]: '''simple docstring''' print(F"""{os.path.abspath(os.path.join(_lowerCamelCase , os.pardir ) )}/demo.ipynb""" ) def snake_case__ ( a , a="RGB" ) -> Tuple: '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) if os.path.isfile(_lowerCamelCase ): snake_case__ = cva.imread(_lowerCamelCase ) else: snake_case__ = get_image_from_url(_lowerCamelCase ) assert img is not None, F"""could not connect to: {im}""" snake_case__ = cva.cvtColor(_lowerCamelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": snake_case__ = img[:, :, ::-1] return img def snake_case__ ( a , a=1 ) -> Union[str, Any]: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ))
719
'''simple docstring''' import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging a__ = logging.get_logger(__name__) def snake_case__ ( a , a ) -> Optional[int]: '''simple docstring''' snake_case__ = set() snake_case__ = [] def parse_line(a ): for line in fp: if isinstance(a , a ): snake_case__ = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(a ) > 0: snake_case__ = """\n""".join(a ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(a ) buffer.clear() continue else: snake_case__ = line.strip() buffer.append(a ) if from_gh: for filename in os.listdir(a ): snake_case__ = os.path.join(a , a ) if not os.path.isdir(a ): # read the file if filename != "warnings.txt": continue with open(a ) as fp: parse_line(a ) else: try: with zipfile.ZipFile(a ) as z: for filename in z.namelist(): if not os.path.isdir(a ): # read the file if filename != "warnings.txt": continue with z.open(a ) as fp: parse_line(a ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def snake_case__ ( a , a ) -> int: '''simple docstring''' snake_case__ = set() snake_case__ = [os.path.join(a , a ) for p in os.listdir(a ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(a , a ) ) return selected_warnings if __name__ == "__main__": def snake_case__ ( a ) -> int: '''simple docstring''' return values.split(""",""" ) a__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) a__ = parser.parse_args() a__ = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links a__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts a__ = extract_warnings(args.output_dir, args.targets) a__ = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
566
0
import string import numpy def a__ ( snake_case , snake_case ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , snake_case ) class __UpperCamelCase : """simple docstring""" lowerCAmelCase_ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowerCAmelCase_ = numpy.vectorize(lambda lowerCAmelCase__ : x % 36 ) lowerCAmelCase_ = numpy.vectorize(lowerCAmelCase__ ) def __init__( self : List[Any] , _A : numpy.ndarray ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.modulus(_A ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __SCREAMING_SNAKE_CASE : str = encrypt_key.shape[0] def UpperCAmelCase__ ( self : Optional[Any] , _A : str ): """simple docstring""" return self.key_string.index(_A ) def UpperCAmelCase__ ( self : Union[str, Any] , _A : int ): """simple docstring""" return self.key_string[round(_A )] def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __SCREAMING_SNAKE_CASE : str = det % len(self.key_string ) __SCREAMING_SNAKE_CASE : Any = len(self.key_string ) if greatest_common_divisor(_A , len(self.key_string ) ) != 1: __SCREAMING_SNAKE_CASE : Tuple = ( F'''determinant modular {req_l} of encryption key({det}) ''' F'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(_A ) def UpperCAmelCase__ ( self : Optional[Any] , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = [char for char in text.upper() if char in self.key_string] __SCREAMING_SNAKE_CASE : str = chars[-1] while len(_A ) % self.break_key != 0: chars.append(_A ) return "".join(_A ) def UpperCAmelCase__ ( self : Any , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.process_text(text.upper() ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''''' for i in range(0 , len(_A ) - self.break_key + 1 , self.break_key ): __SCREAMING_SNAKE_CASE : str = text[i : i + self.break_key] __SCREAMING_SNAKE_CASE : Dict = [self.replace_letters(_A ) for char in batch] __SCREAMING_SNAKE_CASE : Union[str, Any] = numpy.array([vec] ).T __SCREAMING_SNAKE_CASE : str = self.modulus(self.encrypt_key.dot(_A ) ).T.tolist()[ 0 ] __SCREAMING_SNAKE_CASE : List[str] = ''''''.join( self.replace_digits(_A ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __SCREAMING_SNAKE_CASE : str = det % len(self.key_string ) __SCREAMING_SNAKE_CASE : List[Any] = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __SCREAMING_SNAKE_CASE : Optional[int] = i break __SCREAMING_SNAKE_CASE : Any = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_A ) ) def UpperCAmelCase__ ( self : Any , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.make_decrypt_key() __SCREAMING_SNAKE_CASE : str = self.process_text(text.upper() ) __SCREAMING_SNAKE_CASE : Optional[int] = '''''' for i in range(0 , len(_A ) - self.break_key + 1 , self.break_key ): __SCREAMING_SNAKE_CASE : Optional[int] = text[i : i + self.break_key] __SCREAMING_SNAKE_CASE : Tuple = [self.replace_letters(_A ) for char in batch] __SCREAMING_SNAKE_CASE : Any = numpy.array([vec] ).T __SCREAMING_SNAKE_CASE : Dict = self.modulus(decrypt_key.dot(_A ) ).T.tolist()[0] __SCREAMING_SNAKE_CASE : str = ''''''.join( self.replace_digits(_A ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = int(input('''Enter the order of the encryption key: ''' ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(snake_case ): __SCREAMING_SNAKE_CASE : Dict = [int(snake_case ) for x in input().split()] hill_matrix.append(snake_case ) __SCREAMING_SNAKE_CASE : Dict = HillCipher(numpy.array(snake_case ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) __SCREAMING_SNAKE_CASE : Dict = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": __SCREAMING_SNAKE_CASE : Union[str, Any] = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(snake_case ) ) elif option == "2": __SCREAMING_SNAKE_CASE : int = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
74
from __future__ import annotations import time import numpy as np A__ = [8, 5, 9, 7] A__ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A__ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _lowerCAmelCase : def __init__( self : Any , __snake_case : list[int] , __snake_case : list[list[int]] , __snake_case : list[list[int]] , ): lowerCamelCase :List[str] = claim_vector lowerCamelCase :Tuple = allocated_resources_table lowerCamelCase :Tuple = maximum_claim_table def snake_case ( self : Union[str, Any] ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def snake_case ( self : Optional[int] ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def snake_case ( self : List[Any] ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def snake_case ( self : List[Any] ): return {self.__need().index(__snake_case ): i for i in self.__need()} def snake_case ( self : Any , **__snake_case : Tuple ): lowerCamelCase :Optional[Any] = self.__need() lowerCamelCase :Optional[Any] = self.__allocated_resources_table lowerCamelCase :Tuple = self.__available_resources() lowerCamelCase :Union[str, Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: lowerCamelCase :Dict = False for each_need in need_list: lowerCamelCase :Union[str, Any] = True for index, need in enumerate(__snake_case ): if need > available_resources[index]: lowerCamelCase :Union[str, Any] = False break if execution: lowerCamelCase :Optional[int] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCamelCase :int = original_need_index print(F"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack lowerCamelCase :Optional[Any] = np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def snake_case ( self : List[Any] ): print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( F"P{self.__allocated_resources_table.index(__snake_case ) + 1}" + ''' '''.join(F"{it:>8}" for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( F"P{self.__maximum_claim_table.index(__snake_case ) + 1}" + ''' '''.join(F"{it:>8}" for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(__snake_case ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
166
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''unispeech''' def __init__( self , lowercase=3_2 , lowercase=7_6_8 , lowercase=1_2 , lowercase=1_2 , lowercase=3_0_7_2 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="group" , lowercase="gelu" , lowercase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(1_0, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=1_2_8 , lowercase=1_6 , lowercase=False , lowercase=True , lowercase=0.05 , lowercase=1_0 , lowercase=2 , lowercase=0.0 , lowercase=1_0 , lowercase=0 , lowercase=3_2_0 , lowercase=2 , lowercase=0.1 , lowercase=1_0_0 , lowercase=2_5_6 , lowercase=2_5_6 , lowercase=0.1 , lowercase="mean" , lowercase=False , lowercase=False , lowercase=2_5_6 , lowercase=8_0 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=0.5 , **lowercase , ): """simple docstring""" super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) A_ : Dict = hidden_size A_ : Dict = feat_extract_norm A_ : List[Any] = feat_extract_activation A_ : Optional[int] = list(lowercase ) A_ : Any = list(lowercase ) A_ : Optional[int] = list(lowercase ) A_ : str = conv_bias A_ : Any = num_conv_pos_embeddings A_ : List[str] = num_conv_pos_embedding_groups A_ : List[Any] = len(self.conv_dim ) A_ : List[str] = num_hidden_layers A_ : List[str] = intermediate_size A_ : str = hidden_act A_ : int = num_attention_heads A_ : str = hidden_dropout A_ : List[str] = attention_dropout A_ : Tuple = activation_dropout A_ : Optional[Any] = feat_proj_dropout A_ : Optional[Any] = final_dropout A_ : Union[str, Any] = layerdrop A_ : int = layer_norm_eps A_ : int = initializer_range A_ : Any = num_ctc_classes A_ : Optional[int] = vocab_size A_ : Optional[Any] = do_stable_layer_norm A_ : Union[str, Any] = use_weighted_layer_sum A_ : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ : List[str] = apply_spec_augment A_ : List[str] = mask_time_prob A_ : List[Any] = mask_time_length A_ : Any = mask_time_min_masks A_ : Union[str, Any] = mask_feature_prob A_ : Any = mask_feature_length A_ : Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations A_ : Any = num_codevectors_per_group A_ : Dict = num_codevector_groups A_ : Union[str, Any] = contrastive_logits_temperature A_ : Tuple = feat_quantizer_dropout A_ : Optional[int] = num_negatives A_ : Union[str, Any] = codevector_dim A_ : Tuple = proj_codevector_dim A_ : Union[str, Any] = diversity_loss_weight # ctc loss A_ : Any = ctc_loss_reduction A_ : int = ctc_zero_infinity # pretraining loss A_ : Optional[int] = replace_prob @property def lowerCAmelCase_ ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
70
def UpperCamelCase ( __lowercase : str ,__lowercase : int ): '''simple docstring''' A_ : int = word.split() def justify(__lowercase : list ,__lowercase : int ,__lowercase : int ) -> str: A_ : Optional[Any] = max_width - width A_ : Union[str, Any] = len(__lowercase ) if len(__lowercase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: A_ : Dict = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] A_ : int = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] A_ : Optional[int] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__lowercase ): num_spaces_between_words_list[i] += 1 A_ : Tuple = [] for i in range(__lowercase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__lowercase ) A_ : List[str] = [] A_ : list[str] = [] A_ : Dict = 0 for word in words: if width + len(__lowercase ) + len(__lowercase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__lowercase ) width += len(__lowercase ) else: # justify the line and add it to result answer.append(justify(__lowercase ,__lowercase ,__lowercase ) ) # reset new line and new width A_ , A_ : Any = [word], len(__lowercase ) A_ : int = max_width - width - len(__lowercase ) answer.append(' '.join(__lowercase ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
70
1
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __magic_name__ : Dict = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a_ ( lowercase__ :Union[str, Any] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a_ ( lowercase__ :Any, lowercase__ :Dict ): if args.student_type == "roberta": __lowerCamelCase = False elif args.student_type == "gpt2": __lowerCamelCase = False def a_ ( lowercase__ :Optional[int], lowercase__ :Optional[Any] ): if args.student_type == "roberta": __lowerCamelCase = False def a_ ( ): __lowerCamelCase = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""", action="""store_true""", help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""", type=__a, required=__a, help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""", type=__a, required=__a, help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""", ) parser.add_argument( """--student_type""", type=__a, choices=["""distilbert""", """roberta""", """gpt2"""], required=__a, help="""The student type (DistilBERT, RoBERTa).""", ) parser.add_argument("""--student_config""", type=__a, required=__a, help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""", default=__a, type=__a, help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""", choices=["""bert""", """roberta""", """gpt2"""], required=__a, help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""", type=__a, required=__a, help="""The teacher model.""" ) parser.add_argument("""--temperature""", default=2.0, type=__a, help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""", default=0.5, type=__a, help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""", default=0.0, type=__a, help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""", ) parser.add_argument("""--alpha_clm""", default=0.5, type=__a, help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""", default=0.0, type=__a, help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""", default=0.0, type=__a, help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""", action="""store_true""", help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""", default=0.15, type=__a, help="""Proportion of tokens for which we need to make a prediction.""", ) parser.add_argument("""--word_mask""", default=0.8, type=__a, help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""", default=0.1, type=__a, help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""", default=0.1, type=__a, help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""", default=0.7, type=__a, help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""", ) parser.add_argument("""--token_counts""", type=__a, help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""", action="""store_true""", help="""If true, compute the distillation loss only the [MLM] prediction distribution.""", ) parser.add_argument( """--freeze_pos_embs""", action="""store_true""", help="""Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.""", ) parser.add_argument( """--freeze_token_type_embds""", action="""store_true""", help="""Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.""", ) parser.add_argument("""--n_epoch""", type=__a, default=3, help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""", type=__a, default=5, help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""", action="""store_false""", help="""If true, group sequences that have similar length into the same batch. Default is true.""", ) parser.add_argument( """--gradient_accumulation_steps""", type=__a, default=50, help="""Gradient accumulation for larger training batches.""", ) parser.add_argument("""--warmup_prop""", default=0.05, type=__a, help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""", default=0.0, type=__a, help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""", default=5e-4, type=__a, help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""", default=1e-6, type=__a, help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""", default=5.0, type=__a, help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""", default=0.02, type=__a, help="""Random initialization range.""" ) parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""", ) parser.add_argument( """--fp16_opt_level""", type=__a, default="""O1""", help=( """For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].""" """See details at https://nvidia.github.io/apex/amp.html""" ), ) parser.add_argument("""--n_gpu""", type=__a, default=1, help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""", type=__a, default=-1, help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""", type=__a, default=56, help="""Random seed""" ) parser.add_argument("""--log_interval""", type=__a, default=500, help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""", type=__a, default=4000, help="""Checkpoint interval.""" ) __lowerCamelCase = parser.parse_args() sanity_checks(__a ) # ARGS # init_gpu_params(__a ) set_seed(__a ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'Experiment will be dumped and logged in {args.dump_path}' ) # SAVE PARAMS # logger.info(f'Param: {args}' ) with open(os.path.join(args.dump_path, """parameters.json""" ), """w""" ) as f: json.dump(vars(__a ), __a, indent=4 ) git_log(args.dump_path ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = MODEL_CLASSES[args.student_type] __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __lowerCamelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __lowerCamelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __lowerCamelCase = tokenizer.all_special_tokens.index(__a ) __lowerCamelCase = tokenizer.all_special_ids[idx] logger.info(f'Special tokens {special_tok_ids}' ) __lowerCamelCase = special_tok_ids __lowerCamelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'Loading data from {args.data_file}' ) with open(args.data_file, """rb""" ) as fp: __lowerCamelCase = pickle.load(__a ) if args.mlm: logger.info(f'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts, """rb""" ) as fp: __lowerCamelCase = pickle.load(__a ) __lowerCamelCase = np.maximum(__a, 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __lowerCamelCase = 0.0 # do not predict special tokens __lowerCamelCase = torch.from_numpy(__a ) else: __lowerCamelCase = None __lowerCamelCase = LmSeqsDataset(params=__a, data=__a ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f'Loading student config from {args.student_config}' ) __lowerCamelCase = student_config_class.from_pretrained(args.student_config ) __lowerCamelCase = True if args.student_pretrained_weights is not None: logger.info(f'Loading pretrained weights from {args.student_pretrained_weights}' ) __lowerCamelCase = student_model_class.from_pretrained(args.student_pretrained_weights, config=__a ) else: __lowerCamelCase = student_model_class(__a ) if args.n_gpu > 0: student.to(f'cuda:{args.local_rank}' ) logger.info("""Student loaded.""" ) # TEACHER # __lowerCamelCase = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=__a ) if args.n_gpu > 0: teacher.to(f'cuda:{args.local_rank}' ) logger.info(f'Teacher loaded from {args.teacher_name}.' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__a, __a ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__a, __a ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __lowerCamelCase = Distiller( params=__a, dataset=__a, token_probs=__a, student=__a, teacher=__a ) distiller.train() logger.info("""Let\'s go get some drinks.""" ) if __name__ == "__main__": main()
281
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __snake_case : List[Any] = logging.get_logger(__name__) class UpperCamelCase ( a ): """simple docstring""" def __init__( self : Optional[Any] , *_lowerCamelCase : Tuple , **_lowerCamelCase : str ): warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
571
0
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __snake_case = logging.getLogger() def _lowerCamelCase ( ): lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument("""-f""" ) lowercase__ : Union[str, Any] = parser.parse_args() return args.f class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" def UpperCAmelCase__( self ) -> None: lowercase__ : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> Union[str, Any]: lowercase__ : str = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(lowerCamelCase__ , """argv""" , lowerCamelCase__ ): lowercase__ : Optional[int] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCamelCase__ , 0.666 ) @slow @require_torch_non_multi_gpu def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ : List[Any] = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(lowerCamelCase__ ) lowercase__ : List[str] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(lowerCamelCase__ ) lowercase__ : int = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(lowerCamelCase__ )
128
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __snake_case = get_logger(__name__) class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : Union[str, Any] = '''dummy_data''' _a : Any = '''datasets''' _a : List[str] = False def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = True , lowerCamelCase__ = None , ) -> Union[str, Any]: lowercase__ : Optional[Any] = 0 lowercase__ : Dict = dataset_name lowercase__ : Optional[Any] = cache_dir lowercase__ : Optional[int] = use_local_dummy_data lowercase__ : Optional[Any] = config # download_callbacks take a single url as input lowercase__ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase__ : List[str] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase__ : int = str(lowerCamelCase__ ) # to be downloaded lowercase__ : Tuple = None lowercase__ : Dict = None @property def UpperCAmelCase__( self ) -> List[str]: if self._dummy_file is None: lowercase__ : Optional[int] = self.download_dummy_data() return self._dummy_file @property def UpperCAmelCase__( self ) -> int: if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def UpperCAmelCase__( self ) -> Optional[int]: return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def UpperCAmelCase__( self ) -> int: lowercase__ : int = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase__ : int = cached_path( lowerCamelCase__ , cache_dir=self.cache_dir , extract_compressed_file=lowerCamelCase__ , force_extract=lowerCamelCase__ ) return os.path.join(lowerCamelCase__ , self.dummy_file_name ) @property def UpperCAmelCase__( self ) -> Optional[int]: return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def UpperCAmelCase__( self ) -> Optional[Any]: if self._bucket_url is None: lowercase__ : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def UpperCAmelCase__( self ) -> Union[str, Any]: # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def UpperCAmelCase__( self , lowerCamelCase__ , *lowerCamelCase__ ) -> Union[str, Any]: if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase__ : Dict = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase__ : Tuple = self.dummy_file_name # special case when data_url is a dict if isinstance(lowerCamelCase__ , lowerCamelCase__ ): return self.create_dummy_data_dict(lowerCamelCase__ , lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , (list, tuple) ): return self.create_dummy_data_list(lowerCamelCase__ , lowerCamelCase__ ) else: return self.create_dummy_data_single(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ , *lowerCamelCase__ ) -> Optional[int]: return self.download_and_extract(lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: return self.download_and_extract(lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: return path def UpperCAmelCase__( self ) -> int: return {} def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: lowercase__ : Optional[Any] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): for single_url in single_urls: download_callback(lowerCamelCase__ ) else: lowercase__ : Dict = single_urls download_callback(lowerCamelCase__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ : Any = [os.path.join(lowerCamelCase__ , urllib.parse.quote_plus(Path(lowerCamelCase__ ).name ) ) for x in single_urls] else: lowercase__ : Any = single_urls lowercase__ : int = os.path.join(lowerCamelCase__ , urllib.parse.quote_plus(Path(lowerCamelCase__ ).name ) ) lowercase__ : Union[str, Any] = value # make sure that values are unique if all(isinstance(lowerCamelCase__ , lowerCamelCase__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase__ : Any = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: lowercase__ : int = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase__ : Tuple = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , lowerCamelCase__ ) ) for url in data_url ) lowercase__ : Optional[Any] = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase__ : List[str] = [data_url[0]] * len(lowerCamelCase__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowerCamelCase__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase__ : Dict = os.path.join(lowerCamelCase__ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(lowerCamelCase__ ) return dummy_data_list def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: for download_callback in self.download_callbacks: download_callback(lowerCamelCase__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase__ : Optional[Any] = os.path.join(lowerCamelCase__ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(lowerCamelCase__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCAmelCase__( self ) -> str: pass def UpperCAmelCase__( self ) -> Optional[Any]: pass def UpperCAmelCase__( self , lowerCamelCase__ ) -> List[str]: def _iter_archive_members(lowerCamelCase__ ): # this preserves the order of the members inside the ZIP archive lowercase__ : Optional[int] = Path(self.dummy_file ).parent lowercase__ : int = path.relative_to(lowerCamelCase__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase__ : Tuple = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(lowerCamelCase__ ) lowercase__ : List[str] = Path(lowerCamelCase__ ) lowercase__ : Optional[int] = _iter_archive_members(lowerCamelCase__ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(lowerCamelCase__ ).as_posix(), file_path.open("""rb""" ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> List[Any]: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ : Union[str, Any] = [paths] for path in paths: if os.path.isfile(lowerCamelCase__ ): if os.path.basename(lowerCamelCase__ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(lowerCamelCase__ ): if os.path.basename(lowerCamelCase__ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(lowerCamelCase__ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(lowerCamelCase__ , lowerCamelCase__ )
128
1
'''simple docstring''' import os import sys import unittest lowerCAmelCase_ : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCAmelCase_ : Any = os.path.join(git_repo_path, 'src', 'transformers') lowerCAmelCase_ : int = '\n{0} = None\n' lowerCAmelCase_ : Optional[Any] = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' lowerCAmelCase_ : Union[str, Any] = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class lowerCamelCase_ ( unittest.TestCase ): def __lowercase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tokenizers''' ) SCREAMING_SNAKE_CASE : Optional[int] = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tensorflow_text''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers''' ) SCREAMING_SNAKE_CASE : Optional[Any] = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tensorflow_text''' ) SCREAMING_SNAKE_CASE : List[Any] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers_and_vision''' ) def __lowercase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCAmelCase__ ) self.assertIn('''tensorflow_text''' , lowerCAmelCase__ ) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def __lowercase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , '''\nCONSTANT = None\n''' ) SCREAMING_SNAKE_CASE : Dict = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( lowerCAmelCase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) SCREAMING_SNAKE_CASE : Optional[int] = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' SCREAMING_SNAKE_CASE : Union[str, Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __lowercase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' SCREAMING_SNAKE_CASE : Optional[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , lowerCAmelCase__ )
527
'''simple docstring''' from __future__ import annotations def UpperCAmelCase ( A : list[int] , A : int ): if len(A ) < k or k < 0: raise ValueError('''Invalid Input''' ) SCREAMING_SNAKE_CASE : Dict = sum(array[:k] ) for i in range(len(A ) - k ): SCREAMING_SNAKE_CASE : Optional[Any] = current_sum - array[i] + array[i + k] SCREAMING_SNAKE_CASE : Union[str, Any] = max(A , A ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowerCAmelCase_ : Optional[int] = [randint(-1000, 1000) for i in range(100)] lowerCAmelCase_ : Optional[int] = randint(0, 110) print(f'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
527
1
from math import sqrt def __lowerCamelCase ( __a : Tuple ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCamelCase ( __a : Optional[int] = 10_001 ): _lowercase =0 _lowercase =1 while count != nth and number < 3: number += 1 if is_prime(_SCREAMING_SNAKE_CASE ): count += 1 while count != nth: number += 2 if is_prime(_SCREAMING_SNAKE_CASE ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
701
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") lowerCAmelCase__ = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) lowerCAmelCase__ = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_0_0_0_0): out_file.write(data) lowerCAmelCase__ = BeautifulSoup(res.text, "html.parser") lowerCAmelCase__ = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(F'''https://google.com{link.get('href')}''')
594
0
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE_:int = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE_:Tuple = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowerCamelCase : Optional[Any] = 'retribert' def __init__( self, lowerCamelCase__=3_0522, lowerCamelCase__=768, lowerCamelCase__=8, lowerCamelCase__=12, lowerCamelCase__=3072, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=1e-12, lowerCamelCase__=True, lowerCamelCase__=128, lowerCamelCase__=0, **lowerCamelCase__, ): super().__init__(pad_token_id=lowerCamelCase__, **lowerCamelCase__ ) A : Optional[Any] = vocab_size A : Tuple = hidden_size A : str = num_hidden_layers A : List[str] = num_attention_heads A : List[str] = hidden_act A : int = intermediate_size A : str = hidden_dropout_prob A : Union[str, Any] = attention_probs_dropout_prob A : Optional[int] = max_position_embeddings A : Optional[int] = type_vocab_size A : Any = initializer_range A : int = layer_norm_eps A : Any = share_encoders A : Optional[Any] = projection_dim
662
def __a ( __lowerCAmelCase ) -> list[list[float]]: SCREAMING_SNAKE_CASE : list[list[float]] = [] for data in source_data: for i, el in enumerate(__lowerCAmelCase ): if len(__lowerCAmelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__lowerCAmelCase ) ) return data_lists def __a ( __lowerCAmelCase , __lowerCAmelCase ) -> list[list[float]]: SCREAMING_SNAKE_CASE : list[list[float]] = [] for dlist, weight in zip(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE : str = min(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : int = max(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: SCREAMING_SNAKE_CASE : Union[str, Any] = F'''Invalid weight of {weight:f} provided''' raise ValueError(__lowerCAmelCase ) score_lists.append(__lowerCAmelCase ) return score_lists def __a ( __lowerCAmelCase ) -> list[float]: SCREAMING_SNAKE_CASE : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE : str = final_scores[j] + ele return final_scores def __a ( __lowerCAmelCase , __lowerCAmelCase ) -> list[list[float]]: SCREAMING_SNAKE_CASE : Tuple = get_data(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = calculate_each_score(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE : str = generate_final_scores(__lowerCAmelCase ) # append scores to source data for i, ele in enumerate(__lowerCAmelCase ): source_data[i].append(__lowerCAmelCase ) return source_data
352
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a : Any = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a : int = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a : List[str] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def A_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def A_ ( self , snake_case , snake_case , snake_case = 1 , snake_case = 4 , ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_a , hypotheses=_a , min_len=_a , max_len=_a ) }
712
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a : List[Any] = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
609
0
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase ) class UpperCamelCase__ ( __lowerCamelCase ): def __init__( self : Dict, *__lowerCamelCase : Optional[int], **__lowerCamelCase : Optional[int] ) -> Union[str, Any]: super().__init__(*__lowerCamelCase, **__lowerCamelCase ) requires_backends(self, '''decord''' ) self.check_model_type(__lowerCamelCase ) def __lowercase( self : Dict, __lowerCamelCase : Optional[Any]=None, __lowerCamelCase : int=None, __lowerCamelCase : Tuple=None ) -> List[str]: UpperCamelCase__ : str = {} if frame_sampling_rate is not None: UpperCamelCase__ : Optional[Any] = frame_sampling_rate if num_frames is not None: UpperCamelCase__ : Union[str, Any] = num_frames UpperCamelCase__ : List[str] = {} if top_k is not None: UpperCamelCase__ : int = top_k return preprocess_params, {}, postprocess_params def __call__( self : str, __lowerCamelCase : Union[str, List[str]], **__lowerCamelCase : List[Any] ) -> int: return super().__call__(__lowerCamelCase, **__lowerCamelCase ) def __lowercase( self : Union[str, Any], __lowerCamelCase : Dict, __lowerCamelCase : Dict=None, __lowerCamelCase : Optional[int]=1 ) -> int: if num_frames is None: UpperCamelCase__ : Optional[int] = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): UpperCamelCase__ : List[str] = BytesIO(requests.get(__lowerCamelCase ).content ) UpperCamelCase__ : str = VideoReader(__lowerCamelCase ) videoreader.seek(0 ) UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Tuple = num_frames * frame_sampling_rate - 1 UpperCamelCase__ : Tuple = np.linspace(__lowerCamelCase, __lowerCamelCase, num=__lowerCamelCase, dtype=np.intaa ) UpperCamelCase__ : str = videoreader.get_batch(__lowerCamelCase ).asnumpy() UpperCamelCase__ : Optional[Any] = list(__lowerCamelCase ) UpperCamelCase__ : str = self.image_processor(__lowerCamelCase, return_tensors=self.framework ) return model_inputs def __lowercase( self : Optional[Any], __lowerCamelCase : Optional[Any] ) -> List[str]: UpperCamelCase__ : Dict = self.model(**__lowerCamelCase ) return model_outputs def __lowercase( self : List[str], __lowerCamelCase : Dict, __lowerCamelCase : Union[str, Any]=5 ) -> str: if top_k > self.model.config.num_labels: UpperCamelCase__ : Dict = self.model.config.num_labels if self.framework == "pt": UpperCamelCase__ : Dict = model_outputs.logits.softmax(-1 )[0] UpperCamelCase__ ,UpperCamelCase__ : Dict = probs.topk(__lowerCamelCase ) else: raise ValueError(f'Unsupported framework: {self.framework}' ) UpperCamelCase__ : Dict = scores.tolist() UpperCamelCase__ : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCamelCase, __lowerCamelCase )]
344
_SCREAMING_SNAKE_CASE : dict[str, float] = { "joule": 1.0, "kilojoule": 1000, "megajoule": 1000000, "gigajoule": 1000000000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 3600000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 4186800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1055.05585, "footpound": 1.355_818, } def _lowercase ( __lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : float ) -> float: '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCamelCase__ : List[str] = ( F'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' F'Valid values are: {", ".join(__lowerCamelCase )}' ) raise ValueError(__lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
344
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = inspect.getfile(accelerate.test_utils ) UpperCamelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCamelCase__ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) UpperCamelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def snake_case__ ( self ): '''simple docstring''' print(F'''Found {torch.cuda.device_count()} devices.''' ) UpperCamelCase__ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def snake_case__ ( self ): '''simple docstring''' print(F'''Found {torch.cuda.device_count()} devices.''' ) UpperCamelCase__ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def snake_case__ ( self ): '''simple docstring''' print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) UpperCamelCase__ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(snake_case , env=os.environ.copy() ) if __name__ == "__main__": __UpperCamelCase = Accelerator() __UpperCamelCase = (accelerator.state.process_index + 2, 1_0) __UpperCamelCase = torch.randint(0, 1_0, shape).to(accelerator.device) __UpperCamelCase = '' __UpperCamelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __UpperCamelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __UpperCamelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
185
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowerCamelCase__ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase : List[str] = FlaxAutoencoderKL @property def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = 4 UpperCamelCase__ = 3 UpperCamelCase__ = (32, 32) UpperCamelCase__ = jax.random.PRNGKey(0 ) UpperCamelCase__ = jax.random.uniform(snake_case , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } UpperCamelCase__ = self.dummy_input return init_dict, inputs_dict
185
1
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class lowerCAmelCase__ : A_ : str = field( metadata={'help': 'The output directory where the model will be written.'} , ) A_ : str = field( metadata={ 'help': ( 'The encoder model checkpoint for weights initialization.' 'Don\'t set if you want to train an encoder model from scratch.' ) } , ) A_ : str = field( metadata={ 'help': ( 'The decoder model checkpoint for weights initialization.' 'Don\'t set if you want to train a decoder model from scratch.' ) } , ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Pretrained encoder config name or path if not the same as encoder_model_name'} ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Pretrained decoder config name or path if not the same as decoder_model_name'} ) def lowerCamelCase_ ( ) -> Optional[Any]: '''simple docstring''' A = HfArgumentParser((ModelArguments,) ) ((A) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: A = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: A = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: A = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: A = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed A = True A = True A = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=lowerCAmelCase__ , decoder_config=lowerCAmelCase__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens A = decoder_config.decoder_start_token_id A = decoder_config.pad_token_id if decoder_start_token_id is None: A = decoder_config.bos_token_id if pad_token_id is None: A = decoder_config.eos_token_id # This is necessary to make Flax's generate() work A = decoder_config.eos_token_id A = decoder_start_token_id A = pad_token_id A = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) A = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) A = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
106
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase ( a_ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE : int = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> tuple[int, int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE : int = x_den * y_den * z_den SCREAMING_SNAKE_CASE : int = gcd(a_ , a_ ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase ( a_ = 35 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : set = set() SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : Fraction = Fraction(0 ) SCREAMING_SNAKE_CASE : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 SCREAMING_SNAKE_CASE : Optional[Any] = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE : Optional[int] = x_den * y_den SCREAMING_SNAKE_CASE : str = gcd(a_ , a_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE : List[Any] = add_three( a_ , a_ , a_ , a_ , a_ , a_ ) unique_s.add(a_ ) # n=2 SCREAMING_SNAKE_CASE : List[str] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE : Optional[int] = x_den * x_den * y_den * y_den if is_sq(a_ ) and is_sq(a_ ): SCREAMING_SNAKE_CASE : Dict = int(sqrt(a_ ) ) SCREAMING_SNAKE_CASE : int = int(sqrt(a_ ) ) SCREAMING_SNAKE_CASE : Any = gcd(a_ , a_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE : Dict = add_three( a_ , a_ , a_ , a_ , a_ , a_ ) unique_s.add(a_ ) # n=-1 SCREAMING_SNAKE_CASE : Any = x_num * y_num SCREAMING_SNAKE_CASE : List[str] = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE : List[Any] = gcd(a_ , a_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE : Optional[int] = add_three( a_ , a_ , a_ , a_ , a_ , a_ ) unique_s.add(a_ ) # n=2 SCREAMING_SNAKE_CASE : Any = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE : Union[str, Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(a_ ) and is_sq(a_ ): SCREAMING_SNAKE_CASE : str = int(sqrt(a_ ) ) SCREAMING_SNAKE_CASE : int = int(sqrt(a_ ) ) SCREAMING_SNAKE_CASE : Dict = gcd(a_ , a_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE : Optional[int] = add_three( a_ , a_ , a_ , a_ , a_ , a_ ) unique_s.add(a_ ) for num, den in unique_s: total += Fraction(a_ , a_ ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
251
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : Dict = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class lowerCAmelCase_ ( a_ ): __UpperCAmelCase = 'mra' def __init__( self : List[str], _snake_case : int=50_265, _snake_case : Optional[Any]=768, _snake_case : str=12, _snake_case : str=12, _snake_case : Union[str, Any]=3_072, _snake_case : int="gelu", _snake_case : Union[str, Any]=0.1, _snake_case : Optional[int]=0.1, _snake_case : List[str]=512, _snake_case : List[Any]=1, _snake_case : Optional[int]=0.02, _snake_case : Union[str, Any]=1E-5, _snake_case : str="absolute", _snake_case : Optional[int]=4, _snake_case : int="full", _snake_case : Any=0, _snake_case : Union[str, Any]=0, _snake_case : Union[str, Any]=1, _snake_case : Tuple=0, _snake_case : List[str]=2, **_snake_case : Dict, ): '''simple docstring''' super().__init__(pad_token_id=_snake_case, bos_token_id=_snake_case, eos_token_id=_snake_case, **_snake_case ) snake_case : Optional[Any] =vocab_size snake_case : List[str] =max_position_embeddings snake_case : int =hidden_size snake_case : str =num_hidden_layers snake_case : Optional[int] =num_attention_heads snake_case : Any =intermediate_size snake_case : List[str] =hidden_act snake_case : Union[str, Any] =hidden_dropout_prob snake_case : Tuple =attention_probs_dropout_prob snake_case : int =initializer_range snake_case : Dict =type_vocab_size snake_case : Union[str, Any] =layer_norm_eps snake_case : Any =position_embedding_type snake_case : List[str] =block_per_row snake_case : str =approx_mode snake_case : Dict =initial_prior_first_n_blocks snake_case : List[str] =initial_prior_diagonal_n_blocks
136
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) A : Optional[int] = logging.get_logger(__name__) A : Optional[Any] = OrderedDict( [ ("""audio-spectrogram-transformer""", """ASTFeatureExtractor"""), ("""beit""", """BeitFeatureExtractor"""), ("""chinese_clip""", """ChineseCLIPFeatureExtractor"""), ("""clap""", """ClapFeatureExtractor"""), ("""clip""", """CLIPFeatureExtractor"""), ("""clipseg""", """ViTFeatureExtractor"""), ("""conditional_detr""", """ConditionalDetrFeatureExtractor"""), ("""convnext""", """ConvNextFeatureExtractor"""), ("""cvt""", """ConvNextFeatureExtractor"""), ("""data2vec-audio""", """Wav2Vec2FeatureExtractor"""), ("""data2vec-vision""", """BeitFeatureExtractor"""), ("""deformable_detr""", """DeformableDetrFeatureExtractor"""), ("""deit""", """DeiTFeatureExtractor"""), ("""detr""", """DetrFeatureExtractor"""), ("""dinat""", """ViTFeatureExtractor"""), ("""donut-swin""", """DonutFeatureExtractor"""), ("""dpt""", """DPTFeatureExtractor"""), ("""encodec""", """EncodecFeatureExtractor"""), ("""flava""", """FlavaFeatureExtractor"""), ("""glpn""", """GLPNFeatureExtractor"""), ("""groupvit""", """CLIPFeatureExtractor"""), ("""hubert""", """Wav2Vec2FeatureExtractor"""), ("""imagegpt""", """ImageGPTFeatureExtractor"""), ("""layoutlmv2""", """LayoutLMv2FeatureExtractor"""), ("""layoutlmv3""", """LayoutLMv3FeatureExtractor"""), ("""levit""", """LevitFeatureExtractor"""), ("""maskformer""", """MaskFormerFeatureExtractor"""), ("""mctct""", """MCTCTFeatureExtractor"""), ("""mobilenet_v1""", """MobileNetV1FeatureExtractor"""), ("""mobilenet_v2""", """MobileNetV2FeatureExtractor"""), ("""mobilevit""", """MobileViTFeatureExtractor"""), ("""nat""", """ViTFeatureExtractor"""), ("""owlvit""", """OwlViTFeatureExtractor"""), ("""perceiver""", """PerceiverFeatureExtractor"""), ("""poolformer""", """PoolFormerFeatureExtractor"""), ("""regnet""", """ConvNextFeatureExtractor"""), ("""resnet""", """ConvNextFeatureExtractor"""), ("""segformer""", """SegformerFeatureExtractor"""), ("""sew""", """Wav2Vec2FeatureExtractor"""), ("""sew-d""", """Wav2Vec2FeatureExtractor"""), ("""speech_to_text""", """Speech2TextFeatureExtractor"""), ("""speecht5""", """SpeechT5FeatureExtractor"""), ("""swiftformer""", """ViTFeatureExtractor"""), ("""swin""", """ViTFeatureExtractor"""), ("""swinv2""", """ViTFeatureExtractor"""), ("""table-transformer""", """DetrFeatureExtractor"""), ("""timesformer""", """VideoMAEFeatureExtractor"""), ("""tvlt""", """TvltFeatureExtractor"""), ("""unispeech""", """Wav2Vec2FeatureExtractor"""), ("""unispeech-sat""", """Wav2Vec2FeatureExtractor"""), ("""van""", """ConvNextFeatureExtractor"""), ("""videomae""", """VideoMAEFeatureExtractor"""), ("""vilt""", """ViltFeatureExtractor"""), ("""vit""", """ViTFeatureExtractor"""), ("""vit_mae""", """ViTFeatureExtractor"""), ("""vit_msn""", """ViTFeatureExtractor"""), ("""wav2vec2""", """Wav2Vec2FeatureExtractor"""), ("""wav2vec2-conformer""", """Wav2Vec2FeatureExtractor"""), ("""wavlm""", """Wav2Vec2FeatureExtractor"""), ("""whisper""", """WhisperFeatureExtractor"""), ("""xclip""", """CLIPFeatureExtractor"""), ("""yolos""", """YolosFeatureExtractor"""), ] ) A : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( lowerCamelCase_ ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: snake_case : str =model_type_to_module_name(lowerCamelCase_ ) snake_case : int =importlib.import_module(F'''.{module_name}''' , '''transformers.models''' ) try: return getattr(lowerCamelCase_ , lowerCamelCase_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(lowerCamelCase_ , '''__name__''' , lowerCamelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. snake_case : List[str] =importlib.import_module('''transformers''' ) if hasattr(lowerCamelCase_ , lowerCamelCase_ ): return getattr(lowerCamelCase_ , lowerCamelCase_ ) return None def _a ( lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = False , **lowerCamelCase_ , ): snake_case : List[str] =get_file_from_repo( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(lowerCamelCase_ , encoding='''utf-8''' ) as reader: return json.load(lowerCamelCase_ ) class lowerCAmelCase_ : def __init__( self : List[Any] ): '''simple docstring''' raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_snake_case ) def __snake_case ( cls : Union[str, Any], _snake_case : Union[str, Any], **_snake_case : Any ): '''simple docstring''' snake_case : Any =kwargs.pop('''config''', _snake_case ) snake_case : Optional[Any] =kwargs.pop('''trust_remote_code''', _snake_case ) snake_case : List[Any] =True snake_case , snake_case : Dict =FeatureExtractionMixin.get_feature_extractor_dict(_snake_case, **_snake_case ) snake_case : str =config_dict.get('''feature_extractor_type''', _snake_case ) snake_case : str =None if "AutoFeatureExtractor" in config_dict.get('''auto_map''', {} ): snake_case : Optional[Any] =config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_snake_case, _snake_case ): snake_case : Optional[Any] =AutoConfig.from_pretrained(_snake_case, **_snake_case ) # It could be in `config.feature_extractor_type`` snake_case : Any =getattr(_snake_case, '''feature_extractor_type''', _snake_case ) if hasattr(_snake_case, '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: snake_case : Union[str, Any] =config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: snake_case : Tuple =feature_extractor_class_from_name(_snake_case ) snake_case : Optional[int] =feature_extractor_auto_map is not None snake_case : Optional[int] =feature_extractor_class is not None or type(_snake_case ) in FEATURE_EXTRACTOR_MAPPING snake_case : Dict =resolve_trust_remote_code( _snake_case, _snake_case, _snake_case, _snake_case ) if has_remote_code and trust_remote_code: snake_case : Optional[Any] =get_class_from_dynamic_module( _snake_case, _snake_case, **_snake_case ) snake_case : List[Any] =kwargs.pop('''code_revision''', _snake_case ) if os.path.isdir(_snake_case ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_snake_case, **_snake_case ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_snake_case, **_snake_case ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_snake_case ) in FEATURE_EXTRACTOR_MAPPING: snake_case : List[Any] =FEATURE_EXTRACTOR_MAPPING[type(_snake_case )] return feature_extractor_class.from_dict(_snake_case, **_snake_case ) raise ValueError( f'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' f'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def __snake_case ( _snake_case : List[str], _snake_case : int ): '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(_snake_case, _snake_case )
136
1
'''simple docstring''' class _snake_case : def __init__( self ): UpperCAmelCase_ : Tuple = "" UpperCAmelCase_ : Tuple = "" UpperCAmelCase_ : List[Any] = [] def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: UpperCAmelCase_ : int = self.__min_dist_top_down_dp(m - 1 ,n - 1 ) else: UpperCAmelCase_ : int = self.__min_dist_top_down_dp(__UpperCAmelCase ,n - 1 ) UpperCAmelCase_ : Union[str, Any] = self.__min_dist_top_down_dp(m - 1 ,__UpperCAmelCase ) UpperCAmelCase_ : Union[str, Any] = self.__min_dist_top_down_dp(m - 1 ,n - 1 ) UpperCAmelCase_ : Optional[Any] = 1 + min(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) return self.dp[m][n] def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): UpperCAmelCase_ : Dict = worda UpperCAmelCase_ : str = worda UpperCAmelCase_ : Optional[int] = [[-1 for _ in range(len(__UpperCAmelCase ) )] for _ in range(len(__UpperCAmelCase ) )] return self.__min_dist_top_down_dp(len(__UpperCAmelCase ) - 1 ,len(__UpperCAmelCase ) - 1 ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): UpperCAmelCase_ : int = worda UpperCAmelCase_ : int = worda UpperCAmelCase_ : Union[str, Any] = len(__UpperCAmelCase ) UpperCAmelCase_ : Any = len(__UpperCAmelCase ) UpperCAmelCase_ : Dict = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty UpperCAmelCase_ : Dict = j elif j == 0: # second string is empty UpperCAmelCase_ : Any = i elif worda[i - 1] == worda[j - 1]: # last characters are equal UpperCAmelCase_ : int = self.dp[i - 1][j - 1] else: UpperCAmelCase_ : Tuple = self.dp[i][j - 1] UpperCAmelCase_ : Union[str, Any] = self.dp[i - 1][j] UpperCAmelCase_ : Any = self.dp[i - 1][j - 1] UpperCAmelCase_ : Optional[Any] = 1 + min(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) return self.dp[m][n] if __name__ == "__main__": _lowerCamelCase = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() _lowerCamelCase = input("""Enter the first string: """).strip() _lowerCamelCase = input("""Enter the second string: """).strip() print() print(f"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(f"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
71
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A_ : Optional[Any] = logging.getLogger(__name__) @dataclass class lowerCamelCase (A__ ): lowerCamelCase__ : Optional[float] = field( default=0.0 ,metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) lowerCamelCase__ : bool = field(default=A__ ,metadata={'help': 'Whether to SortishSamler or not.'} ) lowerCamelCase__ : bool = field( default=A__ ,metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : bool = field(default=A__ ,metadata={'help': 'whether to use adafactor'} ) lowerCamelCase__ : Optional[float] = field( default=A__ ,metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) lowerCamelCase__ : Optional[float] = field( default=A__ ,metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) lowerCamelCase__ : Optional[float] = field(default=A__ ,metadata={'help': 'Dropout probability. Goes into model.config.'} ) lowerCamelCase__ : Optional[float] = field( default=A__ ,metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) lowerCamelCase__ : Optional[str] = field( default='linear' ,metadata={'help': f"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} ,)
196
0
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( a__): def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A, 'embed_dim' ) ) self.parent.assertTrue(hasattr(A, 'num_heads' ) ) class __snake_case : def __init__( self, A, A=13, A=64, A=3, A=[16, 48, 96], A=[1, 3, 6], A=[1, 2, 10], A=[7, 3, 3], A=[4, 2, 2], A=[2, 1, 1], A=[2, 2, 2], A=[False, False, True], A=[0.0, 0.0, 0.0], A=0.02, A=1e-12, A=True, A=True, A=2, ): """simple docstring""" lowerCamelCase : List[str] = parent lowerCamelCase : Dict = batch_size lowerCamelCase : Dict = image_size lowerCamelCase : Optional[Any] = patch_sizes lowerCamelCase : str = patch_stride lowerCamelCase : Union[str, Any] = patch_padding lowerCamelCase : Optional[Any] = is_training lowerCamelCase : Tuple = use_labels lowerCamelCase : Optional[int] = num_labels lowerCamelCase : Optional[Any] = num_channels lowerCamelCase : Optional[Any] = embed_dim lowerCamelCase : int = num_heads lowerCamelCase : List[Any] = stride_kv lowerCamelCase : Any = depth lowerCamelCase : Any = cls_token lowerCamelCase : List[Any] = attention_drop_rate lowerCamelCase : str = initializer_range lowerCamelCase : Optional[Any] = layer_norm_eps def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : Optional[Any] = None if self.use_labels: lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels ) lowerCamelCase : Tuple = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ): """simple docstring""" return CvtConfig( image_size=self.image_size, num_labels=self.num_labels, num_channels=self.num_channels, embed_dim=self.embed_dim, num_heads=self.num_heads, patch_sizes=self.patch_sizes, patch_padding=self.patch_padding, patch_stride=self.patch_stride, stride_kv=self.stride_kv, depth=self.depth, cls_token=self.cls_token, attention_drop_rate=self.attention_drop_rate, initializer_range=self.initializer_range, ) def UpperCAmelCase_ ( self, A, A, A ): """simple docstring""" lowerCamelCase : Optional[Any] = CvtModel(config=A ) model.to(A ) model.eval() lowerCamelCase : Any = model(A ) lowerCamelCase : Union[str, Any] = (self.image_size, self.image_size) lowerCamelCase , lowerCamelCase : Tuple = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowerCamelCase : Optional[int] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowerCamelCase : Union[str, Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width) ) def UpperCAmelCase_ ( self, A, A, A ): """simple docstring""" lowerCamelCase : Optional[int] = self.num_labels lowerCamelCase : Optional[Any] = CvtForImageClassification(A ) model.to(A ) model.eval() lowerCamelCase : int = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : int = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase : str = config_and_inputs lowerCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __snake_case ( a__ , a__ , unittest.TestCase): _lowerCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _lowerCAmelCase = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Any = CvtModelTester(self ) lowerCamelCase : Optional[int] = ConfigTester(self, config_class=A, has_text_modality=A, hidden_size=37 ) def UpperCAmelCase_ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self ): """simple docstring""" return @unittest.skip(reason='Cvt does not output attentions' ) def UpperCAmelCase_ ( self ): """simple docstring""" pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def UpperCAmelCase_ ( self ): """simple docstring""" pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def UpperCAmelCase_ ( self ): """simple docstring""" pass def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Tuple = model_class(A ) lowerCamelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : int = [*signature.parameters.keys()] lowerCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase_ ( self ): """simple docstring""" def check_hidden_states_output(A, A, A ): lowerCamelCase : Optional[int] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): lowerCamelCase : Union[str, Any] = model(**self._prepare_for_class(A, A ) ) lowerCamelCase : Union[str, Any] = outputs.hidden_states lowerCamelCase : Optional[Any] = len(self.model_tester.depth ) self.assertEqual(len(A ), A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ), [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) lowerCamelCase , lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Any = True check_hidden_states_output(A, A, A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : List[str] = True check_hidden_states_output(A, A, A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase_ ( self ): """simple docstring""" pass @slow def UpperCAmelCase_ ( self ): """simple docstring""" for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Optional[int] = CvtModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ): lowerCamelCase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __snake_case ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A ) lowerCamelCase : List[Any] = self.default_image_processor lowerCamelCase : Optional[Any] = prepare_img() lowerCamelCase : List[Any] = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): lowerCamelCase : Optional[Any] = model(**A ) # verify the logits lowerCamelCase : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, A ) lowerCamelCase : Any = torch.tensor([0.9285, 0.9015, -0.3150] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1e-4 ) )
449
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( a__): _lowerCAmelCase = (DPMSolverSinglestepScheduler,) _lowerCAmelCase = (('''num_inference_steps''', 25),) def UpperCAmelCase_ ( self, **A ): """simple docstring""" lowerCamelCase : List[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**A ) return config def UpperCAmelCase_ ( self, A=0, **A ): """simple docstring""" lowerCamelCase : List[str] = dict(self.forward_default_kwargs ) lowerCamelCase : Optional[Any] = kwargs.pop('num_inference_steps', A ) lowerCamelCase : Union[str, Any] = self.dummy_sample lowerCamelCase : Dict = 0.1 * sample lowerCamelCase : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCamelCase : Optional[Any] = self.get_scheduler_config(**A ) lowerCamelCase : Dict = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals lowerCamelCase : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) lowerCamelCase : List[Any] = scheduler_class.from_pretrained(A ) new_scheduler.set_timesteps(A ) # copy over dummy past residuals lowerCamelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCamelCase , lowerCamelCase : Optional[int] = sample, sample for t in range(A, time_step + scheduler.config.solver_order + 1 ): lowerCamelCase : Dict = scheduler.step(A, A, A, **A ).prev_sample lowerCamelCase : Optional[int] = new_scheduler.step(A, A, A, **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self ): """simple docstring""" pass def UpperCAmelCase_ ( self, A=0, **A ): """simple docstring""" lowerCamelCase : List[str] = dict(self.forward_default_kwargs ) lowerCamelCase : str = kwargs.pop('num_inference_steps', A ) lowerCamelCase : Union[str, Any] = self.dummy_sample lowerCamelCase : List[str] = 0.1 * sample lowerCamelCase : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCamelCase : Tuple = self.get_scheduler_config() lowerCamelCase : Optional[Any] = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals (must be after setting timesteps) lowerCamelCase : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) lowerCamelCase : Tuple = scheduler_class.from_pretrained(A ) # copy over dummy past residuals new_scheduler.set_timesteps(A ) # copy over dummy past residual (must be after setting timesteps) lowerCamelCase : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCamelCase : int = scheduler.step(A, A, A, **A ).prev_sample lowerCamelCase : Dict = new_scheduler.step(A, A, A, **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self, A=None, **A ): """simple docstring""" if scheduler is None: lowerCamelCase : Any = self.scheduler_classes[0] lowerCamelCase : Optional[Any] = self.get_scheduler_config(**A ) lowerCamelCase : Optional[int] = scheduler_class(**A ) lowerCamelCase : List[Any] = self.scheduler_classes[0] lowerCamelCase : Optional[Any] = self.get_scheduler_config(**A ) lowerCamelCase : Optional[int] = scheduler_class(**A ) lowerCamelCase : Any = 10 lowerCamelCase : Dict = self.dummy_model() lowerCamelCase : Any = self.dummy_sample_deter scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase : Dict = model(A, A ) lowerCamelCase : List[str] = scheduler.step(A, A, A ).prev_sample return sample def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Dict = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCamelCase : Dict = 50 lowerCamelCase : Tuple = self.dummy_model() lowerCamelCase : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(A ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): lowerCamelCase : Any = model(A, A ) lowerCamelCase : Optional[int] = scheduler.step(A, A, A ).prev_sample lowerCamelCase : Any = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2574 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Dict = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCamelCase : str = self.full_loop(scheduler=A ) lowerCamelCase : Optional[int] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 lowerCamelCase : Dict = DEISMultistepScheduler.from_config(scheduler.config ) lowerCamelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCamelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCamelCase : Optional[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCamelCase : str = self.full_loop(scheduler=A ) lowerCamelCase : Optional[int] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" self.check_over_configs(thresholding=A ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=A, prediction_type=A, sample_max_value=A, algorithm_type='dpmsolver++', solver_order=A, solver_type=A, ) def UpperCAmelCase_ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def UpperCAmelCase_ ( self ): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=A, solver_type=A, prediction_type=A, algorithm_type=A, ) lowerCamelCase : Optional[Any] = self.full_loop( solver_order=A, solver_type=A, prediction_type=A, algorithm_type=A, ) assert not torch.isnan(A ).any(), "Samples have nan numbers" def UpperCAmelCase_ ( self ): """simple docstring""" self.check_over_configs(lower_order_final=A ) self.check_over_configs(lower_order_final=A ) def UpperCAmelCase_ ( self ): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase_ ( self ): """simple docstring""" self.check_over_configs(variance_type=A ) self.check_over_configs(variance_type='learned_range' ) def UpperCAmelCase_ ( self ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=A, time_step=0 ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.full_loop() lowerCamelCase : str = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.full_loop(use_karras_sigmas=A ) lowerCamelCase : Tuple = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.2248 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.full_loop(prediction_type='v_prediction' ) lowerCamelCase : Dict = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.1453 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.full_loop(prediction_type='v_prediction', use_karras_sigmas=A ) lowerCamelCase : Optional[Any] = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.0649 ) < 1e-3 def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = self.scheduler_classes[0] lowerCamelCase : Dict = self.get_scheduler_config(thresholding=A, dynamic_thresholding_ratio=0 ) lowerCamelCase : str = scheduler_class(**A ) lowerCamelCase : List[Any] = 10 lowerCamelCase : List[str] = self.dummy_model() lowerCamelCase : int = self.dummy_sample_deter.half() scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase : str = model(A, A ) lowerCamelCase : Tuple = scheduler.step(A, A, A ).prev_sample assert sample.dtype == torch.floataa
449
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _UpperCAmelCase : Any = 10 def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for i in range(__snake_case , __snake_case ): if array[i] == target: return i return -1 def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = 0 snake_case_ = len(__snake_case ) while left <= right: if right - left < precision: return lin_search(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case_ = (left + right) // 3 + 1 snake_case_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: snake_case_ = one_third - 1 elif array[two_third] < target: snake_case_ = two_third + 1 else: snake_case_ = one_third + 1 snake_case_ = two_third - 1 else: return -1 def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if left < right: if right - left < precision: return lin_search(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case_ = (left + right) // 3 + 1 snake_case_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__snake_case , one_third - 1 , __snake_case , __snake_case ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __snake_case , __snake_case , __snake_case ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __snake_case , __snake_case ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : int = input("""Enter numbers separated by comma:\n""").strip() _UpperCAmelCase : List[Any] = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." _UpperCAmelCase : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) _UpperCAmelCase : str = ite_ternary_search(collection, target) _UpperCAmelCase : List[str] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
362
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class lowercase_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: _A = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(UpperCamelCase__ ) ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: _A = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(UpperCamelCase__ ) ) def __UpperCAmelCase ( self : str ) -> Union[str, Any]: _A = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(UpperCamelCase__ ) ) def __UpperCAmelCase ( self : int ) -> Dict: _A = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(UpperCamelCase__ ) ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: _A = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(UpperCamelCase__ ) ) def __UpperCAmelCase ( self : str ) -> Dict: _A = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _A = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCamelCase__, variant=UpperCamelCase__ ) ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: _A = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _A = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCamelCase__, variant=UpperCamelCase__ ) ) def __UpperCAmelCase ( self : List[str] ) -> List[str]: # pass variant but use the non-variant filenames _A = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] _A = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCamelCase__, variant=UpperCamelCase__ ) ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: _A = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _A = 'fp16' self.assertFalse(is_safetensors_compatible(UpperCamelCase__, variant=UpperCamelCase__ ) ) def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]: _A = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] _A = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCamelCase__, variant=UpperCamelCase__ ) ) def __UpperCAmelCase ( self : Tuple ) -> str: # pass variant but use the non-variant filenames _A = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] _A = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCamelCase__, variant=UpperCamelCase__ ) ) def __UpperCAmelCase ( self : List[Any] ) -> int: _A = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] _A = 'fp16' self.assertFalse(is_safetensors_compatible(UpperCamelCase__, variant=UpperCamelCase__ ) )
107
0
"""simple docstring""" SCREAMING_SNAKE_CASE = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> str: """simple docstring""" assert len(str(__UpperCamelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: UpperCamelCase = year // 1_00 UpperCamelCase = (5 * (century % 4) + 2) % 7 UpperCamelCase = year % 1_00 UpperCamelCase = centurian % 12 UpperCamelCase = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCamelCase = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCamelCase = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class __a ( _lowerCAmelCase ): UpperCamelCase_ : Union[List[PIL.Image.Image], np.ndarray] UpperCamelCase_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class __a ( _lowerCAmelCase ): UpperCamelCase_ : np.ndarray UpperCamelCase_ : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
556
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __lowercase : Tuple = logging.get_logger(__name__) __lowercase : Union[str, Any] = r''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class _A ( snake_case ): '''simple docstring''' @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' raise NotImplementedError("""StoppingCriteria needs to be subclassed""" ) class _A ( snake_case ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' snake_case : List[Any] = max_length snake_case : Union[str, Any] = max_position_embeddings @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[str] = input_ids.shape[-1] snake_case : List[Any] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( """This is a friendly reminder - the current text generation call will exceed the model's predefined """ F"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ """exceptions, performance degradation, or nothing at all.""" ) return is_done class _A ( snake_case ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' warnings.warn( """The class `MaxNewTokensCriteria` is deprecated. """ F"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ """with `max_length = start_length + max_new_tokens` instead.""" ,SCREAMING_SNAKE_CASE_ ,) snake_case : List[str] = start_length snake_case : str = max_new_tokens snake_case : Union[str, Any] = start_length + max_new_tokens @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return input_ids.shape[-1] >= self.max_length class _A ( snake_case ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' snake_case : Any = max_time snake_case : Dict = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class _A ( snake_case ): '''simple docstring''' @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return any(criteria(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) for criteria in self ) @property def snake_case_ ( self ): '''simple docstring''' for stopping_criterium in self: if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): return stopping_criterium.max_length elif isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): return stopping_criterium.max_length return None def lowercase ( __A : StoppingCriteriaList , __A : int ) -> StoppingCriteriaList: '''simple docstring''' snake_case : List[str] = stopping_criteria.max_length snake_case : int = deepcopy(__A ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("""You set different `max_length` for stopping criteria and `max_length` parameter""" , __A ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__A ) ) return new_stopping_criteria
36
def UpperCamelCase ( snake_case__ : list ): '''simple docstring''' if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 ,len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] __snake_case :str = grid[0] for row_n in range(1 ,len(snake_case__ ) ): __snake_case :Optional[int] = grid[row_n] __snake_case :Optional[Any] = fill_row(snake_case__ ,snake_case__ ) __snake_case :Dict = grid[row_n] return grid[-1][-1] def UpperCamelCase ( snake_case__ : list ,snake_case__ : list ): '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 ,len(snake_case__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] ,row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
455
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : Dict = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } _UpperCAmelCase : List[Any] = {"""mobilebert-uncased""": 5_1_2} _UpperCAmelCase : Union[str, Any] = {} class a__ ( __A ): """simple docstring""" __UpperCamelCase : Dict = VOCAB_FILES_NAMES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Dict = MobileBertTokenizer def __init__(self , __lowercase=None , __lowercase=None , __lowercase=True , __lowercase="[UNK]" , __lowercase="[SEP]" , __lowercase="[PAD]" , __lowercase="[CLS]" , __lowercase="[MASK]" , __lowercase=True , __lowercase=None , **__lowercase , ): super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __lowercase ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(__lowercase , normalizer_state.pop('''type''' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**__lowercase ) __lowerCAmelCase = do_lower_case def _snake_case (self , __lowercase , __lowercase=None ): __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
707
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan _UpperCAmelCase : str = 6_37_81_37.0 _UpperCAmelCase : Tuple = 6_35_67_52.31_42_45 _UpperCAmelCase : Optional[Any] = 6_3_7_8_1_3_7 def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = (AXIS_A - AXIS_B) / AXIS_A __lowerCAmelCase = atan((1 - flattening) * tan(radians(lowerCamelCase))) __lowerCAmelCase = atan((1 - flattening) * tan(radians(lowerCamelCase))) __lowerCAmelCase = radians(lowerCamelCase) __lowerCAmelCase = radians(lowerCamelCase) # Equation __lowerCAmelCase = sin((phi_a - phi_a) / 2) __lowerCAmelCase = sin((lambda_a - lambda_a) / 2) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __lowerCAmelCase = sqrt(sin_sq_phi + (cos(lowerCamelCase) * cos(lowerCamelCase) * sin_sq_lambda)) return 2 * RADIUS * asin(lowerCamelCase) if __name__ == "__main__": import doctest doctest.testmod()
474
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A = logging.get_logger(__name__) A = '▁' A = {'vocab_file': 'sentencepiece.bpe.model'} A = { 'vocab_file': { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model' ), } } A = { 'xlm-roberta-base': 512, 'xlm-roberta-large': 512, 'xlm-roberta-large-finetuned-conll02-dutch': 512, 'xlm-roberta-large-finetuned-conll02-spanish': 512, 'xlm-roberta-large-finetuned-conll03-english': 512, 'xlm-roberta-large-finetuned-conll03-german': 512, } class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCamelCase , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<mask>" , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" snake_case_ = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) snake_case_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ = 1 snake_case_ = len(self.sp_model ) + self.fairseq_offset snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" snake_case_ = self.__dict__.copy() snake_case_ = None snake_case_ = self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCamelCase ): """simple docstring""" snake_case_ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1] def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCAmelCase ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = ''.join(__UpperCamelCase ).replace(__UpperCamelCase , ' ' ).strip() return out_string def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(__UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ = os.path.join( __UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , 'wb' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
187
from jiwer import compute_measures import datasets A = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' A = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' A = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def __lowerCAmelCase ( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=False ): """simple docstring""" if concatenate_texts: return compute_measures(__UpperCamelCase , __UpperCamelCase )["wer"] else: snake_case_ = 0 snake_case_ = 0 for prediction, reference in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ = compute_measures(__UpperCamelCase , __UpperCamelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
187
1
import os def lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: Any = os.path.join(os.path.dirname(UpperCamelCase__ ) , '''num.txt''' ) with open(UpperCamelCase__ ) as file_hand: return str(sum(int(UpperCamelCase__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
146
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : List[str] = [ """small""", """small-base""", """medium""", """medium-base""", """intermediate""", """intermediate-base""", """large""", """large-base""", """xlarge""", """xlarge-base""", ] lowerCAmelCase : Tuple = { """vocab_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json""", """funnel-transformer/small-base""": ( """https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json""" ), """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json""", """funnel-transformer/large-base""": ( """https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json""" ), """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : Optional[int] = {f'''funnel-transformer/{name}''': 512 for name in _model_names} lowerCAmelCase : Optional[int] = {f'''funnel-transformer/{name}''': {"""do_lower_case""": True} for name in _model_names} class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : int = FunnelTokenizer SCREAMING_SNAKE_CASE__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : int = 2 def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<sep>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase="<cls>" , _lowerCAmelCase="<mask>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase="##" , **_lowerCAmelCase , ): """simple docstring""" super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , clean_text=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , wordpieces_prefix=_lowerCAmelCase , **_lowerCAmelCase , ) __SCREAMING_SNAKE_CASE: Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCAmelCase ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE: Any = getattr(_lowerCAmelCase , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE: Tuple = do_lower_case __SCREAMING_SNAKE_CASE: int = strip_accents __SCREAMING_SNAKE_CASE: int = tokenize_chinese_chars __SCREAMING_SNAKE_CASE: List[Any] = normalizer_class(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = do_lower_case def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase=None ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = [self.sep_token_id] __SCREAMING_SNAKE_CASE: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
146
1
def A ( __UpperCamelCase ) -> tuple[int, int]: try: A__ = float(__UpperCamelCase ) except ValueError: raise ValueError('Please enter a valid number' ) A__ = decimal - int(__UpperCamelCase ) if fractional_part == 0: return int(__UpperCamelCase ), 1 else: A__ = len(str(__UpperCamelCase ).split('.' )[1] ) A__ = int(decimal * (10**number_of_frac_digits) ) A__ = 10**number_of_frac_digits A__ , A__ = denominator, numerator while True: A__ = dividend % divisor if remainder == 0: break A__ , A__ = divisor, remainder A__ , A__ = numerator / divisor, denominator / divisor return int(__UpperCamelCase ), int(__UpperCamelCase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
9
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 __lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
13
0
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml UpperCamelCase_ = NewType("""DataClass""", Any) UpperCamelCase_ = NewType("""DataClassType""", Any) def _lowerCAmelCase ( __magic_name__ : Dict ) -> str: if isinstance(__magic_name__ , __magic_name__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def _lowerCAmelCase ( __magic_name__ : list ) -> Callable[[str], Any]: lowercase : Optional[Any] ={str(__magic_name__ ): choice for choice in choices} return lambda __magic_name__ : str_to_choice.get(__magic_name__ , __magic_name__ ) def _lowerCAmelCase ( *, __magic_name__ : Union[str, List[str]] = None , __magic_name__ : str = None , __magic_name__ : Any = dataclasses.MISSING , __magic_name__ : Callable[[], Any] = dataclasses.MISSING , __magic_name__ : dict = None , **__magic_name__ : Optional[Any] , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowercase : Tuple ={} if aliases is not None: lowercase : Dict =aliases if help is not None: lowercase : Optional[Any] =help return dataclasses.field(metadata=__magic_name__ , default=__magic_name__ , default_factory=__magic_name__ , **__magic_name__ ) class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = 42 def __init__( self : Tuple , UpperCAmelCase__ : Union[DataClassType, Iterable[DataClassType]] , **UpperCAmelCase__ : Optional[int] ): '''simple docstring''' # To make the default appear when using --help if "formatter_class" not in kwargs: lowercase : Dict =ArgumentDefaultsHelpFormatter super().__init__(**UpperCAmelCase__ ) if dataclasses.is_dataclass(UpperCAmelCase__ ): lowercase : List[str] =[dataclass_types] lowercase : Any =list(UpperCAmelCase__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(UpperCAmelCase__ ) @staticmethod def lowerCamelCase_ ( UpperCAmelCase__ : ArgumentParser , UpperCAmelCase__ : dataclasses.Field ): '''simple docstring''' lowercase : Optional[int] =F'''--{field.name}''' lowercase : Optional[int] =field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , UpperCAmelCase__ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) lowercase : Dict =kwargs.pop('''aliases''' , [] ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase : Dict =[aliases] lowercase : Union[str, Any] =getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(UpperCAmelCase__ , '''UnionType''' ) and isinstance(UpperCAmelCase__ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(UpperCAmelCase__ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F''' Problem encountered in field \'{field.name}\'.''' ) if type(UpperCAmelCase__ ) not in field.type.__args__: # filter `str` in Union lowercase : Optional[int] =field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowercase : Union[str, Any] =getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowercase : Dict =( field.type.__args__[0] if isinstance(UpperCAmelCase__ , field.type.__args__[1] ) else field.type.__args__[1] ) lowercase : Optional[int] =getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowercase : Union[str, Any] ={} if origin_type is Literal or (isinstance(field.type , UpperCAmelCase__ ) and issubclass(field.type , UpperCAmelCase__ )): if origin_type is Literal: lowercase : Tuple =field.type.__args__ else: lowercase : Optional[Any] =[x.value for x in field.type] lowercase : str =make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: lowercase : List[Any] =field.default else: lowercase : List[str] =True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowercase : Optional[Any] =copy(UpperCAmelCase__ ) # Hack because type=bool in argparse does not behave as we want. lowercase : str =string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowercase : List[str] =False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowercase : int =default # This tells argparse we accept 0 or 1 value after --field_name lowercase : List[str] ='''?''' # This is the value that will get picked if we do --field_name (without value) lowercase : str =True elif isclass(UpperCAmelCase__ ) and issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase : int =field.type.__args__[0] lowercase : Optional[int] ='''+''' if field.default_factory is not dataclasses.MISSING: lowercase : List[str] =field.default_factory() elif field.default is dataclasses.MISSING: lowercase : Union[str, Any] =True else: lowercase : List[Any] =field.type if field.default is not dataclasses.MISSING: lowercase : Any =field.default elif field.default_factory is not dataclasses.MISSING: lowercase : Dict =field.default_factory() else: lowercase : List[str] =True parser.add_argument(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowercase : List[Any] =False parser.add_argument(F'''--no_{field.name}''' , action='''store_false''' , dest=field.name , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : DataClassType ): '''simple docstring''' if hasattr(UpperCAmelCase__ , '''_argument_group_name''' ): lowercase : List[Any] =self.add_argument_group(dtype._argument_group_name ) else: lowercase : str =self try: lowercase : Dict[str, type] =get_type_hints(UpperCAmelCase__ ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(UpperCAmelCase__ ): lowercase : Dict ='''.'''.join(map(UpperCAmelCase__ , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(UpperCAmelCase__ ): if not field.init: continue lowercase : int =type_hints[field.name] self._parse_dataclass_field(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : str=False , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Optional[Any]=None , ): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowercase : Optional[Any] =[] if args_filename: args_files.append(Path(UpperCAmelCase__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowercase : int =ArgumentParser() args_file_parser.add_argument(UpperCAmelCase__ , type=UpperCAmelCase__ , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) lowercase , lowercase : Any =args_file_parser.parse_known_args(args=UpperCAmelCase__ ) lowercase : str =vars(UpperCAmelCase__ ).get(args_file_flag.lstrip('''-''' ) , UpperCAmelCase__ ) if cmd_args_file_paths: args_files.extend([Path(UpperCAmelCase__ ) for p in cmd_args_file_paths] ) lowercase : List[Any] =[] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowercase : Optional[Any] =file_args + args if args is not None else file_args + sys.argv[1:] lowercase , lowercase : Union[str, Any] =self.parse_known_args(args=UpperCAmelCase__ ) lowercase : Union[str, Any] =[] for dtype in self.dataclass_types: lowercase : int ={f.name for f in dataclasses.fields(UpperCAmelCase__ ) if f.init} lowercase : int ={k: v for k, v in vars(UpperCAmelCase__ ).items() if k in keys} for k in keys: delattr(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : Union[str, Any] =dtype(**UpperCAmelCase__ ) outputs.append(UpperCAmelCase__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(UpperCAmelCase__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : Dict[str, Any] , UpperCAmelCase__ : bool = False ): '''simple docstring''' lowercase : List[str] =set(args.keys() ) lowercase : Dict =[] for dtype in self.dataclass_types: lowercase : int ={f.name for f in dataclasses.fields(UpperCAmelCase__ ) if f.init} lowercase : Dict ={k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowercase : str =dtype(**UpperCAmelCase__ ) outputs.append(UpperCAmelCase__ ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(UpperCAmelCase__ )}''' ) return tuple(UpperCAmelCase__ ) def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : bool = False ): '''simple docstring''' with open(Path(UpperCAmelCase__ ) , encoding='''utf-8''' ) as open_json_file: lowercase : str =json.loads(open_json_file.read() ) lowercase : Tuple =self.parse_dict(UpperCAmelCase__ , allow_extra_keys=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : bool = False ): '''simple docstring''' lowercase : Union[str, Any] =self.parse_dict(yaml.safe_load(Path(UpperCAmelCase__ ).read_text() ) , allow_extra_keys=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ )
88
'''simple docstring''' import argparse import copy def _lowerCAmelCase ( __magic_name__ : List[str] ) -> Union[str, Any]: lowercase : int ={} with open(__magic_name__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowercase : List[str] =[] _list.append([line.split()[1], line.split()[2]] ) lowercase : Tuple =_list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowercase : List[Any] =[] _list.append([line.split()[0], line.split()[2]] ) lowercase : Union[str, Any] =_list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _lowerCAmelCase ( __magic_name__ : Optional[int] , __magic_name__ : List[Any] ) -> str: with open(__magic_name__ ) as f: lowercase : Optional[int] =f.read(1 ) lowercase : List[Any] =start_node lowercase : List[Any] =[] lowercase : str =start_node lowercase : str =0 while visiting not in first_solution: lowercase : Optional[int] =10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution: lowercase : List[Any] =k[1] lowercase : str =k[0] first_solution.append(__magic_name__ ) lowercase : Any =distance_of_first_solution + int(__magic_name__ ) lowercase : Optional[int] =best_node first_solution.append(__magic_name__ ) lowercase : str =0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowercase : str =( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : Any ) -> Tuple: lowercase : Tuple =[] for n in solution[1:-1]: lowercase : Dict =solution.index(__magic_name__ ) for kn in solution[1:-1]: lowercase : Tuple =solution.index(__magic_name__ ) if n == kn: continue lowercase : Union[str, Any] =copy.deepcopy(__magic_name__ ) lowercase : Optional[int] =kn lowercase : List[Any] =n lowercase : List[Any] =0 for k in _tmp[:-1]: lowercase : Optional[int] =_tmp[_tmp.index(__magic_name__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowercase : Optional[int] =distance + int(i[1] ) _tmp.append(__magic_name__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowercase : Union[str, Any] =len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _lowerCAmelCase ( __magic_name__ : Any , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Dict ) -> Union[str, Any]: lowercase : str =1 lowercase : List[Any] =first_solution lowercase : Any =[] lowercase : str =distance_of_first_solution lowercase : str =solution while count <= iters: lowercase : Union[str, Any] =find_neighborhood(__magic_name__ , __magic_name__ ) lowercase : Dict =0 lowercase : int =neighborhood[index_of_best_solution] lowercase : Optional[int] =len(__magic_name__ ) - 1 lowercase : List[Any] =False while not found: lowercase : List[Any] =0 while i < len(__magic_name__ ): if best_solution[i] != solution[i]: lowercase : List[str] =best_solution[i] lowercase : Dict =solution[i] break lowercase : Any =i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowercase : str =True lowercase : int =best_solution[:-1] lowercase : Any =neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowercase : Optional[int] =cost lowercase : str =solution else: lowercase : Optional[int] =index_of_best_solution + 1 lowercase : List[Any] =neighborhood[index_of_best_solution] if len(__magic_name__ ) >= size: tabu_list.pop(0 ) lowercase : Optional[int] =count + 1 return best_solution_ever, best_cost def _lowerCAmelCase ( __magic_name__ : str=None ) -> Tuple: lowercase : List[str] =generate_neighbours(args.File ) lowercase , lowercase : Optional[Any] =generate_first_solution( args.File , __magic_name__ ) lowercase , lowercase : int =tabu_search( __magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , ) print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
88
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowercase : Dict = logging.get_logger(__name__) def lowercase__ ( snake_case_ :str , snake_case_ :Any=False ): __UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :Any , snake_case_ :Dict=False ): for i in range(config.num_hidden_layers ): if base_model: __UpperCAmelCase = '''''' else: __UpperCAmelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCAmelCase = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) __UpperCAmelCase = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] __UpperCAmelCase = in_proj_bias[: config.hidden_size] __UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __UpperCAmelCase = in_proj_bias[-config.hidden_size :] def lowercase__ ( snake_case_ :List[str] ): __UpperCAmelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Optional[Any] , snake_case_ :Any , snake_case_ :int ): __UpperCAmelCase = dct.pop(snake_case_ ) __UpperCAmelCase = val def lowercase__ ( ): __UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowercase__ ( snake_case_ :List[str] , snake_case_ :Union[str, Any] , snake_case_ :Tuple=True ): __UpperCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __UpperCAmelCase = 8 # set labels if required if not base_model: __UpperCAmelCase = 1_000 __UpperCAmelCase = '''huggingface/label-files''' __UpperCAmelCase = '''imagenet-1k-id2label.json''' __UpperCAmelCase = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()} __UpperCAmelCase = idalabel __UpperCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __UpperCAmelCase = 384 __UpperCAmelCase = 1_536 __UpperCAmelCase = 12 __UpperCAmelCase = 6 # load original model from torch hub __UpperCAmelCase = torch.hub.load('''facebookresearch/dino:main''' , snake_case_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __UpperCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(snake_case_ ) __UpperCAmelCase = create_rename_keys(snake_case_ , base_model=snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) read_in_q_k_v(snake_case_ , snake_case_ , snake_case_ ) # load HuggingFace model if base_model: __UpperCAmelCase = ViTModel(snake_case_ , add_pooling_layer=snake_case_ ).eval() else: __UpperCAmelCase = ViTForImageClassification(snake_case_ ).eval() model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by ViTImageProcessor __UpperCAmelCase = ViTImageProcessor() __UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase = encoding['''pixel_values'''] __UpperCAmelCase = model(snake_case_ ) if base_model: __UpperCAmelCase = original_model(snake_case_ ) assert torch.allclose(snake_case_ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: __UpperCAmelCase = original_model(snake_case_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(snake_case_ , outputs.logits , atol=1E-3 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _lowercase : str = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
49
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
167
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class _UpperCAmelCase ( UpperCamelCase_ ): '''simple docstring''' def __get__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Tuple=None) -> int: """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute") _UpperCamelCase = '__cached_' + self.fget.__name__ _UpperCamelCase = getattr(__a , __a , __a) if cached is None: _UpperCamelCase = self.fget(__a) setattr(__a , __a , __a) return cached def lowerCAmelCase__ ( a__ ) ->Optional[int]: '''simple docstring''' _UpperCamelCase = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'invalid truth value {val!r}' ) def lowerCAmelCase__ ( a__ ) ->Union[str, Any]: '''simple docstring''' if is_torch_fx_proxy(a__ ): return True if is_torch_available(): import torch if isinstance(a__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(a__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(a__ , (jnp.ndarray, Tracer) ): return True return isinstance(a__ , np.ndarray ) def lowerCAmelCase__ ( a__ ) ->Dict: '''simple docstring''' return isinstance(a__ , np.ndarray ) def lowerCAmelCase__ ( a__ ) ->Any: '''simple docstring''' return _is_numpy(a__ ) def lowerCAmelCase__ ( a__ ) ->Tuple: '''simple docstring''' import torch return isinstance(a__ , torch.Tensor ) def lowerCAmelCase__ ( a__ ) ->Union[str, Any]: '''simple docstring''' return False if not is_torch_available() else _is_torch(a__ ) def lowerCAmelCase__ ( a__ ) ->str: '''simple docstring''' import torch return isinstance(a__ , torch.device ) def lowerCAmelCase__ ( a__ ) ->Optional[int]: '''simple docstring''' return False if not is_torch_available() else _is_torch_device(a__ ) def lowerCAmelCase__ ( a__ ) ->Any: '''simple docstring''' import torch if isinstance(a__ , a__ ): if hasattr(a__ , a__ ): _UpperCamelCase = getattr(a__ , a__ ) else: return False return isinstance(a__ , torch.dtype ) def lowerCAmelCase__ ( a__ ) ->List[str]: '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(a__ ) def lowerCAmelCase__ ( a__ ) ->Any: '''simple docstring''' import tensorflow as tf return isinstance(a__ , tf.Tensor ) def lowerCAmelCase__ ( a__ ) ->Optional[int]: '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(a__ ) def lowerCAmelCase__ ( a__ ) ->int: '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(a__ , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(a__ ) return type(a__ ) == tf.Tensor def lowerCAmelCase__ ( a__ ) ->Dict: '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(a__ ) def lowerCAmelCase__ ( a__ ) ->Any: '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(a__ , jnp.ndarray ) def lowerCAmelCase__ ( a__ ) ->Union[str, Any]: '''simple docstring''' return False if not is_flax_available() else _is_jax(a__ ) def lowerCAmelCase__ ( a__ ) ->Union[str, Any]: '''simple docstring''' if isinstance(a__ , (dict, UserDict) ): return {k: to_py_obj(a__ ) for k, v in obj.items()} elif isinstance(a__ , (list, tuple) ): return [to_py_obj(a__ ) for o in obj] elif is_tf_tensor(a__ ): return obj.numpy().tolist() elif is_torch_tensor(a__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(a__ ): return np.asarray(a__ ).tolist() elif isinstance(a__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowerCAmelCase__ ( a__ ) ->Any: '''simple docstring''' if isinstance(a__ , (dict, UserDict) ): return {k: to_numpy(a__ ) for k, v in obj.items()} elif isinstance(a__ , (list, tuple) ): return np.array(a__ ) elif is_tf_tensor(a__ ): return obj.numpy() elif is_torch_tensor(a__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(a__ ): return np.asarray(a__ ) else: return obj class _UpperCAmelCase ( UpperCamelCase_ ): '''simple docstring''' def __UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" _UpperCamelCase = fields(self) # Safety and consistency checks if not len(__a): raise ValueError(f'{self.__class__.__name__} has no fields.') if not all(field.default is None for field in class_fields[1:]): raise ValueError(f'{self.__class__.__name__} should not have more than one required field.') _UpperCamelCase = getattr(self , class_fields[0].name) _UpperCamelCase = all(getattr(self , field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(__a): if isinstance(__a , __a): _UpperCamelCase = first_field.items() _UpperCamelCase = True else: try: _UpperCamelCase = iter(__a) _UpperCamelCase = True except TypeError: _UpperCamelCase = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__a): if ( not isinstance(__a , (list, tuple)) or not len(__a) == 2 or not isinstance(element[0] , __a) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _UpperCamelCase = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'Cannot set key/value for {element}. It needs to be a tuple (key, value).') break setattr(self , element[0] , element[1]) if element[1] is not None: _UpperCamelCase = element[1] elif first_field is not None: _UpperCamelCase = first_field else: for field in class_fields: _UpperCamelCase = getattr(self , field.name) if v is not None: _UpperCamelCase = v def __delitem__( self : Union[str, Any] , *lowercase_ : Tuple , **lowercase_ : Union[str, Any]) -> Optional[Any]: """simple docstring""" raise Exception(f'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.') def __UpperCAmelCase ( self : Dict , *lowercase_ : Optional[int] , **lowercase_ : Union[str, Any]) -> Optional[Any]: """simple docstring""" raise Exception(f'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.') def __UpperCAmelCase ( self : Tuple , *lowercase_ : Optional[int] , **lowercase_ : List[Any]) -> List[str]: """simple docstring""" raise Exception(f'You cannot use ``pop`` on a {self.__class__.__name__} instance.') def __UpperCAmelCase ( self : Any , *lowercase_ : List[str] , **lowercase_ : List[Any]) -> Union[str, Any]: """simple docstring""" raise Exception(f'You cannot use ``update`` on a {self.__class__.__name__} instance.') def __getitem__( self : Optional[int] , lowercase_ : Union[str, Any]) -> Optional[Any]: """simple docstring""" if isinstance(__a , __a): _UpperCamelCase = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int]) -> Optional[Any]: """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__a , __a) super().__setattr__(__a , __a) def __setitem__( self : Dict , lowercase_ : str , lowercase_ : int) -> Dict: """simple docstring""" super().__setitem__(__a , __a) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__a , __a) def __UpperCAmelCase ( self : Optional[Any]) -> Tuple[Any]: """simple docstring""" return tuple(self[k] for k in self.keys()) class _UpperCAmelCase ( UpperCamelCase_, UpperCamelCase_ ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls : List[str] , lowercase_ : str) -> List[str]: """simple docstring""" raise ValueError( f'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys())}') class _UpperCAmelCase ( UpperCamelCase_ ): '''simple docstring''' __A = '''longest''' __A = '''max_length''' __A = '''do_not_pad''' class _UpperCAmelCase ( UpperCamelCase_ ): '''simple docstring''' __A = '''pt''' __A = '''tf''' __A = '''np''' __A = '''jax''' class _UpperCAmelCase : '''simple docstring''' def __init__( self : str , lowercase_ : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = context_managers _UpperCamelCase = ExitStack() def __enter__( self : str) -> Any: """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(__a) def __exit__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[Any]) -> int: """simple docstring""" self.stack.__exit__(*__a , **__a) def lowerCAmelCase__ ( a__ ) ->Tuple: '''simple docstring''' _UpperCamelCase = infer_framework(a__ ) if framework == "tf": _UpperCamelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCamelCase = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCamelCase = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowerCAmelCase__ ( a__ ) ->List[Any]: '''simple docstring''' _UpperCamelCase = model_class.__name__ _UpperCamelCase = infer_framework(a__ ) if framework == "tf": _UpperCamelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCamelCase = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCamelCase = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowerCAmelCase__ ( a__ , a__ = "" , a__ = "." ) ->Any: '''simple docstring''' def _flatten_dict(a__ , a__="" , a__="." ): for k, v in d.items(): _UpperCamelCase = str(a__ ) + delimiter + str(a__ ) if parent_key else k if v and isinstance(a__ , a__ ): yield from flatten_dict(a__ , a__ , delimiter=a__ ).items() else: yield key, v return dict(_flatten_dict(a__ , a__ , a__ ) ) @contextmanager def lowerCAmelCase__ ( a__ , a__ = False ) ->Union[str, Any]: '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowerCAmelCase__ ( a__ , a__=None ) ->List[Any]: '''simple docstring''' if is_numpy_array(a__ ): return np.transpose(a__ , axes=a__ ) elif is_torch_tensor(a__ ): return array.T if axes is None else array.permute(*a__ ) elif is_tf_tensor(a__ ): import tensorflow as tf return tf.transpose(a__ , perm=a__ ) elif is_jax_tensor(a__ ): return jnp.transpose(a__ , axes=a__ ) else: raise ValueError(f'Type not supported for transpose: {type(a__ )}.' ) def lowerCAmelCase__ ( a__ , a__ ) ->List[str]: '''simple docstring''' if is_numpy_array(a__ ): return np.reshape(a__ , a__ ) elif is_torch_tensor(a__ ): return array.reshape(*a__ ) elif is_tf_tensor(a__ ): import tensorflow as tf return tf.reshape(a__ , a__ ) elif is_jax_tensor(a__ ): return jnp.reshape(a__ , a__ ) else: raise ValueError(f'Type not supported for reshape: {type(a__ )}.' ) def lowerCAmelCase__ ( a__ , a__=None ) ->Union[str, Any]: '''simple docstring''' if is_numpy_array(a__ ): return np.squeeze(a__ , axis=a__ ) elif is_torch_tensor(a__ ): return array.squeeze() if axis is None else array.squeeze(dim=a__ ) elif is_tf_tensor(a__ ): import tensorflow as tf return tf.squeeze(a__ , axis=a__ ) elif is_jax_tensor(a__ ): return jnp.squeeze(a__ , axis=a__ ) else: raise ValueError(f'Type not supported for squeeze: {type(a__ )}.' ) def lowerCAmelCase__ ( a__ , a__ ) ->int: '''simple docstring''' if is_numpy_array(a__ ): return np.expand_dims(a__ , a__ ) elif is_torch_tensor(a__ ): return array.unsqueeze(dim=a__ ) elif is_tf_tensor(a__ ): import tensorflow as tf return tf.expand_dims(a__ , axis=a__ ) elif is_jax_tensor(a__ ): return jnp.expand_dims(a__ , axis=a__ ) else: raise ValueError(f'Type not supported for expand_dims: {type(a__ )}.' ) def lowerCAmelCase__ ( a__ ) ->Optional[int]: '''simple docstring''' if is_numpy_array(a__ ): return np.size(a__ ) elif is_torch_tensor(a__ ): return array.numel() elif is_tf_tensor(a__ ): import tensorflow as tf return tf.size(a__ ) elif is_jax_tensor(a__ ): return array.size else: raise ValueError(f'Type not supported for expand_dims: {type(a__ )}.' ) def lowerCAmelCase__ ( a__ , a__ ) ->Optional[Any]: '''simple docstring''' for key, value in auto_map.items(): if isinstance(a__ , (tuple, list) ): _UpperCamelCase = [f'{repo_id}--{v}' if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: _UpperCamelCase = f'{repo_id}--{value}' return auto_map def lowerCAmelCase__ ( a__ ) ->Tuple: '''simple docstring''' for base_class in inspect.getmro(a__ ): _UpperCamelCase = base_class.__module__ _UpperCamelCase = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'Could not infer framework from class {model_class}.' )
717
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , lowercase_ : str = None , lowercase_ : uuid.UUID = None , lowercase_ : List[Any]=None , lowercase_ : int=None) -> Dict: """simple docstring""" if not conversation_id: _UpperCamelCase = uuid.uuida() if past_user_inputs is None: _UpperCamelCase = [] if generated_responses is None: _UpperCamelCase = [] _UpperCamelCase = conversation_id _UpperCamelCase = past_user_inputs _UpperCamelCase = generated_responses _UpperCamelCase = text def __eq__( self : Optional[Any] , lowercase_ : Optional[Any]) -> List[Any]: """simple docstring""" if not isinstance(lowercase_ , lowercase_): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __UpperCAmelCase ( self : List[Any] , lowercase_ : str , lowercase_ : bool = False) -> Any: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' f'with: "{text}".') _UpperCamelCase = text else: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input') else: _UpperCamelCase = text def __UpperCAmelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input) _UpperCamelCase = None def __UpperCAmelCase ( self : Dict , lowercase_ : str) -> Optional[Any]: """simple docstring""" self.generated_responses.append(lowercase_) def __UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Union[str, Any]) -> int: """simple docstring""" _UpperCamelCase = f'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): _UpperCamelCase = "user" if is_user else "bot" output += f'{name} >> {text} \n' return output @add_end_docstrings( lowerCAmelCase, R''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''', ) class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : str) -> List[str]: """simple docstring""" super().__init__(*lowercase_ , **lowercase_) if self.tokenizer.pad_token_id is None: _UpperCamelCase = self.tokenizer.eos_token def __UpperCAmelCase ( self : Union[str, Any] , lowercase_ : Union[str, Any]=None , lowercase_ : int=None , lowercase_ : str=None , **lowercase_ : str) -> Tuple: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = {} _UpperCamelCase = {} if min_length_for_response is not None: _UpperCamelCase = min_length_for_response if minimum_tokens is not None: _UpperCamelCase = minimum_tokens if "max_length" in generate_kwargs: _UpperCamelCase = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _UpperCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowercase_) return preprocess_params, forward_params, postprocess_params def __call__( self : Any , lowercase_ : Union[Conversation, List[Conversation]] , lowercase_ : str=0 , **lowercase_ : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = super().__call__(lowercase_ , num_workers=lowercase_ , **lowercase_) if isinstance(lowercase_ , lowercase_) and len(lowercase_) == 1: return outputs[0] return outputs def __UpperCAmelCase ( self : List[Any] , lowercase_ : Conversation , lowercase_ : Any=32) -> Dict[str, Any]: """simple docstring""" if not isinstance(lowercase_ , lowercase_): raise ValueError("ConversationalPipeline, expects Conversation as inputs") if conversation.new_user_input is None: raise ValueError( f'Conversation with UUID {type(conversation.uuid)} does not contain new user input to process. ' "Add user inputs with the conversation's `add_user_input` method") if hasattr(self.tokenizer , "_build_conversation_input_ids"): _UpperCamelCase = self.tokenizer._build_conversation_input_ids(lowercase_) else: # If the tokenizer cannot handle conversations, we default to only the old version _UpperCamelCase = self._legacy_parse_and_tokenize(lowercase_) if self.framework == "pt": _UpperCamelCase = torch.LongTensor([input_ids]) elif self.framework == "tf": _UpperCamelCase = tf.constant([input_ids]) return {"input_ids": input_ids, "conversation": conversation} def __UpperCAmelCase ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : Optional[int]=10 , **lowercase_ : Dict) -> List[str]: """simple docstring""" _UpperCamelCase = generate_kwargs.get("max_length" , self.model.config.max_length) _UpperCamelCase = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})') _UpperCamelCase = max_length - minimum_tokens _UpperCamelCase = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: _UpperCamelCase = model_inputs["attention_mask"][:, -trim:] _UpperCamelCase = model_inputs.pop("conversation") _UpperCamelCase = max_length _UpperCamelCase = self.model.generate(**lowercase_ , **lowercase_) if self.model.config.is_encoder_decoder: _UpperCamelCase = 1 else: _UpperCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : int=True) -> List[Any]: """simple docstring""" _UpperCamelCase = model_outputs["output_ids"] _UpperCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ , ) _UpperCamelCase = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(lowercase_) return conversation def __UpperCAmelCase ( self : Any , lowercase_ : Conversation) -> Dict: """simple docstring""" _UpperCamelCase = self.tokenizer.eos_token_id _UpperCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) + [eos_token_id]) else: input_ids.extend(self.tokenizer.encode(lowercase_ , add_special_tokens=lowercase_)) if len(lowercase_) > self.tokenizer.model_max_length: _UpperCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
82
0
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin a__ : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') a__ : int = get_tests_dir('fixtures/test_sentencepiece_bpe.model') a__ : Union[str, Any] = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =CamembertTokenizer _lowerCamelCase =CamembertTokenizerFast _lowerCamelCase =True _lowerCamelCase =True def __snake_case ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = CamembertTokenizer(a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = '''<pad>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __snake_case ( self : int ): UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(a__ ) , 1004 ) def __snake_case ( self : List[str] ): self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def __snake_case ( self : Dict ): UpperCAmelCase = CamembertTokenizer(a__ ) tokenizer.save_pretrained(self.tmpdirname ) UpperCAmelCase = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.encode(a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) UpperCAmelCase = tokenizer.convert_ids_to_tokens(a__ ) UpperCAmelCase = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) def __snake_case ( self : List[Any] ): if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.tokenize(a__ ) UpperCAmelCase = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(a__ ) UpperCAmelCase = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) @slow def __snake_case ( self : Optional[Any] ): # fmt: off UpperCAmelCase = {'''input_ids''': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. UpperCAmelCase = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=a__ , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=a__ , )
51
from __future__ import annotations from random import choice def _lowerCamelCase ( snake_case ): return choice(snake_case ) def _lowerCamelCase ( snake_case , snake_case ): _lowerCAmelCase = random_pivot(snake_case ) # partition based on pivot # linear time _lowerCAmelCase = [e for e in lst if e < pivot] _lowerCAmelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(snake_case ) == k - 1: return pivot # pivot is in elements bigger than k elif len(snake_case ) < k - 1: return kth_number(snake_case , k - len(snake_case ) - 1 ) # pivot is in elements smaller than k else: return kth_number(snake_case , snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
192
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class A_ : """simple docstring""" def __init__( self : Union[str, Any] ,__A : Tuple ,__A : Dict=13 ,__A : Union[str, Any]=7 ,__A : Optional[Any]=True ,__A : Dict=True ,__A : List[str]=True ,__A : int=True ,__A : str=99 ,__A : Tuple=32 ,__A : List[Any]=2 ,__A : Dict=4 ,__A : List[str]=37 ,__A : Dict="gelu" ,__A : Optional[Any]=0.1 ,__A : Dict=0.1 ,__A : Dict=512 ,__A : Any=16 ,__A : Tuple=2 ,__A : List[Any]=0.02 ,__A : Any=3 ,__A : Tuple=4 ,__A : Dict=None ,__A : List[Any]=0 ,) -> Optional[Any]: _lowercase = parent _lowercase = batch_size _lowercase = seq_length _lowercase = is_training _lowercase = use_input_mask _lowercase = use_token_type_ids _lowercase = use_labels _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_act _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = type_vocab_size _lowercase = type_sequence_label_size _lowercase = initializer_range _lowercase = num_labels _lowercase = num_choices _lowercase = scope _lowercase = projection_dim def __UpperCAmelCase ( self : List[Any] ) -> List[str]: _lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowercase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _lowercase = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase = None if self.use_token_type_ids: _lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowercase = None _lowercase = None _lowercase = None if self.use_labels: _lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowercase = ids_tensor([self.batch_size] ,self.num_choices ) _lowercase = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__A ,initializer_range=self.initializer_range ,) _lowercase = DPRConfig(projection_dim=self.projection_dim ,**config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : List[Any] ,__A : Dict ,__A : str ,__A : Any ,__A : Dict ,__A : Tuple ,__A : Tuple ,__A : int ) -> List[str]: _lowercase = TFDPRContextEncoder(config=__A ) _lowercase = model(__A ,attention_mask=__A ,token_type_ids=__A ) _lowercase = model(__A ,token_type_ids=__A ) _lowercase = model(__A ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def __UpperCAmelCase ( self : List[Any] ,__A : Optional[Any] ,__A : Tuple ,__A : Optional[Any] ,__A : Union[str, Any] ,__A : Tuple ,__A : Tuple ,__A : Any ) -> str: _lowercase = TFDPRQuestionEncoder(config=__A ) _lowercase = model(__A ,attention_mask=__A ,token_type_ids=__A ) _lowercase = model(__A ,token_type_ids=__A ) _lowercase = model(__A ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def __UpperCAmelCase ( self : int ,__A : List[str] ,__A : Optional[int] ,__A : List[str] ,__A : str ,__A : str ,__A : int ,__A : int ) -> Optional[Any]: _lowercase = TFDPRReader(config=__A ) _lowercase = model(__A ,attention_mask=__A ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape ,(self.batch_size,) ) def __UpperCAmelCase ( self : str ) -> str: _lowercase = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) = config_and_inputs _lowercase = {'input_ids': input_ids} return config, inputs_dict @require_tf class A_ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Optional[int] = False def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: _lowercase = TFDPRModelTester(self ) _lowercase = ConfigTester(self ,config_class=__A ,hidden_size=37 ) def __UpperCAmelCase ( self : Any ) -> List[str]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Dict ) -> Optional[int]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__A ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__A ) def __UpperCAmelCase ( self : Dict ) -> List[Any]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__A ) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> str: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase = TFDPRContextEncoder.from_pretrained(__A ) self.assertIsNotNone(__A ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase = TFDPRContextEncoder.from_pretrained(__A ) self.assertIsNotNone(__A ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase = TFDPRQuestionEncoder.from_pretrained(__A ) self.assertIsNotNone(__A ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase = TFDPRReader.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_tf class A_ ( unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : List[Any] ) -> int: _lowercase = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) _lowercase = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _lowercase = model(__A )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _lowercase = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
535
from ....utils import logging snake_case = logging.get_logger(__name__) class A_ ( UpperCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] ,__A : int ,__A : List[Any]=None ,__A : List[str]=2048 ) -> List[Any]: _lowercase = config.__dict__ _lowercase = modal_hidden_size if num_labels: _lowercase = num_labels
535
1
class lowercase__ : def __init__( self , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = size lowerCAmelCase__ = [0] * size lowerCAmelCase__ = [0] * size @staticmethod def UpperCAmelCase ( __UpperCAmelCase )-> Optional[int]: '''simple docstring''' return index | (index + 1) @staticmethod def UpperCAmelCase ( __UpperCAmelCase )-> Dict: '''simple docstring''' return (index & (index + 1)) - 1 def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = value while index < self.size: lowerCAmelCase__ = self.get_prev(snake_case__ ) + 1 if current_left_border == index: lowerCAmelCase__ = value else: lowerCAmelCase__ = max(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase__ = self.get_next(snake_case__ ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Tuple: '''simple docstring''' right -= 1 # Because of right is exclusive lowerCAmelCase__ = 0 while left <= right: lowerCAmelCase__ = self.get_prev(snake_case__ ) if left <= current_left: lowerCAmelCase__ = max(snake_case__ , self.tree[right] ) lowerCAmelCase__ = current_left else: lowerCAmelCase__ = max(snake_case__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
339
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class a_ : UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : int = {} UpperCamelCase_ : Tuple = "gelu" def __init__( self : Optional[int] , snake_case__ : Tuple , snake_case__ : List[str]=14 , snake_case__ : Union[str, Any]=7 , snake_case__ : Optional[Any]=True , snake_case__ : Optional[int]=True , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=99 , snake_case__ : Optional[Any]=32 , snake_case__ : List[Any]=2 , snake_case__ : Optional[Any]=4 , snake_case__ : List[str]=37 , snake_case__ : Optional[Any]="gelu" , snake_case__ : str=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[Any]=512 , snake_case__ : List[Any]=0.02 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = ffn_dim lowerCAmelCase__ = activation_function lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = initializer_range lowerCAmelCase__ = None lowerCAmelCase__ = 0 lowerCAmelCase__ = 2 lowerCAmelCase__ = 1 def _SCREAMING_SNAKE_CASE ( self : List[str] ): return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = self.get_config() lowerCAmelCase__ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _SCREAMING_SNAKE_CASE ( self : Dict ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=snake_case__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=snake_case__ , ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Union[str, Any] = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : str = False def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = TFXGLMModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , n_embd=37 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): self.config_tester.run_common_tests() @slow def _SCREAMING_SNAKE_CASE ( self : int ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFXGLMModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def _SCREAMING_SNAKE_CASE ( self : str ): super().test_resize_token_embeddings() @require_tf class a_ ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Optional[int]=True ): lowerCAmelCase__ = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) lowerCAmelCase__ = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowerCAmelCase__ = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on lowerCAmelCase__ = model.generate(snake_case__ , do_sample=snake_case__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) lowerCAmelCase__ = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) lowerCAmelCase__ = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) lowerCAmelCase__ = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): lowerCAmelCase__ = model.generate(snake_case__ , do_sample=snake_case__ , seed=[7, 0] ) lowerCAmelCase__ = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case__ ) lowerCAmelCase__ = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(snake_case__ , snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) lowerCAmelCase__ = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) lowerCAmelCase__ = """left""" # use different length sentences to test batching lowerCAmelCase__ = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""tf""" , padding=snake_case__ ) lowerCAmelCase__ = inputs["""input_ids"""] lowerCAmelCase__ = model.generate(input_ids=snake_case__ , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) lowerCAmelCase__ = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowerCAmelCase__ = model.generate(input_ids=snake_case__ , max_new_tokens=12 ) lowerCAmelCase__ = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowerCAmelCase__ = model.generate(input_ids=snake_case__ , max_new_tokens=12 ) lowerCAmelCase__ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) lowerCAmelCase__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case__ ) lowerCAmelCase__ = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case__ ) lowerCAmelCase__ = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , [non_padded_sentence, padded_sentence] )
644
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ = logging.get_logger(__name__) A_ = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class __lowercase ( _A , _A ): lowercase = 'bit' lowercase = ['preactivation', 'bottleneck'] lowercase = ['SAME', 'VALID'] def __init__( self : Optional[int] , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : List[Any]=64 , __lowerCamelCase : List[Any]=[2_56, 5_12, 10_24, 20_48] , __lowerCamelCase : Union[str, Any]=[3, 4, 6, 3] , __lowerCamelCase : List[Any]="preactivation" , __lowerCamelCase : Union[str, Any]="relu" , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Tuple=32 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Any=False , __lowerCamelCase : str=32 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : str , ) -> Optional[Any]: '''simple docstring''' super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: lowercase = global_padding.upper() else: raise ValueError(f'Padding strategy {global_padding} not supported' ) lowercase = num_channels lowercase = embedding_size lowercase = hidden_sizes lowercase = depths lowercase = layer_type lowercase = hidden_act lowercase = global_padding lowercase = num_groups lowercase = drop_path_rate lowercase = embedding_dynamic_padding lowercase = output_stride lowercase = width_factor lowercase = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(__lowerCamelCase ) + 1 )] lowercase ,lowercase = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
721
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __lowercase ( _A , _A ): @register_to_config def __init__( self : List[Any] , __lowerCamelCase : int = 1_28 , __lowerCamelCase : int = 2_56 , __lowerCamelCase : float = 2000.0 , __lowerCamelCase : int = 7_68 , __lowerCamelCase : int = 12 , __lowerCamelCase : int = 12 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 20_48 , __lowerCamelCase : float = 0.1 , ) -> Optional[int]: '''simple docstring''' super().__init__() lowercase = nn.Sequential( nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , ) lowercase = nn.Embedding(__lowerCamelCase , __lowerCamelCase ) lowercase = False lowercase = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) lowercase = nn.Dropout(p=__lowerCamelCase ) lowercase = nn.ModuleList() for lyr_num in range(__lowerCamelCase ): # FiLM conditional T5 decoder lowercase = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) self.decoders.append(__lowerCamelCase ) lowercase = TaLayerNorm(__lowerCamelCase ) lowercase = nn.Dropout(p=__lowerCamelCase ) lowercase = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) def __a ( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> str: '''simple docstring''' lowercase = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __a ( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Any ) -> List[Any]: '''simple docstring''' lowercase ,lowercase ,lowercase = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowercase = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowercase = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowercase = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowercase = torch.broadcast_to( torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowercase = self.position_encoding(__lowerCamelCase ) lowercase = self.continuous_inputs_projection(__lowerCamelCase ) inputs += position_encodings lowercase = self.dropout(__lowerCamelCase ) # decoder: No padding present. lowercase = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowercase = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowercase = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowercase = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowercase = lyr( __lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0] lowercase = self.decoder_norm(__lowerCamelCase ) lowercase = self.post_dropout(__lowerCamelCase ) lowercase = self.spec_out(__lowerCamelCase ) return spec_out class __lowercase ( nn.Module ): def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : List[str]=1E-6 ) -> List[str]: '''simple docstring''' super().__init__() lowercase = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) ) def __a ( self : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : int=None , ) -> Any: '''simple docstring''' lowercase = self.layer[0]( __lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , ) if encoder_hidden_states is not None: lowercase = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) lowercase = self.layer[1]( __lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , ) # Apply Film Conditional Feed Forward layer lowercase = self.layer[-1](__lowerCamelCase , __lowerCamelCase ) return (hidden_states,) class __lowercase ( nn.Module ): def __init__( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Any ) -> Dict: '''simple docstring''' super().__init__() lowercase = TaLayerNorm(__lowerCamelCase ) lowercase = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) lowercase = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) lowercase = nn.Dropout(__lowerCamelCase ) def __a ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[str]=None , ) -> Tuple: '''simple docstring''' lowercase = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: lowercase = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase ) # Self-attention block lowercase = self.attention(__lowerCamelCase ) lowercase = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class __lowercase ( nn.Module ): def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ) -> Any: '''simple docstring''' super().__init__() lowercase = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) lowercase = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) lowercase = nn.Dropout(__lowerCamelCase ) def __a ( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : List[str]=None , ) -> List[Any]: '''simple docstring''' lowercase = self.layer_norm(__lowerCamelCase ) lowercase = self.attention( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) lowercase = hidden_states + self.dropout(__lowerCamelCase ) return layer_output class __lowercase ( nn.Module ): def __init__( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple ) -> List[str]: '''simple docstring''' super().__init__() lowercase = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) lowercase = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) lowercase = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) lowercase = nn.Dropout(__lowerCamelCase ) def __a ( self : str , __lowerCamelCase : Dict , __lowerCamelCase : str=None ) -> Optional[int]: '''simple docstring''' lowercase = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: lowercase = self.film(__lowerCamelCase , __lowerCamelCase ) lowercase = self.DenseReluDense(__lowerCamelCase ) lowercase = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class __lowercase ( nn.Module ): def __init__( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' super().__init__() lowercase = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) lowercase = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) lowercase = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) lowercase = nn.Dropout(__lowerCamelCase ) lowercase = NewGELUActivation() def __a ( self : Any , __lowerCamelCase : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase = self.act(self.wi_a(__lowerCamelCase ) ) lowercase = self.wi_a(__lowerCamelCase ) lowercase = hidden_gelu * hidden_linear lowercase = self.dropout(__lowerCamelCase ) lowercase = self.wo(__lowerCamelCase ) return hidden_states class __lowercase ( nn.Module ): def __init__( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=1E-6 ) -> Optional[Any]: '''simple docstring''' super().__init__() lowercase = nn.Parameter(torch.ones(__lowerCamelCase ) ) lowercase = eps def __a ( self : Any , __lowerCamelCase : str ) -> Optional[Any]: '''simple docstring''' lowercase = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase ) lowercase = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowercase = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __lowercase ( nn.Module ): def __a ( self : Dict , __lowerCamelCase : torch.Tensor ) -> torch.Tensor: '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(__lowerCamelCase , 3.0 )) )) class __lowercase ( nn.Module ): def __init__( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ) -> Optional[int]: '''simple docstring''' super().__init__() lowercase = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase ) def __a ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] ) -> int: '''simple docstring''' lowercase = self.scale_bias(__lowerCamelCase ) lowercase ,lowercase = torch.chunk(__lowerCamelCase , 2 , -1 ) lowercase = x * (1 + scale) + shift return x
479
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="Speech2TextFeatureExtractor" UpperCAmelCase ="Speech2TextTokenizer" def __init__( self , snake_case , snake_case) -> Tuple: '''simple docstring''' super().__init__(snake_case , snake_case) _UpperCAmelCase : Tuple =self.feature_extractor _UpperCAmelCase : Dict =False def __call__( self , *snake_case , **snake_case) -> Union[str, Any]: '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*snake_case , **snake_case) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.') _UpperCAmelCase : Any =kwargs.pop('raw_speech') else: _UpperCAmelCase : List[str] =kwargs.pop('audio' , snake_case) _UpperCAmelCase : List[Any] =kwargs.pop('sampling_rate' , snake_case) _UpperCAmelCase : Any =kwargs.pop('text' , snake_case) if len(snake_case) > 0: _UpperCAmelCase : Dict =args[0] _UpperCAmelCase : List[str] =args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if audio is not None: _UpperCAmelCase : List[str] =self.feature_extractor(snake_case , *snake_case , sampling_rate=snake_case , **snake_case) if text is not None: _UpperCAmelCase : List[str] =self.tokenizer(snake_case , **snake_case) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase : Any =encodings['input_ids'] return inputs def lowerCAmelCase ( self , *snake_case , **snake_case) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*snake_case , **snake_case) def lowerCAmelCase ( self , *snake_case , **snake_case) -> str: '''simple docstring''' return self.tokenizer.decode(*snake_case , **snake_case) @contextmanager def lowerCAmelCase ( self) -> Any: '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.') _UpperCAmelCase : Tuple =True _UpperCAmelCase : Optional[Any] =self.tokenizer yield _UpperCAmelCase : List[Any] =self.feature_extractor _UpperCAmelCase : Any =False
446
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __magic_name__ : def __init__( self , snake_case , snake_case=2 , snake_case=True , snake_case=False , snake_case=1_0 , snake_case=3 , snake_case=3_2 * 8 , snake_case=3_2 * 8 , snake_case=4 , snake_case=6_4 , ) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] =parent _UpperCAmelCase : Optional[int] =batch_size _UpperCAmelCase : List[str] =is_training _UpperCAmelCase : Union[str, Any] =use_auxiliary_loss _UpperCAmelCase : Dict =num_queries _UpperCAmelCase : Tuple =num_channels _UpperCAmelCase : Optional[Any] =min_size _UpperCAmelCase : Any =max_size _UpperCAmelCase : Optional[int] =num_labels _UpperCAmelCase : Optional[int] =hidden_dim _UpperCAmelCase : Dict =hidden_dim def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : List[str] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( snake_case) _UpperCAmelCase : List[str] =torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case) _UpperCAmelCase : int =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case) > 0.5 ).float() _UpperCAmelCase : Union[str, Any] =(torch.rand((self.batch_size, self.num_labels) , device=snake_case) > 0.5).long() _UpperCAmelCase : Tuple =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =MaskaFormerConfig( hidden_size=self.hidden_dim , ) _UpperCAmelCase : int =self.num_queries _UpperCAmelCase : int =self.num_labels _UpperCAmelCase : List[Any] =[1, 1, 1, 1] _UpperCAmelCase : int =self.num_channels _UpperCAmelCase : List[Any] =6_4 _UpperCAmelCase : Optional[Any] =1_2_8 _UpperCAmelCase : List[Any] =self.hidden_dim _UpperCAmelCase : Dict =self.hidden_dim _UpperCAmelCase : int =self.hidden_dim return config def lowerCAmelCase ( self) -> Any: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] =self.prepare_config_and_inputs() _UpperCAmelCase : Union[str, Any] ={'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowerCAmelCase ( self , snake_case , snake_case) -> str: '''simple docstring''' _UpperCAmelCase : int =output.encoder_hidden_states _UpperCAmelCase : Dict =output.pixel_decoder_hidden_states _UpperCAmelCase : List[Any] =output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case) , len(config.backbone_config.depths)) self.parent.assertTrue(len(snake_case) , len(config.backbone_config.depths)) self.parent.assertTrue(len(snake_case) , config.decoder_layers) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case=False) -> Any: '''simple docstring''' with torch.no_grad(): _UpperCAmelCase : Tuple =MaskaFormerModel(config=snake_case) model.to(snake_case) model.eval() _UpperCAmelCase : List[Any] =model(pixel_values=snake_case , pixel_mask=snake_case) _UpperCAmelCase : Union[str, Any] =model(snake_case , output_hidden_states=snake_case) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(snake_case , snake_case) def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case) -> Tuple: '''simple docstring''' _UpperCAmelCase : Dict =MaskaFormerForUniversalSegmentation(config=snake_case) model.to(snake_case) model.eval() def comm_check_on_output(snake_case): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): _UpperCAmelCase : Optional[Any] =model(pixel_values=snake_case , pixel_mask=snake_case) _UpperCAmelCase : Optional[Any] =model(snake_case) comm_check_on_output(snake_case) _UpperCAmelCase : str =model( pixel_values=snake_case , pixel_mask=snake_case , mask_labels=snake_case , class_labels=snake_case) comm_check_on_output(snake_case) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class __magic_name__ ( lowerCAmelCase ,lowerCAmelCase ,unittest.TestCase ): UpperCAmelCase =(MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCAmelCase ={"feature-extraction": MaskaFormerModel} if is_torch_available() else {} UpperCAmelCase =False UpperCAmelCase =False UpperCAmelCase =False UpperCAmelCase =False def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] =MaskaFormerModelTester(self) _UpperCAmelCase : Dict =ConfigTester(self , config_class=snake_case , has_text_modality=snake_case) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case , **snake_case , output_hidden_states=snake_case) def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*snake_case) @unittest.skip(reason='Mask2Former does not use inputs_embeds') def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method') def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model') def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings') def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def lowerCAmelCase ( self) -> str: '''simple docstring''' pass def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] =model_class(snake_case) _UpperCAmelCase : Optional[int] =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : str =[*signature.parameters.keys()] _UpperCAmelCase : Tuple =['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case) @slow def lowerCAmelCase ( self) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _UpperCAmelCase : Dict =MaskaFormerModel.from_pretrained(snake_case) self.assertIsNotNone(snake_case) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Any =(self.model_tester.min_size,) * 2 _UpperCAmelCase : Optional[Any] ={ 'pixel_values': torch.randn((2, 3, *size) , device=snake_case), 'mask_labels': torch.randn((2, 1_0, *size) , device=snake_case), 'class_labels': torch.zeros(2 , 1_0 , device=snake_case).long(), } _UpperCAmelCase : List[str] =self.model_tester.get_config() _UpperCAmelCase : Tuple =MaskaFormerForUniversalSegmentation(snake_case).to(snake_case) _UpperCAmelCase : Any =model(**snake_case) self.assertTrue(outputs.loss is not None) def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case , **snake_case , output_hidden_states=snake_case) def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Union[str, Any] =model_class(snake_case).to(snake_case) _UpperCAmelCase : Dict =model(**snake_case , output_attentions=snake_case) self.assertTrue(outputs.attentions is not None) def lowerCAmelCase ( self) -> Any: '''simple docstring''' if not self.model_tester.is_training: return _UpperCAmelCase : List[str] =self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict =self.model_tester.prepare_config_and_inputs() _UpperCAmelCase : List[str] =model_class(snake_case) model.to(snake_case) model.train() _UpperCAmelCase : Tuple =model(snake_case , mask_labels=snake_case , class_labels=snake_case).loss loss.backward() def lowerCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCAmelCase : Tuple =self.all_model_classes[1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str =self.model_tester.prepare_config_and_inputs() _UpperCAmelCase : Tuple =True _UpperCAmelCase : str =True _UpperCAmelCase : Union[str, Any] =model_class(snake_case).to(snake_case) model.train() _UpperCAmelCase : Union[str, Any] =model(snake_case , mask_labels=snake_case , class_labels=snake_case) _UpperCAmelCase : Any =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _UpperCAmelCase : Any =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _UpperCAmelCase : int =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _UpperCAmelCase : List[str] =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) lowercase =1e-4 def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __magic_name__ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self) -> Dict: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : Tuple =MaskaFormerModel.from_pretrained(self.model_checkpoints).to(snake_case) _UpperCAmelCase : List[str] =self.default_image_processor _UpperCAmelCase : int =prepare_img() _UpperCAmelCase : Any =image_processor(snake_case , return_tensors='pt').to(snake_case) _UpperCAmelCase : Dict =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(snake_case , (1, 3, 3_8_4, 3_8_4)) with torch.no_grad(): _UpperCAmelCase : int =model(**snake_case) _UpperCAmelCase : List[Any] =torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]]).to(snake_case) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case , atol=snake_case)) _UpperCAmelCase : Dict =torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]]).to(snake_case) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case , atol=snake_case)) _UpperCAmelCase : Optional[int] =torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]]).to(snake_case) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case , atol=snake_case)) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(snake_case).eval() _UpperCAmelCase : str =self.default_image_processor _UpperCAmelCase : Any =prepare_img() _UpperCAmelCase : Dict =image_processor(snake_case , return_tensors='pt').to(snake_case) _UpperCAmelCase : List[Any] =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(snake_case , (1, 3, 3_8_4, 3_8_4)) with torch.no_grad(): _UpperCAmelCase : Dict =model(**snake_case) # masks_queries_logits _UpperCAmelCase : Union[str, Any] =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4)) _UpperCAmelCase : str =[ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] _UpperCAmelCase : Union[str, Any] =torch.tensor(snake_case).to(snake_case) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case , atol=snake_case)) # class_queries_logits _UpperCAmelCase : Any =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1)) _UpperCAmelCase : Optional[Any] =torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ]).to(snake_case) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case , atol=snake_case)) def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(snake_case).eval() _UpperCAmelCase : Optional[Any] =self.default_image_processor _UpperCAmelCase : List[Any] =image_processor( [np.zeros((3, 8_0_0, 1_3_3_3)), np.zeros((3, 8_0_0, 1_3_3_3))] , segmentation_maps=[np.zeros((3_8_4, 3_8_4)).astype(np.floataa), np.zeros((3_8_4, 3_8_4)).astype(np.floataa)] , return_tensors='pt' , ) _UpperCAmelCase : int =inputs['pixel_values'].to(snake_case) _UpperCAmelCase : Union[str, Any] =[el.to(snake_case) for el in inputs['mask_labels']] _UpperCAmelCase : Tuple =[el.to(snake_case) for el in inputs['class_labels']] with torch.no_grad(): _UpperCAmelCase : List[str] =model(**snake_case) self.assertTrue(outputs.loss is not None)
446
1
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _lowerCAmelCase = """bert-base-cased""" _lowerCAmelCase = """google/pegasus-xsum""" _lowerCAmelCase = [""" Sam ate lunch today.""", """Sams lunch ingredients."""] _lowerCAmelCase = ["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] _lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" _lowerCAmelCase = """sshleifer/bart-tiny-random""" _lowerCAmelCase = """sshleifer/tiny-mbart""" _lowerCAmelCase = """sshleifer/tiny-marian-en-de""" def UpperCamelCase ( _A , _A ) -> Tuple: lowercase : Dict = """\n""".join(_lowerCamelCase ) Path(_lowerCamelCase ).open("""w""" ).writelines(_lowerCamelCase ) def UpperCamelCase ( _A ) -> Optional[Any]: for split in ["train", "val", "test"]: _dump_articles(os.path.join(_lowerCamelCase , F"""{split}.source""" ) , _lowerCamelCase ) _dump_articles(os.path.join(_lowerCamelCase , F"""{split}.target""" ) , _lowerCamelCase ) return tmp_dir class UpperCamelCase (__snake_case ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __snake_case ( self :Dict , __magic_name__ :int ) ->Dict: lowercase : Any = AutoTokenizer.from_pretrained(UpperCamelCase__ ) lowercase : List[str] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowercase : str = max(len(tokenizer.encode(UpperCamelCase__ ) ) for a in ARTICLES ) lowercase : str = max(len(tokenizer.encode(UpperCamelCase__ ) ) for a in SUMMARIES ) lowercase : Dict = 4 lowercase : Optional[Any] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowercase , lowercase : Any = """ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error. lowercase : List[str] = SeqaSeqDataset( UpperCamelCase__ , data_dir=UpperCamelCase__ , type_path="""train""" , max_source_length=UpperCamelCase__ , max_target_length=UpperCamelCase__ , src_lang=UpperCamelCase__ , tgt_lang=UpperCamelCase__ , ) lowercase : str = DataLoader(UpperCamelCase__ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowercase : Any = shift_tokens_right(batch["""labels"""] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __snake_case ( self :Optional[Any] , __magic_name__ :int ) ->List[Any]: lowercase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase__ ) lowercase : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowercase : Any = max(len(tokenizer.encode(UpperCamelCase__ ) ) for a in ARTICLES ) lowercase : List[str] = max(len(tokenizer.encode(UpperCamelCase__ ) ) for a in SUMMARIES ) lowercase : int = 4 lowercase : List[str] = LegacySeqaSeqDataset( UpperCamelCase__ , data_dir=UpperCamelCase__ , type_path="""train""" , max_source_length=20 , max_target_length=UpperCamelCase__ , ) lowercase : int = DataLoader(UpperCamelCase__ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __snake_case ( self :List[str] ) ->Any: lowercase : Any = AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" ) lowercase : Union[str, Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowercase : int = tmp_dir.joinpath("""train.source""" ).open().readlines() lowercase : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(UpperCamelCase__ , UpperCamelCase__ , 128 , UpperCamelCase__ ) lowercase : Dict = {x.name for x in tmp_dir.iterdir()} lowercase : Optional[Any] = {x.name for x in save_dir.iterdir()} lowercase : Union[str, Any] = save_dir.joinpath("""train.source""" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(UpperCamelCase__ ) < len(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 1 assert len(packed_examples[0] ) == sum(len(UpperCamelCase__ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="""This test requires fairseq""" ) def __snake_case ( self :Optional[Any] ) ->Optional[Any]: if not FAIRSEQ_AVAILABLE: return lowercase , lowercase , lowercase : Any = self._get_dataset(max_len=64 ) lowercase : List[str] = 64 lowercase : List[str] = ds.make_dynamic_sampler(UpperCamelCase__ , required_batch_size_multiple=UpperCamelCase__ ) lowercase : Tuple = [len(UpperCamelCase__ ) for x in batch_sampler] assert len(set(UpperCamelCase__ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(UpperCamelCase__ ) == len(UpperCamelCase__ ) # no dropped or added examples lowercase : Optional[int] = DataLoader(UpperCamelCase__ , batch_sampler=UpperCamelCase__ , collate_fn=ds.collate_fn , num_workers=2 ) lowercase : Any = [] lowercase : Optional[int] = [] for batch in data_loader: lowercase : List[Any] = batch["""input_ids"""].shape lowercase : Any = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowercase : Union[str, Any] = np.product(batch["""input_ids"""].shape ) num_src_per_batch.append(UpperCamelCase__ ) if num_src_tokens > (max_tokens * 1.1): failures.append(UpperCamelCase__ ) assert num_src_per_batch[0] == max(UpperCamelCase__ ) if failures: raise AssertionError(f"""too many tokens in {len(UpperCamelCase__ )} batches""" ) def __snake_case ( self :int ) ->Optional[Any]: lowercase , lowercase , lowercase : Tuple = self._get_dataset(max_len=512 ) lowercase : List[str] = 2 lowercase : str = ds.make_sortish_sampler(UpperCamelCase__ , shuffle=UpperCamelCase__ ) lowercase : str = DataLoader(UpperCamelCase__ , batch_size=UpperCamelCase__ , collate_fn=ds.collate_fn , num_workers=2 ) lowercase : Any = DataLoader(UpperCamelCase__ , batch_size=UpperCamelCase__ , collate_fn=ds.collate_fn , num_workers=2 , sampler=UpperCamelCase__ ) lowercase : str = tokenizer.pad_token_id def count_pad_tokens(__magic_name__ :Tuple , __magic_name__ :Optional[Any]="input_ids" ): return [batch[k].eq(UpperCamelCase__ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(UpperCamelCase__ , k="""labels""" ) ) < sum(count_pad_tokens(UpperCamelCase__ , k="""labels""" ) ) assert sum(count_pad_tokens(UpperCamelCase__ ) ) < sum(count_pad_tokens(UpperCamelCase__ ) ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) def __snake_case ( self :int , __magic_name__ :List[Any]=1_000 , __magic_name__ :Union[str, Any]=128 ) ->Dict: if os.getenv("""USE_REAL_DATA""" , UpperCamelCase__ ): lowercase : List[str] = """examples/seq2seq/wmt_en_ro""" lowercase : Dict = max_len * 2 * 64 if not Path(UpperCamelCase__ ).joinpath("""train.len""" ).exists(): save_len_file(UpperCamelCase__ , UpperCamelCase__ ) else: lowercase : Optional[int] = """examples/seq2seq/test_data/wmt_en_ro""" lowercase : Tuple = max_len * 4 save_len_file(UpperCamelCase__ , UpperCamelCase__ ) lowercase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase__ ) lowercase : Dict = SeqaSeqDataset( UpperCamelCase__ , data_dir=UpperCamelCase__ , type_path="""train""" , max_source_length=UpperCamelCase__ , max_target_length=UpperCamelCase__ , n_obs=UpperCamelCase__ , ) return ds, max_tokens, tokenizer def __snake_case ( self :List[Any] ) ->List[str]: lowercase , lowercase , lowercase : Any = self._get_dataset() lowercase : Optional[int] = set(DistributedSortishSampler(UpperCamelCase__ , 256 , num_replicas=2 , rank=0 , add_extra_examples=UpperCamelCase__ ) ) lowercase : Tuple = set(DistributedSortishSampler(UpperCamelCase__ , 256 , num_replicas=2 , rank=1 , add_extra_examples=UpperCamelCase__ ) ) assert idsa.intersection(UpperCamelCase__ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __snake_case ( self :Union[str, Any] , __magic_name__ :str ) ->Optional[int]: lowercase : str = AutoTokenizer.from_pretrained(UpperCamelCase__ , use_fast=UpperCamelCase__ ) if tok_name == MBART_TINY: lowercase : Optional[Any] = SeqaSeqDataset( UpperCamelCase__ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , src_lang="""EN""" , tgt_lang="""FR""" , ) lowercase : str = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowercase : Tuple = SeqaSeqDataset( UpperCamelCase__ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , ) lowercase : str = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(UpperCamelCase__ ) == 1 if tok_name == BART_TINY else len(UpperCamelCase__ ) == 0
700
"""simple docstring""" import argparse import os import re import packaging.version _lowerCAmelCase = 'examples/' _lowerCAmelCase = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } _lowerCAmelCase = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } _lowerCAmelCase = 'README.md' def UpperCamelCase ( _A , _A , _A ) -> Optional[int]: with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase : str = f.read() lowercase , lowercase : Optional[int] = REPLACE_PATTERNS[pattern] lowercase : Optional[Any] = replace.replace("""VERSION""" , _A ) lowercase : Tuple = re_pattern.sub(_A , _A ) with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_A ) def UpperCamelCase ( _A ) -> List[str]: for folder, directories, fnames in os.walk(_A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_A , _A ) , _A , pattern="""examples""" ) def UpperCamelCase ( _A , _A=False ) -> Optional[Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_A , _A , _A ) if not patch: update_version_in_examples(_A ) def UpperCamelCase ( ) -> Any: lowercase : Any = """🤗 Transformers currently provides the following architectures""" lowercase : Dict = """1. Want to contribute a new model?""" with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase : str = f.readlines() # Find the start of the list. lowercase : int = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowercase : Optional[int] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): lowercase : List[str] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_A ) def UpperCamelCase ( ) -> Tuple: with open(REPLACE_FILES["""init"""] , """r""" ) as f: lowercase : List[str] = f.read() lowercase : List[Any] = REPLACE_PATTERNS["""init"""][0].search(_A ).groups()[0] return packaging.version.parse(_A ) def UpperCamelCase ( _A=False ) -> List[Any]: lowercase : str = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: lowercase : Union[str, Any] = default_version.base_version elif patch: lowercase : Optional[Any] = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: lowercase : List[str] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. lowercase : Optional[int] = input(F"""Which version are you releasing? [{default_version}]""" ) if len(_A ) == 0: lowercase : Optional[int] = default_version print(F"""Updating version to {version}.""" ) global_version_update(_A , patch=_A ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def UpperCamelCase ( ) -> Tuple: lowercase : Any = get_version() lowercase : Optional[int] = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" lowercase : Dict = current_version.base_version # Check with the user we got that right. lowercase : List[Any] = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(_A ) == 0: lowercase : int = dev_version print(F"""Updating version to {version}.""" ) global_version_update(_A ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') _lowerCAmelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
348
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL a__ = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def __UpperCAmelCase ( __a : str ,__a : tuple ,__a : Path ,__a : str ,__a : Optional[Any] ,__a : Dict ,__a : Optional[Any] ,__a : Optional[Any]=False ,) -> Dict: """simple docstring""" output_path.parent.mkdir(parents=__a ,exist_ok=__a ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __a ,__a ,f=output_path.as_posix() ,input_names=__a ,output_names=__a ,dynamic_axes=__a ,do_constant_folding=__a ,use_external_data_format=__a ,enable_onnx_checker=__a ,opset_version=__a ,) else: export( __a ,__a ,f=output_path.as_posix() ,input_names=__a ,output_names=__a ,dynamic_axes=__a ,do_constant_folding=__a ,opset_version=__a ,) @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : int ,__a : bool = False ) -> Optional[Any]: """simple docstring""" _a : int = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _a : List[str] = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: _a : List[Any] = '''cpu''' _a : Union[str, Any] = Path(__a ) # VAE DECODER _a : Dict = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) _a : Optional[int] = vae_decoder.config.latent_channels # forward only through the decoder part _a : Any = vae_decoder.decode onnx_export( __a ,model_args=( torch.randn(1 ,__a ,25 ,25 ).to(device=__a ,dtype=__a ), False, ) ,output_path=output_path / '''vae_decoder''' / '''model.onnx''' ,ordered_input_names=['''latent_sample''', '''return_dict'''] ,output_names=['''sample'''] ,dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } ,opset=__a ,) del vae_decoder if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') a__ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
14
import requests from bsa import BeautifulSoup def a (_lowerCAmelCase = "https://www.worldometers.info/coronavirus" ): SCREAMING_SNAKE_CASE_ = BeautifulSoup(requests.get(_lowerCAmelCase ).text , '''html.parser''' ) SCREAMING_SNAKE_CASE_ = soup.findAll('''h1''' ) SCREAMING_SNAKE_CASE_ = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCAmelCase , _lowerCAmelCase )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
234
0
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _SCREAMING_SNAKE_CASE ( __a ): @slow @require_torch def snake_case__ ( self : List[Any] ): __magic_name__ = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __magic_name__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __magic_name__ = bertabert.config.encoder.vocab_size __magic_name__ = tokenizer.sep_token_id __magic_name__ = tokenizer.cls_token_id __magic_name__ = 128 __magic_name__ = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __magic_name__ = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __magic_name__ = train_dataset.select(range(32 ) ) __magic_name__ = val_dataset.select(range(16 ) ) __magic_name__ = 4 def _map_to_encoder_decoder_inputs(a__ : Optional[Any] ): # Tokenizer will automatically set [BOS] <text> [EOS] __magic_name__ = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=a__ , max_length=512 ) __magic_name__ = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=a__ , max_length=128 ) __magic_name__ = inputs.input_ids __magic_name__ = inputs.attention_mask __magic_name__ = outputs.input_ids __magic_name__ = outputs.input_ids.copy() __magic_name__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __magic_name__ = outputs.attention_mask assert all(len(a__ ) == 512 for x in inputs.input_ids ) assert all(len(a__ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a__ : Union[str, Any] ): __magic_name__ = pred.label_ids __magic_name__ = pred.predictions # all unnecessary tokens are removed __magic_name__ = tokenizer.batch_decode(a__ , skip_special_tokens=a__ ) __magic_name__ = tokenizer.batch_decode(a__ , skip_special_tokens=a__ ) __magic_name__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a__ ) )] ) / len(a__ ) return {"accuracy": accuracy} # map train dataset __magic_name__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=a__ , batch_size=a__ , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __magic_name__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=a__ , batch_size=a__ , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __magic_name__ = self.get_auto_remove_tmp_dir() __magic_name__ = SeqaSeqTrainingArguments( output_dir=a__ , per_device_train_batch_size=a__ , per_device_eval_batch_size=a__ , predict_with_generate=a__ , evaluation_strategy='''steps''' , do_train=a__ , do_eval=a__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __magic_name__ = SeqaSeqTrainer( model=a__ , args=a__ , compute_metrics=_compute_metrics , train_dataset=a__ , eval_dataset=a__ , tokenizer=a__ , ) # start training trainer.train()
245
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def UpperCamelCase ( a ) -> int: '''simple docstring''' if isinstance(a , collections.abc.Iterable ): return x return (x, x) @require_tf class _SCREAMING_SNAKE_CASE : def snake_case__ ( self : List[Any] , a__ : Optional[int] , a__ : List[str] ): pass def snake_case__ ( self : Dict ): pass def snake_case__ ( self : Optional[int] ): pass def snake_case__ ( self : List[Any] , a__ : List[Any] , a__ : List[Any] , a__ : int , a__ : Dict , a__ : str=None , **a__ : Dict ): __magic_name__ = VisionTextDualEncoderConfig.from_vision_text_configs(a__ , a__ ) __magic_name__ = TFVisionTextDualEncoderModel(a__ ) __magic_name__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def snake_case__ ( self : Any , a__ : Tuple , a__ : List[Any] , a__ : Union[str, Any] , a__ : Any , a__ : Dict=None , **a__ : Optional[Any] ): __magic_name__ , __magic_name__ = self.get_vision_text_model(a__ , a__ ) __magic_name__ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__ ) __magic_name__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case__ ( self : str , a__ : Tuple , a__ : Optional[Any] , a__ : int , a__ : Optional[int] , a__ : int=None , **a__ : int ): __magic_name__ , __magic_name__ = self.get_vision_text_model(a__ , a__ ) __magic_name__ = {'''vision_model''': vision_model, '''text_model''': text_model} __magic_name__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a__ ) __magic_name__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case__ ( self : str , a__ : List[Any] , a__ : Optional[int] , a__ : int , a__ : Union[str, Any] , a__ : Tuple=None , **a__ : Union[str, Any] ): __magic_name__ , __magic_name__ = self.get_vision_text_model(a__ , a__ ) __magic_name__ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__ ) __magic_name__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) __magic_name__ = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a__ ) __magic_name__ = TFVisionTextDualEncoderModel.from_pretrained(a__ ) __magic_name__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) __magic_name__ = after_output[0].numpy() __magic_name__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ , 1E-5 ) def snake_case__ ( self : str , a__ : Any , a__ : Optional[int] , a__ : List[str] , a__ : Tuple , a__ : Optional[Any]=None , **a__ : int ): __magic_name__ , __magic_name__ = self.get_vision_text_model(a__ , a__ ) __magic_name__ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__ ) __magic_name__ = model( input_ids=a__ , pixel_values=a__ , attention_mask=a__ , output_attentions=a__ ) __magic_name__ = output.vision_model_output.attentions self.assertEqual(len(a__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __magic_name__ = to_atuple(vision_model.config.image_size ) __magic_name__ = to_atuple(vision_model.config.patch_size ) __magic_name__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __magic_name__ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __magic_name__ = output.text_model_output.attentions self.assertEqual(len(a__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case__ ( self : Optional[Any] , a__ : np.ndarray , a__ : np.ndarray , a__ : float ): __magic_name__ = np.abs((a - b) ).max() self.assertLessEqual(a__ , a__ , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def snake_case__ ( self : Tuple ): __magic_name__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a__ ) def snake_case__ ( self : Optional[Any] ): __magic_name__ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a__ ) def snake_case__ ( self : int ): __magic_name__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a__ ) def snake_case__ ( self : Optional[Any] ): __magic_name__ = self.prepare_config_and_inputs() self.check_save_load(**a__ ) def snake_case__ ( self : Tuple ): __magic_name__ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a__ ) @slow def snake_case__ ( self : int ): __magic_name__ , __magic_name__ = self.get_pretrained_model_and_inputs() __magic_name__ = model_a(**a__ ) __magic_name__ = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a__ ) __magic_name__ = TFVisionTextDualEncoderModel.from_pretrained(a__ ) __magic_name__ = model_a(**a__ ) __magic_name__ = after_outputs[0].numpy() __magic_name__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ , 1E-5 ) @require_tf class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): def snake_case__ ( self : int ): __magic_name__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''' ) __magic_name__ = 13 __magic_name__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __magic_name__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __magic_name__ = random_attention_mask([batch_size, 4] ) __magic_name__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : Union[str, Any] , a__ : Any , a__ : List[Any] ): __magic_name__ = TFViTModel(a__ , name='''vision_model''' ) __magic_name__ = TFBertModel(a__ , name='''text_model''' ) return vision_model, text_model def snake_case__ ( self : List[str] ): __magic_name__ = TFViTModelTester(self ) __magic_name__ = TFBertModelTester(self ) __magic_name__ = vit_model_tester.prepare_config_and_inputs() __magic_name__ = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ = vision_config_and_inputs ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): def snake_case__ ( self : Tuple ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. __magic_name__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''' ) __magic_name__ = 13 __magic_name__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __magic_name__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __magic_name__ = random_attention_mask([batch_size, 4] ) __magic_name__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : Dict , a__ : Any , a__ : Tuple , a__ : str , a__ : Any , a__ : Union[str, Any]=None , **a__ : List[str] ): __magic_name__ , __magic_name__ = self.get_vision_text_model(a__ , a__ ) __magic_name__ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__ ) __magic_name__ = model( input_ids=a__ , pixel_values=a__ , attention_mask=a__ , output_attentions=a__ ) __magic_name__ = output.vision_model_output.attentions self.assertEqual(len(a__ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __magic_name__ = to_atuple(vision_model.config.image_size ) __magic_name__ = to_atuple(vision_model.config.patch_size ) __magic_name__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __magic_name__ = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __magic_name__ = output.text_model_output.attentions self.assertEqual(len(a__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case__ ( self : str , a__ : int , a__ : Any ): __magic_name__ = TFDeiTModel(a__ , name='''vision_model''' ) __magic_name__ = TFRobertaModel(a__ , name='''text_model''' ) return vision_model, text_model def snake_case__ ( self : Dict ): __magic_name__ = TFDeiTModelTester(self ) __magic_name__ = TFRobertaModelTester(self ) __magic_name__ = vit_model_tester.prepare_config_and_inputs() __magic_name__ = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ = vision_config_and_inputs ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): def snake_case__ ( self : List[str] ): __magic_name__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''' ) __magic_name__ = 13 __magic_name__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __magic_name__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __magic_name__ = random_attention_mask([batch_size, 4] ) __magic_name__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : int , a__ : int , a__ : Dict ): __magic_name__ = TFCLIPVisionModel(a__ , name='''vision_model''' ) __magic_name__ = TFBertModel(a__ , name='''text_model''' ) return vision_model, text_model def snake_case__ ( self : str ): __magic_name__ = TFCLIPVisionModelTester(self ) __magic_name__ = TFBertModelTester(self ) __magic_name__ = clip_model_tester.prepare_config_and_inputs() __magic_name__ = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ = vision_config_and_inputs ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def snake_case__ ( self : Union[str, Any] ): __magic_name__ = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=a__ ) __magic_name__ = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __magic_name__ = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=a__ , padding=a__ , return_tensors='''np''' ) __magic_name__ = model(**a__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __magic_name__ = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a__ , atol=1E-3 ) )
245
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ["""note_seq"""] def __init__( self , *__lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' requires_backends(self , ['''note_seq'''] ) @classmethod def UpperCamelCase__( cls , *__lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' requires_backends(cls , ['''note_seq'''] ) @classmethod def UpperCamelCase__( cls , *__lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' requires_backends(cls , ['''note_seq'''] )
177
"""simple docstring""" def __lowercase ( snake_case_ : list ) ->list: '''simple docstring''' for i in range(len(snake_case_ ) - 1 ,0 ,-1 ): __A : Union[str, Any] = False for j in range(snake_case_ ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: __A , __A : Union[str, Any] = unsorted[j - 1], unsorted[j] __A : Optional[int] = True for j in range(snake_case_ ): if unsorted[j] > unsorted[j + 1]: __A , __A : Optional[Any] = unsorted[j + 1], unsorted[j] __A : Union[str, Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() a_ = input("""Enter numbers separated by a comma:\n""").strip() a_ = [int(item) for item in user_input.split(""",""")] print(f'''{cocktail_shaker_sort(unsorted) = }''')
177
1
'''simple docstring''' class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: lowercase__ : Union[str, Any] = name lowercase__ : Tuple = val def __str__( self ) -> Any: return F"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self , __lowerCAmelCase ) -> List[Any]: return self.val < other.val class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase ) -> Tuple: lowercase__ : List[Any] = {} lowercase__ : Union[str, Any] = {} lowercase__ : Union[str, Any] = self.build_heap(__a ) def __getitem__( self , __lowerCAmelCase ) -> Optional[int]: return self.get_value(__a ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[Any]: return (idx - 1) // 2 def _lowerCAmelCase( self , __lowerCAmelCase ) -> str: return idx * 2 + 1 def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: return idx * 2 + 2 def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[int]: return self.heap_dict[key] def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[Any]: lowercase__ : Optional[int] = len(__a ) - 1 lowercase__ : Any = self.get_parent_idx(__a ) for idx, i in enumerate(__a ): lowercase__ : Tuple = idx lowercase__ : Union[str, Any] = i.val for i in range(__a , -1 , -1 ): self.sift_down(__a , __a ) return array def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: while True: lowercase__ : Dict = self.get_left_child_idx(__a ) # noqa: E741 lowercase__ : Any = self.get_right_child_idx(__a ) lowercase__ : Tuple = idx if l < len(__a ) and array[l] < array[idx]: lowercase__ : Tuple = l if r < len(__a ) and array[r] < array[smallest]: lowercase__ : str = r if smallest != idx: lowercase__ : Optional[int] = array[smallest], array[idx] ( lowercase__ ) : Union[str, Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowercase__ : int = smallest else: break def _lowerCAmelCase( self , __lowerCAmelCase ) -> Tuple: lowercase__ : List[str] = self.get_parent_idx(__a ) while p >= 0 and self.heap[p] > self.heap[idx]: lowercase__ : Optional[Any] = self.heap[idx], self.heap[p] lowercase__ : Dict = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowercase__ : List[str] = p lowercase__ : Optional[Any] = self.get_parent_idx(__a ) def _lowerCAmelCase( self ) -> int: return self.heap[0] def _lowerCAmelCase( self ) -> str: lowercase__ : str = self.heap[-1], self.heap[0] lowercase__ : Tuple = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowercase__ : Dict = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def _lowerCAmelCase( self , __lowerCAmelCase ) -> str: self.heap.append(__a ) lowercase__ : int = len(self.heap ) - 1 lowercase__ : Optional[Any] = node.val self.sift_up(len(self.heap ) - 1 ) def _lowerCAmelCase( self ) -> int: return len(self.heap ) == 0 def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowercase__ : Union[str, Any] = new_value lowercase__ : Optional[Any] = new_value self.sift_up(self.idx_of_element[node] ) __a: List[str] = Node("""R""", -1) __a: Optional[Any] = Node("""B""", 6) __a: List[str] = Node("""A""", 3) __a: int = Node("""X""", 1) __a: List[str] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __a: str = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Any = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class UpperCAmelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = StableDiffusionLatentUpscalePipeline SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE = frozenset([] ) SCREAMING_SNAKE_CASE = True @property def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : List[str] = 1 lowercase__ : Tuple = 4 lowercase__ : Dict = (16, 16) lowercase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image def _lowerCAmelCase( self ) -> Optional[int]: torch.manual_seed(0 ) lowercase__ : int = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=__lowerCAmelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=__lowerCAmelCase , only_cross_attention=__lowerCAmelCase , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) lowercase__ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) lowercase__ : Optional[Any] = EulerDiscreteScheduler(prediction_type='''sample''' ) lowercase__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) lowercase__ : Optional[Any] = CLIPTextModel(__lowerCAmelCase ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : List[Any] = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Optional[int]: if str(__lowerCAmelCase ).startswith('''mps''' ): lowercase__ : Dict = torch.manual_seed(__lowerCAmelCase ) else: lowercase__ : Any = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase__ : int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Tuple = '''cpu''' lowercase__ : List[Any] = self.get_dummy_components() lowercase__ : Optional[Any] = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : List[Any] = self.get_dummy_inputs(__lowerCAmelCase ) lowercase__ : Any = pipe(**__lowerCAmelCase ).images lowercase__ : str = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) lowercase__ : int = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) lowercase__ : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) def _lowerCAmelCase( self ) -> int: super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _lowerCAmelCase( self ) -> Optional[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _lowerCAmelCase( self ) -> Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _lowerCAmelCase( self ) -> int: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _lowerCAmelCase( self ) -> Any: super().test_save_load_local(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> List[Any]: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> List[str]: lowercase__ : Optional[int] = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] lowercase__ : List[str] = self.get_dummy_components() lowercase__ : Dict = self.pipeline_class(**__lowerCAmelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Union[str, Any] = self.get_dummy_inputs(__lowerCAmelCase ) lowercase__ : List[str] = 2 lowercase__ : Dict = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowercase__ : Union[str, Any] = getattr(__lowerCAmelCase , scheduler_enum.name ) lowercase__ : Optional[int] = scheduler_cls.from_config(pipe.scheduler.config ) lowercase__ : Dict = pipe(**__lowerCAmelCase )[0] outputs.append(__lowerCAmelCase ) assert check_same_shape(__lowerCAmelCase ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase( self ) -> int: lowercase__ : str = torch.manual_seed(33 ) lowercase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) lowercase__ : str = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) lowercase__ : Optional[int] = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' lowercase__ : Any = pipe(__lowerCAmelCase , generator=__lowerCAmelCase , output_type='''latent''' ).images lowercase__ : Optional[int] = upscaler( prompt=__lowerCAmelCase , image=__lowerCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=__lowerCAmelCase , output_type='''np''' , ).images[0] lowercase__ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : List[str] = torch.manual_seed(33 ) lowercase__ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) lowercase__ : int = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' lowercase__ : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) lowercase__ : List[Any] = upscaler( prompt=__lowerCAmelCase , image=__lowerCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=__lowerCAmelCase , output_type='''np''' , ).images[0] lowercase__ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-2
428
0
"""simple docstring""" from collections.abc import Sequence from queue import Queue class a__ : def __init__( self : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=None , UpperCamelCase_ : Optional[Any]=None): """simple docstring""" __UpperCAmelCase : int = start __UpperCAmelCase : Tuple = end __UpperCAmelCase : Optional[int] = val __UpperCAmelCase : Union[str, Any] = (start + end) // 2 __UpperCAmelCase : Dict = left __UpperCAmelCase : str = right def __repr__( self : List[str]): """simple docstring""" return F"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})" class a__ : def __init__( self : Union[str, Any] , UpperCamelCase_ : Sequence , UpperCamelCase_ : int): """simple docstring""" __UpperCAmelCase : Any = collection __UpperCAmelCase : Any = function if self.collection: __UpperCAmelCase : Optional[int] = self._build_tree(0 , len(_lowerCAmelCase) - 1) def a_ ( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any]): """simple docstring""" self._update_tree(self.root , _lowerCAmelCase , _lowerCAmelCase) def a_ ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any]): """simple docstring""" return self._query_range(self.root , _lowerCAmelCase , _lowerCAmelCase) def a_ ( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple): """simple docstring""" if start == end: return SegmentTreeNode(_lowerCAmelCase , _lowerCAmelCase , self.collection[start]) __UpperCAmelCase : int = (start + end) // 2 __UpperCAmelCase : Dict = self._build_tree(_lowerCAmelCase , _lowerCAmelCase) __UpperCAmelCase : List[Any] = self._build_tree(mid + 1 , _lowerCAmelCase) return SegmentTreeNode(_lowerCAmelCase , _lowerCAmelCase , self.fn(left.val , right.val) , _lowerCAmelCase , _lowerCAmelCase) def a_ ( self : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : List[str]): """simple docstring""" if node.start == i and node.end == i: __UpperCAmelCase : List[str] = val return if i <= node.mid: self._update_tree(node.left , _lowerCAmelCase , _lowerCAmelCase) else: self._update_tree(node.right , _lowerCAmelCase , _lowerCAmelCase) __UpperCAmelCase : Optional[int] = self.fn(node.left.val , node.right.val) def a_ ( self : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , _lowerCAmelCase , _lowerCAmelCase) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , _lowerCAmelCase , node.mid) , self._query_range(node.right , node.mid + 1 , _lowerCAmelCase) , ) else: # range in right child tree return self._query_range(node.right , _lowerCAmelCase , _lowerCAmelCase) def a_ ( self : Optional[int]): """simple docstring""" if self.root is not None: __UpperCAmelCase : List[str] = Queue() queue.put(self.root) while not queue.empty(): __UpperCAmelCase : Optional[Any] = queue.get() yield node if node.left is not None: queue.put(node.left) if node.right is not None: queue.put(node.right) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 50) A = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
77
def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 ) -> int: SCREAMING_SNAKE_CASE_ = right or len(__UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCAmelCase , __UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = str(UpperCamelCase_ ) return len(UpperCamelCase_ ) == 9 and set(UpperCamelCase_ ) == set("""123456789""" ) def _lowerCAmelCase ( ): for base_num in range(9999 , 4999 , -1 ): __SCREAMING_SNAKE_CASE = 10_0002 * base_num if is_9_pandigital(UpperCamelCase_ ): return candidate for base_num in range(333 , 99 , -1 ): __SCREAMING_SNAKE_CASE = 100_2003 * base_num if is_9_pandigital(UpperCamelCase_ ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
248
"""simple docstring""" __magic_name__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __magic_name__ = [{"type": "code", "content": INSTALL_CONTENT}] __magic_name__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
248
1
from ..utils import DummyObject, requires_backends class A_ ( metaclass=lowercase__ ): '''simple docstring''' a__ = ["speech"] def __init__(self , *lowercase__ , **lowercase__ ) -> Tuple: requires_backends(self , ['''speech'''] ) class A_ ( metaclass=lowercase__ ): '''simple docstring''' a__ = ["speech"] def __init__(self , *lowercase__ , **lowercase__ ) -> Dict: requires_backends(self , ['''speech'''] )
303
"""simple docstring""" from __future__ import annotations class lowercase : def __init__(self : List[Any] ,SCREAMING_SNAKE_CASE_ : int = 0 ) -> List[Any]: """simple docstring""" lowerCAmelCase = key def UpperCAmelCase (self : Tuple ,SCREAMING_SNAKE_CASE_ : str ,SCREAMING_SNAKE_CASE_ : int ) -> list[str]: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(SCREAMING_SNAKE_CASE_ ) ^ key ) for ch in content] def UpperCAmelCase (self : int ,SCREAMING_SNAKE_CASE_ : str ,SCREAMING_SNAKE_CASE_ : int ) -> list[str]: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(SCREAMING_SNAKE_CASE_ ) ^ key ) for ch in content] def UpperCAmelCase (self : Union[str, Any] ,SCREAMING_SNAKE_CASE_ : str ,SCREAMING_SNAKE_CASE_ : int = 0 ) -> str: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase = '''''' for ch in content: ans += chr(ord(SCREAMING_SNAKE_CASE_ ) ^ key ) return ans def UpperCAmelCase (self : Union[str, Any] ,SCREAMING_SNAKE_CASE_ : str ,SCREAMING_SNAKE_CASE_ : int = 0 ) -> str: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase = '''''' for ch in content: ans += chr(ord(SCREAMING_SNAKE_CASE_ ) ^ key ) return ans def UpperCAmelCase (self : List[str] ,SCREAMING_SNAKE_CASE_ : str ,SCREAMING_SNAKE_CASE_ : int = 0 ) -> bool: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) try: with open(SCREAMING_SNAKE_CASE_ ) as fin, open('''encrypt.out''' ,'''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) except OSError: return False return True def UpperCAmelCase (self : List[Any] ,SCREAMING_SNAKE_CASE_ : str ,SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) try: with open(SCREAMING_SNAKE_CASE_ ) as fin, open('''decrypt.out''' ,'''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
535
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) UpperCamelCase : str = {"vocab_file": "spiece.model"} UpperCamelCase : List[str] = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } UpperCamelCase : Optional[Any] = { "albert-base-v1": 5_1_2, "albert-large-v1": 5_1_2, "albert-xlarge-v1": 5_1_2, "albert-xxlarge-v1": 5_1_2, "albert-base-v2": 5_1_2, "albert-large-v2": 5_1_2, "albert-xlarge-v2": 5_1_2, "albert-xxlarge-v2": 5_1_2, } UpperCamelCase : List[Any] = "▁" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = ( AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase , normalized=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token ) __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) __UpperCamelCase = do_lower_case __UpperCamelCase = remove_space __UpperCamelCase = keep_accents __UpperCamelCase = vocab_file __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if self.remove_space: __UpperCamelCase = ' '.join(inputs.strip().split() ) else: __UpperCamelCase = inputs __UpperCamelCase = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: __UpperCamelCase = unicodedata.normalize('NFKD' , __UpperCAmelCase ) __UpperCamelCase = ''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: __UpperCamelCase = outputs.lower() return outputs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.preprocess_text(__UpperCAmelCase ) __UpperCamelCase = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) __UpperCamelCase = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): __UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __UpperCamelCase = cur_pieces[1:] else: __UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.sp_model.PieceToId(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.sp_model.IdToPiece(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = '' __UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token __UpperCamelCase = True __UpperCamelCase = [] else: current_sub_tokens.append(__UpperCAmelCase ) __UpperCamelCase = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , 'wb' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
293
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests UpperCamelCase : Union[str, Any] = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCamelCase : Union[str, Any] = BASE_URL + "/user" # https://github.com/settings/tokens UpperCamelCase : Optional[int] = os.environ.get("USER_TOKEN", "") def A ( snake_case :str ) -> dict[Any, Any]: __UpperCamelCase = { 'Authorization': f'token {auth_token}', 'Accept': 'application/vnd.github.v3+json', } return requests.get(snake_case , headers=snake_case ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError("'USER_TOKEN' field cannot be empty.")
293
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase : Any = ["""input_features""", """attention_mask"""] def __init__( self : Dict , _lowercase : str=80 , _lowercase : Any=16_000 , _lowercase : List[Any]=80 , _lowercase : Any=0.0 , _lowercase : List[str]=True , _lowercase : Any=True , _lowercase : int=True , **_lowercase : Optional[int] , ): """simple docstring""" super().__init__(feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_ ) _UpperCamelCase: Optional[Any] = num_mel_bins _UpperCamelCase: Dict = do_ceptral_normalize _UpperCamelCase: Union[str, Any] = normalize_means _UpperCamelCase: Union[str, Any] = normalize_vars _UpperCamelCase: str = True def lowerCAmelCase ( self : List[Any] , _lowercase : str , ): """simple docstring""" _UpperCamelCase: Optional[int] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers _UpperCamelCase: List[Any] = torch.from_numpy(A_ ).unsqueeze(0 ) _UpperCamelCase: Tuple = ta_kaldi.fbank(A_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowerCAmelCase ( _lowercase : Optional[int] , _lowercase : Optional[Any] , _lowercase : Union[str, Any] = True , _lowercase : Tuple = True , _lowercase : int = 0.0 , ): """simple docstring""" if normalize_means: _UpperCamelCase: Optional[int] = x[:input_length].mean(axis=0 ) _UpperCamelCase: int = np.subtract(A_ , A_ ) if normalize_vars: _UpperCamelCase: Optional[int] = x[:input_length].std(axis=0 ) _UpperCamelCase: Dict = np.divide(A_ , A_ ) if input_length < x.shape[0]: _UpperCamelCase: Tuple = padding_value # make sure array is in float32 _UpperCamelCase: Optional[int] = x.astype(np.floataa ) return x def lowerCAmelCase ( self : Optional[Any] , _lowercase : Tuple , _lowercase : Tuple = None ): """simple docstring""" _UpperCamelCase: Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(A_ , A_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(A_ , A_ ) ] def __call__( self : List[str] , _lowercase : Dict , _lowercase : Optional[Any] = False , _lowercase : Optional[Any] = None , _lowercase : List[Any] = False , _lowercase : Optional[Any] = None , _lowercase : Optional[int] = None , _lowercase : Any = None , _lowercase : List[str] = None , **_lowercase : str , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) _UpperCamelCase: Any = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) _UpperCamelCase: int = is_batched_numpy or ( isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCamelCase: Optional[Any] = [np.asarray(A_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A_ , np.ndarray ): _UpperCamelCase: Union[str, Any] = np.asarray(A_ , dtype=np.floataa ) elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCamelCase: Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCamelCase: Dict = [raw_speech] # extract fbank features _UpperCamelCase: List[str] = [self._extract_fbank_features(A_ ) for waveform in raw_speech] # convert into correct format for padding _UpperCamelCase: List[str] = BatchFeature({'''input_features''': features} ) _UpperCamelCase: str = self.pad( A_ , padding=A_ , max_length=A_ , truncation=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , **A_ , ) # make sure list is in array format _UpperCamelCase: int = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , A_ ): _UpperCamelCase: List[Any] = [np.asarray(A_ , dtype=np.floataa ) for feature in input_features] _UpperCamelCase: List[str] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: _UpperCamelCase: Optional[int] = [np.asarray(A_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _UpperCamelCase: str = ( np.array(A_ , dtype=np.intaa ) if self._get_padding_strategies(A_ , max_length=A_ ) is not PaddingStrategy.DO_NOT_PAD else None ) _UpperCamelCase: Optional[Any] = self.normalize( padded_inputs['''input_features'''] , attention_mask=A_ ) if return_tensors is not None: _UpperCamelCase: str = padded_inputs.convert_to_tensors(A_ ) return padded_inputs
271
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __snake_case ( lowerCAmelCase_ ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = [] embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', f'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', f'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', f'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', f'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = [] attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __snake_case ( lowerCAmelCase_ ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] token.append((f'''cvt.encoder.stages.{idx}.cls_token''', '''stage2.cls_token''') ) return token def __snake_case ( ) -> List[str]: SCREAMING_SNAKE_CASE__ = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE__ = 1_0_0_0 SCREAMING_SNAKE_CASE__ = '''huggingface/label-files''' SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = json.load(open(cached_download(hf_hub_url(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='''dataset''' ) ) , '''r''' ) ) SCREAMING_SNAKE_CASE__ = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = CvtConfig(num_labels=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , labelaid=lowerCAmelCase_ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": SCREAMING_SNAKE_CASE__ = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": SCREAMING_SNAKE_CASE__ = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: SCREAMING_SNAKE_CASE__ = [2, 2, 2_0] SCREAMING_SNAKE_CASE__ = [3, 1_2, 1_6] SCREAMING_SNAKE_CASE__ = [1_9_2, 7_6_8, 1_0_2_4] SCREAMING_SNAKE_CASE__ = CvtForImageClassification(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = torch.load(lowerCAmelCase_ , map_location=torch.device('''cpu''' ) ) SCREAMING_SNAKE_CASE__ = OrderedDict() SCREAMING_SNAKE_CASE__ = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: SCREAMING_SNAKE_CASE__ = list_of_state_dict + cls_token(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = list_of_state_dict + embeddings(lowerCAmelCase_ ) for cnt in range(config.depth[idx] ): SCREAMING_SNAKE_CASE__ = list_of_state_dict + attention(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = list_of_state_dict + final() for gg in list_of_state_dict: print(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): SCREAMING_SNAKE_CASE__ = original_weights[list_of_state_dict[i][1]] model.load_state_dict(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_84, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=r"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _A : int = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
100
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : str = '''unispeech''' def __init__( self , a_=32 , a_=768 , a_=12 , a_=12 , a_=3072 , a_="gelu" , a_=0.1 , a_=0.1 , a_=0.1 , a_=0.0 , a_=0.0 , a_=0.1 , a_=0.1 , a_=0.02 , a_=1E-5 , a_="group" , a_="gelu" , a_=(512, 512, 512, 512, 512, 512, 512) , a_=(5, 2, 2, 2, 2, 2, 2) , a_=(10, 3, 3, 3, 3, 2, 2) , a_=False , a_=128 , a_=16 , a_=False , a_=True , a_=0.05 , a_=10 , a_=2 , a_=0.0 , a_=10 , a_=0 , a_=320 , a_=2 , a_=0.1 , a_=100 , a_=256 , a_=256 , a_=0.1 , a_="mean" , a_=False , a_=False , a_=256 , a_=80 , a_=0 , a_=1 , a_=2 , a_=0.5 , **a_ , ): super().__init__(**a_ , pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ ) lowerCamelCase_ : Union[str, Any] = hidden_size lowerCamelCase_ : Any = feat_extract_norm lowerCamelCase_ : List[Any] = feat_extract_activation lowerCamelCase_ : Optional[int] = list(a_ ) lowerCamelCase_ : Optional[int] = list(a_ ) lowerCamelCase_ : List[str] = list(a_ ) lowerCamelCase_ : Union[str, Any] = conv_bias lowerCamelCase_ : Union[str, Any] = num_conv_pos_embeddings lowerCamelCase_ : Tuple = num_conv_pos_embedding_groups lowerCamelCase_ : List[Any] = len(self.conv_dim ) lowerCamelCase_ : str = num_hidden_layers lowerCamelCase_ : List[Any] = intermediate_size lowerCamelCase_ : Union[str, Any] = hidden_act lowerCamelCase_ : int = num_attention_heads lowerCamelCase_ : str = hidden_dropout lowerCamelCase_ : Union[str, Any] = attention_dropout lowerCamelCase_ : List[str] = activation_dropout lowerCamelCase_ : int = feat_proj_dropout lowerCamelCase_ : Any = final_dropout lowerCamelCase_ : Optional[int] = layerdrop lowerCamelCase_ : Any = layer_norm_eps lowerCamelCase_ : List[str] = initializer_range lowerCamelCase_ : Dict = num_ctc_classes lowerCamelCase_ : Optional[Any] = vocab_size lowerCamelCase_ : Any = do_stable_layer_norm lowerCamelCase_ : List[Any] = use_weighted_layer_sum lowerCamelCase_ : Union[str, Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase_ : Optional[Any] = apply_spec_augment lowerCamelCase_ : Dict = mask_time_prob lowerCamelCase_ : Union[str, Any] = mask_time_length lowerCamelCase_ : List[str] = mask_time_min_masks lowerCamelCase_ : List[str] = mask_feature_prob lowerCamelCase_ : Union[str, Any] = mask_feature_length lowerCamelCase_ : Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase_ : Any = num_codevectors_per_group lowerCamelCase_ : List[Any] = num_codevector_groups lowerCamelCase_ : Dict = contrastive_logits_temperature lowerCamelCase_ : Union[str, Any] = feat_quantizer_dropout lowerCamelCase_ : Union[str, Any] = num_negatives lowerCamelCase_ : Optional[int] = codevector_dim lowerCamelCase_ : Optional[int] = proj_codevector_dim lowerCamelCase_ : Any = diversity_loss_weight # ctc loss lowerCamelCase_ : Optional[Any] = ctc_loss_reduction lowerCamelCase_ : int = ctc_zero_infinity # pretraining loss lowerCamelCase_ : Dict = replace_prob @property def _UpperCamelCase ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
713
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : Dict = '''EncodecFeatureExtractor''' __UpperCAmelCase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , a_ , a_ ): super().__init__(a_ , a_ ) lowerCamelCase_ : Optional[Any] = self.feature_extractor lowerCamelCase_ : Optional[int] = False def _UpperCamelCase ( self , a_=None , a_=None , a_=True ): return self.tokenizer.get_decoder_prompt_ids(task=a_ , language=a_ , no_timestamps=a_ ) def __call__( self , *a_ , **a_ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a_ , **a_ ) lowerCamelCase_ : str = kwargs.pop("audio" , a_ ) lowerCamelCase_ : List[str] = kwargs.pop("sampling_rate" , a_ ) lowerCamelCase_ : Optional[Any] = kwargs.pop("text" , a_ ) if len(a_ ) > 0: lowerCamelCase_ : int = args[0] lowerCamelCase_ : str = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: lowerCamelCase_ : Dict = self.tokenizer(a_ , **a_ ) if audio is not None: lowerCamelCase_ : Optional[Any] = self.feature_extractor(a_ , *a_ , sampling_rate=a_ , **a_ ) if audio is None: return inputs elif text is None: return audio_inputs else: lowerCamelCase_ : Dict = audio_inputs["input_values"] if "padding_mask" in audio_inputs: lowerCamelCase_ : int = audio_inputs["padding_mask"] return inputs def _UpperCamelCase ( self , *a_ , **a_ ): lowerCamelCase_ : Dict = kwargs.pop("audio" , a_ ) lowerCamelCase_ : Optional[Any] = kwargs.pop("padding_mask" , a_ ) if len(a_ ) > 0: lowerCamelCase_ : Optional[int] = args[0] lowerCamelCase_ : Optional[Any] = args[1:] if audio_values is not None: return self._decode_audio(a_ , padding_mask=a_ ) else: return self.tokenizer.batch_decode(*a_ , **a_ ) def _UpperCamelCase ( self , *a_ , **a_ ): return self.tokenizer.decode(*a_ , **a_ ) def _UpperCamelCase ( self , a_ , a_ = None ): lowerCamelCase_ : Any = to_numpy(a_ ) lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ : List[str] = audio_values.shape if padding_mask is None: return list(a_ ) lowerCamelCase_ : Tuple = to_numpy(a_ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) lowerCamelCase_ : List[str] = seq_len - padding_mask.shape[-1] lowerCamelCase_ : int = 1 - self.feature_extractor.padding_value lowerCamelCase_ : List[Any] = np.pad(a_ , ((0, 0), (0, difference)) , "constant" , constant_values=a_ ) lowerCamelCase_ : str = audio_values.tolist() for i in range(a_ ): lowerCamelCase_ : Dict = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] lowerCamelCase_ : Dict = sliced_audio.reshape(a_ , -1 ) return audio_values
73
0
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase__ =re.compile(R"\s+") def lowerCAmelCase_ ( UpperCamelCase__ : str ): """simple docstring""" return {"hash": hashlib.mda(re.sub(UpperCamelCase__ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def lowerCAmelCase_ ( UpperCamelCase__ : Optional[int] ): """simple docstring""" __lowercase = [len(UpperCamelCase__ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(UpperCamelCase__ ), "line_max": max(UpperCamelCase__ )} def lowerCAmelCase_ ( UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __lowercase = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def lowerCAmelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def lowerCAmelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int]=5 ): """simple docstring""" __lowercase = ["""auto-generated""", """autogenerated""", """automatically generated"""] __lowercase = example["""content"""].splitlines() for _, line in zip(range(UpperCamelCase__ ) , UpperCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCAmelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict=5 , UpperCamelCase__ : str=0.05 ): """simple docstring""" __lowercase = ["""unit tests""", """test file""", """configuration file"""] __lowercase = example["""content"""].splitlines() __lowercase = 0 __lowercase = 0 # first test for _, line in zip(range(UpperCamelCase__ ) , UpperCamelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __lowercase = example["""content"""].count("""\n""" ) __lowercase = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCAmelCase_ ( UpperCamelCase__ : List[Any] ): """simple docstring""" __lowercase = ["""def """, """class """, """for """, """while """] __lowercase = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCAmelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Tuple=4 ): """simple docstring""" __lowercase = example["""content"""].splitlines() __lowercase = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCAmelCase_ ( UpperCamelCase__ : str ): """simple docstring""" __lowercase = tokenizer(example["""content"""] , truncation=UpperCamelCase__ )["""input_ids"""] __lowercase = len(example["""content"""] ) / len(UpperCamelCase__ ) return {"ratio": ratio} def lowerCAmelCase_ ( UpperCamelCase__ : Optional[Any] ): """simple docstring""" __lowercase = {} results.update(get_hash(UpperCamelCase__ ) ) results.update(line_stats(UpperCamelCase__ ) ) results.update(alpha_stats(UpperCamelCase__ ) ) results.update(char_token_ratio(UpperCamelCase__ ) ) results.update(is_autogenerated(UpperCamelCase__ ) ) results.update(is_config_or_test(UpperCamelCase__ ) ) results.update(has_no_keywords(UpperCamelCase__ ) ) results.update(has_few_assignments(UpperCamelCase__ ) ) return results def lowerCAmelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" if not check_uniques(UpperCamelCase__ , UpperCamelCase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCAmelCase_ ( UpperCamelCase__ : Optional[int] ): """simple docstring""" with open(UpperCamelCase__ , """rb""" ) as f_in: with gzip.open(str(UpperCamelCase__ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(UpperCamelCase__ , UpperCamelCase__ ) os.unlink(UpperCamelCase__ ) # Settings UpperCAmelCase__ =HfArgumentParser(PreprocessingArguments) UpperCAmelCase__ =parser.parse_args() if args.num_workers is None: UpperCAmelCase__ =multiprocessing.cpu_count() UpperCAmelCase__ =AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase__ =time.time() UpperCAmelCase__ =load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase__ =time.time() UpperCAmelCase__ =ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase__ =set(ds.unique("hash")) UpperCAmelCase__ =len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase__ =time.time() UpperCAmelCase__ =ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase__ =time.time() UpperCAmelCase__ , UpperCAmelCase__ =deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase__ =Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) UpperCAmelCase__ =output_dir / "data" data_dir.mkdir(exist_ok=True) UpperCAmelCase__ =time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase__ =str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase__ =min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
616
"""simple docstring""" def lowerCAmelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" return x if y == 0 else greatest_common_divisor(UpperCamelCase__ , x % y ) def lowerCAmelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" return (x * y) // greatest_common_divisor(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase_ ( UpperCamelCase__ : int = 20 ): """simple docstring""" __lowercase = 1 for i in range(1 , n + 1 ): __lowercase = lcm(UpperCamelCase__ , UpperCamelCase__ ) return g if __name__ == "__main__": print(f"""{solution() = }""")
616
1
from math import isqrt def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 , isqrt(SCREAMING_SNAKE_CASE ) + 1 ) ) def lowerCamelCase ( SCREAMING_SNAKE_CASE = 10**6 ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = 0 __UpperCamelCase :Union[str, Any] = 1 __UpperCamelCase :List[Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(SCREAMING_SNAKE_CASE ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'{solution() = }')
452
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = generate_pascal_triangle(SCREAMING_SNAKE_CASE ) for row_idx in range(SCREAMING_SNAKE_CASE ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase :list[list[int]] = [] for current_row_idx in range(SCREAMING_SNAKE_CASE ): __UpperCamelCase :List[Any] = populate_current_row(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) triangle.append(SCREAMING_SNAKE_CASE ) return triangle def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :int = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase , __UpperCamelCase :int = 1, 1 for current_col_idx in range(1 , SCREAMING_SNAKE_CASE ): calculate_current_element( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return current_row def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): '''simple docstring''' __UpperCamelCase :Dict = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase :List[Any] = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase :List[Any] = above_to_left_elt + above_to_right_elt def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase :list[list[int]] = [[1]] for row_index in range(1 , SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = [0] + result[-1] + [0] __UpperCamelCase :Any = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase :Optional[Any] = sum(divmod(SCREAMING_SNAKE_CASE , 2 ) ) __UpperCamelCase :Union[str, Any] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase :List[Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase :List[str] = row_first_half + row_second_half result.append(SCREAMING_SNAKE_CASE ) return result def lowerCamelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: __UpperCamelCase :List[str] = f"""{func.__name__}({value})""" __UpperCamelCase :Optional[int] = timeit(f"""__main__.{call}""" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
452
1
import math from datetime import datetime, timedelta def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> datetime: '''simple docstring''' UpperCAmelCase = year % 19 UpperCAmelCase = year % 4 UpperCAmelCase = year % 7 UpperCAmelCase = math.floor(year / 100 ) UpperCAmelCase = math.floor((13 + 8 * leap_day_inhibits) / 25 ) UpperCAmelCase = leap_day_inhibits / 4 UpperCAmelCase = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCAmelCase = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCAmelCase = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCAmelCase = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase__ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase__ , 4 , 18 ) else: return datetime(UpperCamelCase__ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): __A : Dict = "will be" if year > datetime.now().year else "was" print(F'Easter in {year} {tense} {gauss_easter(year)}')
130
import warnings from ..trainer import Trainer from ..utils import logging __A : Any = logging.get_logger(__name__) class A_ (a_ ): def __init__( self , _A=None , **_A ): '''simple docstring''' warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , _A , ) super().__init__(args=_A , **_A )
130
1
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class lowerCAmelCase ( nn.Module ): def __init__( self : Optional[int] ) -> Any: super().__init__() lowerCamelCase__ : Any = nn.Linear(3 , 4 ) lowerCamelCase__ : List[Any] = nn.BatchNormad(4 ) lowerCamelCase__ : Any = nn.Linear(4 , 5 ) def A_ ( self : List[Any] , UpperCAmelCase : Dict ) -> Any: return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase ) ) ) class lowerCAmelCase ( lowercase__ ): def A_ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[Any] ) -> Any: return (args[0] + 1,) + args[1:], kwargs class lowerCAmelCase ( lowercase__ ): def A_ ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple ) -> str: return output + 1 class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : Any ) -> str: lowerCamelCase__ : List[str] = ModelForTest() lowerCamelCase__ : Dict = ModelHook() add_hook_to_module(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(test_model._hf_hook , UpperCAmelCase ) self.assertTrue(hasattr(UpperCAmelCase , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(UpperCAmelCase ) self.assertFalse(hasattr(UpperCAmelCase , '_hf_hook' ) ) self.assertFalse(hasattr(UpperCAmelCase , '_old_forward' ) ) def A_ ( self : str ) -> List[Any]: lowerCamelCase__ : List[Any] = ModelForTest() lowerCamelCase__ : Optional[Any] = ModelHook() add_hook_to_module(UpperCAmelCase , UpperCAmelCase ) add_hook_to_module(UpperCAmelCase , UpperCAmelCase , append=UpperCAmelCase ) self.assertEqual(isinstance(test_model._hf_hook , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(UpperCAmelCase , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(UpperCAmelCase ) self.assertFalse(hasattr(UpperCAmelCase , '_hf_hook' ) ) self.assertFalse(hasattr(UpperCAmelCase , '_old_forward' ) ) def A_ ( self : List[str] ) -> List[Any]: lowerCamelCase__ : Any = ModelForTest() lowerCamelCase__ : Any = torch.randn(2 , 3 ) lowerCamelCase__ : Any = test_model(x + 1 ) lowerCamelCase__ : int = test_model(x + 2 ) lowerCamelCase__ : List[str] = PreForwardHook() add_hook_to_module(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = test_model(UpperCAmelCase ) self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowerCamelCase__ : Dict = PreForwardHook() add_hook_to_module(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = test_model(UpperCAmelCase ) self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks lowerCamelCase__ : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : str = test_model(UpperCAmelCase ) assert torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) def A_ ( self : Optional[Any] ) -> Tuple: lowerCamelCase__ : int = ModelForTest() lowerCamelCase__ : Tuple = torch.randn(2 , 3 ) lowerCamelCase__ : Tuple = test_model(UpperCAmelCase ) lowerCamelCase__ : str = PostForwardHook() add_hook_to_module(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = test_model(UpperCAmelCase ) self.assertTrue(torch.allclose(UpperCAmelCase , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowerCamelCase__ : Tuple = PostForwardHook() add_hook_to_module(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = test_model(UpperCAmelCase ) self.assertTrue(torch.allclose(UpperCAmelCase , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks lowerCamelCase__ : List[str] = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = test_model(UpperCAmelCase ) assert torch.allclose(UpperCAmelCase , output + 2 , atol=1e-5 ) def A_ ( self : int ) -> Optional[int]: lowerCamelCase__ : str = ModelForTest() lowerCamelCase__ : Tuple = torch.randn(2 , 3 ) lowerCamelCase__ : int = test_model(UpperCAmelCase ) lowerCamelCase__ : Dict = PostForwardHook() add_hook_to_module(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : int = test_model(UpperCAmelCase ) self.assertTrue(torch.allclose(UpperCAmelCase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : Optional[Any] = test_model(UpperCAmelCase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A_ ( self : int ) -> Dict: lowerCamelCase__ : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device lowerCamelCase__ : Any = torch.randn(2 , 3 ) lowerCamelCase__ : Union[str, Any] = model(UpperCAmelCase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(UpperCAmelCase , AlignDevicesHook(io_same_device=UpperCAmelCase ) ) lowerCamelCase__ : List[str] = torch.randn(2 , 3 ).to(0 ) lowerCamelCase__ : Tuple = model(UpperCAmelCase ) self.assertEqual(output.device , torch.device(0 ) ) def A_ ( self : Tuple ) -> List[Any]: lowerCamelCase__ : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices lowerCamelCase__ : int = {"execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True} add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**UpperCAmelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCamelCase__ : str = torch.device(hook_kwargs['execution_device'] ) self.assertEqual(model.batchnorm.running_mean.device , UpperCAmelCase ) lowerCamelCase__ : int = torch.randn(2 , 3 ) lowerCamelCase__ : str = model(UpperCAmelCase ) self.assertEqual(output.device , UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload lowerCamelCase__ : Tuple = { "execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True, "offload_buffers": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**UpperCAmelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) lowerCamelCase__ : int = torch.randn(2 , 3 ) lowerCamelCase__ : Tuple = model(UpperCAmelCase ) self.assertEqual(output.device , UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def A_ ( self : Dict ) -> Union[str, Any]: lowerCamelCase__ : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices lowerCamelCase__ : Any = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook(UpperCAmelCase , execution_device=UpperCAmelCase , offload=UpperCAmelCase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCamelCase__ : Optional[int] = torch.device(UpperCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device , UpperCAmelCase ) lowerCamelCase__ : Any = torch.randn(2 , 3 ) lowerCamelCase__ : Dict = model(UpperCAmelCase ) self.assertEqual(output.device , UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook(UpperCAmelCase , execution_device=UpperCAmelCase , offload=UpperCAmelCase , offload_buffers=UpperCAmelCase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) lowerCamelCase__ : Tuple = torch.randn(2 , 3 ) lowerCamelCase__ : Any = model(UpperCAmelCase ) self.assertEqual(output.device , UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def A_ ( self : Tuple ) -> List[str]: lowerCamelCase__ : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices lowerCamelCase__ : Union[str, Any] = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook( UpperCAmelCase , execution_device=UpperCAmelCase , offload=UpperCAmelCase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCamelCase__ : str = torch.device(UpperCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device , UpperCAmelCase ) lowerCamelCase__ : Any = torch.randn(2 , 3 ) lowerCamelCase__ : str = model(UpperCAmelCase ) self.assertEqual(output.device , UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook( UpperCAmelCase , execution_device=UpperCAmelCase , offload=UpperCAmelCase , weights_map=model.state_dict() , offload_buffers=UpperCAmelCase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) lowerCamelCase__ : Optional[int] = torch.randn(2 , 3 ) lowerCamelCase__ : Dict = model(UpperCAmelCase ) self.assertEqual(output.device , UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) )
704
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _UpperCAmelCase : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class lowerCAmelCase : UpperCAmelCase__ = field( default="""cifar10""", metadata={"""help""": """Name of a dataset from the datasets package"""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """The column name of the images in the files."""} ) UpperCAmelCase__ = field(default=__UpperCamelCase, metadata={"""help""": """A folder containing the training data."""} ) UpperCAmelCase__ = field(default=__UpperCamelCase, metadata={"""help""": """A folder containing the validation data."""} ) UpperCAmelCase__ = field( default=0.15, metadata={"""help""": """Percent to split off of train for validation."""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) }, ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) }, ) def A_ ( self : Tuple ) -> Optional[Any]: lowerCamelCase__ : Optional[int] = {} if self.train_dir is not None: lowerCamelCase__ : int = self.train_dir if self.validation_dir is not None: lowerCamelCase__ : Dict = self.validation_dir lowerCamelCase__ : Union[str, Any] = data_files if data_files else None @dataclass class lowerCAmelCase : UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) }, ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) }, ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) UpperCAmelCase__ = field( default="""main""", metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""}, ) UpperCAmelCase__ = field(default=__UpperCamelCase, metadata={"""help""": """Name or path of preprocessor config."""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) }, ) UpperCAmelCase__ = field( default=0.75, metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) UpperCAmelCase__ = field( default=__UpperCamelCase, metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = field( default=1E-3, metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : str = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase__ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _UpperCAmelCase , _UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ : Optional[Any] = training_args.get_process_log_level() logger.setLevel(_UpperCAmelCase ) transformers.utils.logging.set_verbosity(_UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase__ : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. lowerCamelCase__ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCamelCase__ : List[Any] = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _UpperCAmelCase ) and data_args.train_val_split > 0.0: lowerCamelCase__ : Optional[int] = ds['train'].train_test_split(data_args.train_val_split ) lowerCamelCase__ : List[str] = split['train'] lowerCamelCase__ : List[str] = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ : Union[str, Any] = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: lowerCamelCase__ : Tuple = ViTMAEConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: lowerCamelCase__ : Tuple = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: lowerCamelCase__ : List[Any] = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowerCamelCase__ : Optional[Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_UpperCAmelCase ) elif model_args.model_name_or_path: lowerCamelCase__ : Any = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase ) else: lowerCamelCase__ : List[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: lowerCamelCase__ : Dict = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) lowerCamelCase__ : Dict = ViTMAEForPreTraining(_UpperCAmelCase ) if training_args.do_train: lowerCamelCase__ : Union[str, Any] = ds['train'].column_names else: lowerCamelCase__ : Any = ds['validation'].column_names if data_args.image_column_name is not None: lowerCamelCase__ : str = data_args.image_column_name elif "image" in column_names: lowerCamelCase__ : Tuple = 'image' elif "img" in column_names: lowerCamelCase__ : int = 'img' else: lowerCamelCase__ : str = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowerCamelCase__ : List[Any] = image_processor.size['shortest_edge'] else: lowerCamelCase__ : Optional[int] = (image_processor.size['height'], image_processor.size['width']) lowerCamelCase__ : Optional[Any] = Compose( [ Lambda(lambda _UpperCAmelCase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_UpperCAmelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_UpperCAmelCase ): lowerCamelCase__ : Tuple = [transforms(_UpperCAmelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: lowerCamelCase__ : Optional[int] = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_UpperCAmelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: lowerCamelCase__ : List[str] = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_UpperCAmelCase ) # Compute absolute learning rate lowerCamelCase__ : Union[str, Any] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowerCamelCase__ : Tuple = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer lowerCamelCase__ : str = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: lowerCamelCase__ : List[str] = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ : Any = last_checkpoint lowerCamelCase__ : Optional[int] = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase__ : Dict = trainer.evaluate() trainer.log_metrics('eval' , _UpperCAmelCase ) trainer.save_metrics('eval' , _UpperCAmelCase ) # Write model card and (optionally) push to hub lowerCamelCase__ : Union[str, Any] = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCAmelCase ) else: trainer.create_model_card(**_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
188
0
from typing import TYPE_CHECKING from ..utils import _LazyModule snake_case__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys snake_case__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
395
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow snake_case__ = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.') @require_torch @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase): def _snake_case ( self : Dict , __A : Path , __A : Union[str, None] = None , __A : Union[List[str], None] = None , __A : Union[str, List[str], None] = None , __A : bool = True , ) ->Any: """simple docstring""" a__ :Dict = [file for file in os.listdir(__A ) if os.path.isfile(os.path.join(__A , __A ) )] if identifier is not None: a__ :Union[str, Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__A , __A ): for n_ in n_identifier: a__ :Union[str, Any] = [file for file in files if n_ not in file] else: a__ :Dict = [file for file in files if n_identifier not in file] a__ :List[str] = ignore_files or [] ignore_files.append("__init__.py" ) a__ :Optional[Any] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , __A ) if only_modules: a__ :Tuple = file.split("." )[0] try: a__ :Dict = getattr(__A , __A ) a__ :int = doctest.DocTestSuite(__A ) a__ :Any = unittest.TextTestRunner().run(__A ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: a__ :int = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _snake_case ( self : int ) ->List[Any]: """simple docstring""" a__ :Tuple = Path("src/transformers" ) a__ :Union[str, Any] = "modeling" a__ :Any = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(__A , identifier=__A , ignore_files=__A ) def _snake_case ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" a__ :Optional[int] = Path("src/transformers" ) a__ :Dict = "tokenization" self.analyze_directory(__A , identifier=__A ) def _snake_case ( self : List[str] ) ->Union[str, Any]: """simple docstring""" a__ :List[Any] = Path("src/transformers" ) a__ :List[Any] = "configuration" self.analyze_directory(__A , identifier=__A ) def _snake_case ( self : Optional[Any] ) ->int: """simple docstring""" a__ :List[str] = Path("src/transformers" ) a__ :str = ["configuration", "modeling", "tokenization"] self.analyze_directory(__A , n_identifier=__A ) def _snake_case ( self : List[Any] ) ->Optional[int]: """simple docstring""" a__ :List[str] = Path("docs/source" ) a__ :Union[str, Any] = ["favicon.ico"] self.analyze_directory(__A , ignore_files=__A , only_modules=__A )
395
1
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness __a : Optional[int] = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ __a : Optional[Any] = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ __a : Union[str, Any] = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ __a : Any = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ __a : Dict = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=[1, 10, 1_00] , lowerCAmelCase__=4 , lowerCAmelCase__=3.0 ) -> Dict: '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=lowerCAmelCase__ ) as executor: __lowercase = [] __lowercase = Counter() __lowercase = 0 __lowercase = defaultdict(lowerCAmelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ): for candidate in candidates: __lowercase = candidate + '''\n''' + test_case __lowercase = (test_program, timeout, task_id, completion_id[task_id]) __lowercase = executor.submit(lowerCAmelCase__ , *lowerCAmelCase__ ) futures.append(lowerCAmelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCAmelCase__ ): __lowercase = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __lowercase , __lowercase = [], [] for result in results.values(): result.sort() __lowercase = [r[1]['''passed'''] for r in result] total.append(len(lowerCAmelCase__ ) ) correct.append(sum(lowerCAmelCase__ ) ) __lowercase = np.array(lowerCAmelCase__ ) __lowercase = np.array(lowerCAmelCase__ ) __lowercase = k __lowercase = {F"pass@{k}": estimate_pass_at_k(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def UpperCAmelCase ( lowercase , lowercase , lowercase ): """simple docstring""" def estimator(lowercase , lowercase , lowercase ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(lowercase , lowercase ): __lowercase = itertools.repeat(lowercase , len(lowercase ) ) else: assert len(lowercase ) == len(lowercase ) __lowercase = iter(lowercase ) return np.array([estimator(int(lowercase ) , int(lowercase ) , lowercase ) for n, c in zip(lowercase , lowercase )] )
522
from math import factorial __a : dict[str, int] = {str(digit): factorial(digit) for digit in range(1_0)} def UpperCAmelCase ( lowercase ): """simple docstring""" if not isinstance(lowercase , lowercase ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowercase ) ) def UpperCAmelCase ( lowercase = 60 , lowercase = 1000000 ): """simple docstring""" if not isinstance(lowercase , lowercase ) or not isinstance(lowercase , lowercase ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length __lowercase = 0 # the cached sizes of the previous chains __lowercase = {} for start_chain_element in range(1 , lowercase ): # The temporary set will contain the elements of the chain __lowercase = set() __lowercase = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __lowercase = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowercase ) chain_set_length += 1 __lowercase = digit_factorial_sum(lowercase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __lowercase = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution()}''')
522
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> str: __UpperCamelCase = size if size is not None else {'shortest_edge': 20} __UpperCamelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = num_channels __UpperCamelCase = image_size __UpperCamelCase = min_resolution __UpperCamelCase = max_resolution __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size def __lowercase( self ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCAmelCase_ ( lowercase_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = MobileNetVaImageProcessor if is_vision_available() else None def __lowercase( self ) -> Tuple: __UpperCamelCase = MobileNetVaImageProcessingTester(self ) @property def __lowercase( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def __lowercase( self ) -> List[str]: __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'crop_size' ) ) def __lowercase( self ) -> Optional[Any]: __UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) __UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def __lowercase( self ) -> List[str]: pass def __lowercase( self ) -> Dict: __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __UpperCamelCase = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __lowercase( self ) -> List[str]: __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __UpperCamelCase = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __lowercase( self ) -> int: __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __UpperCamelCase = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
383
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ): stooge(__SCREAMING_SNAKE_CASE , 0 , len(__SCREAMING_SNAKE_CASE ) - 1 ) return arr def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int ): if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowercase_ , lowercase_ : List[Any] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowercase_ : str = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (h - t) ) # Recursively sort last 2/3 elements stooge(__SCREAMING_SNAKE_CASE , i + t , (__SCREAMING_SNAKE_CASE) ) # Recursively sort first 2/3 elements stooge(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (h - t) ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =input("Enter numbers separated by a comma:\n").strip() __SCREAMING_SNAKE_CASE =[int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
425
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __lowercase ( __lowerCamelCase ): snake_case_ = """beit""" def __init__( self : List[Any] ,A : Any=8_192 ,A : Union[str, Any]=768 ,A : Any=12 ,A : Dict=12 ,A : Any=3_072 ,A : Union[str, Any]="gelu" ,A : Any=0.0 ,A : List[str]=0.0 ,A : Tuple=0.0_2 ,A : List[Any]=1e-12 ,A : Union[str, Any]=224 ,A : Union[str, Any]=16 ,A : Optional[Any]=3 ,A : int=False ,A : Optional[Any]=False ,A : Any=False ,A : List[str]=False ,A : List[Any]=0.1 ,A : List[str]=0.1 ,A : List[Any]=True ,A : Tuple=[3, 5, 7, 11] ,A : Optional[Any]=[1, 2, 3, 6] ,A : List[str]=True ,A : List[Any]=0.4 ,A : Optional[Any]=256 ,A : str=1 ,A : Tuple=False ,A : Tuple=255 ,**A : Dict ,): '''simple docstring''' super().__init__(**A ) UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : List[str] = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : List[Any] = layer_norm_eps UpperCAmelCase__ : int = image_size UpperCAmelCase__ : Union[str, Any] = patch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Union[str, Any] = use_mask_token UpperCAmelCase__ : Any = use_absolute_position_embeddings UpperCAmelCase__ : Tuple = use_relative_position_bias UpperCAmelCase__ : List[Any] = use_shared_relative_position_bias UpperCAmelCase__ : Any = layer_scale_init_value UpperCAmelCase__ : List[str] = drop_path_rate UpperCAmelCase__ : Optional[int] = use_mean_pooling # decode head attributes (semantic segmentation) UpperCAmelCase__ : List[str] = out_indices UpperCAmelCase__ : Dict = pool_scales # auxiliary head attributes (semantic segmentation) UpperCAmelCase__ : Any = use_auxiliary_head UpperCAmelCase__ : List[str] = auxiliary_loss_weight UpperCAmelCase__ : List[Any] = auxiliary_channels UpperCAmelCase__ : int = auxiliary_num_convs UpperCAmelCase__ : Any = auxiliary_concat_input UpperCAmelCase__ : Optional[int] = semantic_loss_ignore_index class __lowercase ( __lowerCamelCase ): snake_case_ = version.parse("""1.11""" ) @property def __lowercase ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __lowercase ( self : Tuple ): '''simple docstring''' return 1e-4
194
"""simple docstring""" from __future__ import annotations def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Dict = list(range(len(__UpperCamelCase ) ) ) UpperCAmelCase__ : Union[str, Any] = [v / w for v, w in zip(__UpperCamelCase , __UpperCamelCase )] index.sort(key=lambda __UpperCamelCase : ratio[i] , reverse=__UpperCamelCase ) UpperCAmelCase__ : float = 0 UpperCAmelCase__ : list[float] = [0] * len(__UpperCamelCase ) for i in index: if weight[i] <= capacity: UpperCAmelCase__ : Optional[Any] = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase__ : Union[str, Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
194
1
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A_ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class A_ ( unittest.TestCase ): """simple docstring""" @property def __UpperCAmelCase ( self : int ) -> Any: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCAmelCase ( self : Tuple ) -> str: _lowercase = ort.SessionOptions() _lowercase = False return options def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: _lowercase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) _lowercase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) _lowercase = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' ,revision='onnx' ,safety_checker=lowerCamelCase__ ,feature_extractor=lowerCamelCase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _lowercase = 'A red cat sitting on a park bench' _lowercase = np.random.RandomState(0 ) _lowercase = pipe( prompt=lowerCamelCase__ ,image=lowerCamelCase__ ,mask_image=lowerCamelCase__ ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=lowerCamelCase__ ,output_type='np' ,) _lowercase = output.images _lowercase = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) _lowercase = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: _lowercase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) _lowercase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) _lowercase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' ,subfolder='scheduler' ,revision='onnx' ) _lowercase = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' ,revision='onnx' ,scheduler=lowerCamelCase__ ,safety_checker=lowerCamelCase__ ,feature_extractor=lowerCamelCase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _lowercase = 'A red cat sitting on a park bench' _lowercase = np.random.RandomState(0 ) _lowercase = pipe( prompt=lowerCamelCase__ ,image=lowerCamelCase__ ,mask_image=lowerCamelCase__ ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=lowerCamelCase__ ,output_type='np' ,) _lowercase = output.images _lowercase = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) _lowercase = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
67
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Tuple = '▁' snake_case_ : List[str] = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } snake_case_ : Tuple = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } snake_case_ : Union[str, Any] = { 'facebook/m2m100_418M': 1024, } # fmt: off snake_case_ : List[Any] = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class lowercase__ ( lowercase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = [] lowercase__ = [] def __init__( self : Union[str, Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Dict=None ,lowerCamelCase__ : Optional[int]=None ,lowerCamelCase__ : Optional[int]="<s>" ,lowerCamelCase__ : Optional[int]="</s>" ,lowerCamelCase__ : str="</s>" ,lowerCamelCase__ : Union[str, Any]="<pad>" ,lowerCamelCase__ : Optional[int]="<unk>" ,lowerCamelCase__ : str="m2m100" ,lowerCamelCase__ : Optional[Dict[str, Any]] = None ,lowerCamelCase__ : Optional[Any]=8 ,**lowerCamelCase__ : str ,): '''simple docstring''' _UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCamelCase : Optional[int] = language_codes _UpperCamelCase : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES[language_codes] _UpperCamelCase : str = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} _UpperCamelCase : Optional[Any] = kwargs.get('additional_special_tokens' ,[] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowerCamelCase__ ) for lang_code in fairseq_language_code if self.get_lang_token(lowerCamelCase__ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCamelCase__ ,tgt_lang=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,language_codes=lowerCamelCase__ ,sp_model_kwargs=self.sp_model_kwargs ,num_madeup_words=lowerCamelCase__ ,**lowerCamelCase__ ,) _UpperCamelCase : Any = vocab_file _UpperCamelCase : int = load_json(lowerCamelCase__ ) _UpperCamelCase : int = {v: k for k, v in self.encoder.items()} _UpperCamelCase : Any = spm_file _UpperCamelCase : Optional[Any] = load_spm(lowerCamelCase__ ,self.sp_model_kwargs ) _UpperCamelCase : Union[str, Any] = len(self.encoder ) _UpperCamelCase : Dict = { self.get_lang_token(lowerCamelCase__ ): self.encoder_size + i for i, lang_code in enumerate(lowerCamelCase__ ) } _UpperCamelCase : Any = {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowerCamelCase__ )} _UpperCamelCase : Dict = {v: k for k, v in self.lang_token_to_id.items()} _UpperCamelCase : Any = src_lang if src_lang is not None else 'en' _UpperCamelCase : int = tgt_lang _UpperCamelCase : Optional[int] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _UpperCamelCase : List[Any] = num_madeup_words @property def UpperCamelCase_ ( self : int ): '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : str ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ ,out_type=lowerCamelCase__ ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : str ): '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowerCamelCase__ ,self.encoder[self.unk_token] ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : int ): '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowerCamelCase__ ,self.unk_token ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : List[Any] = [] _UpperCamelCase : Union[str, Any] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCamelCase__ ) + token _UpperCamelCase : Optional[int] = [] else: current_sub_tokens.append(lowerCamelCase__ ) out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ ,token_ids_a=lowerCamelCase__ ,already_has_special_tokens=lowerCamelCase__ ) _UpperCamelCase : Tuple = [1] * len(self.prefix_tokens ) _UpperCamelCase : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase__ )) + ([0] * len(lowerCamelCase__ )) + suffix_ones def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : List[Any] = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): '''simple docstring''' _UpperCamelCase : Dict = self.__dict__.copy() _UpperCamelCase : int = None return state def __setstate__( self : Optional[int] ,lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : Dict = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _UpperCamelCase : int = {} _UpperCamelCase : Dict = load_spm(self.spm_file ,self.sp_model_kwargs ) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): '''simple docstring''' _UpperCamelCase : int = Path(lowerCamelCase__ ) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory' ) _UpperCamelCase : List[str] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) _UpperCamelCase : Optional[Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder ,lowerCamelCase__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file ,lowerCamelCase__ ) elif not os.path.isfile(self.spm_file ): with open(lowerCamelCase__ ,'wb' ) as fi: _UpperCamelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (str(lowerCamelCase__ ), str(lowerCamelCase__ )) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : str = "en" ,lowerCamelCase__ : Optional[List[str]] = None ,lowerCamelCase__ : str = "ro" ,**lowerCamelCase__ : List[Any] ,): '''simple docstring''' _UpperCamelCase : Optional[Any] = src_lang _UpperCamelCase : Any = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : int ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[str] ,lowerCamelCase__ : Optional[str] ,**lowerCamelCase__ : Optional[int] ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _UpperCamelCase : int = src_lang _UpperCamelCase : Any = self(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : List[Any] = self.get_lang_id(lowerCamelCase__ ) _UpperCamelCase : Any = tgt_lang_id return inputs def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self : str ): '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.get_lang_token(lowerCamelCase__ ) _UpperCamelCase : str = self.lang_token_to_id[lang_token] _UpperCamelCase : Any = [self.cur_lang_id] _UpperCamelCase : Union[str, Any] = [self.eos_token_id] def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.get_lang_token(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.lang_token_to_id[lang_token] _UpperCamelCase : Union[str, Any] = [self.cur_lang_id] _UpperCamelCase : List[str] = [self.eos_token_id] def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : str ): '''simple docstring''' return self.lang_code_to_token[lang] def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : List[str] = self.get_lang_token(lowerCamelCase__ ) return self.lang_token_to_id[lang_token] def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = sentencepiece.SentencePieceProcessor(**UpperCAmelCase_ ) spm.Load(str(UpperCAmelCase_ ) ) return spm def A__ ( UpperCAmelCase_ ): with open(UpperCAmelCase_ , 'r' ) as f: return json.load(UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): with open(UpperCAmelCase_ , 'w' ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ , indent=2 )
195
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __snake_case ( SCREAMING_SNAKE_CASE): '''simple docstring''' UpperCamelCase__ : Optional[Any] = """philschmid/bart-large-cnn-samsum""" UpperCamelCase__ : str = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) UpperCamelCase__ : Optional[int] = """summarizer""" UpperCamelCase__ : Dict = AutoTokenizer UpperCamelCase__ : str = AutoModelForSeqaSeqLM UpperCamelCase__ : Any = ["""text"""] UpperCamelCase__ : str = ["""text"""] def _a ( self , a_ ): return self.pre_processor(a_ , return_tensors="""pt""" , truncation=a_ ) def _a ( self , a_ ): return self.model.generate(**a_ )[0] def _a ( self , a_ ): return self.pre_processor.decode(a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ )
351
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"""vocab_file""": """spiece.model"""} UpperCAmelCase = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } UpperCAmelCase = {"""bert_for_seq_generation""": 512} class __snake_case ( SCREAMING_SNAKE_CASE): '''simple docstring''' UpperCamelCase__ : Optional[Any] = VOCAB_FILES_NAMES UpperCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : List[int] = [] UpperCamelCase__ : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , a_ , a_="<s>" , a_="</s>" , a_="<unk>" , a_="<pad>" , a_="<::::>" , a_ = None , **a_ , ): a__ = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=a_ , eos_token=a_ , unk_token=a_ , pad_token=a_ , sep_token=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) a__ = vocab_file a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) @property def _a ( self ): return self.sp_model.get_piece_size() def _a ( self ): a__ = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): a__ = self.__dict__.copy() a__ = None return state def __setstate__( self , a_ ): a__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): a__ = {} a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , a_ ): return self.sp_model.encode(a_ , out_type=a_ ) def _a ( self , a_ ): return self.sp_model.piece_to_id(a_ ) def _a ( self , a_ ): a__ = self.sp_model.IdToPiece(a_ ) return token def _a ( self , a_ ): a__ = [] a__ = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a_ ) + token a__ = [] else: current_sub_tokens.append(a_ ) out_string += self.sp_model.decode(a_ ) return out_string.strip() def _a ( self , a_ , a_ = None ): if not os.path.isdir(a_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ = os.path.join( a_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , """wb""" ) as fi: a__ = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
351
1
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__( self: int , a: List[str] , a: str=13 , a: Union[str, Any]=7 , a: Optional[Any]=True , a: Optional[Any]=True , a: str=True , a: Optional[int]=True , a: Optional[int]=99 , a: str=32 , a: str=5 , a: Optional[int]=4 , a: Union[str, Any]=37 , a: List[str]="gelu" , a: int=0.1 , a: Dict=0.1 , a: Dict=1_28 , a: Optional[Any]=32 , a: str=16 , a: int=2 , a: List[str]=0.02 , a: Optional[Any]=3 , a: str=4 , a: Optional[int]=None , ) ->int: '''simple docstring''' a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = scope def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = ids_tensor([self.batch_size] , self.num_choices) a_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self: str) ->Union[str, Any]: '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self: int) ->Any: '''simple docstring''' ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.prepare_config_and_inputs() a_ = True a_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCAmelCase ( self: Optional[Any] , a: List[str] , a: Optional[Any] , a: Optional[Any] , a: Tuple , a: Tuple , a: Union[str, Any] , a: str) ->Any: '''simple docstring''' a_ = NezhaModel(config=a) model.to(a) model.eval() a_ = model(a , attention_mask=a , token_type_ids=a) a_ = model(a , token_type_ids=a) a_ = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _lowerCAmelCase ( self: Optional[int] , a: Any , a: int , a: Tuple , a: Dict , a: List[Any] , a: Optional[int] , a: Optional[int] , a: Optional[int] , a: List[Any] , ) ->int: '''simple docstring''' a_ = True a_ = NezhaModel(a) model.to(a) model.eval() a_ = model( a , attention_mask=a , token_type_ids=a , encoder_hidden_states=a , encoder_attention_mask=a , ) a_ = model( a , attention_mask=a , token_type_ids=a , encoder_hidden_states=a , ) a_ = model(a , attention_mask=a , token_type_ids=a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[Any] , a: Dict , a: List[Any] , a: Union[str, Any] , a: List[Any] , a: List[Any] , a: List[str]) ->List[str]: '''simple docstring''' a_ = NezhaForMaskedLM(config=a) model.to(a) model.eval() a_ = model(a , attention_mask=a , token_type_ids=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCAmelCase ( self: int , a: Dict , a: Dict , a: Dict , a: Dict , a: Optional[int] , a: Any , a: Union[str, Any]) ->str: '''simple docstring''' a_ = NezhaForNextSentencePrediction(config=a) model.to(a) model.eval() a_ = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def _lowerCAmelCase ( self: int , a: Optional[int] , a: int , a: Any , a: int , a: str , a: Union[str, Any] , a: str) ->int: '''simple docstring''' a_ = NezhaForPreTraining(config=a) model.to(a) model.eval() a_ = model( a , attention_mask=a , token_type_ids=a , labels=a , next_sentence_label=a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[Any] , a: Optional[Any] , a: str , a: Dict , a: int , a: int , a: Dict) ->Optional[Any]: '''simple docstring''' a_ = NezhaForQuestionAnswering(config=a) model.to(a) model.eval() a_ = model( a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCAmelCase ( self: List[Any] , a: Optional[Any] , a: Union[str, Any] , a: Union[str, Any] , a: Dict , a: Optional[Any] , a: Dict , a: Dict) ->Dict: '''simple docstring''' a_ = self.num_labels a_ = NezhaForSequenceClassification(a) model.to(a) model.eval() a_ = model(a , attention_mask=a , token_type_ids=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCAmelCase ( self: Any , a: List[str] , a: Optional[Any] , a: Any , a: Optional[Any] , a: Optional[Any] , a: List[Any] , a: Optional[int]) ->str: '''simple docstring''' a_ = self.num_labels a_ = NezhaForTokenClassification(config=a) model.to(a) model.eval() a_ = model(a , attention_mask=a , token_type_ids=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCAmelCase ( self: List[Any] , a: List[str] , a: int , a: List[Any] , a: Optional[Any] , a: Optional[Any] , a: int , a: Dict) ->Tuple: '''simple docstring''' a_ = self.num_choices a_ = NezhaForMultipleChoice(config=a) model.to(a) model.eval() a_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCAmelCase ( self: Any) ->Optional[int]: '''simple docstring''' a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): _UpperCAmelCase =( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase =( { '''feature-extraction''': NezhaModel, '''fill-mask''': NezhaForMaskedLM, '''question-answering''': NezhaForQuestionAnswering, '''text-classification''': NezhaForSequenceClassification, '''token-classification''': NezhaForTokenClassification, '''zero-shot''': NezhaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase =True def _lowerCAmelCase ( self: str , a: Tuple , a: Dict , a: Optional[int]=False) ->Optional[int]: '''simple docstring''' a_ = super()._prepare_for_class(a , a , return_labels=a) if return_labels: if model_class in get_values(a): a_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a) a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) return inputs_dict def _lowerCAmelCase ( self: List[Any]) ->List[Any]: '''simple docstring''' a_ = NezhaModelTester(self) a_ = ConfigTester(self , config_class=a , hidden_size=37) def _lowerCAmelCase ( self: Tuple) ->List[str]: '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self: Union[str, Any]) ->str: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a) def _lowerCAmelCase ( self: Union[str, Any]) ->Union[str, Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*a) def _lowerCAmelCase ( self: List[str]) ->Dict: '''simple docstring''' ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() a_ = None self.model_tester.create_and_check_model_as_decoder( a , a , a , a , a , a , a , a , a , ) def _lowerCAmelCase ( self: Optional[int]) ->str: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a) def _lowerCAmelCase ( self: int) ->Union[str, Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a) def _lowerCAmelCase ( self: Optional[int]) ->str: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*a) def _lowerCAmelCase ( self: Any) ->int: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a) def _lowerCAmelCase ( self: str) ->Union[str, Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a) def _lowerCAmelCase ( self: List[str]) ->List[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a) def _lowerCAmelCase ( self: Dict) ->int: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a) @slow def _lowerCAmelCase ( self: Tuple) ->Tuple: '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = NezhaModel.from_pretrained(a) self.assertIsNotNone(a) @slow @require_torch_gpu def _lowerCAmelCase ( self: List[Any]) ->Any: '''simple docstring''' a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return a_ = True a_ = model_class(config=a) a_ = self._prepare_for_class(a , a) a_ = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "bert.pt")) a_ = torch.jit.load(os.path.join(a , "bert.pt") , map_location=a) loaded(inputs_dict["input_ids"].to(a) , inputs_dict["attention_mask"].to(a)) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' a_ = NezhaModel.from_pretrained("sijunhe/nezha-cn-base") a_ = torch.tensor([[0, 1, 2, 3, 4, 5]]) a_ = torch.tensor([[0, 1, 1, 1, 1, 1]]) with torch.no_grad(): a_ = model(a , attention_mask=a)[0] a_ = torch.Size((1, 6, 7_68)) self.assertEqual(output.shape , a) a_ = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4)) @slow def _lowerCAmelCase ( self: Optional[int]) ->Tuple: '''simple docstring''' a_ = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base") a_ = torch.tensor([[0, 1, 2, 3, 4, 5]]) a_ = torch.tensor([[1, 1, 1, 1, 1, 1]]) with torch.no_grad(): a_ = model(a , attention_mask=a)[0] a_ = torch.Size((1, 6, 2_11_28)) self.assertEqual(output.shape , a) a_ = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4))
685
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase () -> Optional[Any]: '''simple docstring''' a_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } a_ = Dataset.from_dict(lowercase__ ) return dataset class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def _lowerCAmelCase ( self: Union[str, Any]) ->Optional[int]: '''simple docstring''' a_ = get_dataset() a_ = make_duplicate_clusters(a , 0.85) self.assertEqual(len(duplicate_clusters[0]) , 2) def _lowerCAmelCase ( self: Any) ->Dict: '''simple docstring''' a_ = get_dataset() a_ , a_ = deduplicate_dataset(a) self.assertEqual(len(a) , 2) print(a) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , a)
685
1
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = jnp.floataa lowerCamelCase__ = True def A_ ( self ): super().setup() _lowerCamelCase : str = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *lowercase , **lowercase ): _lowerCamelCase : str = super().__call__(*lowercase , **lowercase ) _lowerCamelCase : Optional[Any] = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = FlaxBigBirdForNaturalQuestionsModule def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): def cross_entropy(lowercase__ , lowercase__ , lowercase__=None ): _lowerCamelCase : List[Any] = logits.shape[-1] _lowerCamelCase : Optional[Any] = (labels[..., None] == jnp.arange(lowercase__ )[None]).astype('f4' ) _lowerCamelCase : List[Any] = jax.nn.log_softmax(lowercase__ , axis=-1 ) _lowerCamelCase : Optional[Any] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _lowerCamelCase : Any = reduction(lowercase__ ) return loss _lowerCamelCase : str = partial(lowercase__ , reduction=jnp.mean ) _lowerCamelCase : Any = cross_entropy(lowercase__ , lowercase__ ) _lowerCamelCase : List[str] = cross_entropy(lowercase__ , lowercase__ ) _lowerCamelCase : Tuple = cross_entropy(lowercase__ , lowercase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = "google/bigbird-roberta-base" lowerCamelCase__ = 30_00 lowerCamelCase__ = 1_05_00 lowerCamelCase__ = 1_28 lowerCamelCase__ = 3 lowerCamelCase__ = 1 lowerCamelCase__ = 5 # tx_args lowerCamelCase__ = 3e-5 lowerCamelCase__ = 0.0 lowerCamelCase__ = 2_00_00 lowerCamelCase__ = 0.0095 lowerCamelCase__ = "bigbird-roberta-natural-questions" lowerCamelCase__ = "training-expt" lowerCamelCase__ = "data/nq-training.jsonl" lowerCamelCase__ = "data/nq-validation.jsonl" def A_ ( self ): os.makedirs(self.base_dir , exist_ok=lowercase ) _lowerCamelCase : Optional[Any] = os.path.join(self.base_dir , self.save_dir ) _lowerCamelCase : List[Any] = self.batch_size_per_device * jax.device_count() @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = 40_96 # no dynamic padding on TPUs def __call__( self , lowercase ): _lowerCamelCase : Dict = self.collate_fn(lowercase ) _lowerCamelCase : Union[str, Any] = jax.tree_util.tree_map(lowercase , lowercase ) return batch def A_ ( self , lowercase ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.fetch_inputs(features['input_ids'] ) _lowerCamelCase : Dict = { 'input_ids': jnp.array(lowercase , dtype=jnp.intaa ), 'attention_mask': jnp.array(lowercase , dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa ), } return batch def A_ ( self , lowercase ): _lowerCamelCase : List[str] = [self._fetch_inputs(lowercase ) for ids in input_ids] return zip(*lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : Optional[Any] = [1 for _ in range(len(lowercase ) )] while len(lowercase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case ( lowercase__ , lowercase__ , lowercase__=None ): if seed is not None: _lowerCamelCase : Union[str, Any] = dataset.shuffle(seed=lowercase__ ) for i in range(len(lowercase__ ) // batch_size ): _lowerCamelCase : Dict = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase__ ) @partial(jax.pmap , axis_name='batch' ) def _snake_case ( lowercase__ , lowercase__ , **lowercase__ ): def loss_fn(lowercase__ ): _lowerCamelCase : Optional[Any] = model_inputs.pop('start_labels' ) _lowerCamelCase : List[Any] = model_inputs.pop('end_labels' ) _lowerCamelCase : Any = model_inputs.pop('pooled_labels' ) _lowerCamelCase : Optional[Any] = state.apply_fn(**lowercase__ , params=lowercase__ , dropout_rng=lowercase__ , train=lowercase__ ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = outputs return state.loss_fn( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) _lowerCamelCase, _lowerCamelCase : Tuple = jax.random.split(lowercase__ ) _lowerCamelCase : Dict = jax.value_and_grad(lowercase__ ) _lowerCamelCase, _lowerCamelCase : Any = grad_fn(state.params ) _lowerCamelCase : Tuple = jax.lax.pmean({'loss': loss} , axis_name='batch' ) _lowerCamelCase : Union[str, Any] = jax.lax.pmean(lowercase__ , 'batch' ) _lowerCamelCase : Optional[Any] = state.apply_gradients(grads=lowercase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def _snake_case ( lowercase__ , **lowercase__ ): _lowerCamelCase : List[Any] = model_inputs.pop('start_labels' ) _lowerCamelCase : str = model_inputs.pop('end_labels' ) _lowerCamelCase : Any = model_inputs.pop('pooled_labels' ) _lowerCamelCase : str = state.apply_fn(**lowercase__ , params=state.params , train=lowercase__ ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = outputs _lowerCamelCase : Optional[int] = state.loss_fn(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) _lowerCamelCase : List[str] = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class lowerCAmelCase__ ( train_state.TrainState ): '''simple docstring''' lowerCamelCase__ = struct.field(pytree_node=lowercase ) @dataclass class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = None def A_ ( self , lowercase , lowercase , lowercase , lowercase=None ): _lowerCamelCase : Dict = model.params _lowerCamelCase : Optional[int] = TrainState.create( apply_fn=model.__call__ , params=lowercase , tx=lowercase , loss_fn=lowercase , ) if ckpt_dir is not None: _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = restore_checkpoint(lowercase , lowercase ) _lowerCamelCase : Dict = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } _lowerCamelCase, _lowerCamelCase : List[Any] = build_tx(**lowercase ) _lowerCamelCase : List[Any] = train_state.TrainState( step=lowercase , apply_fn=model.__call__ , params=lowercase , tx=lowercase , opt_state=lowercase , ) _lowerCamelCase : Optional[int] = args _lowerCamelCase : str = data_collator _lowerCamelCase : Optional[int] = lr _lowerCamelCase : Dict = params _lowerCamelCase : Tuple = jax_utils.replicate(lowercase ) return state def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : List[Any] = self.args _lowerCamelCase : Optional[Any] = len(lowercase ) // args.batch_size _lowerCamelCase : int = jax.random.PRNGKey(0 ) _lowerCamelCase : List[Any] = jax.random.split(lowercase , jax.device_count() ) for epoch in range(args.max_epochs ): _lowerCamelCase : Optional[int] = jnp.array(0 , dtype=jnp.floataa ) _lowerCamelCase : int = get_batched_dataset(lowercase , args.batch_size , seed=lowercase ) _lowerCamelCase : List[Any] = 0 for batch in tqdm(lowercase , total=lowercase , desc=F'''Running EPOCH-{epoch}''' ): _lowerCamelCase : Optional[Any] = self.data_collator(lowercase ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self.train_step_fn(lowercase , lowercase , **lowercase ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: _lowerCamelCase : Optional[Any] = jax_utils.unreplicate(state.step ) _lowerCamelCase : str = running_loss.item() / i _lowerCamelCase : Optional[int] = self.scheduler_fn(state_step - 1 ) _lowerCamelCase : List[Any] = self.evaluate(lowercase , lowercase ) _lowerCamelCase : List[Any] = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(lowercase ) ) self.logger.log(lowercase , commit=lowercase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''' , state=lowercase ) def A_ ( self , lowercase , lowercase ): _lowerCamelCase : List[str] = get_batched_dataset(lowercase , self.args.batch_size ) _lowerCamelCase : Tuple = len(lowercase ) // self.args.batch_size _lowerCamelCase : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa ) _lowerCamelCase : Tuple = 0 for batch in tqdm(lowercase , total=lowercase , desc='Evaluating ... ' ): _lowerCamelCase : List[Any] = self.data_collator(lowercase ) _lowerCamelCase : Tuple = self.val_step_fn(lowercase , **lowercase ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Any = jax_utils.unreplicate(lowercase ) print(F'''SAVING CHECKPOINT IN {save_dir}''' , end=' ... ' ) self.model_save_fn(lowercase , params=state.params ) with open(os.path.join(lowercase , 'opt_state.msgpack' ) , 'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(lowercase , 'args.joblib' ) ) joblib.dump(self.data_collator , os.path.join(lowercase , 'data_collator.joblib' ) ) with open(os.path.join(lowercase , 'training_state.json' ) , 'w' ) as f: json.dump({'step': state.step.item()} , lowercase ) print('DONE' ) def _snake_case ( lowercase__ , lowercase__ ): print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=' ... ' ) with open(os.path.join(lowercase__ , 'flax_model.msgpack' ) , 'rb' ) as f: _lowerCamelCase : int = from_bytes(state.params , f.read() ) with open(os.path.join(lowercase__ , 'opt_state.msgpack' ) , 'rb' ) as f: _lowerCamelCase : Tuple = from_bytes(state.opt_state , f.read() ) _lowerCamelCase : List[Any] = joblib.load(os.path.join(lowercase__ , 'args.joblib' ) ) _lowerCamelCase : int = joblib.load(os.path.join(lowercase__ , 'data_collator.joblib' ) ) with open(os.path.join(lowercase__ , 'training_state.json' ) , 'r' ) as f: _lowerCamelCase : str = json.load(lowercase__ ) _lowerCamelCase : int = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : str = num_train_steps - warmup_steps _lowerCamelCase : Tuple = optax.linear_schedule(init_value=lowercase__ , end_value=lowercase__ , transition_steps=lowercase__ ) _lowerCamelCase : Any = optax.linear_schedule(init_value=lowercase__ , end_value=1E-7 , transition_steps=lowercase__ ) _lowerCamelCase : List[Any] = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): def weight_decay_mask(lowercase__ ): _lowerCamelCase : int = traverse_util.flatten_dict(lowercase__ ) _lowerCamelCase : List[Any] = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase__ ) _lowerCamelCase : List[Any] = scheduler_fn(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) _lowerCamelCase : Any = optax.adamw(learning_rate=lowercase__ , weight_decay=lowercase__ , mask=lowercase__ ) return tx, lr
492
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """realm""" def __init__( self , lowercase=30522 , lowercase=768 , lowercase=128 , lowercase=12 , lowercase=12 , lowercase=8 , lowercase=3072 , lowercase="gelu_new" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=256 , lowercase=10 , lowercase=1E-3 , lowercase=5 , lowercase=320 , lowercase=13353718 , lowercase=5000 , lowercase=1 , lowercase=0 , lowercase=2 , **lowercase , ): super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) # Common config _lowerCamelCase : str = vocab_size _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : int = hidden_size _lowerCamelCase : Optional[Any] = retriever_proj_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : int = num_candidates _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : int = layer_norm_eps # Reader config _lowerCamelCase : Tuple = span_hidden_size _lowerCamelCase : int = max_span_width _lowerCamelCase : Tuple = reader_layer_norm_eps _lowerCamelCase : Union[str, Any] = reader_beam_size _lowerCamelCase : Union[str, Any] = reader_seq_len # Retrieval config _lowerCamelCase : Optional[Any] = num_block_records _lowerCamelCase : str = searcher_beam_size
492
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __snake_case : '''simple docstring''' def __init__( self , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = 13 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 99 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 5_12 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 0.02 SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = '''last''' SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = 0 def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) SCREAMING_SNAKE_CASE__ = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TFFlaubertModel(config=A_ ) SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} SCREAMING_SNAKE_CASE__ = model(A_ ) SCREAMING_SNAKE_CASE__ = [input_ids, input_mask] SCREAMING_SNAKE_CASE__ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TFFlaubertWithLMHeadModel(A_ ) SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} SCREAMING_SNAKE_CASE__ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TFFlaubertForQuestionAnsweringSimple(A_ ) SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''lengths''': input_lengths} SCREAMING_SNAKE_CASE__ = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TFFlaubertForSequenceClassification(A_ ) SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''lengths''': input_lengths} SCREAMING_SNAKE_CASE__ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFFlaubertForTokenClassification(config=A_ ) SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE__ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = TFFlaubertForMultipleChoice(config=A_ ) SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE__ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ : Union[str, Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowerCamelCase__ : Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Optional[Any] = False def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TFFlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=A_ , emb_dim=37 ) def lowercase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" SCREAMING_SNAKE_CASE__ = model(A_ )[0] SCREAMING_SNAKE_CASE__ = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
100
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = """dandelin/vilt-b32-finetuned-vqa""" __lowercase = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) __lowercase = """image_qa""" __lowercase = AutoProcessor __lowercase = AutoModelForVisualQuestionAnswering __lowercase = ["""image""", """text"""] __lowercase = ["""text"""] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return self.pre_processor(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='pt' ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" with torch.no_grad(): return self.model(**lowerCAmelCase_ ).logits def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
495
0
"""simple docstring""" import heapq def A_ ( _lowerCAmelCase : dict ): """simple docstring""" _a = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_lowerCAmelCase, [-1 * len(_lowerCAmelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices _a = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _a = heapq.heappop(_lowerCAmelCase )[1][0] chosen_vertices.add(_lowerCAmelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _a = elem[1][1].index(_lowerCAmelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_lowerCAmelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __snake_case = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
285
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
285
1
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''nvidia/segformer-b0-finetuned-ade-512-512''': ( '''https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json''' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowercase( __a ): '''simple docstring''' lowercase__ = "segformer" def __init__( self: List[str], a_: Any=3, a_: List[Any]=4, a_: int=[2, 2, 2, 2], a_: Any=[8, 4, 2, 1], a_: List[str]=[32, 64, 160, 256], a_: str=[7, 3, 3, 3], a_: int=[4, 2, 2, 2], a_: int=[1, 2, 5, 8], a_: Dict=[4, 4, 4, 4], a_: Optional[int]="gelu", a_: Union[str, Any]=0.0, a_: int=0.0, a_: List[Any]=0.1, a_: Dict=0.02, a_: Union[str, Any]=0.1, a_: Optional[Any]=1E-6, a_: List[Any]=256, a_: Optional[int]=255, **a_: str, ): '''simple docstring''' super().__init__(**lowercase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""", lowercase_, ) _snake_case : Optional[Any] = num_channels _snake_case : Optional[Any] = num_encoder_blocks _snake_case : List[Any] = depths _snake_case : Union[str, Any] = sr_ratios _snake_case : Dict = hidden_sizes _snake_case : str = patch_sizes _snake_case : Optional[Any] = strides _snake_case : Union[str, Any] = mlp_ratios _snake_case : Any = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Any = hidden_dropout_prob _snake_case : List[Any] = attention_probs_dropout_prob _snake_case : List[Any] = classifier_dropout_prob _snake_case : Any = initializer_range _snake_case : Optional[int] = drop_path_rate _snake_case : List[Any] = layer_norm_eps _snake_case : Tuple = decoder_hidden_size _snake_case : int = kwargs.get("""reshape_last_stage""", lowercase_ ) _snake_case : Tuple = semantic_loss_ignore_index class lowercase( __a ): '''simple docstring''' lowercase__ = version.parse("1.11" ) @property def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCamelCase_ ( self: str ): '''simple docstring''' return 1E-4 @property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return 12
609
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCAmelCase__ ( a__ , a__ , a__ = None ) ->str: '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path _UpperCamelCase = quote(a__ ) return hfh.hf_hub_url(a__ , a__ , repo_type="dataset" , revision=a__ )
547
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __lowercase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase ( a ): """simple docstring""" __lowercase :str = "upernet" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=512 , UpperCamelCase__=0.02 , UpperCamelCase__=[1, 2, 3, 6] , UpperCamelCase__=True , UpperCamelCase__=0.4 , UpperCamelCase__=384 , UpperCamelCase__=256 , UpperCamelCase__=1 , UpperCamelCase__=False , UpperCamelCase__=255 , **UpperCamelCase__ , ) -> str: '''simple docstring''' super().__init__(**UpperCamelCase__ ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowerCamelCase_ = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase_ = backbone_config.get('''model_type''' ) lowerCamelCase_ = CONFIG_MAPPING[backbone_model_type] lowerCamelCase_ = config_class.from_dict(UpperCamelCase__ ) lowerCamelCase_ = backbone_config lowerCamelCase_ = hidden_size lowerCamelCase_ = initializer_range lowerCamelCase_ = pool_scales lowerCamelCase_ = use_auxiliary_head lowerCamelCase_ = auxiliary_loss_weight lowerCamelCase_ = auxiliary_in_channels lowerCamelCase_ = auxiliary_channels lowerCamelCase_ = auxiliary_num_convs lowerCamelCase_ = auxiliary_concat_input lowerCamelCase_ = loss_ignore_index def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = copy.deepcopy(self.__dict__ ) lowerCamelCase_ = self.backbone_config.to_dict() lowerCamelCase_ = self.__class__.model_type return output
705
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = tempfile.mkdtemp() # fmt: off lowerCamelCase_ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowerCamelCase_ = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) lowerCamelCase_ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] lowerCamelCase_ = {'''unk_token''': '''<unk>'''} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def _lowerCAmelCase ( self , **UpperCamelCase__ ) -> str: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowerCAmelCase ( self , **UpperCamelCase__ ) -> Dict: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowerCAmelCase ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase__ ) lowerCamelCase_ = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) lowerCamelCase_ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCamelCase__ , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCamelCase__ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCamelCase__ ) lowerCamelCase_ = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def _lowerCAmelCase ( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCamelCase__ ) lowerCamelCase_ = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
66
0
"""simple docstring""" import argparse import struct import unittest class lowercase : def __init__(self : Any ,SCREAMING_SNAKE_CASE_ : bytes ) -> None: """simple docstring""" lowerCAmelCase = data # Initialize hash values lowerCAmelCase = [ 0X6A_09_E6_67, 0XBB_67_AE_85, 0X3C_6E_F3_72, 0XA5_4F_F5_3A, 0X51_0E_52_7F, 0X9B_05_68_8C, 0X1F_83_D9_AB, 0X5B_E0_CD_19, ] # Initialize round constants lowerCAmelCase = [ 0X42_8A_2F_98, 0X71_37_44_91, 0XB5_C0_FB_CF, 0XE9_B5_DB_A5, 0X39_56_C2_5B, 0X59_F1_11_F1, 0X92_3F_82_A4, 0XAB_1C_5E_D5, 0XD8_07_AA_98, 0X12_83_5B_01, 0X24_31_85_BE, 0X55_0C_7D_C3, 0X72_BE_5D_74, 0X80_DE_B1_FE, 0X9B_DC_06_A7, 0XC1_9B_F1_74, 0XE4_9B_69_C1, 0XEF_BE_47_86, 0X0F_C1_9D_C6, 0X24_0C_A1_CC, 0X2D_E9_2C_6F, 0X4A_74_84_AA, 0X5C_B0_A9_DC, 0X76_F9_88_DA, 0X98_3E_51_52, 0XA8_31_C6_6D, 0XB0_03_27_C8, 0XBF_59_7F_C7, 0XC6_E0_0B_F3, 0XD5_A7_91_47, 0X06_CA_63_51, 0X14_29_29_67, 0X27_B7_0A_85, 0X2E_1B_21_38, 0X4D_2C_6D_FC, 0X53_38_0D_13, 0X65_0A_73_54, 0X76_6A_0A_BB, 0X81_C2_C9_2E, 0X92_72_2C_85, 0XA2_BF_E8_A1, 0XA8_1A_66_4B, 0XC2_4B_8B_70, 0XC7_6C_51_A3, 0XD1_92_E8_19, 0XD6_99_06_24, 0XF4_0E_35_85, 0X10_6A_A0_70, 0X19_A4_C1_16, 0X1E_37_6C_08, 0X27_48_77_4C, 0X34_B0_BC_B5, 0X39_1C_0C_B3, 0X4E_D8_AA_4A, 0X5B_9C_CA_4F, 0X68_2E_6F_F3, 0X74_8F_82_EE, 0X78_A5_63_6F, 0X84_C8_78_14, 0X8C_C7_02_08, 0X90_BE_FF_FA, 0XA4_50_6C_EB, 0XBE_F9_A3_F7, 0XC6_71_78_F2, ] lowerCAmelCase = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCAmelCase (SCREAMING_SNAKE_CASE_ : bytes ) -> bytes: """simple docstring""" lowerCAmelCase = B'''\x80''' + (B'''\x00''' * (63 - (len(SCREAMING_SNAKE_CASE_ ) + 8) % 64)) lowerCAmelCase = struct.pack('''>Q''' ,(len(SCREAMING_SNAKE_CASE_ ) * 8) ) return data + padding + big_endian_integer def UpperCAmelCase (self : str ) -> None: """simple docstring""" lowerCAmelCase = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCAmelCase = list(struct.unpack('''>16L''' ,SCREAMING_SNAKE_CASE_ ) ) # add 48 0-ed integers words += [0] * 48 lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCAmelCase = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) lowerCAmelCase = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) lowerCAmelCase = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_00_00_00_00 # Compression lowerCAmelCase = self.ror(SCREAMING_SNAKE_CASE_ ,6 ) ^ self.ror(SCREAMING_SNAKE_CASE_ ,11 ) ^ self.ror(SCREAMING_SNAKE_CASE_ ,25 ) lowerCAmelCase = (e & f) ^ ((~e & 0XFF_FF_FF_FF) & g) lowerCAmelCase = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_00_00_00_00 lowerCAmelCase = self.ror(SCREAMING_SNAKE_CASE_ ,2 ) ^ self.ror(SCREAMING_SNAKE_CASE_ ,13 ) ^ self.ror(SCREAMING_SNAKE_CASE_ ,22 ) lowerCAmelCase = (a & b) ^ (a & c) ^ (b & c) lowerCAmelCase = (sa + maj) % 0X1_00_00_00_00 lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = ( g, f, e, ((d + tempa) % 0X1_00_00_00_00), c, b, a, ((tempa + tempa) % 0X1_00_00_00_00), ) lowerCAmelCase = [a, b, c, d, e, f, g, h] # Modify final values lowerCAmelCase = [ ((element + mutated_hash_values[index]) % 0X1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowerCAmelCase = ''''''.join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(8 ) for value in self.hashes] ) def UpperCAmelCase (self : Union[str, Any] ,SCREAMING_SNAKE_CASE_ : int ,SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" return 0XFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class lowercase ( unittest.TestCase ): def UpperCAmelCase (self : str ) -> None: """simple docstring""" import hashlib lowerCAmelCase = bytes('''Test String''' ,'''utf-8''' ) self.assertEqual(SHAaaa(SCREAMING_SNAKE_CASE_ ).hash ,hashlib.shaaaa(SCREAMING_SNAKE_CASE_ ).hexdigest() ) def __magic_name__ ( ) -> None: '''simple docstring''' import doctest doctest.testmod() lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''-s''', '''--string''', dest='''input_string''', default='''Hello World!! Welcome to Cryptography''', help='''Hash the string''', ) parser.add_argument( '''-f''', '''--file''', dest='''input_file''', help='''Hash contents of a file''' ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, '''rb''' ) as f: lowerCAmelCase = f.read() else: lowerCAmelCase = bytes(_lowerCamelCase, '''utf-8''' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
535
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = DownBlockaD # noqa F405 lowercase = '''down''' def UpperCAmelCase (self : int ) -> List[str]: """simple docstring""" lowerCAmelCase = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = ResnetDownsampleBlockaD # noqa F405 lowercase = '''down''' def UpperCAmelCase (self : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = AttnDownBlockaD # noqa F405 lowercase = '''down''' def UpperCAmelCase (self : Tuple ) -> List[str]: """simple docstring""" lowerCAmelCase = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = CrossAttnDownBlockaD # noqa F405 lowercase = '''down''' def UpperCAmelCase (self : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase , lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase = 32 return init_dict, inputs_dict def UpperCAmelCase (self : List[Any] ) -> str: """simple docstring""" lowerCAmelCase = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = SimpleCrossAttnDownBlockaD # noqa F405 lowercase = '''down''' @property def UpperCAmelCase (self : Dict ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : List[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase , lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' ,'''MPS result is not consistent''' ) def UpperCAmelCase (self : str ) -> Tuple: """simple docstring""" lowerCAmelCase = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = SkipDownBlockaD # noqa F405 lowercase = '''down''' @property def UpperCAmelCase (self : List[Any] ) -> int: """simple docstring""" return super().get_dummy_input(include_skip_sample=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : Optional[int] ) -> int: """simple docstring""" lowerCAmelCase = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = AttnSkipDownBlockaD # noqa F405 lowercase = '''down''' @property def UpperCAmelCase (self : List[Any] ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_skip_sample=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : Any ) -> List[str]: """simple docstring""" lowerCAmelCase = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = DownEncoderBlockaD # noqa F405 lowercase = '''down''' @property def UpperCAmelCase (self : int ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : int ) -> Tuple: """simple docstring""" lowerCAmelCase = { '''in_channels''': 32, '''out_channels''': 32, } lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase (self : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = AttnDownEncoderBlockaD # noqa F405 lowercase = '''down''' @property def UpperCAmelCase (self : Tuple ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = { '''in_channels''': 32, '''out_channels''': 32, } lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase (self : Any ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = UNetMidBlockaD # noqa F405 lowercase = '''mid''' def UpperCAmelCase (self : List[Any] ) -> str: """simple docstring""" lowerCAmelCase = { '''in_channels''': 32, '''temb_channels''': 128, } lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase (self : Optional[Any] ) -> str: """simple docstring""" lowerCAmelCase = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = UNetMidBlockaDCrossAttn # noqa F405 lowercase = '''mid''' def UpperCAmelCase (self : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase , lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase = 32 return init_dict, inputs_dict def UpperCAmelCase (self : Any ) -> Dict: """simple docstring""" lowerCAmelCase = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowercase = '''mid''' @property def UpperCAmelCase (self : Union[str, Any] ) -> str: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : int ) -> int: """simple docstring""" lowerCAmelCase , lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase = 32 return init_dict, inputs_dict def UpperCAmelCase (self : str ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = UpBlockaD # noqa F405 lowercase = '''up''' @property def UpperCAmelCase (self : int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : Tuple ) -> Optional[int]: """simple docstring""" lowerCAmelCase = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = ResnetUpsampleBlockaD # noqa F405 lowercase = '''up''' @property def UpperCAmelCase (self : Optional[int] ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : Dict ) -> List[Any]: """simple docstring""" lowerCAmelCase = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = CrossAttnUpBlockaD # noqa F405 lowercase = '''up''' @property def UpperCAmelCase (self : Optional[int] ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : Tuple ) -> List[str]: """simple docstring""" lowerCAmelCase , lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase = 32 return init_dict, inputs_dict def UpperCAmelCase (self : str ) -> Tuple: """simple docstring""" lowerCAmelCase = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = SimpleCrossAttnUpBlockaD # noqa F405 lowercase = '''up''' @property def UpperCAmelCase (self : Any ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ,include_encoder_hidden_states=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : Union[str, Any] ) -> int: """simple docstring""" lowerCAmelCase , lowerCAmelCase = super().prepare_init_args_and_inputs_for_common() lowerCAmelCase = 32 return init_dict, inputs_dict def UpperCAmelCase (self : Tuple ) -> Any: """simple docstring""" lowerCAmelCase = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = AttnUpBlockaD # noqa F405 lowercase = '''up''' @property def UpperCAmelCase (self : List[str] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) @unittest.skipIf(torch_device == '''mps''' ,'''MPS result is not consistent''' ) def UpperCAmelCase (self : int ) -> Tuple: """simple docstring""" lowerCAmelCase = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = SkipUpBlockaD # noqa F405 lowercase = '''up''' @property def UpperCAmelCase (self : Optional[int] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : str ) -> int: """simple docstring""" lowerCAmelCase = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = AttnSkipUpBlockaD # noqa F405 lowercase = '''up''' @property def UpperCAmelCase (self : Optional[Any] ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : Any ) -> int: """simple docstring""" lowerCAmelCase = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = UpDecoderBlockaD # noqa F405 lowercase = '''up''' @property def UpperCAmelCase (self : List[str] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = {'''in_channels''': 32, '''out_channels''': 32} lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase (self : Dict ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(SCREAMING_SNAKE_CASE_ ) class lowercase ( lowercase__ ,unittest.TestCase ): lowercase = AttnUpDecoderBlockaD # noqa F405 lowercase = '''up''' @property def UpperCAmelCase (self : Any ) -> Dict: """simple docstring""" return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : Any ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = {'''in_channels''': 32, '''out_channels''': 32} lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase (self : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(SCREAMING_SNAKE_CASE_ )
535
1
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig UpperCAmelCase = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring UpperCAmelCase = '''UperNetConfig''' class A_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case , snake_case = 0 , snake_case = False , snake_case = 1 , ): super().__init__() lowercase = nn.Convad( in_channels=snake_case , out_channels=snake_case , kernel_size=snake_case , padding=snake_case , bias=snake_case , dilation=snake_case , ) lowercase = nn.BatchNormad(snake_case ) lowercase = nn.ReLU() def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = self.conv(snake_case ) lowercase = self.batch_norm(snake_case ) lowercase = self.activation(snake_case ) return output class A_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case ): super().__init__() lowercase = [ nn.AdaptiveAvgPoolad(snake_case ), UperNetConvModule(snake_case , snake_case , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(snake_case ) , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = input for layer in self.layers: lowercase = layer(snake_case ) return hidden_state class A_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case , snake_case ): super().__init__() lowercase = pool_scales lowercase = align_corners lowercase = in_channels lowercase = channels lowercase = [] for i, pool_scale in enumerate(snake_case ): lowercase = UperNetPyramidPoolingBlock(pool_scale=snake_case , in_channels=snake_case , channels=snake_case ) self.blocks.append(snake_case ) self.add_module(str(snake_case ) , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = [] for ppm in self.blocks: lowercase = ppm(snake_case ) lowercase = nn.functional.interpolate( snake_case , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(snake_case ) return ppm_outs class A_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case , snake_case ): super().__init__() lowercase = config lowercase = config.pool_scales # e.g. (1, 2, 3, 6) lowercase = in_channels lowercase = config.hidden_size lowercase = False lowercase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowercase = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowercase = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowercase = nn.ModuleList() lowercase = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase = UperNetConvModule(snake_case , self.channels , kernel_size=1 ) lowercase = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(snake_case ) self.fpn_convs.append(snake_case ) lowercase = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def SCREAMING_SNAKE_CASE__ ( self ): self.apply(self._init_weights ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if isinstance(snake_case , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = inputs[-1] lowercase = [x] psp_outs.extend(self.psp_modules(snake_case ) ) lowercase = torch.cat(snake_case , dim=1 ) lowercase = self.bottleneck(snake_case ) return output def SCREAMING_SNAKE_CASE__ ( self , snake_case ): # build laterals lowercase = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(snake_case ) ) # build top-down path lowercase = len(snake_case ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowercase = laterals[i - 1].shape[2:] lowercase = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=snake_case , mode='bilinear' , align_corners=self.align_corners ) # build outputs lowercase = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowercase = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) lowercase = torch.cat(snake_case , dim=1 ) lowercase = self.fpn_bottleneck(snake_case ) lowercase = self.classifier(snake_case ) return output class A_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case , snake_case = 2 , snake_case = 3 , snake_case = 1 ): super().__init__() lowercase = config lowercase = config.auxiliary_in_channels lowercase = config.auxiliary_channels lowercase = config.auxiliary_num_convs lowercase = config.auxiliary_concat_input lowercase = in_index lowercase = (kernel_size // 2) * dilation lowercase = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=snake_case , padding=snake_case , dilation=snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=snake_case , padding=snake_case , dilation=snake_case ) ) if self.num_convs == 0: lowercase = nn.Identity() else: lowercase = nn.Sequential(*snake_case ) if self.concat_input: lowercase = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=snake_case , padding=kernel_size // 2 ) lowercase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def SCREAMING_SNAKE_CASE__ ( self ): self.apply(self._init_weights ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if isinstance(snake_case , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def SCREAMING_SNAKE_CASE__ ( self , snake_case ): # just take the relevant feature maps lowercase = encoder_hidden_states[self.in_index] lowercase = self.convs(snake_case ) if self.concat_input: lowercase = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowercase = self.classifier(snake_case ) return output class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : str = UperNetConfig _UpperCamelCase : Tuple = """pixel_values""" _UpperCamelCase : Any = True def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if isinstance(snake_case , snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def SCREAMING_SNAKE_CASE__ ( self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=False ): if isinstance(snake_case , snake_case ): lowercase = value UpperCAmelCase = R''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCAmelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , __lowerCamelCase , ) class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , snake_case ): super().__init__(snake_case ) lowercase = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase = UperNetHead(snake_case , in_channels=self.backbone.channels ) lowercase = UperNetFCNHead(snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=snake_case , config_class=_CONFIG_FOR_DOC ) def SCREAMING_SNAKE_CASE__ ( self , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , ): lowercase = return_dict if return_dict is not None else self.config.use_return_dict lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase = output_attentions if output_attentions is not None else self.config.output_attentions lowercase = self.backbone.forward_with_filtered_kwargs( snake_case , output_hidden_states=snake_case , output_attentions=snake_case ) lowercase = outputs.feature_maps lowercase = self.decode_head(snake_case ) lowercase = nn.functional.interpolate(snake_case , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=snake_case ) lowercase = None if self.auxiliary_head is not None: lowercase = self.auxiliary_head(snake_case ) lowercase = nn.functional.interpolate( snake_case , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=snake_case ) lowercase = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss lowercase = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase = loss_fct(snake_case , snake_case ) lowercase = loss_fct(snake_case , snake_case ) lowercase = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase = (logits,) + outputs[1:] else: lowercase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=snake_case , logits=snake_case , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
565
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''DeiTFeatureExtractor'''] UpperCAmelCase = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
565
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCAmelCase__ ( ): snake_case_ : Optional[Any] = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=lowerCAmelCase_ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=lowerCAmelCase_ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=lowerCAmelCase_ ) return parser.parse_args() def lowerCAmelCase__ ( ): snake_case_ : Optional[int] = parse_args() # Import training_script as a module. snake_case_ : Tuple = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case_ : Dict = script_fpath.stem snake_case_ : Optional[Any] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv snake_case_ : str = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
568
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
from manim import * class lowerCAmelCase_ ( lowerCamelCase_ ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = Rectangle(height=0.5 ,width=0.5 ) SCREAMING_SNAKE_CASE_ : List[str] = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE_ : List[str] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ : Optional[Any] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ : str = VGroup(*snake_case__ ).arrange(snake_case__ ,buff=0 ) SCREAMING_SNAKE_CASE_ : Any = VGroup(*snake_case__ ).arrange(snake_case__ ,buff=0 ) SCREAMING_SNAKE_CASE_ : Any = VGroup(snake_case__ ,snake_case__ ).arrange(snake_case__ ,buff=0 ) SCREAMING_SNAKE_CASE_ : int = Text('CPU' ,font_size=24 ) SCREAMING_SNAKE_CASE_ : Dict = Group(snake_case__ ,snake_case__ ).arrange(snake_case__ ,buff=0.5 ,aligned_edge=snake_case__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = [mem.copy() for i in range(1 )] SCREAMING_SNAKE_CASE_ : Tuple = VGroup(*snake_case__ ).arrange(snake_case__ ,buff=0 ) SCREAMING_SNAKE_CASE_ : Tuple = Text('GPU' ,font_size=24 ) SCREAMING_SNAKE_CASE_ : List[Any] = Group(snake_case__ ,snake_case__ ).arrange(snake_case__ ,buff=0.5 ,aligned_edge=snake_case__ ) gpu.align_to(snake_case__ ,snake_case__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ : Dict = VGroup(*snake_case__ ).arrange(snake_case__ ,buff=0 ) SCREAMING_SNAKE_CASE_ : List[str] = Text('Model' ,font_size=24 ) SCREAMING_SNAKE_CASE_ : Any = Group(snake_case__ ,snake_case__ ).arrange(snake_case__ ,buff=0.5 ,aligned_edge=snake_case__ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case__ ,run_time=1 ) ,Create(snake_case__ ,run_time=1 ) ,Create(snake_case__ ,run_time=1 ) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' ,font_size=24 ,) SCREAMING_SNAKE_CASE_ : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE_ : int = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case__ ,run_time=2.5 ) ,Write(snake_case__ ) ,Write(snake_case__ ) ) self.add(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Tuple = [] for i, rect in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case__ ,opacity=0.7 ) cpu_target.move_to(snake_case__ ) cpu_target.generate_target() SCREAMING_SNAKE_CASE_ : int = 0.46 / 4 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=snake_case__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=snake_case__ ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=snake_case__ ,buff=0.0 ) cpu_targs.append(snake_case__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case__ ) ) second_animations.append(MoveToTarget(snake_case__ ,run_time=1.5 ) ) self.play(*snake_case__ ) self.play(*snake_case__ ) self.wait()
704
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCamelCase__ : str = logging.getLogger(__name__) @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : str __a : str __a : Optional[str] = None __a : Optional[str] = None __a : Optional[str] = None @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : List[int] __a : Optional[List[int]] = None __a : Optional[List[int]] = None __a : Optional[Union[int, float]] = None __a : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = None ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( snake_case__ ,'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' ,tokenizer.__class__.__name__ ,str(snake_case__ ) ,snake_case__ ,) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ : Dict = cached_features_file + '.lock' with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(snake_case__ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) SCREAMING_SNAKE_CASE_ : List[Any] = ( processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) ) logger.info('Training examples: %s' ,len(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) logger.info('Saving features into cached file %s' ,snake_case__ ) torch.save(self.features ,snake_case__ ) def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ : __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 128 ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[int] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list SCREAMING_SNAKE_CASE_ : int = processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(snake_case__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.data.Dataset.from_generator( snake_case__ ,( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) ,( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) ,) def snake_case ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list class lowerCAmelCase_ ( lowerCamelCase_ ): def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_train_set.txt' ) ) ,'train' ) def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_evaluation_set.txt' ) ) ,'dev' ) def snake_case ( self ): return ["contradiction", "entailment", "neutral"] def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i, line in enumerate(snake_case__ ): if i == 0: continue SCREAMING_SNAKE_CASE_ : List[str] = '%s-%s' % (set_type, line[0]) SCREAMING_SNAKE_CASE_ : Dict = line[5] SCREAMING_SNAKE_CASE_ : Dict = line[6] SCREAMING_SNAKE_CASE_ : Tuple = line[7][2:] if line[7].startswith('ex' ) else line[7] SCREAMING_SNAKE_CASE_ : Optional[int] = line[0] examples.append(InputExample(guid=snake_case__ ,text_a=snake_case__ ,text_b=snake_case__ ,label=snake_case__ ,pairID=snake_case__ ) ) return examples def __UpperCAmelCase ( lowerCamelCase_ : List[InputExample] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : PreTrainedTokenizer , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase_ )} SCREAMING_SNAKE_CASE_ : Dict = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) SCREAMING_SNAKE_CASE_ : Any = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='max_length' , truncation=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE_ : List[str] = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase_ , label=lowerCamelCase_ , pairID=lowerCamelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features UpperCamelCase__ : str = { '''hans''': 3, } UpperCamelCase__ : Dict = { '''hans''': HansProcessor, }
685
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase (__A , __A , __A): """simple docstring""" if isinstance(__A , torch.Tensor): return image elif isinstance(__A , PIL.Image.Image): _a = [image] if isinstance(image[0] , PIL.Image.Image): _a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image] _a = np.concatenate(__A , axis=0) _a = np.array(__A).astype(np.floataa) / 2_55.0 _a = image.transpose(0 , 3 , 1 , 2) _a = 2.0 * image - 1.0 _a = torch.from_numpy(__A) elif isinstance(image[0] , torch.Tensor): _a = torch.cat(__A , dim=0) return image def lowerCAmelCase (__A , __A , __A , __A=0.99_95): """simple docstring""" if not isinstance(__A , np.ndarray): _a = True _a = va.device _a = va.cpu().numpy() _a = va.cpu().numpy() _a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A))) if np.abs(__A) > DOT_THRESHOLD: _a = (1 - t) * va + t * va else: _a = np.arccos(__A) _a = np.sin(__A) _a = theta_a * t _a = np.sin(__A) _a = np.sin(theta_a - theta_t) / sin_theta_a _a = sin_theta_t / sin_theta_a _a = sa * va + sa * va if inputs_are_torch: _a = torch.from_numpy(__A).to(__A) return va def lowerCAmelCase (__A , __A): """simple docstring""" _a = F.normalize(__A , dim=-1) _a = F.normalize(__A , dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def lowerCAmelCase (__A , __A): """simple docstring""" for param in model.parameters(): _a = value class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str: """simple docstring""" super().__init__() self.register_modules( vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , ) _a = ( feature_extractor.size if isinstance(feature_extractor.size , A ) else feature_extractor.size['''shortest_edge'''] ) _a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , A ) set_requires_grad(self.clip_model , A ) def a__ (self , A = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(A ) def a__ (self ) -> int: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Union[str, Any]: """simple docstring""" set_requires_grad(self.vae , A ) def a__ (self ) -> Dict: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self ) -> str: """simple docstring""" set_requires_grad(self.unet , A ) def a__ (self , A , A , A ) -> Optional[Any]: """simple docstring""" _a = min(int(num_inference_steps * strength ) , A ) _a = max(num_inference_steps - init_timestep , 0 ) _a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__ (self , A , A , A , A , A , A=None ) -> List[str]: """simple docstring""" if not isinstance(A , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' ) _a = image.to(device=A , dtype=A ) if isinstance(A , A ): _a = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] _a = torch.cat(A , dim=0 ) else: _a = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 0.18215 * init_latents _a = init_latents.repeat_interleave(A , dim=0 ) _a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A ) # get latents _a = self.scheduler.add_noise(A , A , A ) _a = init_latents return latents def a__ (self , A ) -> Tuple: """simple docstring""" _a = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _a = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__ (self , A , A ) -> List[Any]: """simple docstring""" _a = self.feature_extractor.preprocess(A ) _a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = image_embeddings_clip.repeat_interleave(A , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]: """simple docstring""" _a = latents.detach().requires_grad_() _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _a = self.scheduler.alphas_cumprod[timestep] _a = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _a = torch.sqrt(A ) _a = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , A ): _a = self.scheduler.sigmas[index] _a = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * sample _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = transforms.Resize(self.feature_extractor_size )(A ) _a = self.normalize(A ).to(latents.dtype ) _a = self.clip_model.get_image_features(A ) _a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A ) _a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale _a = -torch.autograd.grad(A , A )[0] if isinstance(self.scheduler , A ): _a = latents.detach() + grads * (sigma**2) _a = noise_pred_original else: _a = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str: """simple docstring""" if isinstance(A , A ) and len(A ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A , torch.Generator ) and batch_size > 1: _a = [generator] + [None] * (batch_size - 1) _a = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] _a = [x[0] for x in coca_is_none if x[1]] _a = ''', '''.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _a = self.get_image_description(A ) # get prompt text embeddings for content and style _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _a = self.tokenizer( A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , ) _a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _a = slerp(A , A , A ) # duplicate text embeddings for each generation per prompt _a = text_embeddings.repeat_interleave(A , dim=0 ) # set timesteps _a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _a = {} if accepts_offset: _a = 1 self.scheduler.set_timesteps(A , **A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _a , _a = self.get_timesteps(A , A , self.device ) _a = timesteps[:1].repeat(A ) # Preprocess image _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = preprocess(A , A , A ) _a = self.prepare_latents( A , A , A , text_embeddings.dtype , self.device , A ) _a = slerp(A , A , A ) if clip_guidance_scale > 0: _a = self.get_clip_image_embeddings(A , A ) _a = self.get_clip_image_embeddings(A , A ) _a = slerp( A , A , A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = content_text_input.input_ids.shape[-1] _a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _a = uncond_embeddings.repeat_interleave(A , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to( self.device ) else: _a = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _a = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta # check if the scheduler accepts generator _a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _a = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) # predict the noise residual _a = self.unet(A , A , encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _a = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _a , _a = self.cond_fn( A , A , A , A , A , A , A , ) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(A , A , A , **A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _a = 1 / 0.18215 * latents _a = self.vae.decode(A ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
11
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = IFInpaintingSuperResolutionPipeline __lowerCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) __lowerCamelCase : str = PipelineTesterMixin.required_optional_params - {'latents'} def a__ (self ) -> List[Any]: """simple docstring""" return self._get_superresolution_dummy_components() def a__ (self , A , A=0 ) -> List[Any]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = floats_tensor((1, 3, 16, 16) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__ (self ) -> str: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__ (self ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_local() def a__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
11
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model'} A__ : List[Any] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } A__ : List[str] = { 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } A__ : List[str] = '▁' class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , A_ , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_ = None , **A_ , ) -> None: """simple docstring""" _lowercase: Optional[int] = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token _lowercase: Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) _lowercase: Optional[Any] = vocab_file _lowercase: Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) _lowercase: Union[str, Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} _lowercase: Dict = len(self.sp_model ) - 1 _lowercase: Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowercase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase: Any = [self.cls_token_id] _lowercase: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self , A_ , A_ = None , A_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def lowercase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowercase: Optional[int] = [self.sep_token_id] _lowercase: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" return len(self.sp_model ) def lowercase_ ( self ) -> Optional[int]: """simple docstring""" _lowercase: int = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase_ ( self , A_ ) -> List[str]: """simple docstring""" return self.sp_model.encode(A_ , out_type=A_ ) def lowercase_ ( self , A_ ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowercase: Optional[int] = self.sp_model.PieceToId(A_ ) return spm_id if spm_id else self.unk_token_id def lowercase_ ( self , A_ ) -> List[Any]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(A_ ) def lowercase_ ( self , A_ ) -> Dict: """simple docstring""" _lowercase: Optional[Any] = [] _lowercase: List[Any] = '''''' _lowercase: Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A_ ) + token _lowercase: int = True _lowercase: Tuple = [] else: current_sub_tokens.append(A_ ) _lowercase: List[Any] = False out_string += self.sp_model.decode(A_ ) return out_string.strip() def __getstate__( self ) -> Tuple: """simple docstring""" _lowercase: Dict = self.__dict__.copy() _lowercase: str = None return state def __setstate__( self , A_ ) -> Tuple: """simple docstring""" _lowercase: Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowercase: str = {} _lowercase: Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase: Tuple = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , '''wb''' ) as fi: _lowercase: str = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
272
"""simple docstring""" def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return number | (1 << position) def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return number & ~(1 << position) def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return number ^ (1 << position) def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return ((number >> position) & 1) == 1 def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
272
1
'''simple docstring''' lowercase__ : Tuple = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } lowercase__ : Union[str, Any] = {value: key for key, value in encode_dict.items()} def _lowerCAmelCase ( __snake_case : str ) -> str: __A : Optional[int] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def _lowerCAmelCase ( __snake_case : str ) -> str: if set(__snake_case ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) __A : str = '' for word in coded.split(): while len(__snake_case ) != 0: decoded += decode_dict[word[:5]] __A : Dict = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
8
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __a : List[str] = random.Random() def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=1.0 ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=None ) -> Optional[int]: if rng is None: lowercase__ : Optional[Any] = global_rng lowercase__ : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=400 , lowerCamelCase=2000 , lowerCamelCase=1 , lowerCamelCase=0.0 , lowerCamelCase=16000 , lowerCamelCase=True , lowerCamelCase=80 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase="hann_window" , lowerCamelCase=80 , lowerCamelCase=7600 , lowerCamelCase=1E-10 , lowerCamelCase=True , ) -> int: """simple docstring""" lowercase__ : Optional[int] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Dict = min_seq_length lowercase__ : Optional[int] = max_seq_length lowercase__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ : List[Any] = feature_size lowercase__ : Union[str, Any] = padding_value lowercase__ : Dict = sampling_rate lowercase__ : int = do_normalize lowercase__ : Union[str, Any] = num_mel_bins lowercase__ : Optional[Any] = hop_length lowercase__ : Tuple = win_length lowercase__ : Any = win_function lowercase__ : Optional[Any] = fmin lowercase__ : str = fmax lowercase__ : Union[str, Any] = mel_floor lowercase__ : str = return_attention_mask def __a ( self ) -> Any: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __a ( self , lowerCamelCase=False , lowerCamelCase=False ) -> List[str]: """simple docstring""" def _flatten(lowerCamelCase ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: lowercase__ : Optional[int] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowercase__ : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ : Dict = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs def __a ( self , lowerCamelCase=False , lowerCamelCase=False ) -> Optional[int]: """simple docstring""" if equal_length: lowercase__ : Union[str, Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase__ : Tuple = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ : List[str] = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class UpperCAmelCase( snake_case_ , unittest.TestCase ): """simple docstring""" a : List[Any] = SpeechTaFeatureExtractor def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Union[str, Any] = SpeechTaFeatureExtractionTester(self ) def __a ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" self.assertTrue(np.all(np.mean(lowerCamelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase , axis=0 ) - 1 ) < 1E-3 ) ) def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : str = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input lowercase__ : int = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowercase__ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched lowercase__ : Optional[int] = feat_extract(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : Union[str, Any] = feat_extract(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Any = ["longest", "max_length", "do_not_pad"] lowercase__ : List[Any] = [None, 1600, None] for max_length, padding in zip(lowerCamelCase , lowerCamelCase ): lowercase__ : Optional[int] = feat_extract(lowerCamelCase , padding=lowerCamelCase , max_length=lowerCamelCase , return_tensors="np" ) lowercase__ : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Dict = range(800 , 1400 , 200 ) lowercase__ : List[str] = [floats_list((1, x) )[0] for x in lengths] lowercase__ : Tuple = ["longest", "max_length", "do_not_pad"] lowercase__ : str = [None, 1600, None] for max_length, padding in zip(lowerCamelCase , lowerCamelCase ): lowercase__ : List[str] = feat_extract(lowerCamelCase , max_length=lowerCamelCase , padding=lowerCamelCase ) lowercase__ : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __a ( self ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Tuple = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=1000 , padding="max_length" , return_tensors="np" ) lowercase__ : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Tuple = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=1000 , padding="longest" , return_tensors="np" ) lowercase__ : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowercase__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Union[str, Any] = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=2000 , padding="longest" , return_tensors="np" ) lowercase__ : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Tuple = np.random.rand(100 ).astype(np.floataa ) lowercase__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ : Tuple = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowercase__ : Dict = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __a ( self ) -> str: """simple docstring""" lowercase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : List[str] = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test feature size lowercase__ : str = feature_extractor(audio_target=lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowercase__ : Union[str, Any] = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values lowercase__ : Optional[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched lowercase__ : Dict = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : List[str] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase__ : Optional[Any] = np.asarray(lowerCamelCase ) lowercase__ : List[Any] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : List[str] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def __a ( self ) -> str: """simple docstring""" lowercase__ : Dict = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Dict = feat_extract.model_input_names[0] lowercase__ : int = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCamelCase ) == len(lowerCamelCase ) for x, y in zip(lowerCamelCase , processed_features[input_name] ) ) ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase ) lowercase__ : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) lowercase__ : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ : Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Dict = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase ) lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Optional[Any] = feat_extract.model_input_names[0] lowercase__ : Dict = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) lowercase__ : List[str] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Optional[Any] = feat_extract.model_input_names[0] lowercase__ : Optional[Any] = BatchFeature({input_name: speech_inputs} ) lowercase__ : Optional[int] = feat_extract.num_mel_bins # hack! lowercase__ : Optional[int] = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" )[input_name] lowercase__ : Optional[int] = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.feat_extract_dict lowercase__ : int = True lowercase__ : Optional[Any] = self.feature_extraction_class(**lowerCamelCase ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Union[str, Any] = [len(lowerCamelCase ) for x in speech_inputs] lowercase__ : Any = feat_extract.model_input_names[0] lowercase__ : Optional[int] = BatchFeature({input_name: speech_inputs} ) lowercase__ : int = feat_extract.num_mel_bins # hack! lowercase__ : int = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCamelCase ) def __a ( self ) -> Dict: """simple docstring""" lowercase__ : List[Any] = self.feat_extract_dict lowercase__ : Optional[int] = True lowercase__ : List[Any] = self.feature_extraction_class(**lowerCamelCase ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : List[str] = [len(lowerCamelCase ) for x in speech_inputs] lowercase__ : Any = feat_extract.model_input_names[0] lowercase__ : Dict = BatchFeature({input_name: speech_inputs} ) lowercase__ : int = min(lowerCamelCase ) lowercase__ : List[str] = feat_extract.num_mel_bins # hack! lowercase__ : Dict = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __a ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" from datasets import load_dataset lowercase__ : Any = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowercase__ : int = ds.sort("id" ).select(range(lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : List[str] = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on lowercase__ : List[Any] = self._load_datasamples(1 ) lowercase__ : int = SpeechTaFeatureExtractor() lowercase__ : Tuple = feature_extractor(lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , lowerCamelCase , atol=1E-6 ) ) def __a ( self ) -> int: """simple docstring""" lowercase__ : Optional[int] = torch.tensor( [-2.68_70, -3.01_04, -3.13_56, -3.53_52, -3.00_44, -3.03_53, -3.47_19, -3.67_77, -3.15_20, -2.94_35, -2.65_53, -2.87_95, -2.99_44, -2.59_21, -3.02_79, -3.03_86, -3.08_64, -3.12_91, -3.23_53, -2.74_44, -2.68_31, -2.72_87, -3.17_61, -3.15_71, -3.27_26, -3.05_82, -3.10_07, -3.45_33, -3.46_95, -3.09_98] ) # fmt: on lowercase__ : Any = self._load_datasamples(1 ) lowercase__ : List[Any] = SpeechTaFeatureExtractor() lowercase__ : int = feature_extractor(audio_target=lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase , atol=1E-4 ) )
397
0
"""simple docstring""" def snake_case ( _a: Optional[int] , _a: Any , _a: List[Any] , _a: int )-> Optional[int]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowerCamelCase__ = mf_knapsack(i - 1 , _a , _a , _a ) else: lowerCamelCase__ = max( mf_knapsack(i - 1 , _a , _a , _a ) , mf_knapsack(i - 1 , _a , _a , j - wt[i - 1] ) + val[i - 1] , ) lowerCamelCase__ = val return f[i][j] def snake_case ( _a: str , _a: List[str] , _a: int , _a: Tuple )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowerCamelCase__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowerCamelCase__ = dp[i - 1][w_] return dp[n][w_], dp def snake_case ( _a: int , _a: list , _a: list )-> str: '''simple docstring''' if not (isinstance(_a , (list, tuple) ) and isinstance(_a , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) lowerCamelCase__ = len(_a ) if num_items != len(_a ): lowerCamelCase__ = ( 'The number of weights must be the same as the number of values.\n' F'But got {num_items} weights and {len(_a )} values' ) raise ValueError(_a ) for i in range(_a ): if not isinstance(wt[i] , _a ): lowerCamelCase__ = ( 'All weights must be integers but got weight of ' F'type {type(wt[i] )} at index {i}' ) raise TypeError(_a ) lowerCamelCase__ , lowerCamelCase__ = knapsack(_a , _a , _a , _a ) lowerCamelCase__ = set() _construct_solution(_a , _a , _a , _a , _a ) return optimal_val, example_optional_set def snake_case ( _a: list , _a: list , _a: int , _a: int , _a: set )-> str: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_a , _a , i - 1 , _a , _a ) else: optimal_set.add(_a ) _construct_solution(_a , _a , i - 1 , j - wt[i - 1] , _a ) if __name__ == "__main__": _snake_case = [3, 2, 4, 4] _snake_case = [4, 3, 2, 3] _snake_case = 4 _snake_case = 6 _snake_case = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _snake_case , _snake_case = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _snake_case , _snake_case = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
659
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _snake_case = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _snake_case = 10 _snake_case = 256 def snake_case ( _a: List[str] )-> Optional[MinHash]: '''simple docstring''' if len(_a ) < MIN_NUM_TOKENS: return None lowerCamelCase__ = MinHash(num_perm=_a ) for token in set(_a ): min_hash.update(token.encode() ) return min_hash def snake_case ( _a: str )-> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(_a ) if len(t.strip() ) > 0} class _a : def __init__( self : List[Any] , *, SCREAMING_SNAKE_CASE__ : float = 0.85 , ): lowerCamelCase__ = duplication_jaccard_threshold lowerCamelCase__ = NUM_PERM lowerCamelCase__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowerCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : MinHash ): lowerCamelCase__ = self._index.query(SCREAMING_SNAKE_CASE__ ) if code_key in self._index.keys: print(F'Duplicate key {code_key}' ) return self._index.insert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(SCREAMING_SNAKE_CASE__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = [] for base, duplicates in self._duplicate_clusters.items(): lowerCamelCase__ = [base] + list(SCREAMING_SNAKE_CASE__ ) # reformat the cluster to be a list of dict lowerCamelCase__ = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(SCREAMING_SNAKE_CASE__ ) return duplicate_clusters def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): lowerCamelCase__ = self.get_duplicate_clusters() with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case ( _a: Union[str, Any] )-> Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = element lowerCamelCase__ = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case ( _a: Type[Dataset] )-> Tuple: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_a , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case ( _a: Type[Dataset] , _a: float )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = DuplicationIndex(duplication_jaccard_threshold=_a ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_a ) ) , max_queue_size=100 ) ): di.add(_a , _a ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case ( _a: str , _a: str )-> float: '''simple docstring''' lowerCamelCase__ = get_tokens(_a ) lowerCamelCase__ = get_tokens(_a ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _snake_case = None def snake_case ( _a: Dict , _a: Union[str, Any] )-> List[str]: '''simple docstring''' lowerCamelCase__ = [] for elementa in cluster: lowerCamelCase__ = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: lowerCamelCase__ = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(_a , _a ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowerCamelCase__ = 1 extremes.append(_a ) return extremes def snake_case ( _a: Any , _a: Tuple , _a: Dict )-> Union[str, Any]: '''simple docstring''' global _shared_dataset lowerCamelCase__ = dataset lowerCamelCase__ = [] lowerCamelCase__ = partial(_find_cluster_extremes_shared , jaccard_threshold=_a ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _a , _a , ) , total=len(_a ) , ): extremes_list.append(_a ) return extremes_list def snake_case ( _a: Type[Dataset] , _a: float = 0.85 )-> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowerCamelCase__ = make_duplicate_clusters(_a , _a ) lowerCamelCase__ = {x['base_index'] for cluster in duplicate_clusters for x in cluster} lowerCamelCase__ = {} lowerCamelCase__ = find_extremes(_a , _a , _a ) for extremes in extremes_clusters: for element in extremes: lowerCamelCase__ = element lowerCamelCase__ = duplicate_indices - set(extreme_dict.keys() ) lowerCamelCase__ = dataset.filter(lambda _a , _a : idx not in remove_indices , with_indices=_a ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowerCamelCase__ = element['base_index'] in extreme_dict if element["is_extreme"]: lowerCamelCase__ = extreme_dict[element['base_index']]['copies'] print(F'Original dataset size: {len(_a )}' ) print(F'Number of duplicate clusters: {len(_a )}' ) print(F'Files in duplicate cluster: {len(_a )}' ) print(F'Unique files in duplicate cluster: {len(_a )}' ) print(F'Filtered dataset size: {len(_a )}' ) return ds_filter, duplicate_clusters
659
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowerCAmelCase__ = logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ ( __lowerCamelCase ): """simple docstring""" a : Dict =[ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **snake_case__ ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowerCAmelCase : int = deprecated_arg[3:] lowerCAmelCase : List[str] = not kwargs.pop(snake_case__ ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) lowerCAmelCase : str = kwargs.pop("tpu_name" , self.tpu_name ) lowerCAmelCase : Union[str, Any] = kwargs.pop("device_idx" , self.device_idx ) lowerCAmelCase : List[str] = kwargs.pop("eager_mode" , self.eager_mode ) lowerCAmelCase : Tuple = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**snake_case__ ) a : str =field( default=__lowerCamelCase , metadata={"help": "Name of TPU"} , ) a : int =field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) a : bool =field(default=__lowerCamelCase , metadata={"help": "Benchmark models in eager model."} ) a : bool =field( default=__lowerCamelCase , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def lowercase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) lowerCAmelCase : List[str] = None if self.tpu: try: if self.tpu_name: lowerCAmelCase : str = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowerCAmelCase : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowerCAmelCase : List[Any] = None return tpu @cached_property def lowercase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowerCAmelCase : int = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) lowerCAmelCase : Tuple = tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU lowerCAmelCase : Optional[Any] = tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def lowercase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def lowercase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_strategy @property def lowercase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def lowercase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowercase__ ( self ): """simple docstring""" return self.n_gpu > 0
645
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[str] = ["""image_processor""", """tokenizer"""] _UpperCamelCase : Any = """OwlViTImageProcessor""" _UpperCamelCase : Dict = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , snake_case=None , snake_case=None , **snake_case ): lowercase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case , ) lowercase = kwargs.pop('feature_extractor' ) lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case , snake_case ) def __call__( self , snake_case=None , snake_case=None , snake_case=None , snake_case="max_length" , snake_case="np" , **snake_case ): if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(snake_case , snake_case ) or (isinstance(snake_case , snake_case ) and not isinstance(text[0] , snake_case )): lowercase = [self.tokenizer(snake_case , padding=snake_case , return_tensors=snake_case , **snake_case )] elif isinstance(snake_case , snake_case ) and isinstance(text[0] , snake_case ): lowercase = [] # Maximum number of queries across batch lowercase = max([len(snake_case ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(snake_case ) != max_num_queries: lowercase = t + [' '] * (max_num_queries - len(snake_case )) lowercase = self.tokenizer(snake_case , padding=snake_case , return_tensors=snake_case , **snake_case ) encodings.append(snake_case ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": lowercase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowercase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowercase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowercase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowercase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) lowercase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowercase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowercase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) lowercase = BatchEncoding() lowercase = input_ids lowercase = attention_mask if query_images is not None: lowercase = BatchEncoding() lowercase = self.image_processor( snake_case , return_tensors=snake_case , **snake_case ).pixel_values lowercase = query_pixel_values if images is not None: lowercase = self.image_processor(snake_case , return_tensors=snake_case , **snake_case ) if text is not None and images is not None: lowercase = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowercase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**snake_case ) , tensor_type=snake_case ) def SCREAMING_SNAKE_CASE__ ( self , *snake_case , **snake_case ): return self.image_processor.post_process(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , *snake_case , **snake_case ): return self.image_processor.post_process_object_detection(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , *snake_case , **snake_case ): return self.image_processor.post_process_image_guided_detection(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , *snake_case , **snake_case ): return self.tokenizer.batch_decode(*snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , *snake_case , **snake_case ): return self.tokenizer.decode(*snake_case , **snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case , ) return self.image_processor
84
0
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" def __init__( self , *snake_case , snake_case=None , snake_case=None , **snake_case ): '''simple docstring''' super().__init__(*snake_case , **snake_case ) UpperCamelCase__ = eval_examples UpperCamelCase__ = post_process_function def snake_case__ ( self , snake_case=None , snake_case=None , snake_case=None , snake_case = "eval" ): '''simple docstring''' UpperCamelCase__ = self.eval_dataset if eval_dataset is None else eval_dataset UpperCamelCase__ = self.get_eval_dataloader(snake_case ) UpperCamelCase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase__ = self.compute_metrics UpperCamelCase__ = None UpperCamelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCamelCase__ = time.time() try: UpperCamelCase__ = eval_loop( snake_case , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case , metric_key_prefix=snake_case , ) finally: UpperCamelCase__ = compute_metrics UpperCamelCase__ = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( snake_case , snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCamelCase__ = self.post_process_function(snake_case , snake_case , output.predictions ) UpperCamelCase__ = self.compute_metrics(snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): UpperCamelCase__ = metrics.pop(snake_case ) metrics.update(output.metrics ) else: UpperCamelCase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(snake_case ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCamelCase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , snake_case ) return metrics def snake_case__ ( self , snake_case , snake_case , snake_case=None , snake_case = "test" ): '''simple docstring''' UpperCamelCase__ = self.get_test_dataloader(snake_case ) # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase__ = self.compute_metrics UpperCamelCase__ = None UpperCamelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCamelCase__ = time.time() try: UpperCamelCase__ = eval_loop( snake_case , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case , metric_key_prefix=snake_case , ) finally: UpperCamelCase__ = compute_metrics UpperCamelCase__ = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( snake_case , snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCamelCase__ = self.post_process_function(snake_case , snake_case , output.predictions , "predict" ) UpperCamelCase__ = self.compute_metrics(snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): UpperCamelCase__ = metrics.pop(snake_case ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=snake_case )
185
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __UpperCamelCase = random.Random() def UpperCamelCase_( _A :Tuple , _A :str=1.0 , _A :int=None , _A :Dict=None )-> str: if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case , snake_case=7 , snake_case=400 , snake_case=2000 , snake_case=10 , snake_case=160 , snake_case=8 , snake_case=0.0 , snake_case=4000 , snake_case=False , snake_case=True , ): '''simple docstring''' UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize UpperCamelCase__ = feature_size UpperCamelCase__ = chunk_length UpperCamelCase__ = hop_length def snake_case__ ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case__ ( self , snake_case=False , snake_case=False ): '''simple docstring''' def _flatten(snake_case ): return list(itertools.chain(*snake_case ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase__ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Any = WhisperFeatureExtractor if is_speech_available() else None def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = WhisperFeatureExtractionTester(self ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = feat_extract_first.save_pretrained(snake_case )[0] check_json_file_has_correct_format(snake_case ) UpperCamelCase__ = self.feature_extraction_class.from_pretrained(snake_case ) UpperCamelCase__ = feat_extract_first.to_dict() UpperCamelCase__ = feat_extract_second.to_dict() UpperCamelCase__ = feat_extract_first.mel_filters UpperCamelCase__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = os.path.join(snake_case , "feat_extract.json" ) feat_extract_first.to_json_file(snake_case ) UpperCamelCase__ = self.feature_extraction_class.from_json_file(snake_case ) UpperCamelCase__ = feat_extract_first.to_dict() UpperCamelCase__ = feat_extract_second.to_dict() UpperCamelCase__ = feat_extract_first.mel_filters UpperCamelCase__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase__ = [np.asarray(snake_case ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(snake_case , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(snake_case , return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(snake_case , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(snake_case ) UpperCamelCase__ = feature_extractor(snake_case , return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(snake_case , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3 ) ) # Test truncation required UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] UpperCamelCase__ = [np.asarray(snake_case ) for speech_input in speech_inputs] UpperCamelCase__ = [x[: feature_extractor.n_samples] for x in speech_inputs] UpperCamelCase__ = [np.asarray(snake_case ) for speech_input in speech_inputs_truncated] UpperCamelCase__ = feature_extractor(snake_case , return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(snake_case , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1E-3 ) ) def snake_case__ ( self ): '''simple docstring''' import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100 , 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def snake_case__ ( self , snake_case ): '''simple docstring''' UpperCamelCase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("id" ).select(range(snake_case ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = WhisperFeatureExtractor() UpperCamelCase__ = feature_extractor(snake_case , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case , atol=1E-4 ) ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = self._load_datasamples(1 )[0] UpperCamelCase__ = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue UpperCamelCase__ = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case )[0] self.assertTrue(np.all(np.mean(snake_case ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case ) - 1 ) < 1E-3 ) )
185
1
'''simple docstring''' def UpperCamelCase__ ( __magic_name__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' snake_case__ : Tuple = set() # Replace all the whitespace in our sentence snake_case__ : List[Any] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__magic_name__ ) == 26 def UpperCamelCase__ ( __magic_name__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' snake_case__ : Optional[Any] = [False] * 26 for char in input_str: if char.islower(): snake_case__ : int = True elif char.isupper(): snake_case__ : Optional[Any] = True return all(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCamelCase__ ( ) -> None: '''simple docstring''' from timeit import timeit snake_case__ : Optional[Any] = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=__magic_name__ ) ) print(timeit("""is_pangram_faster()""" , setup=__magic_name__ ) ) print(timeit("""is_pangram_fastest()""" , setup=__magic_name__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
38
'''simple docstring''' from PIL import Image def A__ ( __lowerCAmelCase : Image , __lowerCAmelCase : float ): def brightness(__lowerCAmelCase : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 UpperCamelCase : Union[str, Any] = change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
50
0
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = DownBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : Optional[int] = '''down''' def a_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = [-0.0_232, -0.9_869, 0.8_054, -0.0_637, -0.1_688, -1.4_264, 0.4_470, -1.3_394, 0.0_904] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Tuple = ResnetDownsampleBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : Tuple = '''down''' def a_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [0.0_710, 0.2_410, -0.7_320, -1.0_757, -1.1_343, 0.3_540, -0.0_133, -0.2_576, 0.0_948] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = AttnDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : Tuple = '''down''' def a_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = [0.0_636, 0.8_964, -0.6_234, -1.0_131, 0.0_844, 0.4_935, 0.3_437, 0.0_911, -0.2_957] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : str = CrossAttnDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''down''' def a_ ( self : List[Any] ) -> str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = super().prepare_init_args_and_inputs_for_common() _UpperCAmelCase : Dict = 32 return init_dict, inputs_dict def a_ ( self : int ) -> Any: '''simple docstring''' _UpperCAmelCase : Dict = [0.2_238, -0.7_396, -0.2_255, -0.3_829, 0.1_925, 1.1_665, 0.0_603, -0.7_295, 0.1_983] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Any = SimpleCrossAttnDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : Tuple = '''down''' @property def a_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=snake_case__ ) def a_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : int = super().prepare_init_args_and_inputs_for_common() _UpperCAmelCase : Tuple = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def a_ ( self : Dict ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = [0.7_921, -0.0_992, -0.1_962, -0.7_695, -0.4_242, 0.7_804, 0.4_737, 0.2_765, 0.3_338] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[Any] = SkipDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : str = '''down''' @property def a_ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return super().get_dummy_input(include_skip_sample=snake_case__ ) def a_ ( self : Union[str, Any] ) -> int: '''simple docstring''' _UpperCAmelCase : Tuple = [-0.0_845, -0.2_087, -0.2_465, 0.0_971, 0.1_900, -0.0_484, 0.2_664, 0.4_179, 0.5_069] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = AttnSkipDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : Optional[Any] = '''down''' @property def a_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return super().get_dummy_input(include_skip_sample=snake_case__ ) def a_ ( self : Optional[int] ) -> str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = [0.5_539, 0.1_609, 0.4_924, 0.0_537, -0.1_995, 0.4_050, 0.0_979, -0.2_721, -0.0_642] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Dict = DownEncoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : str = '''down''' @property def a_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' return super().get_dummy_input(include_temb=snake_case__ ) def a_ ( self : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = { '''in_channels''': 32, '''out_channels''': 32, } _UpperCAmelCase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def a_ ( self : Union[str, Any] ) -> str: '''simple docstring''' _UpperCAmelCase : str = [1.1_102, 0.5_302, 0.4_872, -0.0_023, -0.8_042, 0.0_483, -0.3_489, -0.5_632, 0.7_626] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = AttnDownEncoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : List[str] = '''down''' @property def a_ ( self : Any ) -> Tuple: '''simple docstring''' return super().get_dummy_input(include_temb=snake_case__ ) def a_ ( self : Union[str, Any] ) -> int: '''simple docstring''' _UpperCAmelCase : List[str] = { '''in_channels''': 32, '''out_channels''': 32, } _UpperCAmelCase : Optional[Any] = self.dummy_input return init_dict, inputs_dict def a_ ( self : Dict ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = [0.8_966, -0.1_486, 0.8_568, 0.8_141, -0.9_046, -0.1_342, -0.0_972, -0.7_417, 0.1_538] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Any = UNetMidBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : str = '''mid''' def a_ ( self : List[str] ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Dict = { '''in_channels''': 32, '''temb_channels''': 128, } _UpperCAmelCase : Optional[int] = self.dummy_input return init_dict, inputs_dict def a_ ( self : int ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = [-0.1_062, 1.7_248, 0.3_494, 1.4_569, -0.0_910, -1.2_421, -0.9_984, 0.6_736, 1.0_028] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Any = UNetMidBlockaDCrossAttn # noqa F405 SCREAMING_SNAKE_CASE_ : int = '''mid''' def a_ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : str = super().prepare_init_args_and_inputs_for_common() _UpperCAmelCase : Dict = 32 return init_dict, inputs_dict def a_ ( self : Tuple ) -> Any: '''simple docstring''' _UpperCAmelCase : List[Any] = [0.0_187, 2.4_220, 0.4_484, 1.1_203, -0.6_121, -1.5_122, -0.8_270, 0.7_851, 1.8_335] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Dict = UNetMidBlockaDSimpleCrossAttn # noqa F405 SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''mid''' @property def a_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=snake_case__ ) def a_ ( self : Dict ) -> str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = super().prepare_init_args_and_inputs_for_common() _UpperCAmelCase : Optional[int] = 32 return init_dict, inputs_dict def a_ ( self : str ) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[Any] = [0.7_143, 1.9_974, 0.5_448, 1.3_977, 0.1_282, -1.1_237, -1.4_238, 0.5_530, 0.8_880] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int = UpBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : List[str] = '''up''' @property def a_ ( self : List[Any] ) -> Dict: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case__ ) def a_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = [-0.2_041, -0.4_165, -0.3_022, 0.0_041, -0.6_628, -0.7_053, 0.1_928, -0.0_325, 0.0_523] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ResnetUpsampleBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : Tuple = '''up''' @property def a_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case__ ) def a_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int = [0.2_287, 0.3_549, -0.1_346, 0.4_797, -0.1_715, -0.9_649, 0.7_305, -0.5_864, -0.6_244] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Tuple = CrossAttnUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : List[str] = '''up''' @property def a_ ( self : int ) -> Dict: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case__ ) def a_ ( self : Any ) -> int: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = super().prepare_init_args_and_inputs_for_common() _UpperCAmelCase : Optional[int] = 32 return init_dict, inputs_dict def a_ ( self : Dict ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [-0.1_403, -0.3_515, -0.0_420, -0.1_425, 0.3_167, 0.5_094, -0.2_181, 0.5_931, 0.5_582] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[Any] = SimpleCrossAttnUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : List[Any] = '''up''' @property def a_ ( self : List[str] ) -> int: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case__ , include_encoder_hidden_states=snake_case__ ) def a_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = super().prepare_init_args_and_inputs_for_common() _UpperCAmelCase : Optional[int] = 32 return init_dict, inputs_dict def a_ ( self : Optional[int] ) -> int: '''simple docstring''' _UpperCAmelCase : List[Any] = [0.2_645, 0.1_480, 0.0_909, 0.8_044, -0.9_758, -0.9_083, 0.0_994, -1.1_453, -0.7_402] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = AttnUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : Optional[Any] = '''up''' @property def a_ ( self : Dict ) -> Optional[int]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case__ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def a_ ( self : str ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Tuple = [0.0_979, 0.1_326, 0.0_021, 0.0_659, 0.2_249, 0.0_059, 0.1_132, 0.5_952, 0.1_033] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Any = SkipUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : List[str] = '''up''' @property def a_ ( self : Tuple ) -> List[str]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case__ ) def a_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = [-0.0_893, -0.1_234, -0.1_506, -0.0_332, 0.0_123, -0.0_211, 0.0_566, 0.0_143, 0.0_362] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = AttnSkipUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : Optional[Any] = '''up''' @property def a_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=snake_case__ ) def a_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [0.0_361, 0.0_617, 0.2_787, -0.0_350, 0.0_342, 0.3_421, -0.0_843, 0.0_913, 0.3_015] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[Any] = UpDecoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : Optional[int] = '''up''' @property def a_ ( self : Any ) -> Any: '''simple docstring''' return super().get_dummy_input(include_temb=snake_case__ ) def a_ ( self : Dict ) -> Tuple: '''simple docstring''' _UpperCAmelCase : List[Any] = {'''in_channels''': 32, '''out_channels''': 32} _UpperCAmelCase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def a_ ( self : str ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Tuple = [0.4_404, 0.1_998, -0.9_886, -0.3_320, -0.3_128, -0.7_034, -0.6_955, -0.2_338, -0.3_137] super().test_output(snake_case__ ) class lowerCAmelCase_ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = AttnUpDecoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE_ : str = '''up''' @property def a_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' return super().get_dummy_input(include_temb=snake_case__ ) def a_ ( self : Optional[int] ) -> Dict: '''simple docstring''' _UpperCAmelCase : List[str] = {'''in_channels''': 32, '''out_channels''': 32} _UpperCAmelCase : List[Any] = self.dummy_input return init_dict, inputs_dict def a_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [0.6_738, 0.4_491, 0.1_055, 1.0_710, 0.7_316, 0.3_339, 0.3_352, 0.1_023, 0.3_568] super().test_output(snake_case__ )
706
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ : Optional[Any] = 'bart' UpperCAmelCase__ : Optional[Any] = True @st.cache(allow_output_mutation=_UpperCamelCase ) def _A ( ): if LOAD_DENSE_INDEX: _UpperCAmelCase : Any = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _UpperCAmelCase : Tuple = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _UpperCAmelCase : int = qar_model.eval() else: _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = (None, None) if MODEL_TYPE == "bart": _UpperCAmelCase : str = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _UpperCAmelCase : Optional[Any] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _UpperCAmelCase : Dict = sas_model.eval() else: _UpperCAmelCase , _UpperCAmelCase : Optional[int] = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_UpperCamelCase ) def _A ( ): if LOAD_DENSE_INDEX: _UpperCAmelCase : Optional[int] = faiss.StandardGpuResources() _UpperCAmelCase : Union[str, Any] = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _UpperCAmelCase : str = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) _UpperCAmelCase : Optional[Any] = faiss.IndexFlatIP(128 ) _UpperCAmelCase : str = faiss.index_cpu_to_gpu(_UpperCamelCase , 1 , _UpperCamelCase ) wikiaab_gpu_index_flat.add(_UpperCamelCase ) # TODO fix for larger GPU else: _UpperCAmelCase , _UpperCAmelCase : List[str] = (None, None) _UpperCAmelCase : Dict = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_UpperCamelCase ) def _A ( ): _UpperCAmelCase : int = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _UpperCAmelCase : Dict = elia['''train_eli5'''] _UpperCAmelCase : Dict = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) _UpperCAmelCase : List[Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_UpperCamelCase ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = load_indexes() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = load_models() UpperCAmelCase__ , UpperCAmelCase__ : str = load_train_data() def _A ( _UpperCamelCase , _UpperCamelCase=10 ): _UpperCAmelCase : Union[str, Any] = embed_questions_for_retrieval([question] , _UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase : Tuple = eli5_train_q_index.search(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase : Dict = [elia_train[int(_UpperCamelCase )] for i in I[0]] return nn_examples def _A ( _UpperCamelCase , _UpperCamelCase="wiki40b" , _UpperCamelCase="dense" , _UpperCamelCase=10 ): if source == "none": _UpperCAmelCase , _UpperCAmelCase : Tuple = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": _UpperCAmelCase , _UpperCAmelCase : Dict = query_qa_dense_index( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: _UpperCAmelCase , _UpperCAmelCase : Optional[int] = query_es_index( _UpperCamelCase , _UpperCamelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=_UpperCamelCase , ) _UpperCAmelCase : List[Any] = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _UpperCAmelCase : Union[str, Any] = '''question: {} context: {}'''.format(_UpperCamelCase , _UpperCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _UpperCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _UpperCamelCase : None), } ) def _A ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=64 , _UpperCamelCase=256 , _UpperCamelCase=False , _UpperCamelCase=2 , _UpperCamelCase=0.95 , _UpperCamelCase=0.8 ): with torch.no_grad(): _UpperCAmelCase : Dict = qa_sas_generate( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , num_answers=1 , num_beams=_UpperCamelCase , min_len=_UpperCamelCase , max_len=_UpperCamelCase , do_sample=_UpperCamelCase , temp=_UpperCamelCase , top_p=_UpperCamelCase , top_k=_UpperCamelCase , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar UpperCAmelCase__ : Tuple = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' UpperCAmelCase__ : Dict = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ : Optional[Any] = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ : Optional[Any] = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] UpperCAmelCase__ : List[Any] = st.sidebar.checkbox('Demo options') if demo_options: UpperCAmelCase__ : int = st.sidebar.selectbox( '', action_list, index=3, ) UpperCAmelCase__ : List[str] = action_list.index(action_st) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) UpperCAmelCase__ : Union[str, Any] = show_type == 'Show full text of passages' else: UpperCAmelCase__ : int = 3 UpperCAmelCase__ : str = True UpperCAmelCase__ : Any = st.sidebar.checkbox('Retrieval options') if retrieval_options: UpperCAmelCase__ : str = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) UpperCAmelCase__ : List[Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) UpperCAmelCase__ : int = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: UpperCAmelCase__ : Optional[Any] = 'wiki40b' UpperCAmelCase__ : str = 'dense' UpperCAmelCase__ : Optional[Any] = 'beam' UpperCAmelCase__ : Optional[int] = 2 UpperCAmelCase__ : Tuple = 64 UpperCAmelCase__ : Any = 256 UpperCAmelCase__ : Dict = None UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Dict = st.sidebar.checkbox('Generation options') if generate_options: UpperCAmelCase__ : Dict = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) UpperCAmelCase__ : Optional[int] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) UpperCAmelCase__ : List[str] = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ : List[str] = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ : Dict = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ : Any = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ : Any = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ : Union[str, Any] = None # start main text UpperCAmelCase__ : Tuple = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] UpperCAmelCase__ : Dict = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ : List[str] = st.text_input('Enter your question here:', '') else: UpperCAmelCase__ : Any = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ , UpperCAmelCase__ : List[str] = make_support(question, source=wiki_source, method='dense', n_results=10) UpperCAmelCase__ , UpperCAmelCase__ : Dict = make_support(question, source=wiki_source, method='sparse', n_results=10) UpperCAmelCase__ : Optional[int] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ : Optional[int] = support_list[:10] UpperCAmelCase__ : Union[str, Any] = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): UpperCAmelCase__ : Optional[int] = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) UpperCAmelCase__ : Optional[Any] = res[1].strip() if sec_titles == "": UpperCAmelCase__ : List[Any] = '[{}]({})'.format(res[0], wiki_url) else: UpperCAmelCase__ : List[Any] = sec_titles.split(' & ') UpperCAmelCase__ : Union[str, Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ : str = find_nearest_training(question) UpperCAmelCase__ : Union[str, Any] = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) UpperCAmelCase__ : List[str] = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) UpperCAmelCase__ : List[str] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
416
0
import pickle import numpy as np from matplotlib import pyplot as plt class A__ : def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=0.2 , __magic_name__=0.2 ): lowerCamelCase : str = bp_numa lowerCamelCase : List[Any] = bp_numa lowerCamelCase : List[Any] = bp_numa lowerCamelCase : Tuple = conva_get[:2] lowerCamelCase : str = conva_get[2] lowerCamelCase : Union[str, Any] = size_pa lowerCamelCase : Union[str, Any] = rate_w lowerCamelCase : str = rate_t lowerCamelCase : int = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowerCamelCase : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCamelCase : str = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCamelCase : Union[str, Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowerCamelCase : Dict = -2 * np.random.rand(self.num_bpa ) + 1 lowerCamelCase : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def UpperCamelCase__ ( self , __magic_name__ ): # save model dict with pickle lowerCamelCase : List[str] = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(__magic_name__ , """wb""" ) as f: pickle.dump(__magic_name__ , __magic_name__ ) print(F'''Model saved: {save_path}''' ) @classmethod def UpperCamelCase__ ( cls , __magic_name__ ): # read saved model with open(__magic_name__ , """rb""" ) as f: lowerCamelCase : List[Any] = pickle.load(__magic_name__ ) # noqa: S301 lowerCamelCase : int = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) lowerCamelCase : List[Any] = model_dic.get("""size_pooling1""" ) lowerCamelCase : List[str] = model_dic.get("""num_bp1""" ) lowerCamelCase : Optional[Any] = model_dic.get("""num_bp2""" ) lowerCamelCase : Optional[int] = model_dic.get("""num_bp3""" ) lowerCamelCase : Union[str, Any] = model_dic.get("""rate_weight""" ) lowerCamelCase : Union[str, Any] = model_dic.get("""rate_thre""" ) # create model instance lowerCamelCase : List[str] = CNN(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # modify model parameter lowerCamelCase : Tuple = model_dic.get("""w_conv1""" ) lowerCamelCase : Optional[int] = model_dic.get("""wkj""" ) lowerCamelCase : int = model_dic.get("""vji""" ) lowerCamelCase : Dict = model_dic.get("""thre_conv1""" ) lowerCamelCase : Tuple = model_dic.get("""thre_bp2""" ) lowerCamelCase : List[str] = model_dic.get("""thre_bp3""" ) return conv_ins def UpperCamelCase__ ( self , __magic_name__ ): return 1 / (1 + np.exp(-1 * x )) def UpperCamelCase__ ( self , __magic_name__ ): return round(__magic_name__ , 3 ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): # convolution process lowerCamelCase : Dict = convs[0] lowerCamelCase : int = convs[1] lowerCamelCase : str = np.shape(__magic_name__ )[0] # get the data slice of original image data, data_focus lowerCamelCase : int = [] for i_focus in range(0 , size_data - size_conv + 1 , __magic_name__ ): for j_focus in range(0 , size_data - size_conv + 1 , __magic_name__ ): lowerCamelCase : str = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__magic_name__ ) # calculate the feature map of every single kernel, and saved as list of matrix lowerCamelCase : Any = [] lowerCamelCase : int = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__magic_name__ ): lowerCamelCase : int = [] for i_focus in range(len(__magic_name__ ) ): lowerCamelCase : int = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__magic_name__ ) ) lowerCamelCase : Dict = np.asmatrix(__magic_name__ ).reshape( __magic_name__ , __magic_name__ ) data_featuremap.append(__magic_name__ ) # expanding the data slice to One dimenssion lowerCamelCase : Tuple = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__magic_name__ ) ) lowerCamelCase : int = np.asarray(__magic_name__ ) return focus_list, data_featuremap def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__="average_pool" ): # pooling process lowerCamelCase : Optional[int] = len(featuremaps[0] ) lowerCamelCase : str = int(size_map / size_pooling ) lowerCamelCase : Optional[int] = [] for i_map in range(len(__magic_name__ ) ): lowerCamelCase : Union[str, Any] = featuremaps[i_map] lowerCamelCase : List[str] = [] for i_focus in range(0 , __magic_name__ , __magic_name__ ): for j_focus in range(0 , __magic_name__ , __magic_name__ ): lowerCamelCase : Tuple = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__magic_name__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__magic_name__ ) ) lowerCamelCase : Tuple = np.asmatrix(__magic_name__ ).reshape(__magic_name__ , __magic_name__ ) featuremap_pooled.append(__magic_name__ ) return featuremap_pooled def UpperCamelCase__ ( self , __magic_name__ ): # expanding three dimension data to one dimension list lowerCamelCase : List[str] = [] for i in range(len(__magic_name__ ) ): lowerCamelCase : List[str] = np.shape(data[i] ) lowerCamelCase : Any = data[i].reshape(1 , shapes[0] * shapes[1] ) lowerCamelCase : Any = data_listed.getA().tolist()[0] data_expanded.extend(__magic_name__ ) lowerCamelCase : Optional[int] = np.asarray(__magic_name__ ) return data_expanded def UpperCamelCase__ ( self , __magic_name__ ): # expanding matrix to one dimension list lowerCamelCase : str = np.asarray(__magic_name__ ) lowerCamelCase : Any = np.shape(__magic_name__ ) lowerCamelCase : int = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase : str = [] lowerCamelCase : str = 0 for i_map in range(__magic_name__ ): lowerCamelCase : List[str] = np.ones((size_map, size_map) ) for i in range(0 , __magic_name__ , __magic_name__ ): for j in range(0 , __magic_name__ , __magic_name__ ): lowerCamelCase : Optional[int] = pd_pool[ i_pool ] lowerCamelCase : Union[str, Any] = i_pool + 1 lowerCamelCase : Tuple = np.multiply( __magic_name__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(__magic_name__ ) return pd_all def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=bool ): # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(__magic_name__ )) ) print((""" - - Shape: Teach_Data """, np.shape(__magic_name__ )) ) lowerCamelCase : Dict = 0 lowerCamelCase : int = [] lowerCamelCase : Union[str, Any] = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: lowerCamelCase : Optional[int] = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(__magic_name__ ) ): # print('------------Learning Image: %d--------------'%p) lowerCamelCase : Optional[int] = np.asmatrix(datas_train[p] ) lowerCamelCase : List[Any] = np.asarray(datas_teach[p] ) lowerCamelCase , lowerCamelCase : Optional[Any] = self.convolute( __magic_name__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCamelCase : Tuple = self.pooling(__magic_name__ , self.size_poolinga ) lowerCamelCase : Any = np.shape(__magic_name__ ) lowerCamelCase : Optional[Any] = self._expand(__magic_name__ ) lowerCamelCase : List[Any] = data_bp_input lowerCamelCase : Dict = np.dot(__magic_name__ , self.vji.T ) - self.thre_bpa lowerCamelCase : List[Any] = self.sig(__magic_name__ ) lowerCamelCase : List[Any] = np.dot(__magic_name__ , self.wkj.T ) - self.thre_bpa lowerCamelCase : Optional[int] = self.sig(__magic_name__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowerCamelCase : Optional[int] = np.multiply( (data_teach - bp_outa) , np.multiply(__magic_name__ , (1 - bp_outa) ) ) lowerCamelCase : int = np.multiply( np.dot(__magic_name__ , self.wkj ) , np.multiply(__magic_name__ , (1 - bp_outa) ) ) lowerCamelCase : Tuple = np.dot(__magic_name__ , self.vji ) lowerCamelCase : str = pd_i_all / (self.size_poolinga * self.size_poolinga) lowerCamelCase : int = pd_conva_pooled.T.getA().tolist() lowerCamelCase : Tuple = self._calculate_gradient_from_pool( __magic_name__ , __magic_name__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowerCamelCase : List[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowerCamelCase : str = self.rate_weight * np.dot(__magic_name__ , __magic_name__ ) lowerCamelCase : Optional[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowerCamelCase : int = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowerCamelCase : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowerCamelCase : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowerCamelCase : List[Any] = self.thre_bpa - pd_k_all * self.rate_thre lowerCamelCase : Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowerCamelCase : List[str] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowerCamelCase : str = rp + 1 lowerCamelCase : int = error_count / patterns all_mse.append(__magic_name__ ) def draw_error(): lowerCamelCase : List[str] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__magic_name__ , """+-""" ) plt.plot(__magic_name__ , """r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(__magic_name__ , alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def UpperCamelCase__ ( self , __magic_name__ ): # model predict lowerCamelCase : int = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(__magic_name__ )) ) for p in range(len(__magic_name__ ) ): lowerCamelCase : Tuple = np.asmatrix(datas_test[p] ) lowerCamelCase , lowerCamelCase : Optional[int] = self.convolute( __magic_name__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCamelCase : Any = self.pooling(__magic_name__ , self.size_poolinga ) lowerCamelCase : Union[str, Any] = self._expand(__magic_name__ ) lowerCamelCase : Optional[Any] = data_bp_input lowerCamelCase : List[str] = bp_outa * self.vji.T - self.thre_bpa lowerCamelCase : Tuple = self.sig(__magic_name__ ) lowerCamelCase : Union[str, Any] = bp_outa * self.wkj.T - self.thre_bpa lowerCamelCase : Union[str, Any] = self.sig(__magic_name__ ) produce_out.extend(bp_outa.getA().tolist() ) lowerCamelCase : List[Any] = [list(map(self.do_round , __magic_name__ ) ) for each in produce_out] return np.asarray(__magic_name__ ) def UpperCamelCase__ ( self , __magic_name__ ): # return the data of image after convoluting process so we can check it out lowerCamelCase : Optional[Any] = np.asmatrix(__magic_name__ ) lowerCamelCase , lowerCamelCase : Any = self.convolute( __magic_name__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCamelCase : str = self.pooling(__magic_name__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
681
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _a ( lowerCamelCase, lowerCamelCase ): lowerCamelCase : List[Any] = F'''{sampling_rate}''' lowerCamelCase : Optional[int] = """1""" lowerCamelCase : Any = """f32le""" lowerCamelCase : Any = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(lowerCamelCase, stdin=subprocess.PIPE, stdout=subprocess.PIPE ) as ffmpeg_process: lowerCamelCase : Optional[int] = ffmpeg_process.communicate(lowerCamelCase ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error lowerCamelCase : Union[str, Any] = output_stream[0] lowerCamelCase : Optional[Any] = np.frombuffer(lowerCamelCase, np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase = "f32le", ): lowerCamelCase : Dict = F'''{sampling_rate}''' lowerCamelCase : List[Any] = """1""" if format_for_conversion == "s16le": lowerCamelCase : Any = 2 elif format_for_conversion == "f32le": lowerCamelCase : Dict = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) lowerCamelCase : Dict = platform.system() if system == "Linux": lowerCamelCase : Union[str, Any] = """alsa""" lowerCamelCase : List[Any] = """default""" elif system == "Darwin": lowerCamelCase : List[Any] = """avfoundation""" lowerCamelCase : List[Any] = """:0""" elif system == "Windows": lowerCamelCase : int = """dshow""" lowerCamelCase : Any = """default""" lowerCamelCase : Any = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] lowerCamelCase : List[Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCamelCase : Any = _ffmpeg_stream(lowerCamelCase, lowerCamelCase ) for item in iterator: yield item def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = "f32le", ): if stream_chunk_s is not None: lowerCamelCase : int = stream_chunk_s else: lowerCamelCase : Dict = chunk_length_s lowerCamelCase : Optional[Any] = ffmpeg_microphone(lowerCamelCase, lowerCamelCase, format_for_conversion=lowerCamelCase ) if format_for_conversion == "s16le": lowerCamelCase : Optional[int] = np.intaa lowerCamelCase : Optional[Any] = 2 elif format_for_conversion == "f32le": lowerCamelCase : int = np.floataa lowerCamelCase : Any = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: lowerCamelCase : Any = chunk_length_s / 6 lowerCamelCase : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowerCamelCase, (int, float) ): lowerCamelCase : Optional[int] = [stride_length_s, stride_length_s] lowerCamelCase : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCamelCase : Optional[int] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCamelCase : List[Any] = datetime.datetime.now() lowerCamelCase : List[Any] = datetime.timedelta(seconds=lowerCamelCase ) for item in chunk_bytes_iter(lowerCamelCase, lowerCamelCase, stride=(stride_left, stride_right), stream=lowerCamelCase ): # Put everything back in numpy scale lowerCamelCase : Dict = np.frombuffer(item["""raw"""], dtype=lowerCamelCase ) lowerCamelCase : List[Any] = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) lowerCamelCase : Tuple = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = False ): lowerCamelCase : Optional[int] = B"""""" lowerCamelCase , lowerCamelCase : str = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) lowerCamelCase : str = 0 for raw in iterator: acc += raw if stream and len(lowerCamelCase ) < chunk_len: lowerCamelCase : Optional[int] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowerCamelCase ) >= chunk_len: # We are flushing the accumulator lowerCamelCase : str = (_stride_left, stride_right) lowerCamelCase : Dict = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: lowerCamelCase : Optional[int] = False yield item lowerCamelCase : str = stride_left lowerCamelCase : Tuple = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowerCamelCase ) > stride_left: lowerCamelCase : List[str] = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: lowerCamelCase : List[Any] = False yield item def _a ( lowerCamelCase, lowerCamelCase ): lowerCamelCase : Optional[int] = 2**24 # 16Mo try: with subprocess.Popen(lowerCamelCase, stdout=subprocess.PIPE, bufsize=lowerCamelCase ) as ffmpeg_process: while True: lowerCamelCase : Any = ffmpeg_process.stdout.read(lowerCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
681
1
from __future__ import annotations def __lowerCAmelCase ( A , A ): if nth_term == "": return [""] UpperCAmelCase_ = int(A ) UpperCAmelCase_ = int(A ) UpperCAmelCase_ = [] for temp in range(int(A ) ): series.append(F"1 / {pow(temp + 1 , int(A ) )}" if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() _a: Optional[Any] = int(input("""Enter the last number (nth term) of the P-Series""")) _a: Any = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
268
from __future__ import annotations from collections import Counter from random import random class __UpperCamelCase : def __init__( self : Any ): '''simple docstring''' UpperCAmelCase_ = {} def __A ( self : List[str] , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ = {} def __A ( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : float ): '''simple docstring''' if nodea not in self.connections: self.add_node(lowerCAmelCase ) if nodea not in self.connections: self.add_node(lowerCAmelCase ) UpperCAmelCase_ = probability def __A ( self : Tuple ): '''simple docstring''' return list(self.connections ) def __A ( self : str , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __lowerCAmelCase ( A , A , A ): UpperCAmelCase_ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(A , A , A ) UpperCAmelCase_ = Counter(graph.get_nodes() ) UpperCAmelCase_ = start for _ in range(A ): UpperCAmelCase_ = graph.transition(A ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
268
1
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = "linear" __UpperCamelCase: Tuple = "cosine" __UpperCamelCase: Optional[int] = "cosine_with_restarts" __UpperCamelCase: str = "polynomial" __UpperCamelCase: int = "constant" __UpperCamelCase: Any = "constant_with_warmup" __UpperCamelCase: Optional[Any] = "piecewise_constant" def UpperCamelCase_ ( _UpperCAmelCase : Optimizer , _UpperCAmelCase : int = -1 ) -> Any: """simple docstring""" return LambdaLR(_UpperCAmelCase , lambda _UpperCAmelCase : 1 , last_epoch=_UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optimizer , _UpperCAmelCase : int , _UpperCAmelCase : int = -1 ) -> Optional[int]: """simple docstring""" def lr_lambda(_UpperCAmelCase : int ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1.0 , _UpperCAmelCase ) ) return 1.0 return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , last_epoch=_UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optimizer , _UpperCAmelCase : str , _UpperCAmelCase : int = -1 ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Union[str, Any] = step_rules.split("," ) for rule_str in rule_list[:-1]: _UpperCAmelCase , _UpperCAmelCase : Tuple = rule_str.split(":" ) _UpperCAmelCase : Dict = int(_UpperCAmelCase ) _UpperCAmelCase : int = float(_UpperCAmelCase ) _UpperCAmelCase : Dict = value _UpperCAmelCase : List[str] = float(rule_list[-1] ) def create_rules_function(_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): def rule_func(_UpperCAmelCase : int ) -> float: _UpperCAmelCase : Union[str, Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _UpperCAmelCase : Optional[Any] = create_rules_function(_UpperCAmelCase , _UpperCAmelCase ) return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , last_epoch=_UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=-1 ) -> Optional[int]: """simple docstring""" def lr_lambda(_UpperCAmelCase : int ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1 , _UpperCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optimizer , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float = 0.5 , _UpperCAmelCase : int = -1 ) -> Any: """simple docstring""" def lr_lambda(_UpperCAmelCase : List[Any] ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1 , _UpperCAmelCase ) ) _UpperCAmelCase : Union[str, Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optimizer , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = -1 ) -> int: """simple docstring""" def lr_lambda(_UpperCAmelCase : int ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1 , _UpperCAmelCase ) ) _UpperCAmelCase : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=1e-7 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : List[Any]=-1 ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(_UpperCAmelCase : int ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1 , _UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _UpperCAmelCase : int = lr_init - lr_end _UpperCAmelCase : Optional[Any] = num_training_steps - num_warmup_steps _UpperCAmelCase : int = 1 - (current_step - num_warmup_steps) / decay_steps _UpperCAmelCase : Optional[int] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __SCREAMING_SNAKE_CASE : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def UpperCamelCase_ ( _UpperCAmelCase : Union[str, SchedulerType] , _UpperCAmelCase : Optimizer , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 1 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : int = -1 , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = SchedulerType(_UpperCAmelCase ) _UpperCAmelCase : str = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_UpperCAmelCase , last_epoch=_UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_UpperCAmelCase , step_rules=_UpperCAmelCase , last_epoch=_UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_UpperCAmelCase , num_warmup_steps=_UpperCAmelCase , last_epoch=_UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _UpperCAmelCase , num_warmup_steps=_UpperCAmelCase , num_training_steps=_UpperCAmelCase , num_cycles=_UpperCAmelCase , last_epoch=_UpperCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _UpperCAmelCase , num_warmup_steps=_UpperCAmelCase , num_training_steps=_UpperCAmelCase , power=_UpperCAmelCase , last_epoch=_UpperCAmelCase , ) return schedule_func( _UpperCAmelCase , num_warmup_steps=_UpperCAmelCase , num_training_steps=_UpperCAmelCase , last_epoch=_UpperCAmelCase )
244
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE : List[str] = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=None ) -> Any: """simple docstring""" require_version(deps[pkg] , _UpperCAmelCase )
244
1
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=4 , ): UpperCAmelCase__ : Any = parent UpperCAmelCase__ : Dict = batch_size UpperCAmelCase__ : int = seq_length UpperCAmelCase__ : Optional[Any] = is_training UpperCAmelCase__ : Optional[int] = use_attention_mask UpperCAmelCase__ : List[Any] = use_token_type_ids UpperCAmelCase__ : int = use_labels UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : Any = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Dict = attention_probs_dropout_prob UpperCAmelCase__ : int = max_position_embeddings UpperCAmelCase__ : int = type_vocab_size UpperCAmelCase__ : Any = type_sequence_label_size UpperCAmelCase__ : str = initializer_range UpperCAmelCase__ : Dict = num_choices def lowerCamelCase ( self ): UpperCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : int = None if self.use_attention_mask: UpperCAmelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Any = None if self.use_token_type_ids: UpperCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : List[str] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase ( self ): UpperCAmelCase__ : str = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = config_and_inputs UpperCAmelCase__ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[int] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase ( self ): UpperCAmelCase__ : Optional[Any] = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase ( self ): for model_class_name in self.all_model_classes: UpperCAmelCase__ : str = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=_UpperCAmelCase ) UpperCAmelCase__ : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase ( self ): UpperCAmelCase__ : List[Any] = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) UpperCAmelCase__ : List[str] = jnp.array([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ : Optional[Any] = model(_UpperCAmelCase )[0] UpperCAmelCase__ : int = 5_0000 UpperCAmelCase__ : Optional[int] = (1, 6, vocab_size) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase__ : str = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
599
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCamelCase_ = "tiny-wmt19-en-ru" # Build # borrowed from a test UpperCamelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCamelCase_ = dict(zip(vocab, range(len(vocab)))) UpperCamelCase_ = ["l o 123", "lo w 1456", "e r</w> 1789", ""] with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_ = Path(tmpdirname) UpperCamelCase_ = build_dir / VOCAB_FILES_NAMES["src_vocab_file"] UpperCamelCase_ = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"] UpperCamelCase_ = build_dir / VOCAB_FILES_NAMES["merges_file"] with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, "w") as fp: fp.write("\n".join(merges)) UpperCamelCase_ = FSMTTokenizer( langs=["en", "ru"], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCamelCase_ = FSMTConfig( langs=["ru", "en"], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCamelCase_ = FSMTForConditionalGeneration(config) print(f'num of params {tiny_model.num_parameters()}') # Test UpperCamelCase_ = tokenizer(["Making tiny model"], return_tensors="pt") UpperCamelCase_ = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-ru
599
1
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset A__: str = '''bert-base-cased''' A__: Dict = '''google/pegasus-xsum''' A__: int = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] A__: str = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] A__: Optional[int] = '''patrickvonplaten/t5-tiny-random''' A__: Union[str, Any] = '''sshleifer/bart-tiny-random''' A__: List[Any] = '''sshleifer/tiny-mbart''' A__: str = '''sshleifer/tiny-marian-en-de''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Path ,_UpperCAmelCase : list ) -> Tuple: _a : Optional[Any] ="""\n""".join(_UpperCAmelCase ) Path(_UpperCAmelCase ).open("""w""" ).writelines(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: for split in ["train", "val", "test"]: _dump_articles(os.path.join(_UpperCAmelCase ,F"{split}.source" ) ,_UpperCAmelCase ) _dump_articles(os.path.join(_UpperCAmelCase ,F"{split}.target" ) ,_UpperCAmelCase ) return tmp_dir class A__ ( UpperCAmelCase__ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Any ) -> Union[str, Any]: '''simple docstring''' _a : int =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) _a : int =make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _a : Any =max(len(tokenizer.encode(SCREAMING_SNAKE_CASE ) ) for a in ARTICLES ) _a : Optional[int] =max(len(tokenizer.encode(SCREAMING_SNAKE_CASE ) ) for a in SUMMARIES ) _a : Dict =4 _a : Tuple =8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _a , _a : Optional[int] ="""ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error. _a : str =SeqaSeqDataset( SCREAMING_SNAKE_CASE , data_dir=SCREAMING_SNAKE_CASE , type_path="""train""" , max_source_length=SCREAMING_SNAKE_CASE , max_target_length=SCREAMING_SNAKE_CASE , src_lang=SCREAMING_SNAKE_CASE , tgt_lang=SCREAMING_SNAKE_CASE , ) _a : Any =DataLoader(SCREAMING_SNAKE_CASE , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _a : List[Any] =shift_tokens_right(batch["""labels"""] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :List[str] ) -> Dict: '''simple docstring''' _a : str =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) _a : int =make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _a : Optional[Any] =max(len(tokenizer.encode(SCREAMING_SNAKE_CASE ) ) for a in ARTICLES ) _a : List[str] =max(len(tokenizer.encode(SCREAMING_SNAKE_CASE ) ) for a in SUMMARIES ) _a : Optional[Any] =4 _a : int =LegacySeqaSeqDataset( SCREAMING_SNAKE_CASE , data_dir=SCREAMING_SNAKE_CASE , type_path="""train""" , max_source_length=2_0 , max_target_length=SCREAMING_SNAKE_CASE , ) _a : Union[str, Any] =DataLoader(SCREAMING_SNAKE_CASE , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self :List[Any] ) -> Tuple: '''simple docstring''' _a : int =AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" ) _a : Any =Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _a : Any =tmp_dir.joinpath("""train.source""" ).open().readlines() _a : Optional[int] =Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1_2_8 , SCREAMING_SNAKE_CASE ) _a : List[str] ={x.name for x in tmp_dir.iterdir()} _a : Dict ={x.name for x in save_dir.iterdir()} _a : str =save_dir.joinpath("""train.source""" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(SCREAMING_SNAKE_CASE ) < len(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == 1 assert len(packed_examples[0] ) == sum(len(SCREAMING_SNAKE_CASE ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="""This test requires fairseq""" ) def __UpperCAmelCase ( self :Dict ) -> Optional[int]: '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _a , _a , _a : Dict =self._get_dataset(max_len=6_4 ) _a : Any =6_4 _a : str =ds.make_dynamic_sampler(SCREAMING_SNAKE_CASE , required_batch_size_multiple=SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =[len(SCREAMING_SNAKE_CASE ) for x in batch_sampler] assert len(set(SCREAMING_SNAKE_CASE ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) # no dropped or added examples _a : Any =DataLoader(SCREAMING_SNAKE_CASE , batch_sampler=SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn , num_workers=2 ) _a : Union[str, Any] =[] _a : str =[] for batch in data_loader: _a : Dict =batch["""input_ids"""].shape _a : Optional[Any] =src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _a : str =np.product(batch["""input_ids"""].shape ) num_src_per_batch.append(SCREAMING_SNAKE_CASE ) if num_src_tokens > (max_tokens * 1.1): failures.append(SCREAMING_SNAKE_CASE ) assert num_src_per_batch[0] == max(SCREAMING_SNAKE_CASE ) if failures: raise AssertionError(f"too many tokens in {len(SCREAMING_SNAKE_CASE )} batches" ) def __UpperCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' _a , _a , _a : Tuple =self._get_dataset(max_len=5_1_2 ) _a : Union[str, Any] =2 _a : str =ds.make_sortish_sampler(SCREAMING_SNAKE_CASE , shuffle=SCREAMING_SNAKE_CASE ) _a : Dict =DataLoader(SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn , num_workers=2 ) _a : List[str] =DataLoader(SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn , num_workers=2 , sampler=SCREAMING_SNAKE_CASE ) _a : Any =tokenizer.pad_token_id def count_pad_tokens(SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Tuple="input_ids" ): return [batch[k].eq(SCREAMING_SNAKE_CASE ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(SCREAMING_SNAKE_CASE , k="""labels""" ) ) < sum(count_pad_tokens(SCREAMING_SNAKE_CASE , k="""labels""" ) ) assert sum(count_pad_tokens(SCREAMING_SNAKE_CASE ) ) < sum(count_pad_tokens(SCREAMING_SNAKE_CASE ) ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Any=1_0_0_0 , SCREAMING_SNAKE_CASE :Any=1_2_8 ) -> List[Any]: '''simple docstring''' if os.getenv("""USE_REAL_DATA""" , SCREAMING_SNAKE_CASE ): _a : str ="""examples/seq2seq/wmt_en_ro""" _a : List[Any] =max_len * 2 * 6_4 if not Path(SCREAMING_SNAKE_CASE ).joinpath("""train.len""" ).exists(): save_len_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: _a : str ="""examples/seq2seq/test_data/wmt_en_ro""" _a : List[Any] =max_len * 4 save_len_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) _a : Tuple =SeqaSeqDataset( SCREAMING_SNAKE_CASE , data_dir=SCREAMING_SNAKE_CASE , type_path="""train""" , max_source_length=SCREAMING_SNAKE_CASE , max_target_length=SCREAMING_SNAKE_CASE , n_obs=SCREAMING_SNAKE_CASE , ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' _a , _a , _a : Union[str, Any] =self._get_dataset() _a : Tuple =set(DistributedSortishSampler(SCREAMING_SNAKE_CASE , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=SCREAMING_SNAKE_CASE ) ) _a : List[str] =set(DistributedSortishSampler(SCREAMING_SNAKE_CASE , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=SCREAMING_SNAKE_CASE ) ) assert idsa.intersection(SCREAMING_SNAKE_CASE ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[Any]: '''simple docstring''' _a : Any =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE ) if tok_name == MBART_TINY: _a : List[str] =SeqaSeqDataset( SCREAMING_SNAKE_CASE , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , src_lang="""EN""" , tgt_lang="""FR""" , ) _a : Optional[int] =train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _a : Tuple =SeqaSeqDataset( SCREAMING_SNAKE_CASE , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , ) _a : int =train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(SCREAMING_SNAKE_CASE ) == 1 if tok_name == BART_TINY else len(SCREAMING_SNAKE_CASE ) == 0
694
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: if n == 1 or not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): return 0 elif n == 2: return 1 else: _a : Dict =[0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: _a : Union[str, Any] =0 _a : Optional[Any] =2 while digits < n: index += 1 _a : Optional[int] =len(str(fibonacci(_UpperCAmelCase ) ) ) return index def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 1000 ) -> int: return fibonacci_digits_index(_UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
694
1
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def UpperCAmelCase ( *_lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Union[Dict, Any]] = None , _lowerCamelCase : Dict=True , _lowerCamelCase : Dict=2 ): '''simple docstring''' from .. import __version__ SCREAMING_SNAKE_CASE__ : Optional[Any] = take_from SCREAMING_SNAKE_CASE__ : str = () if not isinstance(args[0] , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Dict = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_lowerCamelCase ).base_version ) >= version.parse(_lowerCamelCase ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if isinstance(_lowerCamelCase , _lowerCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_lowerCamelCase ),) SCREAMING_SNAKE_CASE__ : Optional[int] = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(_lowerCamelCase , _lowerCamelCase ): values += (getattr(_lowerCamelCase , _lowerCamelCase ),) SCREAMING_SNAKE_CASE__ : Optional[Any] = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: SCREAMING_SNAKE_CASE__ : List[Any] = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: SCREAMING_SNAKE_CASE__ : List[str] = warning + " " if standard_warn else "" warnings.warn(warning + message , _lowerCamelCase , stacklevel=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) > 0: SCREAMING_SNAKE_CASE__ : List[str] = inspect.getouterframes(inspect.currentframe() )[1] SCREAMING_SNAKE_CASE__ : Optional[Any] = call_frame.filename SCREAMING_SNAKE_CASE__ : Tuple = call_frame.lineno SCREAMING_SNAKE_CASE__ : Optional[Any] = call_frame.function SCREAMING_SNAKE_CASE__ : List[str] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(_lowerCamelCase ) == 0: return elif len(_lowerCamelCase ) == 1: return values[0] return values
712
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowercase :str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _a ( lowercase__ ): """simple docstring""" def __init__( self : List[str] , a : Optional[int] , a : str , a : int=None , a : Optional[Any]=1 ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Dict = tokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = dataset SCREAMING_SNAKE_CASE__ : Optional[Any] = len(a ) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE__ : Dict = n_copies def __iter__( self : str ) ->Tuple: SCREAMING_SNAKE_CASE__ : str = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) SCREAMING_SNAKE_CASE__ : int = self.tokenizer(a , padding=a , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _a ( lowercase__ ): """simple docstring""" def __init__( self : Dict , a : int , a : int , a : Tuple ) ->Dict: SCREAMING_SNAKE_CASE__ : Dict = start_length SCREAMING_SNAKE_CASE__ : Any = eof_strings SCREAMING_SNAKE_CASE__ : Any = tokenizer def __call__( self : Any , a : Optional[int] , a : int , **a : Union[str, Any] ) ->List[str]: SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) SCREAMING_SNAKE_CASE__ : int = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(a ) def UpperCAmelCase ( _lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = re.split("(%s)" % "|".join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : str=20 , **_lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = batch["ids"].shape[-1] SCREAMING_SNAKE_CASE__ : List[Any] = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times SCREAMING_SNAKE_CASE__ : Dict = batch["task_id"].repeat(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Dict = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE__ : Dict = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE__ : Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = HfArgumentParser(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE__ : str = "false" if args.num_workers is None: SCREAMING_SNAKE_CASE__ : Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE__ : Dict = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.eos_token SCREAMING_SNAKE_CASE__ : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE__ : List[Any] = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE__ : str = load_dataset("openai_humaneval" ) SCREAMING_SNAKE_CASE__ : Any = load_metric("code_eval" ) SCREAMING_SNAKE_CASE__ : Dict = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE__ : Dict = TokenizedDataset(_lowerCamelCase , human_eval["test"] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE__ : Optional[int] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE__ : int = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for task in tqdm(range(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : List[Any] = human_eval["test"][task]["test"] SCREAMING_SNAKE_CASE__ : List[Any] = f"""check({human_eval['test'][task]['entry_point']})""" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
26
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a__ : List[Any] = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] a__ : Optional[Any] = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] a__ : Optional[Any] = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): a__ : Any = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys a__ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
622
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def a__ ( ): '''simple docstring''' lowerCAmelCase : List[Any] = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" lowerCAmelCase : str = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert("RGB" ) return image def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : int = dct.pop(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = val def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCAmelCase : Optional[int] = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) lowerCAmelCase : Union[str, Any] = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict lowerCAmelCase : Optional[int] = torch.cat((q_bias, torch.zeros_like(SCREAMING_SNAKE_CASE , requires_grad=SCREAMING_SNAKE_CASE ), v_bias) ) lowerCAmelCase : int = qkv_bias def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : Dict = 3_6_4 if "coco" in model_name else 2_2_4 lowerCAmelCase : List[str] = BlipaVisionConfig(image_size=SCREAMING_SNAKE_CASE ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCAmelCase : int = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=SCREAMING_SNAKE_CASE ).to_dict() elif "opt-6.7b" in model_name: lowerCAmelCase : List[str] = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=SCREAMING_SNAKE_CASE ).to_dict() elif "t5-xl" in model_name: lowerCAmelCase : str = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCAmelCase : str = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() lowerCAmelCase : Union[str, Any] = BlipaConfig(vision_config=SCREAMING_SNAKE_CASE , text_config=SCREAMING_SNAKE_CASE ) return config, image_size @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Any=False ): '''simple docstring''' lowerCAmelCase : Any = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) lowerCAmelCase : Optional[Any] = tokenizer("\n" , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids[0] lowerCAmelCase , lowerCAmelCase : Any = get_blipa_config(SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = BlipaForConditionalGeneration(SCREAMING_SNAKE_CASE ).eval() lowerCAmelCase : Union[str, Any] = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } lowerCAmelCase , lowerCAmelCase : List[Any] = model_name_to_original[model_name] # load original model print("Loading original model..." ) lowerCAmelCase : Any = "cuda" if torch.cuda.is_available() else "cpu" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = load_model_and_preprocess( name=SCREAMING_SNAKE_CASE , model_type=SCREAMING_SNAKE_CASE , is_eval=SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE ) original_model.eval() print("Done!" ) # update state dict keys lowerCAmelCase : str = original_model.state_dict() lowerCAmelCase : Tuple = create_rename_keys(SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCAmelCase : Any = state_dict.pop(SCREAMING_SNAKE_CASE ) if key.startswith("Qformer.bert" ): lowerCAmelCase : Union[str, Any] = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: lowerCAmelCase : Dict = key.replace("self" , "attention" ) if "opt_proj" in key: lowerCAmelCase : Dict = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: lowerCAmelCase : Optional[int] = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): lowerCAmelCase : Any = key.replace("opt" , "language" ) if key.startswith("t5" ): lowerCAmelCase : Tuple = key.replace("t5" , "language" ) lowerCAmelCase : Optional[int] = val # read in qv biases read_in_q_v_bias(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Tuple = hf_model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCAmelCase : Union[str, Any] = load_demo_image() lowerCAmelCase : Dict = vis_processors["eval"](SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(SCREAMING_SNAKE_CASE ) # create processor lowerCAmelCase : int = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = BlipaProcessor(image_processor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values.to(SCREAMING_SNAKE_CASE ) # make sure processor creates exact same pixel values assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) original_model.to(SCREAMING_SNAKE_CASE ) hf_model.to(SCREAMING_SNAKE_CASE ) with torch.no_grad(): if "opt" in model_name: lowerCAmelCase : Union[str, Any] = original_model({"image": original_pixel_values, "text_input": [""]} ).logits lowerCAmelCase : str = hf_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).logits else: lowerCAmelCase : List[str] = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits lowerCAmelCase : List[str] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) lowerCAmelCase : Tuple = hf_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCAmelCase : List[str] = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=SCREAMING_SNAKE_CASE ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCAmelCase : List[str] = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=SCREAMING_SNAKE_CASE ) else: # cast to same type lowerCAmelCase : int = logits.dtype assert torch.allclose(original_logits.to(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , atol=1E-2 ) print("Looks ok!" ) print("Generating a caption..." ) lowerCAmelCase : Optional[int] = "" lowerCAmelCase : List[str] = tokenizer(SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_ids.to(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = original_model.generate({"image": original_pixel_values} ) lowerCAmelCase : Any = hf_model.generate( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = input_ids.shape[1] lowerCAmelCase : Union[str, Any] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = [text.strip() for text in output_text] print("HF generation:" , SCREAMING_SNAKE_CASE ) if pytorch_dump_folder_path is not None: processor.save_pretrained(SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() lowerCAmelCase__ = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) lowerCAmelCase__ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
645
0
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCAmelCase_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _A : def __init__( self : Tuple , _A : Tuple , _A : Dict=16 , _A : Optional[Any]=13 , _A : str=7 , _A : Optional[Any]=14 , _A : int=10 , _A : str=19 , _A : List[Any]=5 , _A : Dict=4 , _A : int=True , _A : List[str]=16 , _A : Union[str, Any]=2 , _A : Any=4 , _A : Tuple=4 , _A : int="gelu" , _A : Tuple=0.1 , _A : Optional[Any]=0.1 , _A : Union[str, Any]=[1, 2, 3, 4, 5] , _A : Optional[Any]=25 , _A : Optional[Any]=5 , ) -> List[str]: """simple docstring""" lowercase : Dict = d_model lowercase : Any = parent lowercase : List[str] = batch_size lowercase : List[str] = prediction_length lowercase : str = context_length lowercase : List[str] = cardinality lowercase : Optional[int] = num_time_features lowercase : Union[str, Any] = lags_sequence lowercase : Union[str, Any] = embedding_dimension lowercase : Optional[Any] = is_training lowercase : Any = hidden_size lowercase : Optional[Any] = num_hidden_layers lowercase : Optional[int] = num_attention_heads lowercase : List[str] = intermediate_size lowercase : Tuple = hidden_act lowercase : Union[str, Any] = hidden_dropout_prob lowercase : Union[str, Any] = attention_probs_dropout_prob lowercase : Optional[int] = context_length lowercase : str = prediction_length + label_length lowercase : int = label_length lowercase : List[Any] = moving_average lowercase : int = autocorrelation_factor def __a ( self : Union[str, Any] ) -> str: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __a ( self : List[Any] , _A : Optional[int] ) -> List[str]: """simple docstring""" lowercase : int = config.context_length + max(config.lags_sequence ) lowercase : List[Any] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowercase : Union[str, Any] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowercase : List[str] = floats_tensor([self.batch_size, _past_length] ) lowercase : Union[str, Any] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowercase : List[str] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowercase : int = floats_tensor([self.batch_size, config.prediction_length] ) lowercase : Any = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def __a ( self : int ) -> Dict: """simple docstring""" lowercase : Any = self.get_config() lowercase : Any = self.prepare_autoformer_inputs_dict(_A ) return config, inputs_dict def __a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase , lowercase : int = self.prepare_config_and_inputs() return config, inputs_dict def __a ( self : Optional[Any] , _A : List[str] , _A : Any ) -> Dict: """simple docstring""" lowercase : Any = AutoformerModel(config=_A ).to(_A ).eval() lowercase : Any = model(**_A ) lowercase : Dict = outputs.encoder_last_hidden_state lowercase : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Optional[Any] = model.get_encoder() encoder.save_pretrained(_A ) lowercase : Dict = AutoformerEncoder.from_pretrained(_A ).to(_A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] = model.create_network_inputs(**_A ) lowercase , lowercase : Optional[int] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowercase : Optional[int] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowercase : Tuple = encoder(inputs_embeds=_A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) lowercase : Tuple = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowercase : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowercase : Any = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowercase : int = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int = model.get_decoder() decoder.save_pretrained(_A ) lowercase : Optional[int] = AutoformerDecoder.from_pretrained(_A ).to(_A ) lowercase : List[str] = decoder( trend=_A , inputs_embeds=_A , encoder_hidden_states=_A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : int = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _UpperCamelCase : str = (AutoformerForPrediction,) if is_torch_available() else () _UpperCamelCase : int = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _UpperCamelCase : int = False _UpperCamelCase : List[str] = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : int = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Dict = False def __a ( self : List[str] ) -> Tuple: """simple docstring""" lowercase : int = AutoformerModelTester(self ) lowercase : str = ConfigTester(self , config_class=_A , has_text_modality=_A ) def __a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Optional[Any] ) -> int: """simple docstring""" lowercase , lowercase : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowercase : str = model_class(_A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) lowercase , lowercase : Optional[Any] = model_class.from_pretrained(_A , output_loading_info=_A ) self.assertEqual(info['''missing_keys'''] , [] ) def __a ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_A ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def __a ( self : Dict ) -> Optional[Any]: """simple docstring""" pass def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" lowercase : List[str] = inspect.signature(getattr(_A , '''forward''' ) ) # The main input is the name of the argument after `self` lowercase : List[str] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , _A ) def __a ( self : Optional[int] ) -> Dict: """simple docstring""" lowercase , lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Any = model_class(_A ) lowercase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Any = [*signature.parameters.keys()] lowercase : Optional[Any] = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(_A )] , _A ) def __a ( self : Dict ) -> Optional[int]: """simple docstring""" lowercase , lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Optional[int] = True lowercase : List[str] = getattr(self.model_tester , '''seq_length''' , _A ) lowercase : Dict = getattr(self.model_tester , '''decoder_seq_length''' , _A ) lowercase : Union[str, Any] = getattr(self.model_tester , '''encoder_seq_length''' , _A ) lowercase : str = getattr(self.model_tester , '''d_model''' , _A ) lowercase : int = getattr(self.model_tester , '''num_attention_heads''' , _A ) lowercase : List[str] = d_model // num_attention_heads for model_class in self.all_model_classes: lowercase : Optional[Any] = True lowercase : int = False lowercase : str = True lowercase : Tuple = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): lowercase : Tuple = model(**self._prepare_for_class(_A , _A ) ) lowercase : Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase : Optional[Any] = True lowercase : int = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): lowercase : Any = model(**self._prepare_for_class(_A , _A ) ) lowercase : Dict = outputs.encoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowercase : Optional[Any] = len(_A ) lowercase : Optional[Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(_A , _A ) # decoder attentions lowercase : Optional[int] = outputs.decoder_attentions self.assertIsInstance(_A , (list, tuple) ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowercase : List[Any] = outputs.cross_attentions self.assertIsInstance(_A , (list, tuple) ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowercase : Tuple = True lowercase : Union[str, Any] = True lowercase : Tuple = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): lowercase : Any = model(**self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + 2 , len(_A ) ) lowercase : Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __a ( self : str ) -> int: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case( __magic_name__="train-batch.pt" ) -> int: '''simple docstring''' lowercase : str = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__magic_name__ , repo_type='''dataset''' ) lowercase : Dict = torch.load(__magic_name__ , map_location=__magic_name__ ) return batch @require_torch @slow class _A ( unittest.TestCase ): def __a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : List[Any] = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(_A ) lowercase : Union[str, Any] = prepare_batch() with torch.no_grad(): lowercase : Optional[Any] = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] lowercase : Dict = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , _A ) lowercase : Dict = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=_A ) self.assertTrue(torch.allclose(output[0, :3, :3] , _A , atol=_A ) ) def __a ( self : List[Any] ) -> int: """simple docstring""" lowercase : Optional[int] = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(_A ) lowercase : Tuple = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): lowercase : Union[str, Any] = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state lowercase : int = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , _A ) lowercase : Optional[Any] = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=_A ) self.assertTrue(torch.allclose(output[0, :3, :3] , _A , atol=_A ) ) def __a ( self : Optional[int] ) -> Dict: """simple docstring""" lowercase : str = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(_A ) lowercase : Dict = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): lowercase : Dict = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) lowercase : List[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , _A ) lowercase : Optional[Any] = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=_A ) lowercase : Union[str, Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , _A , rtol=1E-1 ) )
596
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _A ( unittest.TestCase ): def __a ( self : str ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase : Dict = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase : Dict = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def __a ( self : Any ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase : List[str] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) lowercase : Optional[int] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def __a ( self : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Optional[Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase : List[Any] = DDPMScheduler() lowercase : Optional[int] = AudioDiffusionPipeline(vqvae=_A , unet=self.dummy_unet , mel=_A , scheduler=_A ) lowercase : Any = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) lowercase : Any = torch.Generator(device=_A ).manual_seed(42 ) lowercase : List[str] = pipe(generator=_A , steps=4 ) lowercase : List[str] = output.audios[0] lowercase : List[str] = output.images[0] lowercase : Any = torch.Generator(device=_A ).manual_seed(42 ) lowercase : str = pipe(generator=_A , steps=4 , return_dict=_A ) lowercase : Tuple = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase : Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] lowercase : Any = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] lowercase : str = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase : Dict = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase : List[Any] = DDIMScheduler() lowercase : List[str] = self.dummy_vqvae_and_unet lowercase : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_A , scheduler=_A ) lowercase : Dict = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) np.random.seed(0 ) lowercase : int = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase : List[str] = torch.Generator(device=_A ).manual_seed(42 ) lowercase : Tuple = pipe(raw_audio=_A , generator=_A , start_step=5 , steps=10 ) lowercase : Any = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase : Optional[int] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] lowercase : Dict = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase : Dict = self.dummy_unet_condition lowercase : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_A , mel=_A , scheduler=_A ) lowercase : Dict = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) np.random.seed(0 ) lowercase : Dict = torch.rand((1, 1, 10) ) lowercase : Optional[int] = pipe(generator=_A , encoding=_A ) lowercase : int = output.images[0] lowercase : str = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] lowercase : int = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __a ( self : Dict ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ) -> int: """simple docstring""" lowercase : Optional[int] = torch_device lowercase : Optional[int] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) lowercase : List[str] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) lowercase : Union[str, Any] = torch.Generator(device=_A ).manual_seed(42 ) lowercase : Dict = pipe(generator=_A ) lowercase : Union[str, Any] = output.audios[0] lowercase : int = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase : Any = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] lowercase : int = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
596
1