code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowercase_ = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize lowercase_ = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowercase_ = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowercase_ = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _snake_case ( datasets.Metric): def A__ ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence" ), "references": datasets.Value("string", id="sequence" ), } ), codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"], reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ], ) def A__ ( self : Tuple, __lowercase : List[Any] ): import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def A__ ( self : List[Any], __lowercase : Optional[int], __lowercase : List[Any], __lowercase : Union[str, Any]=0.9, __lowercase : Tuple=3, __lowercase : Any=0.5 ): if NLTK_VERSION >= version.Version("3.6.5" ): lowercase__ = [ meteor_score.single_meteor_score( word_tokenize(_SCREAMING_SNAKE_CASE ), word_tokenize(_SCREAMING_SNAKE_CASE ), alpha=_SCREAMING_SNAKE_CASE, beta=_SCREAMING_SNAKE_CASE, gamma=_SCREAMING_SNAKE_CASE ) for ref, pred in zip(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) ] else: lowercase__ = [ meteor_score.single_meteor_score(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, alpha=_SCREAMING_SNAKE_CASE, beta=_SCREAMING_SNAKE_CASE, gamma=_SCREAMING_SNAKE_CASE ) for ref, pred in zip(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) ] return {"meteor": np.mean(_SCREAMING_SNAKE_CASE )}
413
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A: Union[str, Any] = logging.get_logger(__name__) A: Optional[int] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : str = 'nllb-moe' __lowerCAmelCase : List[Any] = ['past_key_values'] __lowerCAmelCase : Dict = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _SCREAMING_SNAKE_CASE=128112 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="float32" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=0.001 , _SCREAMING_SNAKE_CASE=0.001 , _SCREAMING_SNAKE_CASE="all" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=0.2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : str = d_model UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : int = encoder_layers UpperCAmelCase : Dict = encoder_attention_heads UpperCAmelCase : Tuple = decoder_ffn_dim UpperCAmelCase : List[Any] = decoder_layers UpperCAmelCase : Tuple = decoder_attention_heads UpperCAmelCase : Any = dropout UpperCAmelCase : Optional[int] = attention_dropout UpperCAmelCase : Union[str, Any] = activation_dropout UpperCAmelCase : Dict = activation_function UpperCAmelCase : int = init_std UpperCAmelCase : List[Any] = encoder_layerdrop UpperCAmelCase : Optional[Any] = decoder_layerdrop UpperCAmelCase : str = use_cache UpperCAmelCase : List[Any] = encoder_layers UpperCAmelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Optional[Any] = router_z_loss_coef UpperCAmelCase : List[str] = router_aux_loss_coef UpperCAmelCase : str = decoder_sparse_step UpperCAmelCase : str = encoder_sparse_step UpperCAmelCase : Optional[int] = num_experts UpperCAmelCase : Optional[int] = expert_capacity UpperCAmelCase : List[Any] = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) UpperCAmelCase : int = router_dtype UpperCAmelCase : Optional[int] = router_ignore_padding_tokens UpperCAmelCase : Tuple = batch_prioritized_routing UpperCAmelCase : Any = second_expert_policy UpperCAmelCase : List[str] = normalize_router_prob_before_dropping UpperCAmelCase : str = moe_eval_capacity_token_fraction UpperCAmelCase : Union[str, Any] = moe_token_dropout UpperCAmelCase : Any = output_router_logits super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
160
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ :Optional[int] , UpperCAmelCase__ :int ): '''simple docstring''' a = [0 for i in range(r + 1 )] # nc0 = 1 a = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. a = min(UpperCAmelCase__ , UpperCAmelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
713
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _lowercase : def __init__( self : List[str] ) -> List[str]: """simple docstring""" a = "" a = "" a = [] a = 0 a = 256 a = 0 a = 0 a = 0 a = 0 def A ( self : Optional[Any] , __lowerCAmelCase : Any ) -> int: """simple docstring""" a = cva.imread(__lowerCAmelCase , 0 ) a = copy.deepcopy(self.img ) a , a , a = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) a = np.sum(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): a = x[i] / self.k self.sk += prk a = (self.L - 1) * self.sk if self.rem != 0: a = int(last % last ) a = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__lowerCAmelCase ) a = int(np.ma.count(self.img ) / self.img[1].size ) a = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): a = self.img[j][i] if num != self.last_list[num]: a = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def A ( self : Any ) -> int: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def A ( self : Any ) -> int: """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": A_ : List[Any] = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') A_ : int = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
32
0
def _a ( lowerCAmelCase )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError('only integers accepted as input' ) else: SCREAMING_SNAKE_CASE_ = str(abs(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = [list(lowerCAmelCase ) for char in range(len(lowerCAmelCase ) )] for index in range(len(lowerCAmelCase ) ): num_transpositions[index].pop(lowerCAmelCase ) return max( int(''.join(list(lowerCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
360
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE: Any = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE: List[Any] = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE: List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
360
1
a_ : Union[str, Any] = "Tobias Carryer" from time import time class UpperCamelCase : def __init__( self : Optional[Any] , snake_case__ : int , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : Optional[int]=int(time() ) ): # noqa: B008 """simple docstring""" SCREAMING_SNAKE_CASE = multiplier SCREAMING_SNAKE_CASE = increment SCREAMING_SNAKE_CASE = modulo SCREAMING_SNAKE_CASE = seed def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. a_ : List[Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
710
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ : Any = logging.get_logger(__name__) a_ : Dict = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="van" def __init__( self : Optional[Any] , snake_case__ : Tuple=2_2_4 , snake_case__ : Dict=3 , snake_case__ : Union[str, Any]=[7, 3, 3, 3] , snake_case__ : str=[4, 2, 2, 2] , snake_case__ : Optional[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case__ : Optional[Any]=[3, 3, 1_2, 3] , snake_case__ : Tuple=[8, 8, 4, 4] , snake_case__ : Any="gelu" , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : int=1E-2 , snake_case__ : Any=0.0 , snake_case__ : Tuple=0.0 , **snake_case__ : Any , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = dropout_rate
673
0
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def A__ ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = analyze_text(__lowerCamelCase ) _lowerCAmelCase = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowerCAmelCase = sum(single_char_strings.values() ) # one length string _lowerCAmelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowerCAmelCase = single_char_strings[ch] _lowerCAmelCase = my_str / all_sum my_fir_sum += prob * math.loga(__lowerCamelCase ) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowerCAmelCase = sum(two_char_strings.values() ) _lowerCAmelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowerCAmelCase = cha + cha if sequence in two_char_strings: _lowerCAmelCase = two_char_strings[sequence] _lowerCAmelCase = int(__lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(__lowerCamelCase ) # print second entropy print(F'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def A__ ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = Counter() # type: ignore _lowerCAmelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(__lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def A__ ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
589
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int | float | str , SCREAMING_SNAKE_CASE : int | float | str ): if nth_term == "": return [""] UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) UpperCAmelCase = [] for temp in range(int(SCREAMING_SNAKE_CASE ) ): series.append(f'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE ) )}''' if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() _a : List[Any] = int(input('Enter the last number (nth term) of the P-Series')) _a : Tuple = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
447
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowerCAmelCase : Dict = sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
693
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="ylacombe/bark-small" lowerCamelCase__: Tuple =tempfile.mkdtemp() lowerCamelCase__: Tuple ="en_speaker_1" lowerCamelCase__: Optional[int] ="This is a test string" lowerCamelCase__: List[str] ="speaker_embeddings_path.json" lowerCamelCase__: int ="speaker_embeddings" def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , **UpperCAmelCase_ : Any) ->Tuple: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: List[Any] =self.get_tokenizer() lowerCamelCase__: List[str] =BarkProcessor(tokenizer=UpperCAmelCase_) processor.save_pretrained(self.tmpdirname) lowerCamelCase__: Dict =BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' lowerCamelCase__: Tuple =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCamelCase__: Dict =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") lowerCamelCase__: Any =BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: Any =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCamelCase__: List[str] =35 lowerCamelCase__: Optional[Any] =2 lowerCamelCase__: Optional[Any] =8 lowerCamelCase__: Optional[int] ={ "semantic_prompt": np.ones(UpperCAmelCase_), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len)), "fine_prompt": np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset lowerCamelCase__: Any =processor(text=self.input_string , voice_preset=UpperCAmelCase_) lowerCamelCase__: int =inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([])).tolist()) # test loading voice preset from npz file lowerCamelCase__: Union[str, Any] =os.path.join(self.tmpdirname , "file.npz") np.savez(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Tuple =processor(text=self.input_string , voice_preset=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([])).tolist()) # test loading voice preset from the hub lowerCamelCase__: Any =processor(text=self.input_string , voice_preset=self.voice_preset) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: str =self.get_tokenizer() lowerCamelCase__: Dict =BarkProcessor(tokenizer=UpperCAmelCase_) lowerCamelCase__: List[Any] =processor(text=self.input_string) lowerCamelCase__: Optional[int] =tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
59
'''simple docstring''' def __lowerCAmelCase ( a_ ) -> bool: '''simple docstring''' if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True SCREAMING_SNAKE_CASE : Optional[int] = 4 SCREAMING_SNAKE_CASE : Optional[Any] = (1 << p) - 1 for _ in range(p - 2 ): SCREAMING_SNAKE_CASE : Optional[int] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
251
0
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __magic_name__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): # TODO: is there an appropriate internal test set? UpperCamelCase_ = '''ssube/stable-diffusion-x4-upscaler-onnx''' def lowercase_ ( self , A_=0 ) -> Optional[Any]: """simple docstring""" _lowercase: Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(A_ ) ) _lowercase: Dict = torch.manual_seed(A_ ) _lowercase: Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self ) -> List[Any]: """simple docstring""" _lowercase: List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=A_ ) _lowercase: Tuple = self.get_dummy_inputs() _lowercase: List[str] = pipe(**A_ ).images _lowercase: Tuple = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) _lowercase: Dict = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowercase_ ( self ) -> Any: """simple docstring""" _lowercase: Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowercase: Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) _lowercase: Optional[int] = self.get_dummy_inputs() _lowercase: str = pipe(**A_ ).images _lowercase: Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowercase: Tuple = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase_ ( self ) -> int: """simple docstring""" _lowercase: Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowercase: List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) _lowercase: Any = self.get_dummy_inputs() _lowercase: List[str] = pipe(**A_ ).images _lowercase: str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowercase: Any = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase_ ( self ) -> Union[str, Any]: """simple docstring""" _lowercase: Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowercase: Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) _lowercase: str = self.get_dummy_inputs() _lowercase: List[Any] = pipe(**A_ ).images _lowercase: Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowercase: int = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase_ ( self ) -> Optional[int]: """simple docstring""" _lowercase: str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _lowercase: Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) _lowercase: Optional[int] = self.get_dummy_inputs() _lowercase: Optional[int] = pipe(**A_ ).images _lowercase: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowercase: int = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __magic_name__ ( unittest.TestCase ): @property def lowercase_ ( self ) -> Optional[int]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> List[Any]: """simple docstring""" _lowercase: List[str] = ort.SessionOptions() _lowercase: List[Any] = False return options def lowercase_ ( self ) -> List[Any]: """simple docstring""" _lowercase: Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _lowercase: Any = init_image.resize((128, 128) ) # using the PNDM scheduler by default _lowercase: Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) _lowercase: Optional[Any] = '''A fantasy landscape, trending on artstation''' _lowercase: str = torch.manual_seed(0 ) _lowercase: Optional[int] = pipe( prompt=A_ , image=A_ , guidance_scale=7.5 , num_inference_steps=10 , generator=A_ , output_type='''np''' , ) _lowercase: Dict = output.images _lowercase: Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _lowercase: Tuple = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowercase_ ( self ) -> List[str]: """simple docstring""" _lowercase: Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _lowercase: List[str] = init_image.resize((128, 128) ) _lowercase: Dict = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' ) _lowercase: str = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) _lowercase: List[str] = '''A fantasy landscape, trending on artstation''' _lowercase: int = torch.manual_seed(0 ) _lowercase: Dict = pipe( prompt=A_ , image=A_ , guidance_scale=7.5 , num_inference_steps=20 , generator=A_ , output_type='''np''' , ) _lowercase: str = output.images _lowercase: Optional[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _lowercase: Optional[int] = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
272
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A__ : str = logging.get_logger(__name__) def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False ): """simple docstring""" _lowercase: Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for i in range(config.num_hidden_layers ): _lowercase: Union[str, Any] = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowercase: List[str] = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) _lowercase: Optional[Any] = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowercase: List[str] = in_proj_weight[ : config.hidden_size, : ] _lowercase: Dict = in_proj_bias[: config.hidden_size] _lowercase: str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowercase: Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowercase: List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowercase: Any = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" _lowercase: Optional[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase: Tuple = dct.pop(_UpperCamelCase ) _lowercase: Optional[Any] = val @torch.no_grad() def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase: List[str] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_UpperCamelCase ) _lowercase: List[Any] = False _lowercase: List[str] = False _lowercase: Optional[int] = False _lowercase: Optional[int] = False if "vqa" in checkpoint_url: _lowercase: Tuple = True _lowercase: int = 3_129 _lowercase: Union[str, Any] = '''huggingface/label-files''' _lowercase: Optional[int] = '''vqa2-id2label.json''' _lowercase: Optional[int] = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowercase: str = {int(_UpperCamelCase ): v for k, v in idalabel.items()} _lowercase: int = idalabel _lowercase: Any = {v: k for k, v in idalabel.items()} _lowercase: str = ViltForQuestionAnswering(_UpperCamelCase ) elif "nlvr" in checkpoint_url: _lowercase: List[str] = True _lowercase: Tuple = 2 _lowercase: int = {0: '''False''', 1: '''True'''} _lowercase: Any = {v: k for k, v in config.idalabel.items()} _lowercase: Any = 3 _lowercase: Optional[Any] = ViltForImagesAndTextClassification(_UpperCamelCase ) elif "irtr" in checkpoint_url: _lowercase: Dict = True _lowercase: Union[str, Any] = ViltForImageAndTextRetrieval(_UpperCamelCase ) elif "mlm_itm" in checkpoint_url: _lowercase: Any = True _lowercase: str = ViltForMaskedLM(_UpperCamelCase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys _lowercase: Tuple = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location='''cpu''' )['''state_dict'''] _lowercase: Union[str, Any] = create_rename_keys(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase , _UpperCamelCase ) if mlm_model or irtr_model: _lowercase: Optional[int] = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowercase , _lowercase: Optional[Any] = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_UpperCamelCase ) # Define processor _lowercase: List[str] = ViltImageProcessor(size=384 ) _lowercase: Tuple = BertTokenizer.from_pretrained('''bert-base-uncased''' ) _lowercase: Tuple = ViltProcessor(_UpperCamelCase , _UpperCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowercase: Union[str, Any] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=_UpperCamelCase ).raw ) _lowercase: Union[str, Any] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=_UpperCamelCase ).raw ) _lowercase: Tuple = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) _lowercase: Optional[int] = processor(_UpperCamelCase , _UpperCamelCase , return_tensors='''pt''' ) _lowercase: int = processor(_UpperCamelCase , _UpperCamelCase , return_tensors='''pt''' ) _lowercase: Tuple = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowercase: List[Any] = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=_UpperCamelCase ).raw ) if mlm_model: _lowercase: Optional[Any] = '''a bunch of [MASK] laying on a [MASK].''' else: _lowercase: List[Any] = '''How many cats are there?''' _lowercase: Any = processor(_UpperCamelCase , _UpperCamelCase , return_tensors='''pt''' ) _lowercase: int = model(**_UpperCamelCase ) # Verify outputs if mlm_model: _lowercase: List[str] = torch.Size([1, 11, 30_522] ) _lowercase: str = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _UpperCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowercase: Union[str, Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowercase: int = torch.Size([1, 3_129] ) _lowercase: Optional[Any] = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _UpperCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowercase: Optional[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowercase: List[Any] = torch.Size([1, 2] ) _lowercase: int = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) A__ : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
272
1
from itertools import product def __lowerCamelCase ( _lowercase , _lowercase ) -> list[int]: UpperCamelCase = sides_number UpperCamelCase = max_face_number * dice_number UpperCamelCase = [0] * (max_total + 1) UpperCamelCase = 1 UpperCamelCase = range(_lowercase , max_face_number + 1 ) for dice_numbers in product(_lowercase , repeat=_lowercase ): UpperCamelCase = sum(_lowercase ) totals_frequencies[total] += 1 return totals_frequencies def __lowerCamelCase ( ) -> float: UpperCamelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) UpperCamelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) UpperCamelCase = 0 UpperCamelCase = 9 UpperCamelCase = 4 * 9 UpperCamelCase = 6 for peter_total in range(_lowercase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) UpperCamelCase = (4**9) * (6**6) UpperCamelCase = peter_wins_count / total_games_number UpperCamelCase = round(_lowercase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"{solution() = }")
282
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =(DEISMultistepScheduler,) SCREAMING_SNAKE_CASE_ : List[str] =(("num_inference_steps", 25),) def __lowerCAmelCase ( self : Tuple , **SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" UpperCamelCase = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**SCREAMING_SNAKE_CASE__ ) return config def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Dict=0 , **SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" UpperCamelCase = dict(self.forward_default_kwargs ) UpperCamelCase = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.dummy_sample UpperCamelCase = 0.1 * sample UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals UpperCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase , UpperCamelCase = sample, sample for t in range(SCREAMING_SNAKE_CASE__ , time_step + scheduler.config.solver_order + 1 ): UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample UpperCamelCase = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : Optional[int] ): """simple docstring""" pass def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , **SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" UpperCamelCase = dict(self.forward_default_kwargs ) UpperCamelCase = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.dummy_sample UpperCamelCase = 0.1 * sample UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample UpperCamelCase = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" if scheduler is None: UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = 10 UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample return sample def __lowerCAmelCase ( self : List[str] ): """simple docstring""" UpperCamelCase = dict(self.forward_default_kwargs ) UpperCamelCase = kwargs.pop('num_inference_steps' , SCREAMING_SNAKE_CASE__ ) for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.dummy_sample UpperCamelCase = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE__ , 'set_timesteps' ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE__ , 'set_timesteps' ): UpperCamelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] UpperCamelCase = scheduler.timesteps[5] UpperCamelCase = scheduler.timesteps[6] UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowerCAmelCase ( self : List[Any] ): """simple docstring""" UpperCamelCase = DEISMultistepScheduler(**self.get_scheduler_config() ) UpperCamelCase = self.full_loop(scheduler=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 UpperCamelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCamelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCamelCase = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCamelCase = DEISMultistepScheduler.from_config(scheduler.config ) UpperCamelCase = self.full_loop(scheduler=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def __lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str ): """simple docstring""" self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , algorithm_type='deis' , solver_order=SCREAMING_SNAKE_CASE__ , solver_type=SCREAMING_SNAKE_CASE__ , ) def __lowerCAmelCase ( self : List[Any] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[int] ): """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE__ , solver_type=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , algorithm_type=SCREAMING_SNAKE_CASE__ , ) UpperCamelCase = self.full_loop( solver_order=SCREAMING_SNAKE_CASE__ , solver_type=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , algorithm_type=SCREAMING_SNAKE_CASE__ , ) assert not torch.isnan(SCREAMING_SNAKE_CASE__ ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE__ ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE__ , time_step=0 ) def __lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.full_loop() UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def __lowerCAmelCase ( self : Dict ): """simple docstring""" UpperCamelCase = self.full_loop(prediction_type='v_prediction' ) UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def __lowerCAmelCase ( self : Tuple ): """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE__ , dynamic_thresholding_ratio=0 ) UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = 10 UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample assert sample.dtype == torch.floataa
282
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCamelCase__ ( pl.LightningModule): '''simple docstring''' def __init__( self , A ) ->List[str]: super().__init__() UpperCAmelCase__ :Optional[int] = model UpperCAmelCase__ :Optional[int] = 2 UpperCAmelCase__ :Union[str, Any] = nn.Linear(self.model.config.hidden_size , self.num_labels ) def A__ ( self ) ->str: pass def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :Optional[Any] = LongformerModel.from_pretrained(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Optional[int] = LightningModel(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Tuple = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model UpperCAmelCase__ :Union[str, Any] = LongformerForQuestionAnswering.from_pretrained(SCREAMING_SNAKE_CASE ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(SCREAMING_SNAKE_CASE ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __snake_case : List[Any] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
433
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : int = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } __snake_case : Tuple = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } __snake_case : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class UpperCamelCase__ ( UpperCAmelCase__): '''simple docstring''' __a : Dict = VOCAB_FILES_NAMES __a : List[Any] = PRETRAINED_VOCAB_FILES_MAP __a : Tuple = PRETRAINED_INIT_CONFIGURATION __a : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = BertTokenizer def __init__( self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ) ->Tuple: super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) UpperCAmelCase__ :Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , A ) != do_lower_case or normalizer_state.get('strip_accents' , A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , A ) != tokenize_chinese_chars ): UpperCAmelCase__ :Any = getattr(A , normalizer_state.pop('type' ) ) UpperCAmelCase__ :Any = do_lower_case UpperCAmelCase__ :Tuple = strip_accents UpperCAmelCase__ :List[Any] = tokenize_chinese_chars UpperCAmelCase__ :Dict = normalizer_class(**A ) UpperCAmelCase__ :Dict = do_lower_case def A__ ( self , A , A=None ) ->Optional[int]: UpperCAmelCase__ :str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , A , A = None ) ->List[int]: UpperCAmelCase__ :int = [self.sep_token_id] UpperCAmelCase__ :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , A , A = None ) ->Tuple[str]: UpperCAmelCase__ :str = self._tokenizer.model.save(A , name=A ) return tuple(A )
433
1
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) <= 1: return lst _snake_case = 1 while i < len(_SCREAMING_SNAKE_CASE ): if lst[i - 1] <= lst[i]: i += 1 else: _snake_case = lst[i], lst[i - 1] i -= 1 if i == 0: _snake_case = 1 return lst if __name__ == "__main__": __lowerCAmelCase = input('Enter numbers separated by a comma:\n').strip() __lowerCAmelCase = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
585
'''simple docstring''' from __future__ import annotations import time lowerCAmelCase_ : Any = list[tuple[int, int]] lowerCAmelCase_ : List[str] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCAmelCase_ : Optional[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : Node | None ) ->List[Any]: '''simple docstring''' _UpperCamelCase : int = pos_x _UpperCamelCase : List[Any] = pos_y _UpperCamelCase : List[Any] = (pos_y, pos_x) _UpperCamelCase : Any = goal_x _UpperCamelCase : Optional[int] = goal_y _UpperCamelCase : int = parent class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , lowercase__ : tuple[int, int] , lowercase__ : tuple[int, int] ) ->int: '''simple docstring''' _UpperCamelCase : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , lowercase__ ) _UpperCamelCase : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowercase__ ) _UpperCamelCase : Tuple = [self.start] _UpperCamelCase : Union[str, Any] = False def snake_case__ ( self : Tuple ) ->Path | None: '''simple docstring''' while self.node_queue: _UpperCamelCase : Optional[int] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _UpperCamelCase : Tuple = True return self.retrace_path(lowercase__ ) _UpperCamelCase : List[str] = self.get_successors(lowercase__ ) for node in successors: self.node_queue.append(lowercase__ ) if not self.reached: return [self.start.pos] return None def snake_case__ ( self : int , lowercase__ : Node ) ->list[Node]: '''simple docstring''' _UpperCamelCase : Optional[Any] = [] for action in delta: _UpperCamelCase : Any = parent.pos_x + action[1] _UpperCamelCase : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowercase__ , lowercase__ , self.target.pos_y , self.target.pos_x , lowercase__ ) ) return successors def snake_case__ ( self : str , lowercase__ : Node | None ) ->Path: '''simple docstring''' _UpperCamelCase : Union[str, Any] = node _UpperCamelCase : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _UpperCamelCase : List[Any] = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , lowercase__ : Optional[int] , lowercase__ : Optional[int] ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[int] = BreadthFirstSearch(lowercase__ , lowercase__ ) _UpperCamelCase : List[str] = BreadthFirstSearch(lowercase__ , lowercase__ ) _UpperCamelCase : int = False def snake_case__ ( self : List[Any] ) ->Path | None: '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _UpperCamelCase : Dict = self.fwd_bfs.node_queue.pop(0 ) _UpperCamelCase : Any = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _UpperCamelCase : List[str] = True return self.retrace_bidirectional_path( lowercase__ , lowercase__ ) _UpperCamelCase : Dict = current_bwd_node _UpperCamelCase : Optional[int] = current_fwd_node _UpperCamelCase : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(lowercase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(lowercase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowercase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def snake_case__ ( self : Dict , lowercase__ : Node , lowercase__ : Node ) ->Path: '''simple docstring''' _UpperCamelCase : Tuple = self.fwd_bfs.retrace_path(lowercase__ ) _UpperCamelCase : int = self.bwd_bfs.retrace_path(lowercase__ ) bwd_path.pop() bwd_path.reverse() _UpperCamelCase : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowerCAmelCase_ : List[Any] = (0, 0) lowerCAmelCase_ : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCAmelCase_ : Any = time.time() lowerCAmelCase_ : Dict = BreadthFirstSearch(init, goal) lowerCAmelCase_ : List[str] = bfs.search() lowerCAmelCase_ : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) lowerCAmelCase_ : List[str] = time.time() lowerCAmelCase_ : Tuple = BidirectionalBreadthFirstSearch(init, goal) lowerCAmelCase_ : Optional[int] = bd_bfs.search() lowerCAmelCase_ : Dict = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
435
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = 1 SCREAMING_SNAKE_CASE : List[Any] = 3 SCREAMING_SNAKE_CASE : int = (32, 32) SCREAMING_SNAKE_CASE : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase__ ) return image @property def _UpperCamelCase ( self ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def _UpperCamelCase ( self ) -> Any: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _UpperCamelCase ( self ) -> int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(lowercase__ ) @property def _UpperCamelCase ( self ) -> List[Any]: def extract(*lowercase__ , **lowercase__ ): class UpperCAmelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : Tuple = torch.ones([0] ) def _UpperCamelCase ( self , lowercase__ ) -> int: self.pixel_values.to(lowercase__ ) return self return Out() return extract def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : int = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_cond_unet SCREAMING_SNAKE_CASE : Dict = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_vae SCREAMING_SNAKE_CASE : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPipeline( unet=lowercase__ , scheduler=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , safety_checker=lowercase__ , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE : int = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE : Any = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE : int = torch.Generator(device=lowercase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe([prompt] , generator=lowercase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) SCREAMING_SNAKE_CASE : Optional[int] = output.images SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=lowercase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe( [prompt] , generator=lowercase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowercase__ , )[0] SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[Any] = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : int = self.dummy_cond_unet SCREAMING_SNAKE_CASE : Dict = PNDMScheduler(skip_prk_steps=lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_vae SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPipeline( unet=lowercase__ , scheduler=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , safety_checker=lowercase__ , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE : Any = torch.Generator(device=lowercase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe([prompt] , generator=lowercase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) SCREAMING_SNAKE_CASE : Any = output.images SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device=lowercase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe( [prompt] , generator=lowercase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=lowercase__ , )[0] SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=lowercase__ ) assert isinstance(lowercase__ , lowercase__ ) assert isinstance(pipe.scheduler , lowercase__ ) assert pipe.safety_checker is None SCREAMING_SNAKE_CASE : int = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE : str = StableDiffusionPipeline.from_pretrained(lowercase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None SCREAMING_SNAKE_CASE : Optional[int] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE : List[str] = self.dummy_cond_unet SCREAMING_SNAKE_CASE : int = PNDMScheduler(skip_prk_steps=lowercase__ ) SCREAMING_SNAKE_CASE : Any = self.dummy_vae SCREAMING_SNAKE_CASE : List[str] = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 SCREAMING_SNAKE_CASE : Optional[int] = unet.half() SCREAMING_SNAKE_CASE : Tuple = vae.half() SCREAMING_SNAKE_CASE : Tuple = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE : List[str] = StableDiffusionPipeline( unet=lowercase__ , scheduler=lowercase__ , vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , safety_checker=lowercase__ , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE : Dict = 'A painting of a squirrel eating a burger' SCREAMING_SNAKE_CASE : Dict = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowercase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) SCREAMING_SNAKE_CASE : str = 4_003_660_346 SCREAMING_SNAKE_CASE : Union[str, Any] = 7 # without safety guidance (sld_guidance_scale = 0) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe( [prompt] , generator=lowercase__ , guidance_scale=lowercase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : int = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe( [prompt] , generator=lowercase__ , guidance_scale=lowercase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.images SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[str] = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=lowercase__ ) SCREAMING_SNAKE_CASE : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' SCREAMING_SNAKE_CASE : int = 2_734_971_755 SCREAMING_SNAKE_CASE : List[str] = 7 SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = sd_pipe( [prompt] , generator=lowercase__ , guidance_scale=lowercase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Tuple = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 SCREAMING_SNAKE_CASE : int = torch.manual_seed(lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = sd_pipe( [prompt] , generator=lowercase__ , guidance_scale=lowercase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[int] = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE : Dict = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) SCREAMING_SNAKE_CASE : Union[str, Any] = 1_044_355_234 SCREAMING_SNAKE_CASE : Tuple = 12 SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(lowercase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe( [prompt] , generator=lowercase__ , guidance_scale=lowercase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE : Optional[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe( [prompt] , generator=lowercase__ , guidance_scale=lowercase__ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : str = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
179
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE : str = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) SCREAMING_SNAKE_CASE : str = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(lowercase__ ) , torch_builtin(lowercase__ ) ) ) self.assertFalse(torch.allclose(gelu_python(lowercase__ ) , gelu_new(lowercase__ ) ) ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) SCREAMING_SNAKE_CASE : str = get_activation('gelu' ) SCREAMING_SNAKE_CASE : Dict = get_activation('gelu_10' ) SCREAMING_SNAKE_CASE : Optional[int] = torch_builtin(lowercase__ ) SCREAMING_SNAKE_CASE : str = geluaa(lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(lowercase__ ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _UpperCamelCase ( self ) -> Optional[Any]: get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(lowercase__ ): get_activation('bogus' ) with self.assertRaises(lowercase__ ): get_activation(lowercase__ ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE : Optional[int] = get_activation('gelu' ) SCREAMING_SNAKE_CASE : str = 1 SCREAMING_SNAKE_CASE : List[str] = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(lowercase__ ): SCREAMING_SNAKE_CASE : Dict = acta.a
179
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase__( UpperCAmelCase ): """simple docstring""" def _lowercase ( self : List[str] ) -> Optional[int]: lowercase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''depth_multiplier''' ) ) class lowercase__: """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int]=1_3 , SCREAMING_SNAKE_CASE_ : Dict=3 , SCREAMING_SNAKE_CASE_ : Optional[int]=3_2 , SCREAMING_SNAKE_CASE_ : Any=0.25 , SCREAMING_SNAKE_CASE_ : Dict=8 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=8 , SCREAMING_SNAKE_CASE_ : List[str]=6 , SCREAMING_SNAKE_CASE_ : str=3_2 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : str="relu6" , SCREAMING_SNAKE_CASE_ : int=1_2_8_0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Dict=0.02 , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[int]=1_0 , SCREAMING_SNAKE_CASE_ : Tuple=None , ) -> Union[str, Any]: lowercase_ = parent lowercase_ = batch_size lowercase_ = num_channels lowercase_ = image_size lowercase_ = depth_multiplier lowercase_ = depth_divisible_by lowercase_ = min_depth lowercase_ = expand_ratio lowercase_ = tf_padding lowercase_ = output_stride lowercase_ = first_layer_is_expansion lowercase_ = finegrained_output lowercase_ = hidden_act lowercase_ = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) lowercase_ = classifier_dropout_prob lowercase_ = use_labels lowercase_ = is_training lowercase_ = num_labels lowercase_ = initializer_range lowercase_ = scope def _lowercase ( self : int ) -> str: lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase_ = self.get_config() return config, pixel_values, labels, pixel_labels def _lowercase ( self : int ) -> Tuple: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: lowercase_ = MobileNetVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[str]: lowercase_ = self.num_labels lowercase_ = MobileNetVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: lowercase_ = self.num_labels lowercase_ = MobileNetVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowercase ( self : Optional[Any] ) -> Dict: lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase__( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :List[str] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) a :Optional[Any] = ( { 'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification, 'image-segmentation': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) a :Optional[Any] = False a :List[str] = False a :List[Any] = False a :Any = False def _lowercase ( self : int ) -> str: lowercase_ = MobileNetVaModelTester(self ) lowercase_ = MobileNetVaConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[int] ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV2 does not use inputs_embeds''' ) def _lowercase ( self : str ) -> str: pass @unittest.skip(reason='''MobileNetV2 does not support input and output embeddings''' ) def _lowercase ( self : List[Any] ) -> Any: pass @unittest.skip(reason='''MobileNetV2 does not output attentions''' ) def _lowercase ( self : str ) -> Optional[Any]: pass def _lowercase ( self : Tuple ) -> int: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int ) -> List[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] ) -> List[Any]: def check_hidden_states_output(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple ): lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowercase_ = outputs.hidden_states lowercase_ = 1_6 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : str ) -> List[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple ) -> Optional[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase ( self : Tuple ) -> Optional[int]: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = MobileNetVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def a ( ): '''simple docstring''' lowercase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase__( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Union[str, Any] ) -> List[Any]: return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v2_1.0_224''' ) if is_vision_available() else None ) @slow def _lowercase ( self : Dict ) -> List[str]: lowercase_ = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v2_1.0_224''' ).to(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowercase_ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowercase_ = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.tensor([0.24_45, -1.19_93, 0.19_05] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) @slow def _lowercase ( self : Optional[int] ) -> Union[str, Any]: lowercase_ = MobileNetVaForSemanticSegmentation.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) lowercase_ = model.to(SCREAMING_SNAKE_CASE_ ) lowercase_ = MobileNetVaImageProcessor.from_pretrained('''google/deeplabv3_mobilenet_v2_1.0_513''' ) lowercase_ = prepare_img() lowercase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowercase_ = model(**SCREAMING_SNAKE_CASE_ ) lowercase_ = outputs.logits # verify the logits lowercase_ = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.tensor( [ [[17.57_90, 17.75_81, 18.33_55], [18.32_57, 18.42_30, 18.89_73], [18.61_69, 18.86_50, 19.21_87]], [[-2.15_95, -2.09_77, -2.37_41], [-2.42_26, -2.30_28, -2.68_35], [-2.78_19, -2.59_91, -2.77_06]], [[4.20_58, 4.83_17, 4.76_38], [4.41_36, 5.03_61, 4.93_83], [4.50_28, 4.96_44, 4.87_34]], ] , device=SCREAMING_SNAKE_CASE_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
97
from __future__ import annotations def a ( snake_case__: list[list[int]] ): '''simple docstring''' # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(snake_case__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(snake_case__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
97
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __snake_case ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,unittest.TestCase): '''simple docstring''' UpperCamelCase__ : Dict = AltDiffusionPipeline UpperCamelCase__ : Tuple = TEXT_TO_IMAGE_PARAMS UpperCamelCase__ : str = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase__ : str = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ): torch.manual_seed(0 ) a__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) a__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=a_ , set_alpha_to_one=a_ , ) torch.manual_seed(0 ) a__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) a__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) a__ = CLIPTextModel(a_ ) a__ = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) a__ = 77 a__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self , a_ , a_=0 ): if str(a_ ).startswith("""mps""" ): a__ = torch.manual_seed(a_ ) else: a__ = torch.Generator(device=a_ ).manual_seed(a_ ) a__ = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _a ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _a ( self ): a__ = """cpu""" # ensure determinism for the device-dependent torch.Generator a__ = self.get_dummy_components() torch.manual_seed(0 ) a__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder a__ = RobertaSeriesModelWithTransformation(a_ ) a__ = text_encoder a__ = AltDiffusionPipeline(**a_ ) a__ = alt_pipe.to(a_ ) alt_pipe.set_progress_bar_config(disable=a_ ) a__ = self.get_dummy_inputs(a_ ) a__ = """A photo of an astronaut""" a__ = alt_pipe(**a_ ) a__ = output.images a__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a__ = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ): a__ = """cpu""" # ensure determinism for the device-dependent torch.Generator a__ = self.get_dummy_components() a__ = PNDMScheduler(skip_prk_steps=a_ ) torch.manual_seed(0 ) a__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder a__ = RobertaSeriesModelWithTransformation(a_ ) a__ = text_encoder a__ = AltDiffusionPipeline(**a_ ) a__ = alt_pipe.to(a_ ) alt_pipe.set_progress_bar_config(disable=a_ ) a__ = self.get_dummy_inputs(a_ ) a__ = alt_pipe(**a_ ) a__ = output.images a__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a__ = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase): '''simple docstring''' def _a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ): # make sure here that pndm scheduler skips prk a__ = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=a_ ) a__ = alt_pipe.to(a_ ) alt_pipe.set_progress_bar_config(disable=a_ ) a__ = """A painting of a squirrel eating a burger""" a__ = torch.manual_seed(0 ) a__ = alt_pipe([prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" ) a__ = output.images a__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a__ = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ): a__ = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) a__ = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=a_ , safety_checker=a_ ) a__ = alt_pipe.to(a_ ) alt_pipe.set_progress_bar_config(disable=a_ ) a__ = """A painting of a squirrel eating a burger""" a__ = torch.manual_seed(0 ) a__ = alt_pipe([prompt] , generator=a_ , num_inference_steps=2 , output_type="""numpy""" ) a__ = output.images a__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a__ = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
708
def A_ ( __a : int , __a : int ): """simple docstring""" return abs(__a ) if a == 0 else greatest_common_divisor(b % a , __a ) def A_ ( __a : int , __a : int ): """simple docstring""" while y: # --> when y=0 then loop will terminate and return x as final GCD. a__ , a__ = y, x % y return abs(__a ) def A_ ( ): """simple docstring""" try: a__ = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) a__ = int(nums[0] ) a__ = int(nums[1] ) print( F'''greatest_common_divisor({num_a}, {num_a}) = ''' F'''{greatest_common_divisor(__a , __a )}''' ) print(F'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__a , __a )}''' ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
351
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Tuple = {'''vocab_file''': '''spm_char.model'''} _SCREAMING_SNAKE_CASE : List[Any] = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } _SCREAMING_SNAKE_CASE : str = { '''microsoft/speecht5_asr''': 1024, '''microsoft/speecht5_tts''': 1024, '''microsoft/speecht5_vc''': 1024, } class a ( __snake_case ): SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int="<s>" , __SCREAMING_SNAKE_CASE : Union[str, Any]="</s>" , __SCREAMING_SNAKE_CASE : str="<unk>" , __SCREAMING_SNAKE_CASE : str="<pad>" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> None: lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) @property def UpperCamelCase ( self : Any ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCamelCase ( self : int ) -> List[str]: lowerCamelCase_ = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> Optional[int]: lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self : str , __SCREAMING_SNAKE_CASE : List[str] ) -> Any: lowerCamelCase_ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> List[str]: return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : str ) -> Dict: return self.sp_model.piece_to_id(__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: lowerCamelCase_ = self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) return token def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: lowerCamelCase_ = [] lowerCamelCase_ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token lowerCamelCase_ = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = [1] if token_ids_a is None: return ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , 'wb' ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
549
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase : list[list[int | float]] ) -> int: lowerCamelCase_ = len(_lowerCamelCase ) lowerCamelCase_ = len(matrix[0] ) lowerCamelCase_ = min(_lowerCamelCase , _lowerCamelCase ) for row in range(_lowerCamelCase ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _lowerCamelCase ): lowerCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(_lowerCamelCase , _lowerCamelCase ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows lowerCamelCase_ = True for i in range(row + 1 , _lowerCamelCase ): if matrix[i][row] != 0: lowerCamelCase_ , lowerCamelCase_ = matrix[i], matrix[row] lowerCamelCase_ = False break if reduce: rank -= 1 for i in range(_lowerCamelCase ): lowerCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
549
1
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Tuple =logging.get_logger(__name__) def _UpperCamelCase ( lowercase__ ): print('''Loading config file...''' ) def flatten_yaml_as_dict(lowercase__ , lowercase__="" , lowercase__="." ): __SCREAMING_SNAKE_CASE : str = [] for k, v in d.items(): __SCREAMING_SNAKE_CASE : Tuple = parent_key + sep + k if parent_key else k if isinstance(lowercase__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(lowercase__ , lowercase__ , sep=lowercase__ ).items() ) else: items.append((new_key, v) ) return dict(lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = argparse.Namespace() with open(lowercase__ , '''r''' ) as yaml_file: try: __SCREAMING_SNAKE_CASE : Dict = yaml.load(lowercase__ , Loader=yaml.FullLoader ) __SCREAMING_SNAKE_CASE : Union[str, Any] = flatten_yaml_as_dict(lowercase__ ) for k, v in flat_cfg.items(): setattr(lowercase__ , lowercase__ , lowercase__ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(lowercase__ , str(lowercase__ ) ) ) return config def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTVaConfig() __SCREAMING_SNAKE_CASE : str = False # dataset if task_name.startswith('''imagenet1k_''' ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 1000 if int(task_name.strip().split('''_''' )[-1] ) == 384: __SCREAMING_SNAKE_CASE : Union[str, Any] = 384 else: __SCREAMING_SNAKE_CASE : Optional[int] = 256 __SCREAMING_SNAKE_CASE : Dict = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): __SCREAMING_SNAKE_CASE : Any = 21000 if int(task_name.strip().split('''_''' )[-1] ) == 384: __SCREAMING_SNAKE_CASE : List[Any] = 384 else: __SCREAMING_SNAKE_CASE : Any = 256 __SCREAMING_SNAKE_CASE : str = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): __SCREAMING_SNAKE_CASE : Dict = 151 __SCREAMING_SNAKE_CASE : List[str] = 512 __SCREAMING_SNAKE_CASE : Optional[Any] = '''ade20k-id2label.json''' __SCREAMING_SNAKE_CASE : str = True elif task_name.startswith('''voc_''' ): __SCREAMING_SNAKE_CASE : Dict = 21 __SCREAMING_SNAKE_CASE : Dict = 512 __SCREAMING_SNAKE_CASE : Optional[int] = '''pascal-voc-id2label.json''' __SCREAMING_SNAKE_CASE : Dict = True # orig_config __SCREAMING_SNAKE_CASE : Any = load_orig_config_file(lowercase__ ) assert getattr(lowercase__ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" __SCREAMING_SNAKE_CASE : List[str] = getattr(lowercase__ , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(lowercase__ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" __SCREAMING_SNAKE_CASE : int = getattr(lowercase__ , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: __SCREAMING_SNAKE_CASE : int = getattr(lowercase__ , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(lowercase__ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) __SCREAMING_SNAKE_CASE : Tuple = getattr(lowercase__ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) __SCREAMING_SNAKE_CASE : Optional[int] = getattr(lowercase__ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label __SCREAMING_SNAKE_CASE : List[Any] = '''huggingface/label-files''' __SCREAMING_SNAKE_CASE : int = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = {int(lowercase__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : List[Any] = idalabel __SCREAMING_SNAKE_CASE : List[str] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = dct.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = val def _UpperCamelCase ( lowercase__ , lowercase__=False ): if base_model: __SCREAMING_SNAKE_CASE : Optional[int] = '''''' else: __SCREAMING_SNAKE_CASE : int = '''mobilevitv2.''' __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for k in state_dict.keys(): if k[:8] == "encoder.": __SCREAMING_SNAKE_CASE : Optional[Any] = k[8:] else: __SCREAMING_SNAKE_CASE : str = k if ".block." in k: __SCREAMING_SNAKE_CASE : Optional[Any] = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: __SCREAMING_SNAKE_CASE : Tuple = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: __SCREAMING_SNAKE_CASE : str = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: __SCREAMING_SNAKE_CASE : Union[str, Any] = k_new.replace('''conv_1.''' , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: __SCREAMING_SNAKE_CASE : Optional[int] = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: __SCREAMING_SNAKE_CASE : List[str] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: __SCREAMING_SNAKE_CASE : Union[str, Any] = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: __SCREAMING_SNAKE_CASE : Dict = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: __SCREAMING_SNAKE_CASE : List[Any] = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: __SCREAMING_SNAKE_CASE : Dict = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: __SCREAMING_SNAKE_CASE : Tuple = [0, 1] elif i == 4: __SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2, 3] elif i == 5: __SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: __SCREAMING_SNAKE_CASE : str = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: __SCREAMING_SNAKE_CASE : int = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: __SCREAMING_SNAKE_CASE : Dict = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: __SCREAMING_SNAKE_CASE : List[str] = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: __SCREAMING_SNAKE_CASE : Optional[Any] = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: __SCREAMING_SNAKE_CASE : Optional[int] = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: __SCREAMING_SNAKE_CASE : Any = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: __SCREAMING_SNAKE_CASE : int = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: __SCREAMING_SNAKE_CASE : Tuple = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: __SCREAMING_SNAKE_CASE : Tuple = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: __SCREAMING_SNAKE_CASE : Optional[Any] = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: __SCREAMING_SNAKE_CASE : int = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : str = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(lowercase__ ) for k in keys_to_ignore: state_dict.pop(lowercase__ , lowercase__ ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" __SCREAMING_SNAKE_CASE : int = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = get_mobilevitva_config(lowercase__ , lowercase__ ) # load original state_dict __SCREAMING_SNAKE_CASE : Optional[int] = torch.load(lowercase__ , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): __SCREAMING_SNAKE_CASE : Optional[int] = MobileViTVaForSemanticSegmentation(lowercase__ ).eval() __SCREAMING_SNAKE_CASE : Optional[Any] = False else: __SCREAMING_SNAKE_CASE : List[Any] = MobileViTVaForImageClassification(lowercase__ ).eval() __SCREAMING_SNAKE_CASE : Dict = False # remove and rename some keys of load the original model __SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint remove_unused_keys(lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = create_rename_keys(lowercase__ , base_model=lowercase__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) # load modified state_dict model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by MobileViTImageProcessor __SCREAMING_SNAKE_CASE : List[str] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) __SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Any = model(**lowercase__ ) # verify classification model if task_name.startswith('''imagenet''' ): __SCREAMING_SNAKE_CASE : Any = outputs.logits __SCREAMING_SNAKE_CASE : Union[str, Any] = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3] , lowercase__ , atol=1e-4 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) __lowerCAmelCase : List[str] =parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
260
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _UpperCamelCase ( lowercase__ , lowercase__=0.999 , lowercase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class _lowercase ( A__ , A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE__ : str = 2 @register_to_config def __init__( self :Tuple , lowerCAmelCase__ :int = 1_000 , lowerCAmelCase__ :float = 0.0_0085 , lowerCAmelCase__ :float = 0.012 , lowerCAmelCase__ :str = "linear" , lowerCAmelCase__ :Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase__ :str = "epsilon" , lowerCAmelCase__ :str = "linspace" , lowerCAmelCase__ :int = 0 , ) -> List[Any]: if trained_betas is not None: __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": __SCREAMING_SNAKE_CASE : Tuple = torch.linspace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE : Dict = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE : Optional[Any] = betas_for_alpha_bar(lowerCAmelCase__ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __SCREAMING_SNAKE_CASE : Dict = 1.0 - self.betas __SCREAMING_SNAKE_CASE : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Any , lowerCAmelCase__ :int , lowerCAmelCase__ :Any=None ) -> Tuple: if schedule_timesteps is None: __SCREAMING_SNAKE_CASE : Any = self.timesteps __SCREAMING_SNAKE_CASE : Tuple = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 if len(lowerCAmelCase__ ) > 1 else 0 else: __SCREAMING_SNAKE_CASE : str = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase__ ) else timestep __SCREAMING_SNAKE_CASE : Optional[int] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__( self :Optional[Any] ) -> List[str]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__( self :Any , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: __SCREAMING_SNAKE_CASE : str = self.index_for_timestep(lowerCAmelCase__ ) if self.state_in_first_order: __SCREAMING_SNAKE_CASE : Any = self.sigmas[step_index] else: __SCREAMING_SNAKE_CASE : Tuple = self.sigmas_interpol[step_index] __SCREAMING_SNAKE_CASE : List[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__( self :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, torch.device] = None , lowerCAmelCase__ :Optional[int] = None , ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = num_inference_steps __SCREAMING_SNAKE_CASE : Optional[int] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __SCREAMING_SNAKE_CASE : str = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase__ , dtype=lowerCAmelCase__ )[::-1].copy() elif self.config.timestep_spacing == "leading": __SCREAMING_SNAKE_CASE : Any = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE : Any = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __SCREAMING_SNAKE_CASE : Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE : Optional[Any] = (np.arange(lowerCAmelCase__ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase__ ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(np.log(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = np.interp(lowerCAmelCase__ , np.arange(0 , len(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ ) # interpolate sigmas __SCREAMING_SNAKE_CASE : int = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __SCREAMING_SNAKE_CASE : Dict = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __SCREAMING_SNAKE_CASE : Any = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(lowerCAmelCase__ ).startswith('''mps''' ): # mps does not support float64 __SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ , dtype=torch.floataa ) else: __SCREAMING_SNAKE_CASE : str = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) # interpolate timesteps __SCREAMING_SNAKE_CASE : Union[str, Any] = self.sigma_to_t(lowerCAmelCase__ ).to(lowerCAmelCase__ , dtype=timesteps.dtype ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __SCREAMING_SNAKE_CASE : int = torch.cat([timesteps[:1], interleaved_timesteps] ) __SCREAMING_SNAKE_CASE : Dict = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __SCREAMING_SNAKE_CASE : List[str] = defaultdict(lowerCAmelCase__ ) def __magic_name__( self :int , lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: # get log sigma __SCREAMING_SNAKE_CASE : int = sigma.log() # get distribution __SCREAMING_SNAKE_CASE : str = log_sigma - self.log_sigmas[:, None] # get sigmas range __SCREAMING_SNAKE_CASE : Any = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __SCREAMING_SNAKE_CASE : Any = low_idx + 1 __SCREAMING_SNAKE_CASE : Tuple = self.log_sigmas[low_idx] __SCREAMING_SNAKE_CASE : Dict = self.log_sigmas[high_idx] # interpolate sigmas __SCREAMING_SNAKE_CASE : List[Any] = (low - log_sigma) / (low - high) __SCREAMING_SNAKE_CASE : Dict = w.clamp(0 , 1 ) # transform interpolation to time range __SCREAMING_SNAKE_CASE : Tuple = (1 - w) * low_idx + w * high_idx __SCREAMING_SNAKE_CASE : List[Any] = t.view(sigma.shape ) return t @property def __magic_name__( self :Union[str, Any] ) -> Optional[int]: return self.sample is None def __magic_name__( self :List[Any] , lowerCAmelCase__ :Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase__ :Union[float, torch.FloatTensor] , lowerCAmelCase__ :Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase__ :bool = True , ) -> Union[SchedulerOutput, Tuple]: __SCREAMING_SNAKE_CASE : Dict = self.index_for_timestep(lowerCAmelCase__ ) # advance index counter by 1 __SCREAMING_SNAKE_CASE : Tuple = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __SCREAMING_SNAKE_CASE : Dict = self.sigmas[step_index] __SCREAMING_SNAKE_CASE : Dict = self.sigmas_interpol[step_index + 1] __SCREAMING_SNAKE_CASE : List[str] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __SCREAMING_SNAKE_CASE : List[str] = self.sigmas[step_index - 1] __SCREAMING_SNAKE_CASE : Any = self.sigmas_interpol[step_index] __SCREAMING_SNAKE_CASE : Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : List[str] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE : str = sigma_hat if self.state_in_first_order else sigma_interpol __SCREAMING_SNAKE_CASE : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __SCREAMING_SNAKE_CASE : Any = sigma_hat if self.state_in_first_order else sigma_interpol __SCREAMING_SNAKE_CASE : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __SCREAMING_SNAKE_CASE : int = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __SCREAMING_SNAKE_CASE : List[str] = sigma_interpol - sigma_hat # store for 2nd order step __SCREAMING_SNAKE_CASE : List[str] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __SCREAMING_SNAKE_CASE : List[str] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __SCREAMING_SNAKE_CASE : Any = sigma_next - sigma_hat __SCREAMING_SNAKE_CASE : Optional[int] = self.sample __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase__ ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __SCREAMING_SNAKE_CASE : Tuple = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase__ ): # mps does not support float64 __SCREAMING_SNAKE_CASE : Tuple = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.timesteps.to(original_samples.device ) __SCREAMING_SNAKE_CASE : List[str] = timesteps.to(original_samples.device ) __SCREAMING_SNAKE_CASE : Dict = [self.index_for_timestep(lowerCAmelCase__ , lowerCAmelCase__ ) for t in timesteps] __SCREAMING_SNAKE_CASE : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __SCREAMING_SNAKE_CASE : List[Any] = sigma.unsqueeze(-1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = original_samples + noise * sigma return noisy_samples def __len__( self :Tuple ) -> Optional[Any]: return self.config.num_train_timesteps
260
1
'''simple docstring''' import os from pathlib import Path def UpperCamelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] ): A__ = { "en": "Machine learning is great, isn\'t it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] A__ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } A__ = F"{src_lang}-{tgt_lang}" A__ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) A__ = os.path.join(_lowerCamelCase , "README.md" ) print(F"Generating {path}" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(_lowerCamelCase ) # make sure we are under the root of the project __lowerCAmelCase : int =Path(__file__).resolve().parent.parent.parent __lowerCAmelCase : Optional[int] =repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[str] =model_name.split("-") __lowerCAmelCase : List[str] =model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
440
'''simple docstring''' from __future__ import annotations __UpperCAmelCase = list[list[int]] # assigning initial values to the grid __UpperCAmelCase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __UpperCAmelCase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _snake_case ( A , A , A , A ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _snake_case ( A ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _snake_case ( A ) -> Matrix | None: if location := find_empty_location(A ): lowerCAmelCase__ , lowerCAmelCase__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(A , A , A , A ): lowerCAmelCase__ = digit if sudoku(A ) is not None: return grid lowerCAmelCase__ = 0 return None def _snake_case ( A ) -> None: for row in grid: for cell in row: print(A , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') __UpperCAmelCase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
90
0
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 __SCREAMING_SNAKE_CASE : Optional[Any] = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_2_8, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 5_0, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 1_0, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 1_0, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' @classmethod def snake_case__ ( cls ): _lowerCamelCase = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def snake_case__ ( cls ): try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def snake_case__ ( self ): _lowerCamelCase = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) _lowerCamelCase = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id='''test-config''' , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _lowerCamelCase = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def snake_case__ ( self ): _lowerCamelCase = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) _lowerCamelCase = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id='''valid_org/test-config-org''' , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _lowerCamelCase = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def snake_case__ ( self ): CustomConfig.register_for_auto_class() _lowerCamelCase = CustomConfig(attribute=4_2 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) _lowerCamelCase = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 4_2 ) class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _lowerCamelCase = c.n_embd + 1 # int _lowerCamelCase = c.resid_pdrop + 1.0 # float _lowerCamelCase = not c.scale_attn_weights # bool _lowerCamelCase = c.summary_type + '''foo''' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowerCamelCase__ , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(lowerCamelCase__ , c.summary_type , '''mismatch for key: summary_type''' ) def snake_case__ ( self ): _lowerCamelCase = PretrainedConfig() _lowerCamelCase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) _lowerCamelCase = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F""" {", ".join(lowerCamelCase__ )}.""" ) def snake_case__ ( self ): with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder _lowerCamelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) _lowerCamelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(lowerCamelCase__ ) def snake_case__ ( self ): # A mock response for an HTTP head request to emulate server down _lowerCamelCase = mock.Mock() _lowerCamelCase = 5_0_0 _lowerCamelCase = {} _lowerCamelCase = HTTPError _lowerCamelCase = {} # Download this model to make sure it's in the cache. _lowerCamelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowerCamelCase__ ) as mock_head: _lowerCamelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def snake_case__ ( self ): # This test is for deprecated behavior and can be removed in v5 _lowerCamelCase = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def snake_case__ ( self ): _lowerCamelCase = AutoConfig.from_pretrained('''bert-base-cased''' ) _lowerCamelCase = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) _lowerCamelCase = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _lowerCamelCase = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _lowerCamelCase = ['''config.42.0.0.json'''] _lowerCamelCase = 7_6_8 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , '''config.4.0.0.json''' ) , os.path.join(lowerCamelCase__ , '''config.42.0.0.json''' ) ) _lowerCamelCase = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def snake_case__ ( self ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _lowerCamelCase = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers _lowerCamelCase = '''v4.0.0''' _lowerCamelCase , _lowerCamelCase = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _lowerCamelCase = '''v3.0.0''' _lowerCamelCase = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
623
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __SCREAMING_SNAKE_CASE : Optional[Any] = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def lowerCAmelCase_( lowercase_ : List[Any] ) -> Optional[Any]: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase_ ) def lowerCAmelCase_( lowercase_ : List[str] ) -> List[str]: from diffusers.utils.testing_utils import pytest_terminal_summary_main _lowerCamelCase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(lowercase_ , id=lowercase_ )
623
1
def _UpperCAmelCase ( UpperCamelCase: int , UpperCamelCase: int ): """simple docstring""" while b: __lowerCAmelCase , __lowerCAmelCase = b, a % b return a def _UpperCAmelCase ( UpperCamelCase: int , UpperCamelCase: int ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(UpperCamelCase , a % b ) def _UpperCAmelCase ( ): """simple docstring""" print(F"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(F"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(F"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(F"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(F"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(F"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(F"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(F"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
611
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class a ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] ): """simple docstring""" return F"gaussian_noise_s={seed}_shape={'_'.join([str(snake_case__ ) for s in shape] )}.npy" def UpperCAmelCase__ ( self : Any ): """simple docstring""" super().tearDown() gc.collect() def UpperCAmelCase__ ( self : int , snake_case__ : List[str]=0 , snake_case__ : int=(4, 4, 64, 64) , snake_case__ : Union[str, Any]=False ): """simple docstring""" __lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(snake_case__ , snake_case__ ) ) , dtype=snake_case__ ) return image def UpperCAmelCase__ ( self : str , snake_case__ : Any=False , snake_case__ : List[Any]="CompVis/stable-diffusion-v1-4" ): """simple docstring""" __lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCAmelCase = "bf16" if fpaa else None __lowerCAmelCase , __lowerCAmelCase = FlaxUNetaDConditionModel.from_pretrained( snake_case__ , subfolder="unet" , dtype=snake_case__ , revision=snake_case__ ) return model, params def UpperCAmelCase__ ( self : Any , snake_case__ : Tuple=0 , snake_case__ : Dict=(4, 77, 768) , snake_case__ : List[str]=False ): """simple docstring""" __lowerCAmelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(snake_case__ , snake_case__ ) ) , dtype=snake_case__ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_000, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def UpperCAmelCase__ ( self : Dict , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Optional[Any] ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=snake_case__ ) __lowerCAmelCase = self.get_latents(snake_case__ , fpaa=snake_case__ ) __lowerCAmelCase = self.get_encoder_hidden_states(snake_case__ , fpaa=snake_case__ ) __lowerCAmelCase = model.apply( {"params": params} , snake_case__ , jnp.array(snake_case__ , dtype=jnp.intaa ) , encoder_hidden_states=snake_case__ , ).sample assert sample.shape == latents.shape __lowerCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCAmelCase = jnp.array(snake_case__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(snake_case__ , snake_case__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_000, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def UpperCAmelCase__ ( self : Any , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Dict ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=snake_case__ ) __lowerCAmelCase = self.get_latents(snake_case__ , shape=(4, 4, 96, 96) , fpaa=snake_case__ ) __lowerCAmelCase = self.get_encoder_hidden_states(snake_case__ , shape=(4, 77, 1_024) , fpaa=snake_case__ ) __lowerCAmelCase = model.apply( {"params": params} , snake_case__ , jnp.array(snake_case__ , dtype=jnp.intaa ) , encoder_hidden_states=snake_case__ , ).sample assert sample.shape == latents.shape __lowerCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCAmelCase = jnp.array(snake_case__ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(snake_case__ , snake_case__ , atol=1E-2 )
611
1
'''simple docstring''' from scipy.stats import spearmanr import datasets lowercase__ = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" lowercase__ = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" lowercase__ = R"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def a_ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def a_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> str: _a = spearmanr(__UpperCamelCase , __UpperCamelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
276
'''simple docstring''' from manim import * class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def a_ ( self ) -> str: _a = Rectangle(height=0.5 , width=0.5 ) _a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _a = [mem.copy() for i in range(6 )] _a = [mem.copy() for i in range(6 )] _a = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) _a = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) _a = VGroup(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) _a = Text("CPU" , font_size=24 ) _a = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCamelCase ) _a = [mem.copy() for i in range(1 )] _a = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) _a = Text("GPU" , font_size=24 ) _a = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) gpu.align_to(__UpperCamelCase , __UpperCamelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(__UpperCamelCase ) _a = [mem.copy() for i in range(6 )] _a = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) _a = Text("Model" , font_size=24 ) _a = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(__UpperCamelCase , run_time=1 ) , Create(__UpperCamelCase , run_time=1 ) , Create(__UpperCamelCase , run_time=1 ) , ) _a = MarkupText( f"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." , font_size=24 , ) _a = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _a = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCamelCase , run_time=2.5 ) , Write(__UpperCamelCase ) , Write(__UpperCamelCase ) ) self.add(__UpperCamelCase ) _a = [] _a = [] _a = [] for i, rect in enumerate(__UpperCamelCase ): _a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__UpperCamelCase , opacity=0.7 ) cpu_target.move_to(__UpperCamelCase ) cpu_target.generate_target() _a = 0.46 / 4 _a = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__UpperCamelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=__UpperCamelCase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=__UpperCamelCase , buff=0.0 ) cpu_targs.append(__UpperCamelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__UpperCamelCase ) ) second_animations.append(MoveToTarget(__UpperCamelCase , run_time=1.5 ) ) self.play(*__UpperCamelCase ) self.play(*__UpperCamelCase ) self.wait()
276
1
"""simple docstring""" from collections import deque from .hash_table import HashTable class __snake_case (__SCREAMING_SNAKE_CASE ): def __init__( self: int , *A_: Optional[int] , **A_: int ): super().__init__(*A_ , **A_ ) def __a ( self: int , A_: Optional[int] , A_: Tuple ): __lowerCamelCase = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(A_ ) __lowerCamelCase = self.values[key] def __a ( self: Dict ): return ( sum(self.charge_factor - len(A_ ) for slot in self.values ) / self.size_table * self.charge_factor ) def __a ( self: Optional[Any] , A_: int , A_: Any=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(A_ ) == 0 ): return key return super()._collision_resolution(A_ , A_ )
281
def _a ( lowerCamelCase ): if num < 0: return False lowerCamelCase : int = num lowerCamelCase : int = 0 while num > 0: lowerCamelCase : str = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
0
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __magic_name__ ( unittest.TestCase ): @property def _A( self ): torch.manual_seed(0 ) lowercase =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model @property def _A( self ): torch.manual_seed(0 ) lowercase =VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , ) return model @property def _A( self ): torch.manual_seed(0 ) lowercase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(snake_case_ ) def _A( self ): lowercase =self.dummy_uncond_unet lowercase =DDIMScheduler() lowercase =self.dummy_vq_model lowercase =LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) lowercase =torch.manual_seed(0 ) lowercase =ldm(generator=snake_case_ , num_inference_steps=2 , output_type='''numpy''' ).images lowercase =torch.manual_seed(0 ) lowercase =ldm(generator=snake_case_ , num_inference_steps=2 , output_type='''numpy''' , return_dict=snake_case_ )[0] lowercase =image[0, -3:, -3:, -1] lowercase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase =np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) lowercase =1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __magic_name__ ( unittest.TestCase ): def _A( self ): lowercase =LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) lowercase =torch.manual_seed(0 ) lowercase =ldm(generator=snake_case_ , num_inference_steps=5 , output_type='''numpy''' ).images lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) lowercase =np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) lowercase =1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
145
'''simple docstring''' def UpperCamelCase ( lowercase_ : str , lowercase_ : Tuple ) -> List[Any]: '''simple docstring''' lowercase ='''''' for i in table: res += inp[i - 1] return res def UpperCamelCase ( lowercase_ : Any ) -> Dict: '''simple docstring''' return data[1:] + data[0] def UpperCamelCase ( lowercase_ : str , lowercase_ : List[str] ) -> List[str]: '''simple docstring''' lowercase ='''''' for i in range(len(lowercase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCamelCase ( lowercase_ : int , lowercase_ : Any ) -> List[str]: '''simple docstring''' lowercase =int('''0b''' + data[0] + data[-1] , 2 ) lowercase =int('''0b''' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : Any , lowercase_ : Any , lowercase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowercase =message[:4] lowercase =message[4:] lowercase =apply_table(lowercase_ , lowercase_ ) lowercase =xor(lowercase_ , lowercase_ ) lowercase =apply_sbox(lowercase_ , temp[:4] ) # noqa: E741 lowercase =apply_sbox(lowercase_ , temp[4:] ) lowercase ='''0''' * (2 - len(lowercase_ )) + l # noqa: E741 lowercase ='''0''' * (2 - len(lowercase_ )) + r lowercase =apply_table(l + r , lowercase_ ) lowercase =xor(lowercase_ , lowercase_ ) return temp + right if __name__ == "__main__": _UpperCAmelCase : Optional[int] = input('''Enter 10 bit key: ''') _UpperCAmelCase : Optional[int] = input('''Enter 8 bit message: ''') _UpperCAmelCase : Optional[int] = [6, 3, 7, 4, 8, 5, 10, 9] _UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _UpperCAmelCase : int = [2, 4, 3, 1] _UpperCAmelCase : Dict = [2, 6, 3, 1, 4, 8, 5, 7] _UpperCAmelCase : Optional[int] = [4, 1, 3, 5, 7, 2, 8, 6] _UpperCAmelCase : Dict = [4, 1, 2, 3, 2, 3, 4, 1] _UpperCAmelCase : Union[str, Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _UpperCAmelCase : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _UpperCAmelCase : Tuple = apply_table(key, paa_table) _UpperCAmelCase : List[Any] = temp[:5] _UpperCAmelCase : Optional[Any] = temp[5:] _UpperCAmelCase : Optional[int] = left_shift(left) _UpperCAmelCase : Dict = left_shift(right) _UpperCAmelCase : Any = apply_table(left + right, pa_table) _UpperCAmelCase : Tuple = left_shift(left) _UpperCAmelCase : str = left_shift(right) _UpperCAmelCase : int = left_shift(left) _UpperCAmelCase : List[Any] = left_shift(right) _UpperCAmelCase : List[Any] = apply_table(left + right, pa_table) # encryption _UpperCAmelCase : List[Any] = apply_table(message, IP) _UpperCAmelCase : Optional[Any] = function(expansion, sa, sa, keya, temp) _UpperCAmelCase : Union[str, Any] = temp[4:] + temp[:4] _UpperCAmelCase : Optional[int] = function(expansion, sa, sa, keya, temp) _UpperCAmelCase : List[Any] = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption _UpperCAmelCase : Optional[int] = apply_table(CT, IP) _UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) _UpperCAmelCase : Dict = temp[4:] + temp[:4] _UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) _UpperCAmelCase : Optional[int] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
145
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCamelCase__ : """simple docstring""" A__ : List[str] = XGLMConfig A__ : List[Any] = {} A__ : Optional[Any] = "gelu" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=14 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=0.0_2 , ) -> int: A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_labels A__ = vocab_size A__ = d_model A__ = num_hidden_layers A__ = num_attention_heads A__ = ffn_dim A__ = activation_function A__ = activation_dropout A__ = attention_dropout A__ = max_position_embeddings A__ = initializer_range A__ = None A__ = 0 A__ = 2 A__ = 1 def snake_case__ ( self ) -> List[Any]: return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def snake_case__ ( self ) -> int: A__ = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = self.get_config() A__ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def snake_case__ ( self ) -> str: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE__ , ) def snake_case__ ( self ) -> List[str]: A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class UpperCamelCase__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" A__ : Dict = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () A__ : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () A__ : Optional[int] = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) A__ : Union[str, Any] = False A__ : int = False A__ : Optional[int] = False def snake_case__ ( self ) -> Optional[int]: A__ = TFXGLMModelTester(self ) A__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , n_embd=37 ) def snake_case__ ( self ) -> Tuple: self.config_tester.run_common_tests() @slow def snake_case__ ( self ) -> Tuple: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def snake_case__ ( self ) -> List[Any]: super().test_resize_token_embeddings() @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self , SCREAMING_SNAKE_CASE__=True ) -> List[str]: A__ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) A__ = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off A__ = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on A__ = model.generate(SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE__ ) @slow def snake_case__ ( self ) -> Union[str, Any]: A__ = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) A__ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) A__ = tokenizer("Today is a nice day and" , return_tensors="tf" ) A__ = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): A__ = model.generate(SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ , seed=[7, 0] ) A__ = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) A__ = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def snake_case__ ( self ) -> int: A__ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) A__ = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) A__ = "left" # use different length sentences to test batching A__ = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] A__ = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors="tf" , padding=SCREAMING_SNAKE_CASE__ ) A__ = inputs["input_ids"] A__ = model.generate(input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=inputs["attention_mask"] , max_new_tokens=12 ) A__ = tokenizer(sentences[0] , return_tensors="tf" ).input_ids A__ = model.generate(input_ids=SCREAMING_SNAKE_CASE__ , max_new_tokens=12 ) A__ = tokenizer(sentences[1] , return_tensors="tf" ).input_ids A__ = model.generate(input_ids=SCREAMING_SNAKE_CASE__ , max_new_tokens=12 ) A__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) A__ = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , [non_padded_sentence, padded_sentence] )
104
'''simple docstring''' def UpperCamelCase__ ( _lowercase : List[Any] ) -> Dict: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def UpperCamelCase__ ( _lowercase : dict[int, list[int]] ) -> list[tuple[int, int]]: __UpperCAmelCase: Any = 0 __UpperCAmelCase: List[Any] = len(_lowercase ) # No of vertices in graph __UpperCAmelCase: Optional[Any] = [0] * n __UpperCAmelCase: Dict = [False] * n def dfs(_lowercase : Any , _lowercase : List[Any] , _lowercase : int , _lowercase : Optional[int] ): __UpperCAmelCase: List[str] = True __UpperCAmelCase: int = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_lowercase , _lowercase , _lowercase , id_ ) __UpperCAmelCase: Any = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge __UpperCAmelCase: List[str] = min(low[at] , low[to] ) __UpperCAmelCase: list[tuple[int, int]] = [] for i in range(_lowercase ): if not visited[i]: dfs(_lowercase , -1 , _lowercase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
523
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase : int = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase : Optional[int] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase : int = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[Any] = len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Tuple = random.randint(0 , len(lowerCAmelCase_ ) - 1 ) __lowercase : Any = parent_a[:random_slice] + parent_a[random_slice:] __lowercase : int = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] ): __lowercase : Union[str, Any] = list(lowerCAmelCase_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __lowercase : Tuple = random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : tuple[str, float] , lowerCAmelCase_ : list[tuple[str, float]] , lowerCAmelCase_ : list[str] , ): __lowercase : List[Any] = [] # Generate more children proportionally to the fitness score. __lowercase : Optional[Any] = int(parent_a[1] * 100 ) + 1 __lowercase : Optional[int] = 10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): __lowercase : Union[str, Any] = population_score[random.randint(0 , lowerCAmelCase_ )][0] __lowercase : str = crossover(parent_a[0] , lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_ , lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_ , lowerCAmelCase_ ) ) return pop def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[str] , lowerCAmelCase_ : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __lowercase : str = F"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. __lowercase : Union[str, Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __lowercase : List[Any] = F"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(lowerCAmelCase_ ) # Generate random starting population. __lowercase : Optional[int] = [] for _ in range(lowerCAmelCase_ ): population.append("""""".join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. __lowercase : List[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __lowercase : Union[str, Any] = [evaluate(lowerCAmelCase_ , lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. __lowercase : Optional[Any] = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x[1] , reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"\nGeneration: {generation}" F"\nTotal Population:{total_population}" F"\nBest score: {population_score[0][1]}" F"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __lowercase : List[str] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. __lowercase : Any = [ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )] , lowerCAmelCase_ , lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase : Any = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) lowerCamelCase : Union[str, Any] = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) lowerCamelCase : List[str] = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
703
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = LongformerTokenizer _A : int = True _A : Optional[int] = LongformerTokenizerFast _A : int = True def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : Optional[int] = {"""unk_token""": """<unk>"""} __lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , **__a : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = """lower newer""" __lowercase : int = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """lower newer""" __lowercase : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase : str = tokenizer.tokenize(__a ) # , add_prefix_space=True) self.assertListEqual(__a , __a ) __lowercase : int = tokens + [tokenizer.unk_token] __lowercase : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__a ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=__a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Tuple = """Encode this sequence.""" __lowercase : Optional[Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase : Dict = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__a , __a ) __lowercase : List[str] = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __lowercase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__a , __a ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase : str = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : Dict = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__a , __a ) # Testing spaces after special tokens __lowercase : List[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__a , lstrip=__a , rstrip=__a )} ) # mask token has a left space __lowercase : Dict = tokenizer.convert_tokens_to_ids(__a ) __lowercase : List[str] = """Encode <mask> sequence""" __lowercase : List[str] = """Encode <mask>sequence""" __lowercase : Union[str, Any] = tokenizer.encode(__a ) __lowercase : Dict = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__a , __a ) __lowercase : int = tokenizer.encode(__a ) __lowercase : Union[str, Any] = encoded.index(__a ) __lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__a , __a ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : List[Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Optional[Any] = """A, <mask> AllenNLP sentence.""" __lowercase : Union[str, Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Optional[Any] = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase : Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __a ) self.assertEqual(post_processor_state["""trim_offsets"""] , __a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[str] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : int = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Any = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ) + 1, len(__a ) + 1 + len(__a )) , ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : str = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : int = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__a ), len(__a ) + 1 + len(__a )) , ) __lowercase : Any = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : str = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ) + 1, 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Dict = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , ) __lowercase : int = self.rust_tokenizer_class.from_pretrained( __a , use_fast=__a , add_prefix_space=__a , trim_offsets=__a ) __lowercase : Tuple = tokenizer_r(__a , return_offsets_mapping=__a , add_special_tokens=__a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__a ), 1 + len(__a ) + 1 + len(__a )) , )
649
0
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : int = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Optional[Any] = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def lowerCamelCase_( _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Tuple = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", "stage2.cls_token") ) return token def lowerCamelCase_( ) -> int: '''simple docstring''' _lowerCamelCase : List[str] = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = "imagenet-1k-id2label.json" _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : List[Any] = num_labels _lowerCamelCase : List[Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) ) , "r" ) ) _lowerCamelCase : Optional[int] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Any = idalabel _lowerCamelCase : List[Any] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = CvtConfig(num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": _lowerCamelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": _lowerCamelCase : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: _lowerCamelCase : Tuple = [2, 2, 20] _lowerCamelCase : List[str] = [3, 12, 16] _lowerCamelCase : Optional[Any] = [192, 768, 1024] _lowerCamelCase : Union[str, Any] = CvtForImageClassification(_lowerCamelCase ) _lowerCamelCase : Any = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : List[Any] = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) _lowerCamelCase : Any = OrderedDict() _lowerCamelCase : Dict = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: _lowerCamelCase : Tuple = list_of_state_dict + cls_token(_lowerCamelCase ) _lowerCamelCase : Optional[int] = list_of_state_dict + embeddings(_lowerCamelCase ) for cnt in range(config.depth[idx] ): _lowerCamelCase : Dict = list_of_state_dict + attention(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = list_of_state_dict + final() for gg in list_of_state_dict: print(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): _lowerCamelCase : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Tuple = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
46
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def _UpperCAmelCase ( __lowerCamelCase : Optional[int] ) -> str: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Dict: _snake_case = create_tensor(__lowerCamelCase ) _snake_case = gather(__lowerCamelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Tuple: _snake_case = [state.process_index] _snake_case = gather_object(__lowerCamelCase ) assert len(__lowerCamelCase ) == state.num_processes, f'''{gathered_obj}, {len(__lowerCamelCase )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def _UpperCAmelCase ( __lowerCamelCase : int ) -> Union[str, Any]: _snake_case = create_tensor(__lowerCamelCase ) _snake_case = broadcast(__lowerCamelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def _UpperCAmelCase ( __lowerCamelCase : str ) -> int: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: _snake_case = torch.arange(state.num_processes + 1 ).to(state.device ) else: _snake_case = torch.arange(state.num_processes ).to(state.device ) _snake_case = pad_across_processes(__lowerCamelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def _UpperCAmelCase ( __lowerCamelCase : Any ) -> List[str]: # For now runs on only two processes if state.num_processes != 2: return _snake_case = create_tensor(__lowerCamelCase ) _snake_case = reduce(__lowerCamelCase , '''sum''' ) _snake_case = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), f'''{reduced_tensor} != {truth_tensor}''' def _UpperCAmelCase ( __lowerCamelCase : int ) -> Optional[int]: # For now runs on only two processes if state.num_processes != 2: return _snake_case = create_tensor(__lowerCamelCase ) _snake_case = reduce(__lowerCamelCase , '''mean''' ) _snake_case = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), f'''{reduced_tensor} != {truth_tensor}''' def _UpperCAmelCase ( __lowerCamelCase : Dict ) -> List[Any]: # For xla_spawn (TPUs) main() def _UpperCAmelCase ( ) -> Optional[Any]: _snake_case = PartialState() state.print(f'''State: {state}''' ) state.print('''testing gather''' ) test_gather(__lowerCamelCase ) state.print('''testing gather_object''' ) test_gather_object(__lowerCamelCase ) state.print('''testing broadcast''' ) test_broadcast(__lowerCamelCase ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(__lowerCamelCase ) state.print('''testing reduce_sum''' ) test_reduce_sum(__lowerCamelCase ) state.print('''testing reduce_mean''' ) test_reduce_mean(__lowerCamelCase ) if __name__ == "__main__": main()
224
0
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase_ = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase_ = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: '''simple docstring''' _A= SavedModel() _A= [] with open(os.path.join(lowerCAmelCase_ , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: _A= json.load(lowerCAmelCase_ )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowerCAmelCase_ )] ) with open(lowerCAmelCase_ , 'rb' ) as f: saved_model.ParseFromString(f.read() ) _A= set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _A= sorted(lowerCAmelCase_ ) _A= [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowerCAmelCase_ ) if strict and len(lowerCAmelCase_ ) > 0: raise Exception(F"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops ) elif len(lowerCAmelCase_ ) > 0: print(F"Found the following incompatible ops for the opset {opset}:" ) print(*lowerCAmelCase_ , sep='\n' ) else: print(F"The saved model {saved_model_path} can properly be converted with ONNX." ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) UpperCAmelCase_ = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
476
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def UpperCamelCase ( *lowerCAmelCase_ ) -> Dict: '''simple docstring''' with open(lowerCAmelCase_ , 'r' ) as fh: fcntl.flock(lowerCAmelCase_ , fcntl.LOCK_EX ) try: print(*lowerCAmelCase_ ) finally: fcntl.flock(lowerCAmelCase_ , fcntl.LOCK_UN ) UpperCAmelCase_ = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) UpperCAmelCase_ = torch.device('''cuda''', local_rank) UpperCAmelCase_ = socket.gethostname() UpperCAmelCase_ = F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase_ = dist.get_rank() UpperCAmelCase_ = dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
476
1
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __magic_name__ : Any = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex __magic_name__ : str = 10 __magic_name__ : List[Any] = 256 def lowercase__ ( _UpperCamelCase) -> Optional[MinHash]: """simple docstring""" if len(_UpperCamelCase) < MIN_NUM_TOKENS: return None UpperCamelCase = MinHash(num_perm=_UpperCamelCase) for token in set(_UpperCamelCase): min_hash.update(token.encode()) return min_hash def lowercase__ ( _UpperCamelCase) -> Set[str]: """simple docstring""" return {t for t in NON_ALPHA.split(_UpperCamelCase) if len(t.strip()) > 0} class A__ : '''simple docstring''' def __init__( self : Optional[int] , *, _SCREAMING_SNAKE_CASE : float = 0.8_5 , ): """simple docstring""" UpperCamelCase = duplication_jaccard_threshold UpperCamelCase = NUM_PERM UpperCamelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) UpperCamelCase = defaultdict(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : MinHash ): """simple docstring""" UpperCamelCase = self._index.query(_SCREAMING_SNAKE_CASE ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_SCREAMING_SNAKE_CASE ) break else: self._duplicate_clusters[close_duplicates[0]].add(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" UpperCamelCase = [] for base, duplicates in self._duplicate_clusters.items(): UpperCamelCase = [base] + list(_SCREAMING_SNAKE_CASE ) # reformat the cluster to be a list of dict UpperCamelCase = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(_SCREAMING_SNAKE_CASE ) return duplicate_clusters def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" UpperCamelCase = self.get_duplicate_clusters() with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase__ ( _UpperCamelCase) -> str: """simple docstring""" UpperCamelCase , UpperCamelCase = element UpperCamelCase = get_min_hash([t for t in NON_ALPHA.split(data['content']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowercase__ ( _UpperCamelCase) -> List[Any]: """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_UpperCamelCase , max_queue_size=1_00_00) , chunksize=1_00 , ): if data is not None: yield data def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> List[Any]: """simple docstring""" UpperCamelCase = DuplicationIndex(duplication_jaccard_threshold=_UpperCamelCase) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_UpperCamelCase)) , max_queue_size=1_00)): di.add(_UpperCamelCase , _UpperCamelCase) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> float: """simple docstring""" UpperCamelCase = get_tokens(_UpperCamelCase) UpperCamelCase = get_tokens(_UpperCamelCase) return len(tokensa & tokensa) / len(tokensa | tokensa) __magic_name__ : str = None def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> Union[str, Any]: """simple docstring""" UpperCamelCase = [] for elementa in cluster: UpperCamelCase = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: UpperCamelCase = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(_UpperCamelCase , _UpperCamelCase) >= jaccard_threshold: elementa["copies"] += 1 break else: UpperCamelCase = 1 extremes.append(_UpperCamelCase) return extremes def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> Tuple: """simple docstring""" global _shared_dataset UpperCamelCase = dataset UpperCamelCase = [] UpperCamelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_UpperCamelCase) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _UpperCamelCase , _UpperCamelCase , ) , total=len(_UpperCamelCase) , ): extremes_list.append(_UpperCamelCase) return extremes_list def lowercase__ ( _UpperCamelCase , _UpperCamelCase = 0.8_5) -> Tuple[Type[Dataset], List[List[Dict]]]: """simple docstring""" UpperCamelCase = make_duplicate_clusters(_UpperCamelCase , _UpperCamelCase) UpperCamelCase = {x['base_index'] for cluster in duplicate_clusters for x in cluster} UpperCamelCase = {} UpperCamelCase = find_extremes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) for extremes in extremes_clusters: for element in extremes: UpperCamelCase = element UpperCamelCase = duplicate_indices - set(extreme_dict.keys()) UpperCamelCase = dataset.filter(lambda _UpperCamelCase , _UpperCamelCase: idx not in remove_indices , with_indices=_UpperCamelCase) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: UpperCamelCase = element['base_index'] in extreme_dict if element["is_extreme"]: UpperCamelCase = extreme_dict[element['base_index']]['copies'] print(F'Original dataset size: {len(_UpperCamelCase)}') print(F'Number of duplicate clusters: {len(_UpperCamelCase)}') print(F'Files in duplicate cluster: {len(_UpperCamelCase)}') print(F'Unique files in duplicate cluster: {len(_UpperCamelCase)}') print(F'Filtered dataset size: {len(_UpperCamelCase)}') return ds_filter, duplicate_clusters
280
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __magic_name__ : str = logging.get_logger(__name__) def lowercase__ ( _UpperCamelCase) -> int: """simple docstring""" UpperCamelCase = torch.load(_UpperCamelCase , map_location='cpu') if "model" in sd.keys(): UpperCamelCase = torch.load(_UpperCamelCase , map_location='cpu')['model'] # pop unnecessary weights UpperCamelCase = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCamelCase) UpperCamelCase = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCamelCase = sd.pop(_UpperCamelCase) UpperCamelCase = list(sd.keys()) for key in keys: if ".qkv_proj." in key: UpperCamelCase = sd[key] # We split QKV in separate Q,K,V UpperCamelCase = key.replace('.qkv_proj.' , '.q_proj.') UpperCamelCase = key.replace('.qkv_proj.' , '.k_proj.') UpperCamelCase = key.replace('.qkv_proj.' , '.v_proj.') UpperCamelCase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCamelCase , UpperCamelCase , UpperCamelCase = torch.split(_UpperCamelCase , depth // 3 , dim=0) UpperCamelCase = q UpperCamelCase = k UpperCamelCase = v del sd[key] return sd @torch.no_grad() def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None) -> Optional[int]: """simple docstring""" UpperCamelCase = load_checkpoint(_UpperCamelCase) if config is not None: UpperCamelCase = OPTConfig.from_pretrained(_UpperCamelCase) else: UpperCamelCase = OPTConfig() UpperCamelCase = OPTModel(_UpperCamelCase).half().eval() model.load_state_dict(_UpperCamelCase) # Check results Path(_UpperCamelCase).mkdir(exist_ok=_UpperCamelCase) model.save_pretrained(_UpperCamelCase) if __name__ == "__main__": __magic_name__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') __magic_name__ : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
280
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : str = logging.get_logger(__name__) def a__ ( A_ ): '''simple docstring''' __magic_name__ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __magic_name__ = 128 elif "12-12" in model_name: __magic_name__ = 12 __magic_name__ = 12 elif "14-14" in model_name: __magic_name__ = 14 __magic_name__ = 14 elif "16-16" in model_name: __magic_name__ = 16 __magic_name__ = 16 else: raise ValueError("""Model not supported""" ) __magic_name__ = """huggingface/label-files""" if "speech-commands" in model_name: __magic_name__ = 35 __magic_name__ = """speech-commands-v2-id2label.json""" else: __magic_name__ = 527 __magic_name__ = """audioset-id2label.json""" __magic_name__ = json.load(open(hf_hub_download(A_, A_, repo_type="""dataset""" ), """r""" ) ) __magic_name__ = {int(A_ ): v for k, v in idalabel.items()} __magic_name__ = idalabel __magic_name__ = {v: k for k, v in idalabel.items()} return config def a__ ( A_ ): '''simple docstring''' if "module.v" in name: __magic_name__ = name.replace("""module.v""", """audio_spectrogram_transformer""" ) if "cls_token" in name: __magic_name__ = name.replace("""cls_token""", """embeddings.cls_token""" ) if "dist_token" in name: __magic_name__ = name.replace("""dist_token""", """embeddings.distillation_token""" ) if "pos_embed" in name: __magic_name__ = name.replace("""pos_embed""", """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __magic_name__ = name.replace("""patch_embed.proj""", """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: __magic_name__ = name.replace("""blocks""", """encoder.layer""" ) if "attn.proj" in name: __magic_name__ = name.replace("""attn.proj""", """attention.output.dense""" ) if "attn" in name: __magic_name__ = name.replace("""attn""", """attention.self""" ) if "norm1" in name: __magic_name__ = name.replace("""norm1""", """layernorm_before""" ) if "norm2" in name: __magic_name__ = name.replace("""norm2""", """layernorm_after""" ) if "mlp.fc1" in name: __magic_name__ = name.replace("""mlp.fc1""", """intermediate.dense""" ) if "mlp.fc2" in name: __magic_name__ = name.replace("""mlp.fc2""", """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __magic_name__ = name.replace("""audio_spectrogram_transformer.norm""", """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: __magic_name__ = name.replace("""module.mlp_head.0""", """classifier.layernorm""" ) if "module.mlp_head.1" in name: __magic_name__ = name.replace("""module.mlp_head.1""", """classifier.dense""" ) return name def a__ ( A_, A_ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): __magic_name__ = orig_state_dict.pop(A_ ) if "qkv" in key: __magic_name__ = key.split(""".""" ) __magic_name__ = int(key_split[3] ) __magic_name__ = config.hidden_size if "weight" in key: __magic_name__ = val[:dim, :] __magic_name__ = val[dim : dim * 2, :] __magic_name__ = val[-dim:, :] else: __magic_name__ = val[:dim] __magic_name__ = val[dim : dim * 2] __magic_name__ = val[-dim:] else: __magic_name__ = val return orig_state_dict def a__ ( A_ ): '''simple docstring''' __magic_name__ = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(A_, A_ ) @torch.no_grad() def a__ ( A_, A_, A_=False ): '''simple docstring''' __magic_name__ = get_audio_spectrogram_transformer_config(A_ ) __magic_name__ = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict __magic_name__ = model_name_to_url[model_name] __magic_name__ = torch.hub.load_state_dict_from_url(A_, map_location="""cpu""" ) # remove some keys remove_keys(A_ ) # rename some keys __magic_name__ = convert_state_dict(A_, A_ ) # load 🤗 model __magic_name__ = ASTForAudioClassification(A_ ) model.eval() model.load_state_dict(A_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __magic_name__ = -4.2677393 if """speech-commands""" not in model_name else -6.845978 __magic_name__ = 4.5689974 if """speech-commands""" not in model_name else 5.5654526 __magic_name__ = 1024 if """speech-commands""" not in model_name else 128 __magic_name__ = ASTFeatureExtractor(mean=A_, std=A_, max_length=A_ ) if "speech-commands" in model_name: __magic_name__ = load_dataset("""speech_commands""", """v0.02""", split="""validation""" ) __magic_name__ = dataset[0]["""audio"""]["""array"""] else: __magic_name__ = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""", filename="""sample_audio.flac""", repo_type="""dataset""", ) __magic_name__ , __magic_name__ = torchaudio.load(A_ ) __magic_name__ = waveform.squeeze().numpy() __magic_name__ = feature_extractor(A_, sampling_rate=16000, return_tensors="""pt""" ) # forward pass __magic_name__ = model(**A_ ) __magic_name__ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __magic_name__ = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __magic_name__ = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __magic_name__ = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __magic_name__ = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __magic_name__ = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __magic_name__ = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __magic_name__ = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": __magic_name__ = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3], A_, atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(A_ ).mkdir(exist_ok=A_ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(A_ ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase : Any = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
716
from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=_A ): '''simple docstring''' a__ = ["""note_seq"""] def __init__( self : Any , *UpperCamelCase__ : str , **UpperCamelCase__ : List[Any] ) -> Optional[int]: """simple docstring""" requires_backends(self , ["""note_seq"""] ) @classmethod def _lowercase ( cls : str , *UpperCamelCase__ : Dict , **UpperCamelCase__ : Tuple ) -> Dict: """simple docstring""" requires_backends(cls , ["""note_seq"""] ) @classmethod def _lowercase ( cls : List[str] , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Tuple ) -> int: """simple docstring""" requires_backends(cls , ["""note_seq"""] )
76
0
import copy import random from transformers import CLIPTokenizer class _UpperCAmelCase ( _lowerCamelCase ): def __init__( self , *a__ , **a__ ): super().__init__(*a__ , **a__ ) A_ : Dict = {} def _lowerCamelCase ( self , a__ , *a__ , **a__ ): A_ : Any = super().add_tokens(a__ , *a__ , **a__ ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" """ `placeholder_token` that is not already in the tokenizer.""" ) def _lowerCamelCase ( self , a__ , *a__ , a__=1 , **a__ ): A_ : Any = [] if num_vec_per_token == 1: self.try_adding_tokens(a__ , *a__ , **a__ ) output.append(a__ ) else: A_ : Tuple = [] for i in range(a__ ): A_ : Any = placeholder_token + F"""_{i}""" self.try_adding_tokens(a__ , *a__ , **a__ ) output.append(a__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) A_ : List[str] = output def _lowerCamelCase ( self , a__ , a__=False , a__=1.0 ): if isinstance(a__ , a__ ): A_ : Tuple = [] for i in range(len(a__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=a__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: A_ : Union[str, Any] = self.token_map[placeholder_token] A_ : Union[str, Any] = tokens[: 1 + int(len(a__ ) * prop_tokens_to_load )] if vector_shuffle: A_ : int = copy.copy(a__ ) random.shuffle(a__ ) A_ : Union[str, Any] = text.replace(a__ , """ """.join(a__ ) ) return text def __call__( self , a__ , *a__ , a__=False , a__=1.0 , **a__ ): return super().__call__( self.replace_placeholder_tokens_in_text( a__ , vector_shuffle=a__ , prop_tokens_to_load=a__ ) , *a__ , **a__ , ) def _lowerCamelCase ( self , a__ , *a__ , a__=False , a__=1.0 , **a__ ): return super().encode( self.replace_placeholder_tokens_in_text( a__ , vector_shuffle=a__ , prop_tokens_to_load=a__ ) , *a__ , **a__ , )
569
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( a__ , a__ , a__ ): '''simple docstring''' lowerCAmelCase :Tuple = MobileBertConfig.from_json_file(a__ ) print(F"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase :Tuple = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint lowerCAmelCase :Any = load_tf_weights_in_mobilebert(a__ , a__ , a__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , a__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
553
0
def _lowerCamelCase ( __A : Tuple , __A : Dict ) -> Dict: if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCAmelCase_ , int(b / 2 ) ) * actual_power(lowerCAmelCase_ , int(b / 2 ) ) else: return a * actual_power(lowerCAmelCase_ , int(b / 2 ) ) * actual_power(lowerCAmelCase_ , int(b / 2 ) ) def _lowerCamelCase ( __A : Dict , __A : str ) -> Dict: if b < 0: return 1 / actual_power(lowerCAmelCase_ , lowerCAmelCase_ ) return actual_power(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": print(power(-2, -3))
703
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () SCREAMING_SNAKE_CASE = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). SCREAMING_SNAKE_CASE = [0, 25, 50] SCREAMING_SNAKE_CASE = [25, 50, 75] SCREAMING_SNAKE_CASE = fuzz.membership.trimf(X, abca) SCREAMING_SNAKE_CASE = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. SCREAMING_SNAKE_CASE = np.ones(75) SCREAMING_SNAKE_CASE = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) SCREAMING_SNAKE_CASE = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) SCREAMING_SNAKE_CASE = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) SCREAMING_SNAKE_CASE = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) SCREAMING_SNAKE_CASE = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] SCREAMING_SNAKE_CASE = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) SCREAMING_SNAKE_CASE = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] SCREAMING_SNAKE_CASE = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] SCREAMING_SNAKE_CASE = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
186
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowerCamelCase__ ( _a ): a : int = """Salesforce/blip-image-captioning-base""" a : List[str] = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) a : Any = """image_captioner""" a : List[str] = AutoModelForVisionaSeq a : Any = ["""image"""] a : Union[str, Any] = ["""text"""] def __init__( self : Tuple , *A_ : str , **A_ : int ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*A_ , **A_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , A_ : "Image" ): '''simple docstring''' return self.pre_processor(images=A_ , return_tensors="""pt""" ) def SCREAMING_SNAKE_CASE_ ( self : Dict , A_ : Optional[int] ): '''simple docstring''' return self.model.generate(**A_ ) def SCREAMING_SNAKE_CASE_ ( self : str , A_ : str ): '''simple docstring''' return self.pre_processor.batch_decode(A_ , skip_special_tokens=A_ )[0].strip()
616
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowerCamelCase__ ( _a , unittest.TestCase ): a : Union[str, Any] = BarthezTokenizer a : Any = BarthezTokenizerFast a : Tuple = True a : List[Any] = True def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' super().setUp() __lowercase = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=A_ ) __lowercase = tokenizer def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' __lowercase = """<pad>""" __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(A_ ) , 1_0_1_1_2_2 ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __lowercase = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] __lowercase = self.tokenizer( A_ , max_length=len(A_ ) , padding=A_ , truncation=A_ , return_tensors="""pt""" ) self.assertIsInstance(A_ , A_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __lowercase = batch.input_ids.tolist()[0] self.assertListEqual(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = tokenizer.tokenize(A_ ) __lowercase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) __lowercase = tokenizer.encode(A_ , add_special_tokens=A_ ) __lowercase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(A_ ) __lowercase = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __lowercase = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=A_ , )
616
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowerCAmelCase__ : str = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' lowerCAmelCase__ : Union[str, Any] = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' lowerCAmelCase__ : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self : Union[str, Any] ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='http://www.cs.umd.edu/~snover/tercom/' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' ,id='sequence' ) ,id='references' ), } ) ,codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] ,reference_urls=[ 'https://github.com/jhclark/tercom', ] ,) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : bool = False ,): UpperCAmelCase__ = len(references[0] ) if any(len(lowerCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) UpperCAmelCase__ = [[refs[i] for refs in references] for i in range(lowerCamelCase__ )] UpperCAmelCase__ = TER( normalized=lowerCamelCase__ ,no_punct=lowerCamelCase__ ,asian_support=lowerCamelCase__ ,case_sensitive=lowerCamelCase__ ,) UpperCAmelCase__ = sb_ter.corpus_score(lowerCamelCase__ ,lowerCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ : int = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Union[str, Any] = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[Any] = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
632
0
from ...processing_utils import ProcessorMixin class a__ ( _UpperCamelCase ): A__ : Optional[int] = "SpeechT5FeatureExtractor" A__ : str = "SpeechT5Tokenizer" def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: super().__init__(__a , __a ) def __call__( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: __a = kwargs.pop('audio' , __a ) __a = kwargs.pop('text' , __a ) __a = kwargs.pop('text_target' , __a ) __a = kwargs.pop('audio_target' , __a ) __a = kwargs.pop('sampling_rate' , __a ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: __a = self.feature_extractor(__a , *__a , sampling_rate=__a , **__a ) elif text is not None: __a = self.tokenizer(__a , **__a ) else: __a = None if audio_target is not None: __a = self.feature_extractor(audio_target=__a , *__a , sampling_rate=__a , **__a ) __a = targets["input_values"] elif text_target is not None: __a = self.tokenizer(__a , **__a ) __a = targets["input_ids"] else: __a = None if inputs is None: return targets if targets is not None: __a = labels __a = targets.get('attention_mask' ) if decoder_attention_mask is not None: __a = decoder_attention_mask return inputs def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: __a = kwargs.pop('input_values' , __a ) __a = kwargs.pop('input_ids' , __a ) __a = kwargs.pop('labels' , __a ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: __a = self.feature_extractor.pad(__a , *__a , **__a ) elif input_ids is not None: __a = self.tokenizer.pad(__a , **__a ) else: __a = None if labels is not None: if "input_ids" in labels or (isinstance(__a , __a ) and "input_ids" in labels[0]): __a = self.tokenizer.pad(__a , **__a ) __a = targets["input_ids"] else: __a = self.feature_extractor.feature_size __a = self.feature_extractor.num_mel_bins __a = self.feature_extractor.pad(__a , *__a , **__a ) __a = feature_size_hack __a = targets["input_values"] else: __a = None if inputs is None: return targets if targets is not None: __a = labels __a = targets.get('attention_mask' ) if decoder_attention_mask is not None: __a = decoder_attention_mask return inputs def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[int]: return self.tokenizer.batch_decode(*__a , **__a ) def __SCREAMING_SNAKE_CASE ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Dict: return self.tokenizer.decode(*__a , **__a )
559
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "mobilenet_v1" def __init__( self : Optional[int] , __a : List[str]=3 , __a : Union[str, Any]=224 , __a : Tuple=1.0 , __a : List[Any]=8 , __a : Union[str, Any]="relu6" , __a : Dict=True , __a : Tuple=0.9_99 , __a : Dict=0.02 , __a : Any=0.0_01 , **__a : Any , ) -> int: super().__init__(**__a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _UpperCamelCase : Any = num_channels _UpperCamelCase : Optional[Any] = image_size _UpperCamelCase : Optional[Any] = depth_multiplier _UpperCamelCase : int = min_depth _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Union[str, Any] = tf_padding _UpperCamelCase : int = classifier_dropout_prob _UpperCamelCase : Optional[int] = initializer_range _UpperCamelCase : Union[str, Any] = layer_norm_eps class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> float: return 1e-4
624
0
"""simple docstring""" from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def a__ ( lowerCAmelCase : Sequence[float] , lowerCAmelCase : int , lowerCAmelCase : int ): '''simple docstring''' if not arr: return None, None, 0 if low == high: return low, high, arr[low] UpperCAmelCase__ : Optional[Any] = (low + high) // 2 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = max_subarray(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = max_subarray(lowerCAmelCase , mid + 1 , lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = max_cross_sum(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def a__ ( lowerCAmelCase : Sequence[float] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[str] = float("-inf" ), -1 UpperCAmelCase__ , UpperCAmelCase__ : Any = float("-inf" ), -1 UpperCAmelCase__ : int | float = 0 for i in range(lowerCAmelCase , low - 1 , -1 ): summ += arr[i] if summ > left_sum: UpperCAmelCase__ : Optional[int] = summ UpperCAmelCase__ : str = i UpperCAmelCase__ : Any = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: UpperCAmelCase__ : Optional[Any] = summ UpperCAmelCase__ : int = i return max_left, max_right, (left_sum + right_sum) def a__ ( lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = [randint(1 , lowerCAmelCase ) for _ in range(lowerCAmelCase )] UpperCAmelCase__ : List[str] = time.time() max_subarray(lowerCAmelCase , 0 , input_size - 1 ) UpperCAmelCase__ : Optional[Any] = time.time() return end - start def a__ ( ): '''simple docstring''' UpperCAmelCase__ : List[str] = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] UpperCAmelCase__ : List[Any] = [time_max_subarray(lowerCAmelCase ) for input_size in input_sizes] print("No of Inputs\t\tTime Taken" ) for input_size, runtime in zip(lowerCAmelCase , lowerCAmelCase ): print(lowerCAmelCase , "\t\t" , lowerCAmelCase ) plt.plot(lowerCAmelCase , lowerCAmelCase ) plt.xlabel("Number of Inputs" ) plt.ylabel("Time taken in seconds" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
660
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = '' _A = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> str: super().__init__(self , **__UpperCamelCase ) UpperCAmelCase__ : int = repo_info UpperCAmelCase__ : Optional[int] = token UpperCAmelCase__ : Optional[Any] = None def lowerCAmelCase__ ( self )-> Optional[Any]: if self.dir_cache is None: UpperCAmelCase__ : str = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCAmelCase__ : str = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(__UpperCamelCase ): {"name": str(__UpperCamelCase ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , )-> List[Any]: if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) UpperCAmelCase__ : Union[str, Any] = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def lowerCAmelCase__ ( self , __UpperCamelCase , **__UpperCamelCase )-> List[str]: self._get_dirs() UpperCAmelCase__ : Union[str, Any] = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase )-> str: self._get_dirs() UpperCAmelCase__ : str = PurePosixPath(path.strip("/" ) ) UpperCAmelCase__ : Optional[Any] = {} for p, f in self.dir_cache.items(): UpperCAmelCase__ : Optional[int] = PurePosixPath(p.strip("/" ) ) UpperCAmelCase__ : Dict = p.parent if root == path: UpperCAmelCase__ : Tuple = f UpperCAmelCase__ : List[Any] = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
660
1
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters lowerCAmelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Dict=None , snake_case_ : Tuple=None ) ->Dict: # Recurse if needed if "." in tensor_name: lowerCamelCase__ : List[Any] =tensor_name.split('.' ) for split in splits[:-1]: lowerCamelCase__ : Dict =getattr(snake_case_ , snake_case_ ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) lowerCamelCase__ : int =new_module lowerCamelCase__ : Any =splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) lowerCamelCase__ : int =tensor_name in module._buffers lowerCamelCase__ : Any =getattr(snake_case_ , snake_case_ ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) lowerCamelCase__ : str =False lowerCamelCase__ : Any =False if is_buffer or not is_bitsandbytes_available(): lowerCamelCase__ : int =False lowerCamelCase__ : List[str] =False else: lowerCamelCase__ : Any =hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowerCamelCase__ : Any =isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowerCamelCase__ : List[str] =module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowerCamelCase__ : Optional[int] =old_value.to(snake_case_ ) elif isinstance(snake_case_ , torch.Tensor ): lowerCamelCase__ : Tuple =value.to('cpu' ) if value.dtype == torch.inta: lowerCamelCase__ : Any =version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: lowerCamelCase__ : Optional[Any] =torch.tensor(snake_case_ , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , snake_case_ ) and fpaa_statistics is None: lowerCamelCase__ : Optional[Any] =new_value.T lowerCamelCase__ : str =old_value.__dict__ if is_abit: lowerCamelCase__ : Optional[int] =bnb.nn.IntaParams(snake_case_ , requires_grad=snake_case_ , **snake_case_ ).to(snake_case_ ) elif is_abit: lowerCamelCase__ : Dict =bnb.nn.Paramsabit(snake_case_ , requires_grad=snake_case_ , **snake_case_ ).to(snake_case_ ) lowerCamelCase__ : Union[str, Any] =new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(snake_case_ ) ) else: if value is None: lowerCamelCase__ : List[str] =old_value.to(snake_case_ ) elif isinstance(snake_case_ , torch.Tensor ): lowerCamelCase__ : Any =value.to(snake_case_ ) else: lowerCamelCase__ : str =torch.tensor(snake_case_ , device=snake_case_ ) if is_buffer: lowerCamelCase__ : Dict =new_value else: lowerCamelCase__ : int =nn.Parameter(snake_case_ , requires_grad=old_value.requires_grad ) lowerCamelCase__ : int =new_value def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Dict=None , snake_case_ : int=None , snake_case_ : int=None , snake_case_ : Optional[Any]=False ) ->List[str]: for name, module in model.named_children(): if current_key_name is None: lowerCamelCase__ : Dict =[] current_key_name.append(snake_case_ ) if (isinstance(snake_case_ , nn.Linear ) or isinstance(snake_case_ , snake_case_ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(snake_case_ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(snake_case_ , snake_case_ ): lowerCamelCase__ , lowerCamelCase__ : str =module.weight.shape else: lowerCamelCase__ : Dict =module.in_features lowerCamelCase__ : Any =module.out_features if quantization_config.quantization_method() == "llm_int8": lowerCamelCase__ : List[Any] =bnb.nn.LinearabitLt( snake_case_ , snake_case_ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowerCamelCase__ : List[str] =True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowerCamelCase__ : int =bnb.nn.Linearabit( snake_case_ , snake_case_ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowerCamelCase__ : Union[str, Any] =True # Store the module class in case we need to transpose the weight later lowerCamelCase__ : Any =type(snake_case_ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(snake_case_ ) if len(list(module.children() ) ) > 0: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =_replace_with_bnb_linear( snake_case_ , snake_case_ , snake_case_ , snake_case_ , has_been_replaced=snake_case_ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Optional[Any]=None , snake_case_ : List[Any]=None , snake_case_ : Tuple=None ) ->Tuple: lowerCamelCase__ : Dict =['lm_head'] if modules_to_not_convert is None else modules_to_not_convert lowerCamelCase__ , lowerCamelCase__ : List[Any] =_replace_with_bnb_linear( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def lowerCAmelCase_ ( *snake_case_ : Union[str, Any] , **snake_case_ : int ) ->Optional[int]: warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , snake_case_ , ) return replace_with_bnb_linear(*snake_case_ , **snake_case_ ) def lowerCAmelCase_ ( *snake_case_ : int , **snake_case_ : Any ) ->Any: warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , snake_case_ , ) return set_module_quantized_tensor_to_device(*snake_case_ , **snake_case_ ) def lowerCAmelCase_ ( snake_case_ : List[Any] ) ->Optional[int]: lowerCamelCase__ : List[str] =deepcopy(snake_case_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowerCamelCase__ : List[Any] =find_tied_parameters(snake_case_ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case_ , snake_case_ ): lowerCamelCase__ : List[Any] =sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCamelCase__ : Tuple =sum(snake_case_ , [] ) lowerCamelCase__ : str =len(snake_case_ ) > 0 # Check if it is a base model lowerCamelCase__ : Dict =not hasattr(snake_case_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCamelCase__ : Optional[Any] =list(model.named_children() ) lowerCamelCase__ : Optional[int] =[list_modules[-1][0]] # add last module together with tied weights lowerCamelCase__ : Any =set(snake_case_ ) - set(snake_case_ ) lowerCamelCase__ : int =list(set(snake_case_ ) ) + list(snake_case_ ) # remove ".weight" from the keys lowerCamelCase__ : Union[str, Any] =['.weight', '.bias'] lowerCamelCase__ : Union[str, Any] =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCamelCase__ : Any =name.replace(snake_case_ , '' ) filtered_module_names.append(snake_case_ ) return filtered_module_names
174
"""simple docstring""" from collections.abc import Callable class A_ : """simple docstring""" def __init__( self :Tuple , lowerCamelCase_ :Callable | None = None ): """simple docstring""" lowerCamelCase__ : list =[] # Stores indexes of each item for supporting updates and deletion. lowerCamelCase__ : dict ={} # Stores current size of heap. lowerCamelCase__ : List[Any] =0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. lowerCamelCase__ : Any =key or (lambda lowerCamelCase_ : x) def UpperCAmelCase__ ( self :Optional[Any] , lowerCamelCase_ :int ): """simple docstring""" return int((i - 1) / 2 ) if i > 0 else None def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :int ): """simple docstring""" lowerCamelCase__ : Dict =int(2 * i + 1 ) return left if 0 < left < self.size else None def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :int ): """simple docstring""" lowerCamelCase__ : List[Any] =int(2 * i + 2 ) return right if 0 < right < self.size else None def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :int ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : str =( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. lowerCamelCase__ , lowerCamelCase__ : Any =self.arr[j], self.arr[i] def UpperCAmelCase__ ( self :int , lowerCamelCase_ :int , lowerCamelCase_ :int ): """simple docstring""" return self.arr[i][1] < self.arr[j][1] def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :int ): """simple docstring""" lowerCamelCase__ : Tuple =self._left(lowerCamelCase_ ) lowerCamelCase__ : Dict =self._right(lowerCamelCase_ ) lowerCamelCase__ : List[Any] =i if left is not None and not self._cmp(lowerCamelCase_ , lowerCamelCase_ ): lowerCamelCase__ : Dict =left if right is not None and not self._cmp(lowerCamelCase_ , lowerCamelCase_ ): lowerCamelCase__ : Union[str, Any] =right return valid_parent def UpperCAmelCase__ ( self :Union[str, Any] , lowerCamelCase_ :int ): """simple docstring""" lowerCamelCase__ : int =self._parent(lowerCamelCase_ ) while parent is not None and not self._cmp(lowerCamelCase_ , lowerCamelCase_ ): self._swap(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : List[Any] =parent, self._parent(lowerCamelCase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowerCamelCase_ :int ): """simple docstring""" lowerCamelCase__ : Optional[int] =self._get_valid_parent(lowerCamelCase_ ) while valid_parent != index: self._swap(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : Dict =valid_parent, self._get_valid_parent(lowerCamelCase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :int ): """simple docstring""" if item not in self.pos_map: return lowerCamelCase__ : Optional[int] =self.pos_map[item] lowerCamelCase__ : List[Any] =[item, self.key(lowerCamelCase_ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCamelCase_ ) self._heapify_down(lowerCamelCase_ ) def UpperCAmelCase__ ( self :Union[str, Any] , lowerCamelCase_ :int ): """simple docstring""" if item not in self.pos_map: return lowerCamelCase__ : Optional[int] =self.pos_map[item] del self.pos_map[item] lowerCamelCase__ : Optional[int] =self.arr[self.size - 1] lowerCamelCase__ : List[Any] =index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCamelCase_ ) self._heapify_down(lowerCamelCase_ ) def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :int ): """simple docstring""" lowerCamelCase__ : Tuple =len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowerCamelCase_ )] ) else: lowerCamelCase__ : int =[item, self.key(lowerCamelCase_ )] lowerCamelCase__ : Optional[int] =self.size self.size += 1 self._heapify_up(self.size - 1 ) def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" return self.arr[0] if self.size else None def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : List[Any] =self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCAmelCase_ ( ) ->None: pass if __name__ == "__main__": import doctest doctest.testmod()
174
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : List[str] = logging.get_logger(__name__) __magic_name__ : Optional[Any] = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __SCREAMING_SNAKE_CASE ( __lowercase ): '''simple docstring''' UpperCAmelCase__ : Tuple = '''visual_bert''' def __init__( self , lowerCamelCase=30_522 , lowerCamelCase=768 , lowerCamelCase=512 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3_072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , **lowerCamelCase , ): super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = visual_embedding_dim _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = type_vocab_size _snake_case = layer_norm_eps _snake_case = bypass_transformer _snake_case = special_visual_initialize
720
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __magic_name__ : Any = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : List[Any] = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __magic_name__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
0
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = AutoConfig.from_pretrained(__lowerCamelCase ) _a : Any = FlaxAutoModelForSeqaSeqLM.from_config(config=__lowerCamelCase ) _a : Dict = checkpoints.load_tax_checkpoint(__lowerCamelCase ) _a : Union[str, Any] = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": _a : Optional[Any] = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": _a : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a : List[str] = "TransientGlobalSelfAttention" else: raise ValueError( """Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`""" """ attribute with a value from ['local', 'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): _a : Tuple = F"""layers_{str(__lowerCamelCase )}""" # Self-Attention _a : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] _a : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] _a : Dict = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] _a : str = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a : Union[str, Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization _a : Union[str, Any] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: _a : Dict = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] _a : Any = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _a : int = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] _a : int = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _a : Tuple = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _a : Optional[Any] = flax_model.params["encoder"]["block"][str(__lowerCamelCase )]["layer"] _a : Tuple = tax_attention_key _a : str = tax_attention_out _a : Dict = tax_attention_query _a : Union[str, Any] = tax_attention_value _a : Tuple = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a : str = tax_global_layer_norm if split_mlp_wi: _a : Optional[int] = tax_mlp_wi_a _a : Union[str, Any] = tax_mlp_wi_a else: _a : List[str] = tax_mlp_wi _a : Union[str, Any] = tax_mlp_wo _a : Optional[int] = tax_mlp_layer_norm _a : List[str] = flax_model_encoder_layer_block # Only for layer 0: _a : Any = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T _a : List[Any] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a : Optional[Any] = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T _a : Any = tax_encoder_global_rel_embedding # Assigning _a : int = tax_model["target"]["encoder"]["encoder_norm"]["scale"] _a : List[Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _a : List[str] = F"""layers_{str(__lowerCamelCase )}""" # Self-Attention _a : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] _a : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] _a : int = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] _a : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization _a : Dict = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention _a : Any = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] _a : str = tax_enc_dec_attention_module["key"]["kernel"] _a : Optional[Any] = tax_enc_dec_attention_module["out"]["kernel"] _a : List[Any] = tax_enc_dec_attention_module["query"]["kernel"] _a : int = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization _a : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: _a : Optional[int] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] _a : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _a : List[str] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] _a : Tuple = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _a : str = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _a : Union[str, Any] = flax_model.params["decoder"]["block"][str(__lowerCamelCase )]["layer"] _a : int = tax_attention_key _a : int = tax_attention_out _a : int = tax_attention_query _a : Optional[int] = tax_attention_value _a : Optional[Any] = tax_pre_attention_layer_norm _a : List[Any] = tax_enc_dec_attention_key _a : Union[str, Any] = tax_enc_dec_attention_out _a : int = tax_enc_dec_attention_query _a : int = tax_enc_dec_attention_value _a : Optional[Any] = tax_cross_layer_norm if split_mlp_wi: _a : str = tax_mlp_wi_a _a : List[Any] = tax_mlp_wi_a else: _a : List[Any] = tax_mlp_wi _a : Optional[Any] = tax_mlp_wo _a : Optional[int] = txa_mlp_layer_norm _a : Tuple = flax_model_decoder_layer_block # Decoder Normalization _a : Dict = tax_model["target"]["decoder"]["decoder_norm"]["scale"] _a : Union[str, Any] = txa_decoder_norm # Only for layer 0: _a : Optional[int] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T _a : Optional[Any] = tax_decoder_rel_embedding # Token Embeddings _a : Any = tax_model["target"]["token_embedder"]["embedding"] _a : int = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _a : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(__lowerCamelCase ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) _snake_case = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
389
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __lowerCamelCase = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ __lowerCamelCase = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ __lowerCamelCase = R""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str , snake_case__ : List[Any] ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[int] = 0.0 for i, j in zip(snake_case__ , snake_case__ ): n_correct += 1.0 if math_equivalence.is_equiv(snake_case__ , snake_case__ ) else 0.0 snake_case : Optional[int] = n_correct / len(snake_case__ ) return { "accuracy": accuracy, }
204
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self ,*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ): warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' ,__SCREAMING_SNAKE_CASE ,) super().__init__(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE )
712
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" A = KandinskyVaaImgaImgPipeline A = ['image_embeds', 'negative_image_embeds', 'image'] A = [ 'image_embeds', 'negative_image_embeds', 'image', ] A = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] A = False @property def __a ( self ): return 32 @property def __a ( self ): return 32 @property def __a ( self ): return self.time_input_dim @property def __a ( self ): return self.time_input_dim * 4 @property def __a ( self ): return 100 @property def __a ( self ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def __a ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self ): SCREAMING_SNAKE_CASE : List[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : List[str] = self.dummy_movq SCREAMING_SNAKE_CASE : int = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } SCREAMING_SNAKE_CASE : int = DDIMScheduler(**__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE=0 ): SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create init_image SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) ,rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0 ,2 ,3 ,1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert('RGB' ).resize((256, 256) ) if str(__SCREAMING_SNAKE_CASE ).startswith('mps' ): SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __a ( self ): SCREAMING_SNAKE_CASE : Optional[Any] = 'cpu' SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.images SCREAMING_SNAKE_CASE : Tuple = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ,return_dict=__SCREAMING_SNAKE_CASE ,)[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Any = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def __a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ): SCREAMING_SNAKE_CASE : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) SCREAMING_SNAKE_CASE : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) SCREAMING_SNAKE_CASE : Optional[Any] = 'A red cartoon frog, 4k' SCREAMING_SNAKE_CASE : str = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' ,torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' ,torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = pipe_prior( __SCREAMING_SNAKE_CASE ,generator=__SCREAMING_SNAKE_CASE ,num_inference_steps=5 ,negative_prompt='' ,).to_tuple() SCREAMING_SNAKE_CASE : Optional[Any] = pipeline( image=__SCREAMING_SNAKE_CASE ,image_embeds=__SCREAMING_SNAKE_CASE ,negative_image_embeds=__SCREAMING_SNAKE_CASE ,generator=__SCREAMING_SNAKE_CASE ,num_inference_steps=100 ,height=768 ,width=768 ,strength=0.2 ,output_type='np' ,) SCREAMING_SNAKE_CASE : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
220
0
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) snake_case_ = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def __lowercase (_SCREAMING_SNAKE_CASE :Optional[int] ): SCREAMING_SNAKE_CASE : Union[str, Any] = {} state_dict.pop('''pixel_mean''' , _SCREAMING_SNAKE_CASE ) state_dict.pop('''pixel_std''' , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE : int = key.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Optional[Any] = int(re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).group(2 ) ) if layer_nb == 0: SCREAMING_SNAKE_CASE : Any = key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: SCREAMING_SNAKE_CASE : Optional[int] = key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: SCREAMING_SNAKE_CASE : Dict = key.replace('''layers.2''' , '''proj_out''' ) SCREAMING_SNAKE_CASE : str = value SCREAMING_SNAKE_CASE : Optional[Any] = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def __lowercase (_SCREAMING_SNAKE_CASE :Any , _SCREAMING_SNAKE_CASE :Dict , _SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :Any="ybelkada/segment-anything" ): SCREAMING_SNAKE_CASE : Any = hf_hub_download(_SCREAMING_SNAKE_CASE , F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: SCREAMING_SNAKE_CASE : Tuple = SamConfig() elif "sam_vit_l" in model_name: SCREAMING_SNAKE_CASE : List[Any] = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) SCREAMING_SNAKE_CASE : Optional[Any] = SamConfig( vision_config=_SCREAMING_SNAKE_CASE , ) elif "sam_vit_h" in model_name: SCREAMING_SNAKE_CASE : List[Any] = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) SCREAMING_SNAKE_CASE : Optional[int] = SamConfig( vision_config=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE : str = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = replace_keys(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = SamImageProcessor() SCREAMING_SNAKE_CASE : Union[str, Any] = SamProcessor(image_processor=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = SamModel(_SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = hf_model.to('''cuda''' ) SCREAMING_SNAKE_CASE : str = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' SCREAMING_SNAKE_CASE : List[str] = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = [[[4_00, 6_50]]] SCREAMING_SNAKE_CASE : Tuple = [[1]] SCREAMING_SNAKE_CASE : Dict = processor(images=np.array(_SCREAMING_SNAKE_CASE ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = hf_model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 SCREAMING_SNAKE_CASE : Union[str, Any] = processor( images=np.array(_SCREAMING_SNAKE_CASE ) , input_points=_SCREAMING_SNAKE_CASE , input_labels=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = hf_model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 SCREAMING_SNAKE_CASE : Dict = ((75, 2_75, 17_25, 8_50),) SCREAMING_SNAKE_CASE : Union[str, Any] = processor(images=np.array(_SCREAMING_SNAKE_CASE ) , input_boxes=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = hf_model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. SCREAMING_SNAKE_CASE : Tuple = [[[4_00, 6_50], [8_00, 6_50]]] SCREAMING_SNAKE_CASE : Optional[Any] = [[1, 1]] SCREAMING_SNAKE_CASE : List[str] = processor( images=np.array(_SCREAMING_SNAKE_CASE ) , input_points=_SCREAMING_SNAKE_CASE , input_labels=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = hf_model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() snake_case_ = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) snake_case_ = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
507
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __lowercase (_SCREAMING_SNAKE_CASE :List[str] ): monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() ) @pytest.fixture def __lowercase (_SCREAMING_SNAKE_CASE :int ): class a__ : def __init__(self : Optional[int], __UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : str = metric_id class a__ : __magic_name__ : List[Any] = [MetricMock(_lowercase ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def lowercase__ (self : List[str] ) -> Optional[int]: """simple docstring""" return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() ) @pytest.mark.parametrize( '''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def __lowercase (_SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :Any , _SCREAMING_SNAKE_CASE :Optional[int] , _SCREAMING_SNAKE_CASE :int ): if "tmp_path" in args: SCREAMING_SNAKE_CASE : List[Any] = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(_SCREAMING_SNAKE_CASE , match='''https://huggingface.co/docs/evaluate''' ): func(*_SCREAMING_SNAKE_CASE )
507
1
"""simple docstring""" from __future__ import annotations def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Union[str, Any] = len(_lowerCamelCase ) # We need to create solution object to save path. snake_case_ :Optional[int] = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] snake_case_ :Tuple = run_maze(_lowerCamelCase, 0, 0, _lowerCamelCase ) if solved: print("""\n""".join(str(_lowerCamelCase ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def A_ ( _lowercase, _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Any = len(_lowerCamelCase ) # Final check point. if i == j == (size - 1): snake_case_ :Union[str, Any] = 1 return True snake_case_ :Any = (not i < 0) and (not j < 0) # Check lower bounds snake_case_ :Dict = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case_ :Tuple = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case_ :Optional[Any] = 1 # check for directions if ( run_maze(_lowerCamelCase, i + 1, _lowerCamelCase, _lowerCamelCase ) or run_maze(_lowerCamelCase, _lowerCamelCase, j + 1, _lowerCamelCase ) or run_maze(_lowerCamelCase, i - 1, _lowerCamelCase, _lowerCamelCase ) or run_maze(_lowerCamelCase, _lowerCamelCase, j - 1, _lowerCamelCase ) ): return True snake_case_ :Dict = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
704
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self: str ) -> List[str]: snake_case_ :Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , """tf_padding""" ) ) self.parent.assertTrue(hasattr(snake_case , """depth_multiplier""" ) ) class lowerCamelCase : '''simple docstring''' def __init__( self: List[Any] , snake_case: Dict , snake_case: Dict=13 , snake_case: List[Any]=3 , snake_case: List[Any]=32 , snake_case: Dict=0.2_5 , snake_case: Tuple=8 , snake_case: List[Any]=8 , snake_case: Optional[int]=6 , snake_case: str=32 , snake_case: Dict=True , snake_case: Optional[Any]=True , snake_case: Optional[Any]=True , snake_case: Optional[Any]="relu6" , snake_case: int=1_280 , snake_case: str=0.1 , snake_case: Any=0.0_2 , snake_case: Dict=True , snake_case: Optional[Any]=True , snake_case: Union[str, Any]=10 , snake_case: Dict=None , ) -> Union[str, Any]: snake_case_ :int = parent snake_case_ :Any = batch_size snake_case_ :str = num_channels snake_case_ :List[Any] = image_size snake_case_ :Any = depth_multiplier snake_case_ :Optional[Any] = depth_divisible_by snake_case_ :str = min_depth snake_case_ :Dict = expand_ratio snake_case_ :Optional[int] = tf_padding snake_case_ :Union[str, Any] = output_stride snake_case_ :str = first_layer_is_expansion snake_case_ :List[Any] = finegrained_output snake_case_ :List[str] = hidden_act snake_case_ :Any = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) snake_case_ :Dict = classifier_dropout_prob snake_case_ :Dict = use_labels snake_case_ :str = is_training snake_case_ :Union[str, Any] = num_labels snake_case_ :str = initializer_range snake_case_ :List[str] = scope def lowerCAmelCase_ ( self: List[str] ) -> Dict: snake_case_ :Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ :int = None snake_case_ :List[str] = None if self.use_labels: snake_case_ :List[str] = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ :Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case_ :Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase_ ( self: Dict ) -> int: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self: Any , snake_case: List[str] , snake_case: Optional[Any] , snake_case: str , snake_case: str ) -> List[str]: snake_case_ :int = MobileNetVaModel(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ :Any = model(snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase_ ( self: Dict , snake_case: Dict , snake_case: Tuple , snake_case: Dict , snake_case: int ) -> str: snake_case_ :List[str] = self.num_labels snake_case_ :Optional[Any] = MobileNetVaForImageClassification(snake_case ) model.to(snake_case ) model.eval() snake_case_ :List[str] = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self: List[Any] , snake_case: Union[str, Any] , snake_case: List[Any] , snake_case: Tuple , snake_case: Any ) -> Optional[Any]: snake_case_ :Tuple = self.num_labels snake_case_ :Optional[Any] = MobileNetVaForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() snake_case_ :List[str] = model(snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case_ :Optional[Any] = model(snake_case , labels=snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase_ ( self: Optional[Any] ) -> List[Any]: snake_case_ :Tuple = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_, snake_case_ :int = config_and_inputs snake_case_ :List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Tuple = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Any = False _A : Any = False _A : Tuple = False _A : Optional[Any] = False def lowerCAmelCase_ ( self: Optional[int] ) -> Union[str, Any]: snake_case_ :Optional[Any] = MobileNetVaModelTester(self ) snake_case_ :Optional[Any] = MobileNetVaConfigTester(self , config_class=snake_case , has_text_modality=snake_case ) def lowerCAmelCase_ ( self: List[str] ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase_ ( self: Tuple ) -> List[str]: pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase_ ( self: Optional[int] ) -> Union[str, Any]: pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase_ ( self: str ) -> Optional[int]: pass def lowerCAmelCase_ ( self: List[Any] ) -> List[str]: snake_case_, snake_case_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ :Optional[Any] = model_class(snake_case ) snake_case_ :List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ :int = [*signature.parameters.keys()] snake_case_ :int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCAmelCase_ ( self: Tuple ) -> Any: snake_case_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: def check_hidden_states_output(snake_case: Any , snake_case: List[str] , snake_case: Optional[int] ): snake_case_ :Optional[Any] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): snake_case_ :Union[str, Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) snake_case_ :Optional[Any] = outputs.hidden_states snake_case_ :int = 16 self.assertEqual(len(snake_case ) , snake_case ) snake_case_, snake_case_ :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ :Tuple = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ :List[Any] = True check_hidden_states_output(snake_case , snake_case , snake_case ) def lowerCAmelCase_ ( self: int ) -> Union[str, Any]: snake_case_ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> Tuple: snake_case_ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) @slow def lowerCAmelCase_ ( self: Any ) -> int: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ :Union[str, Any] = MobileNetVaModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def A_ ( ): '''simple docstring''' snake_case_ :Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self: Any ) -> Any: return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self: int ) -> Tuple: snake_case_ :List[Any] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(snake_case ) snake_case_ :List[Any] = self.default_image_processor snake_case_ :List[str] = prepare_img() snake_case_ :Optional[Any] = image_processor(images=snake_case , return_tensors="""pt""" ).to(snake_case ) # forward pass with torch.no_grad(): snake_case_ :List[str] = model(**snake_case ) # verify the logits snake_case_ :Optional[int] = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , snake_case ) snake_case_ :int = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) ) @slow def lowerCAmelCase_ ( self: Tuple ) -> Dict: snake_case_ :List[str] = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) snake_case_ :Optional[int] = model.to(snake_case ) snake_case_ :Optional[int] = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) snake_case_ :str = prepare_img() snake_case_ :Union[str, Any] = image_processor(images=snake_case , return_tensors="""pt""" ).to(snake_case ) # forward pass with torch.no_grad(): snake_case_ :Optional[int] = model(**snake_case ) snake_case_ :Optional[Any] = outputs.logits # verify the logits snake_case_ :List[str] = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , snake_case ) snake_case_ :Optional[int] = torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ] , device=snake_case , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case , atol=1E-4 ) )
310
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _snake_case : List[str] = logging.get_logger(__name__) _snake_case : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _snake_case : Union[str, Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _snake_case : Dict = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } _snake_case : Tuple = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } _snake_case : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } _snake_case : Dict = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } _snake_case : Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } _snake_case : int = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } _snake_case : Tuple = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ = DPRContextEncoderTokenizer class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ = DPRQuestionEncoderTokenizer _snake_case : Tuple = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) _snake_case : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) _snake_case : Any = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCamelCase ) class _UpperCAmelCase : """simple docstring""" def __call__( self : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Union[bool, str] = False , lowerCAmelCase_ : Union[bool, str] = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Optional[bool] = None , **lowerCAmelCase_ : Optional[Any] , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) elif titles is None or texts is None: __lowerCAmelCase = titles if texts is None else texts return super().__call__( lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = titles if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [titles] __lowerCAmelCase = texts if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [texts] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = questions if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [questions] * n_passages assert len(lowerCAmelCase_ ) == len( lowerCAmelCase_ ), f"""There should be as many titles than texts but got {len(lowerCAmelCase_ )} titles and {len(lowerCAmelCase_ )} texts.""" __lowerCAmelCase = super().__call__(lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ )['input_ids'] __lowerCAmelCase = super().__call__(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ )['input_ids'] __lowerCAmelCase = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] } if return_attention_mask is not False: __lowerCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowerCAmelCase = attention_mask return self.pad(lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : BatchEncoding , lowerCAmelCase_ : DPRReaderOutput , lowerCAmelCase_ : int = 1_6 , lowerCAmelCase_ : int = 6_4 , lowerCAmelCase_ : int = 4 , ) -> List[DPRSpanPrediction]: __lowerCAmelCase = reader_input['input_ids'] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = reader_output[:3] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = sorted(range(lowerCAmelCase_ ) , reverse=lowerCAmelCase_ , key=relevance_logits.__getitem__ ) __lowerCAmelCase = [] for doc_id in sorted_docs: __lowerCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowerCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowerCAmelCase = sequence_ids.index(self.pad_token_id ) else: __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase_ , top_spans=lowerCAmelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase_ , start_index=lowerCAmelCase_ , end_index=lowerCAmelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCAmelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , ) -> List[DPRSpanPrediction]: __lowerCAmelCase = [] for start_index, start_score in enumerate(lowerCAmelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowerCAmelCase = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x[1] , reverse=lowerCAmelCase_ ) __lowerCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" __lowerCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCamelCase ) class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = READER_PRETRAINED_VOCAB_FILES_MAP a_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = READER_PRETRAINED_INIT_CONFIGURATION a_ = ["""input_ids""", """attention_mask"""] a_ = DPRReaderTokenizer
53
'''simple docstring''' import baseaa def _lowercase ( __A ): '''simple docstring''' return baseaa.aaaencode(string.encode("""utf-8""" ) ) def _lowercase ( __A ): '''simple docstring''' return baseaa.aaadecode(__A ).decode("""utf-8""" ) if __name__ == "__main__": import doctest doctest.testmod()
601
0
def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): A : Optional[int] = len(lowerCamelCase_ ) A : List[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): A : Tuple = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): A : List[str] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: A : str = subset[i - 1][j] if arr[i - 1] <= j: A : str = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
423
class __lowercase : """simple docstring""" def __init__( self ) -> Optional[Any]: A : Tuple = {} def snake_case ( self ) -> None: print(self.vertex ) for i in self.vertex: print(__UpperCAmelCase , ''' -> ''' , ''' -> '''.join([str(__UpperCAmelCase ) for j in self.vertex[i]] ) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__UpperCAmelCase ) else: # else make a new vertex A : str = [to_vertex] def snake_case ( self ) -> None: # visited array for storing already visited nodes A : int = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: # mark start vertex as visited A : List[Any] = True print(__UpperCAmelCase , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": lowercase : Dict = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
423
1
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil __snake_case = 100 __snake_case = set(range(3, NUM_PRIMES, 2)) primes.add(2) __snake_case = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def __lowerCAmelCase ( lowercase : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} snake_case : set[int] = set() snake_case : int snake_case : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def __lowerCAmelCase ( lowercase : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase ): if len(partition(lowercase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'''{solution() = }''')
178
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version __snake_case = logging.getLogger(__name__) require_version("""pytorch_lightning>=1.0.4""") __snake_case = { """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization __snake_case = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } __snake_case = sorted(arg_to_scheduler.keys()) __snake_case = """{""" + """, """.join(arg_to_scheduler_choices) + """}""" class _lowerCAmelCase ( pl.LightningModule ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="base" , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(UpperCamelCase__ ) snake_case : Tuple = 0 snake_case : List[str] = Path(self.hparams.output_dir ) snake_case : Any = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: snake_case : int = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=UpperCamelCase__ , **UpperCamelCase__ , ) else: snake_case : PretrainedConfig = config snake_case : Any = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , UpperCamelCase__ , UpperCamelCase__ ): assert hasattr(self.config , UpperCamelCase__ ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , UpperCamelCase__ , getattr(self.hparams , UpperCamelCase__ ) ) if tokenizer is None: snake_case : Dict = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=UpperCamelCase__ , ) else: snake_case : PreTrainedTokenizer = tokenizer snake_case : List[str] = MODEL_MODES[mode] if model is None: snake_case : Union[str, Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=UpperCamelCase__ , ) else: snake_case : List[Any] = model def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.model_type.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Dict = arg_to_scheduler[self.hparams.lr_scheduler] snake_case : Any = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) snake_case : List[str] = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Dict = self.model snake_case : Tuple = ["bias", "LayerNorm.weight"] snake_case : Any = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: snake_case : Optional[int] = Adafactor( UpperCamelCase__ , lr=self.hparams.learning_rate , scale_parameter=UpperCamelCase__ , relative_step=UpperCamelCase__ ) else: snake_case : Optional[Any] = AdamW( UpperCamelCase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) snake_case : Any = optimizer snake_case : List[Any] = self.get_lr_scheduler() return [optimizer], [scheduler] def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return self.validation_step(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' return self.validation_end(UpperCamelCase__ ) def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : List[str] = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores snake_case : List[Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowerCamelCase ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if stage == "test": snake_case : Dict = len(self.test_dataloader().dataset ) else: snake_case : str = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=UpperCamelCase__ ) snake_case : Dict = len(self.train_dataloader().dataset ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> int: '''simple docstring''' raise NotImplementedError("You must implement this for your task" ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' return self.train_loader def lowerCamelCase ( self ) -> Dict: '''simple docstring''' return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=UpperCamelCase__ ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( UpperCamelCase__ , list(filter(UpperCamelCase__ , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def lowerCamelCase ( self , UpperCamelCase__ ) -> None: '''simple docstring''' snake_case : str = self.output_dir.joinpath("best_tfmr" ) snake_case : int = self.step_count self.model.save_pretrained(UpperCamelCase__ ) self.tokenizer.save_pretrained(UpperCamelCase__ ) @staticmethod def lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' parser.add_argument( "--model_name_or_path" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=UpperCamelCase__ , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(UpperCamelCase__ ).parent / "test_run" / "cache" ) , type=UpperCamelCase__ , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=UpperCamelCase__ , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=UpperCamelCase__ , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=UpperCamelCase__ , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=UpperCamelCase__ , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5e-5 , type=UpperCamelCase__ , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=UpperCamelCase__ , metavar=UpperCamelCase__ , type=UpperCamelCase__ , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=UpperCamelCase__ , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1e-8 , type=UpperCamelCase__ , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=UpperCamelCase__ , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=UpperCamelCase__ , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=UpperCamelCase__ ) parser.add_argument("--train_batch_size" , default=32 , type=UpperCamelCase__ ) parser.add_argument("--eval_batch_size" , default=32 , type=UpperCamelCase__ ) parser.add_argument("--adafactor" , action="store_true" ) class _lowerCAmelCase ( pl.Callback ): def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _lowerCAmelCase ( pl.Callback ): def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(UpperCamelCase__ ) class _lowerCAmelCase ( pl.Callback ): def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' snake_case : List[str] = trainer.lr_schedulers[0]["scheduler"] snake_case : str = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' rank_zero_info("***** Validation results *****" ) snake_case : List[str] = trainer.callback_metrics # Log results for key in sorted(UpperCamelCase__ ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(UpperCamelCase__ , str(metrics[key] ) ) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' rank_zero_info("***** Test results *****" ) snake_case : Dict = trainer.callback_metrics # Log and save results to file snake_case : Union[str, Any] = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(UpperCamelCase__ , "w" ) as writer: for key in sorted(UpperCamelCase__ ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(UpperCamelCase__ , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(UpperCamelCase__ , str(metrics[key] ) ) ) def __lowerCAmelCase ( lowercase : Any , lowercase : str ) -> None: """simple docstring""" parser.add_argument( "--output_dir" , default=str(Path(lowercase ).parent / "test_run" / "model_checkpoints" ) , type=lowercase , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=lowercase , default="O2" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=lowercase ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=lowercase , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=lowercase , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=lowercase , default=42 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(lowercase ).parent / "test_run" / "dummy-train-data" ) , type=lowercase , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def __lowerCAmelCase ( lowercase : BaseTransformer , lowercase : argparse.Namespace , lowercase : Any=None , lowercase : List[str]=True , lowercase : List[Any]=[] , lowercase : Any=None , lowercase : Optional[int]=None , **lowercase : List[Any] , ) -> Tuple: """simple docstring""" pl.seed_everything(args.seed ) # init model snake_case : Optional[int] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowercase ) # add custom checkpoints if checkpoint_callback is None: snake_case : int = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowercase ) if logging_callback is None: snake_case : Tuple = LoggingCallback() snake_case : str = {} if args.fpaa: snake_case : Union[str, Any] = 16 if args.gpus > 1: snake_case : List[str] = "auto" snake_case : int = "ddp" snake_case : Dict = args.accumulate_grad_batches snake_case : Tuple = None snake_case : Any = "auto" snake_case : int = pl.Trainer.from_argparse_args( lowercase , weights_summary=lowercase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowercase , val_check_interval=1 , num_sanity_val_steps=2 , **lowercase , ) if args.do_train: trainer.fit(lowercase ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
178
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : str = logging.get_logger(__name__) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = original_name.split(""".""" )[0] _UpperCAmelCase : str = key.split(""".""" ) _UpperCAmelCase : int = int(key_list[key_list.index(lowerCAmelCase_ ) - 2] ) _UpperCAmelCase : Any = int(key_list[key_list.index(lowerCAmelCase_ ) - 1] ) _UpperCAmelCase : Optional[Any] = orig_block_num - offset _UpperCAmelCase : Tuple = key.replace(f"{orig_block_num}.{layer_num}.{original_name}" , f"block.{new_block_num}.{layer_num}.{new_name}" ) return key def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = OrderedDict() _UpperCAmelCase , _UpperCAmelCase : Tuple = 0, 0 for key, value in state_dict.items(): if key.startswith("""network""" ): _UpperCAmelCase : Tuple = key.replace("""network""" , """poolformer.encoder""" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""" ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCAmelCase : str = key[: key.find("""proj""" )] _UpperCAmelCase : List[str] = key.replace(lowerCAmelCase_ , f"patch_embeddings.{total_embed_found}." ) _UpperCAmelCase : str = key.replace("""proj""" , """projection""" ) if key.endswith("""bias""" ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCAmelCase : Optional[Any] = """poolformer.encoder.""" + key if "mlp.fc1" in key: _UpperCAmelCase : Dict = replace_key_with_offset(lowerCAmelCase_ , lowerCAmelCase_ , """mlp.fc1""" , """output.conv1""" ) if "mlp.fc2" in key: _UpperCAmelCase : Dict = replace_key_with_offset(lowerCAmelCase_ , lowerCAmelCase_ , """mlp.fc2""" , """output.conv2""" ) if "norm1" in key: _UpperCAmelCase : Optional[int] = replace_key_with_offset(lowerCAmelCase_ , lowerCAmelCase_ , """norm1""" , """before_norm""" ) if "norm2" in key: _UpperCAmelCase : Tuple = replace_key_with_offset(lowerCAmelCase_ , lowerCAmelCase_ , """norm2""" , """after_norm""" ) if "layer_scale_1" in key: _UpperCAmelCase : Dict = replace_key_with_offset(lowerCAmelCase_ , lowerCAmelCase_ , """layer_scale_1""" , """layer_scale_1""" ) if "layer_scale_2" in key: _UpperCAmelCase : Dict = replace_key_with_offset(lowerCAmelCase_ , lowerCAmelCase_ , """layer_scale_2""" , """layer_scale_2""" ) if "head" in key: _UpperCAmelCase : str = key.replace("""head""" , """classifier""" ) _UpperCAmelCase : List[Any] = value return new_state_dict def __A ( ): _UpperCAmelCase : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase : int = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return image @torch.no_grad() def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : List[str] = PoolFormerConfig() # set attributes based on model_name _UpperCAmelCase : Dict = """huggingface/label-files""" _UpperCAmelCase : Tuple = model_name[-3:] _UpperCAmelCase : List[Any] = 1000 _UpperCAmelCase : Dict = """imagenet-1k-id2label.json""" _UpperCAmelCase : str = (1, 1000) # set config attributes _UpperCAmelCase : Dict = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) _UpperCAmelCase : List[str] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : Optional[int] = idalabel _UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCAmelCase : str = [2, 2, 6, 2] _UpperCAmelCase : Optional[int] = [64, 128, 320, 512] _UpperCAmelCase : Optional[Any] = 4.0 _UpperCAmelCase : List[Any] = 0.9 elif size == "s24": _UpperCAmelCase : List[str] = [4, 4, 12, 4] _UpperCAmelCase : str = [64, 128, 320, 512] _UpperCAmelCase : List[str] = 4.0 _UpperCAmelCase : int = 0.9 elif size == "s36": _UpperCAmelCase : List[Any] = [6, 6, 18, 6] _UpperCAmelCase : Tuple = [64, 128, 320, 512] _UpperCAmelCase : Union[str, Any] = 4.0 _UpperCAmelCase : int = 1e-6 _UpperCAmelCase : Optional[Any] = 0.9 elif size == "m36": _UpperCAmelCase : Any = [6, 6, 18, 6] _UpperCAmelCase : Optional[Any] = [96, 192, 384, 768] _UpperCAmelCase : str = 4.0 _UpperCAmelCase : int = 1e-6 _UpperCAmelCase : Union[str, Any] = 0.95 elif size == "m48": _UpperCAmelCase : str = [8, 8, 24, 8] _UpperCAmelCase : int = [96, 192, 384, 768] _UpperCAmelCase : Dict = 4.0 _UpperCAmelCase : Tuple = 1e-6 _UpperCAmelCase : int = 0.95 else: raise ValueError(f"Size {size} not supported" ) # load image processor _UpperCAmelCase : Any = PoolFormerImageProcessor(crop_pct=lowerCAmelCase_ ) # Prepare image _UpperCAmelCase : List[str] = prepare_img() _UpperCAmelCase : List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values logger.info(f"Converting model {model_name}..." ) # load original state dict _UpperCAmelCase : Optional[Any] = torch.load(lowerCAmelCase_ , map_location=torch.device("""cpu""" ) ) # rename keys _UpperCAmelCase : int = rename_keys(lowerCAmelCase_ ) # create HuggingFace model and load state dict _UpperCAmelCase : Optional[Any] = PoolFormerForImageClassification(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() # Define image processor _UpperCAmelCase : str = PoolFormerImageProcessor(crop_pct=lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ).pixel_values # forward pass _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCAmelCase : List[Any] = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _UpperCAmelCase : List[Any] = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _UpperCAmelCase : List[Any] = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _UpperCAmelCase : str = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _UpperCAmelCase : List[str] = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f"Size {size} not supported" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1e-2 ) # finally, save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase_ : List[Any] = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
156
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : int = tmp_path / """cache""" _UpperCAmelCase : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase : Tuple = JsonDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ ).read() _check_json_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = tmp_path / """cache""" _UpperCAmelCase : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase : int = features.copy() if features else default_expected_features _UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Any = JsonDatasetReader(lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_json_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = tmp_path / """cache""" _UpperCAmelCase : Optional[Any] = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} _UpperCAmelCase : int = features.copy() if features else default_expected_features _UpperCAmelCase : Optional[Any] = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Dict = JsonDatasetReader(lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} _UpperCAmelCase : Union[str, Any] = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} _UpperCAmelCase : Optional[Any] = features.copy() _UpperCAmelCase : Any = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Tuple = tmp_path / """cache""" _UpperCAmelCase : Optional[Any] = JsonDatasetReader(lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Dict = tmp_path / """cache""" _UpperCAmelCase : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase : List[Any] = JsonDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , split=lowerCAmelCase_ ).read() _check_json_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if issubclass(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = jsonl_path elif issubclass(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = [jsonl_path] _UpperCAmelCase : int = tmp_path / """cache""" _UpperCAmelCase : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase : Any = JsonDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_json_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=("train",) ): assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for split in splits: _UpperCAmelCase : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = tmp_path / """cache""" _UpperCAmelCase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase : List[Any] = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ ).read() _check_json_datasetdict(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = tmp_path / """cache""" _UpperCAmelCase : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase : List[str] = features.copy() if features else default_expected_features _UpperCAmelCase : int = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase : Any = JsonDatasetReader({"""train""": jsonl_path} , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_json_datasetdict(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if split: _UpperCAmelCase : str = {split: jsonl_path} else: _UpperCAmelCase : int = """train""" _UpperCAmelCase : int = {"""train""": jsonl_path, """test""": jsonl_path} _UpperCAmelCase : Optional[int] = tmp_path / """cache""" _UpperCAmelCase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase : Optional[Any] = JsonDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_json_datasetdict(lowerCAmelCase_ , lowerCAmelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __A ( lowerCAmelCase_ ): return json.load(lowerCAmelCase_ ) def __A ( lowerCAmelCase_ ): return [json.loads(lowerCAmelCase_ ) for line in buffer] class __lowerCAmelCase : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase__ , lowerCAmelCase__ , lines=lowerCAmelCase__ ).write() buffer.seek(0 ) _UpperCAmelCase : Optional[int] = load_json_function(lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert isinstance(exported_content[0] , lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == 1_0 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase__ , lowerCAmelCase__ , lines=lowerCAmelCase__ , orient=lowerCAmelCase__ ).write() buffer.seek(0 ) _UpperCAmelCase : str = load_json(lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowerCAmelCase__ , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(lowerCAmelCase__ ) == 1_0 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase__ , lowerCAmelCase__ , lines=lowerCAmelCase__ , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase : Optional[int] = load_json_function(lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert isinstance(exported_content[0] , lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == 1_0 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase__ , lowerCAmelCase__ , lines=lowerCAmelCase__ , orient=lowerCAmelCase__ , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase : Optional[Any] = load_json(lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowerCAmelCase__ , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(lowerCAmelCase__ ) == 1_0 def snake_case_ (self , lowerCAmelCase__ ): with pytest.raises(lowerCAmelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("""data""" ) / F"test.json.{extension}" _UpperCAmelCase : List[Any] = str(shared_datadir / F"test_file.json.{extension}" ) JsonDatasetWriter(lowerCAmelCase__ , lowerCAmelCase__ , compression=lowerCAmelCase__ ).write() with fsspec.open(lowerCAmelCase__ , """rb""" , compression="""infer""" ) as f: _UpperCAmelCase : str = f.read() with fsspec.open(lowerCAmelCase__ , """rb""" , compression="""infer""" ) as f: _UpperCAmelCase : Optional[int] = f.read() assert exported_content == original_content
156
1
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( A , unittest.TestCase ): lowerCAmelCase_ = BlenderbotSmallTokenizer lowerCAmelCase_ = False def lowerCamelCase_ ( self : int ): super().setUp() _lowerCamelCase : Tuple = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] _lowerCamelCase : int = dict(zip(__A,range(len(__A ) ) ) ) _lowerCamelCase : Any = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] _lowerCamelCase : List[str] = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} _lowerCamelCase : List[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["vocab_file"] ) _lowerCamelCase : List[Any] = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file,"w",encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file,"w",encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) def lowerCamelCase_ ( self : Tuple,**__A : Tuple ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname,**__A ) def lowerCamelCase_ ( self : List[Any],__A : List[str] ): _lowerCamelCase : Optional[Any] = "adapt act apte" _lowerCamelCase : Optional[Any] = "adapt act apte" return input_text, output_text def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : int = BlenderbotSmallTokenizer(self.vocab_file,self.merges_file,**self.special_tokens_map ) _lowerCamelCase : Optional[Any] = "adapt act apte" _lowerCamelCase : Union[str, Any] = ["adapt", "act", "ap@@", "te"] _lowerCamelCase : Tuple = tokenizer.tokenize(__A ) self.assertListEqual(__A,__A ) _lowerCamelCase : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowerCamelCase : Union[str, Any] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ),__A ) def lowerCamelCase_ ( self : List[str] ): _lowerCamelCase : Optional[Any] = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1_3_8_4] _lowerCamelCase : Optional[int] = "I am a small frog." _lowerCamelCase : Optional[int] = tok([src_text],padding=__A,truncation=__A )["input_ids"] _lowerCamelCase : List[str] = tok.batch_decode(__A,skip_special_tokens=__A,clean_up_tokenization_spaces=__A )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def lowerCamelCase_ ( self : Any ): _lowerCamelCase : List[Any] = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) _lowerCamelCase : Dict = "I am a small frog ." _lowerCamelCase : int = "." _lowerCamelCase : Tuple = tok(__A )["input_ids"] _lowerCamelCase : int = tok(__A )["input_ids"] assert encoded[-1] == encoded_dot[0]
44
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase : Optional[int] ={ """configuration_chinese_clip""": [ """CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ChineseCLIPConfig""", """ChineseCLIPOnnxConfig""", """ChineseCLIPTextConfig""", """ChineseCLIPVisionConfig""", ], """processing_chinese_clip""": ["""ChineseCLIPProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =["""ChineseCLIPFeatureExtractor"""] __lowerCAmelCase : List[Any] =["""ChineseCLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple =[ """CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ChineseCLIPModel""", """ChineseCLIPPreTrainedModel""", """ChineseCLIPTextModel""", """ChineseCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
359
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Tuple=None ) -> Union[str, Any]: __lowerCAmelCase : Dict = argparse.ArgumentParser(add_help=SCREAMING_SNAKE_CASE , allow_abbrev=SCREAMING_SNAKE_CASE ) # The main config parser __lowerCAmelCase : Dict = config_command_parser(SCREAMING_SNAKE_CASE ) # The subparser to add commands to __lowerCAmelCase : Optional[int] = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(SCREAMING_SNAKE_CASE , parents=[parent_parser] ) update_command_parser(SCREAMING_SNAKE_CASE , parents=[parent_parser] ) return config_parser def _SCREAMING_SNAKE_CASE ( ) -> str: __lowerCAmelCase : Tuple = get_config_parser() __lowerCAmelCase : int = config_parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
240
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } _UpperCAmelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Tuple ) -> Optional[int]: for attribute in key.split(""".""" ): __lowerCAmelCase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: __lowerCAmelCase : Tuple = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: __lowerCAmelCase : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __lowerCAmelCase : Union[str, Any] = value elif weight_type == "weight_g": __lowerCAmelCase : Any = value elif weight_type == "weight_v": __lowerCAmelCase : Tuple = value elif weight_type == "bias": __lowerCAmelCase : str = value else: __lowerCAmelCase : Any = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :List[str] ) -> Any: __lowerCAmelCase : Any = [] __lowerCAmelCase : Union[str, Any] = fairseq_model.state_dict() __lowerCAmelCase : Any = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __lowerCAmelCase : int = None for name, value in fairseq_dict.items(): __lowerCAmelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase : Tuple = True elif name.split(""".""" )[0] == "proj": __lowerCAmelCase : Tuple = fairseq_model.proj __lowerCAmelCase : Any = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowerCAmelCase : int = True if "*" in mapped_key: __lowerCAmelCase : Union[str, Any] = name.split(SCREAMING_SNAKE_CASE )[0].split(""".""" )[-2] __lowerCAmelCase : List[str] = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE ) if "weight_g" in name: __lowerCAmelCase : Tuple = """weight_g""" elif "weight_v" in name: __lowerCAmelCase : int = """weight_v""" elif "bias" in name: __lowerCAmelCase : Tuple = """bias""" elif "weight" in name: __lowerCAmelCase : int = """weight""" else: __lowerCAmelCase : Tuple = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :List[Any] ) -> Tuple: __lowerCAmelCase : Union[str, Any] = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase : List[Any] = name.split(""".""" ) __lowerCAmelCase : Any = int(items[0] ) __lowerCAmelCase : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __lowerCAmelCase : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __lowerCAmelCase : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __lowerCAmelCase : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __lowerCAmelCase : Dict = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[Any] ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase : str = emb.weight.shape __lowerCAmelCase : List[Any] = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Any ) -> Dict: with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: __lowerCAmelCase : List[Any] = f.readlines() __lowerCAmelCase : Any = [line.split(""" """ )[0] for line in lines] __lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :int , ) -> List[str]: __lowerCAmelCase : Any = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = SpeechaTextaConfig.from_pretrained( SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __lowerCAmelCase : int = model[0].eval() # set weights for wav2vec2 encoder __lowerCAmelCase : int = WavaVecaModel(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : Dict = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE ) # set output linear layer unexpected_keys.remove("""embed_out""" ) __lowerCAmelCase : Dict = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) __lowerCAmelCase : Union[str, Any] = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = False # add projection layer __lowerCAmelCase : str = nn.Parameter(projection_layer.weight ) __lowerCAmelCase : str = nn.Parameter(projection_layer.bias ) __lowerCAmelCase : Dict = create_vocab_dict(SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , """vocab.json""" ) , """w""" ) as fp: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , """vocab.json""" ) ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = hf_wavavec.config.to_dict() __lowerCAmelCase : int = tokenizer.pad_token_id __lowerCAmelCase : List[str] = tokenizer.bos_token_id __lowerCAmelCase : Union[str, Any] = tokenizer.eos_token_id __lowerCAmelCase : Any = """speech_to_text_2""" __lowerCAmelCase : Tuple = """wav2vec2""" __lowerCAmelCase : Tuple = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0224, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') _UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
240
1
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class _lowerCAmelCase ( snake_case_ ): def __get__( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Union[str, Any]: '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) snake_case : Optional[Any] = "__cached_" + self.fget.__name__ snake_case : str = getattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if cached is None: snake_case : Union[str, Any] = self.fget(UpperCamelCase__ ) setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return cached def __lowerCAmelCase ( lowercase : Dict ) -> Dict: """simple docstring""" snake_case : List[Any] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'invalid truth value {val!r}' ) def __lowerCAmelCase ( lowercase : Tuple ) -> Optional[Any]: """simple docstring""" if is_torch_fx_proxy(lowercase ): return True if is_torch_available(): import torch if isinstance(lowercase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowercase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowercase , (jnp.ndarray, Tracer) ): return True return isinstance(lowercase , np.ndarray ) def __lowerCAmelCase ( lowercase : int ) -> Any: """simple docstring""" return isinstance(lowercase , np.ndarray ) def __lowerCAmelCase ( lowercase : str ) -> int: """simple docstring""" return _is_numpy(lowercase ) def __lowerCAmelCase ( lowercase : Tuple ) -> Optional[Any]: """simple docstring""" import torch return isinstance(lowercase , torch.Tensor ) def __lowerCAmelCase ( lowercase : Dict ) -> Dict: """simple docstring""" return False if not is_torch_available() else _is_torch(lowercase ) def __lowerCAmelCase ( lowercase : str ) -> str: """simple docstring""" import torch return isinstance(lowercase , torch.device ) def __lowerCAmelCase ( lowercase : Optional[Any] ) -> Optional[Any]: """simple docstring""" return False if not is_torch_available() else _is_torch_device(lowercase ) def __lowerCAmelCase ( lowercase : str ) -> Optional[Any]: """simple docstring""" import torch if isinstance(lowercase , lowercase ): if hasattr(lowercase , lowercase ): snake_case : Any = getattr(lowercase , lowercase ) else: return False return isinstance(lowercase , torch.dtype ) def __lowerCAmelCase ( lowercase : Dict ) -> Optional[int]: """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(lowercase ) def __lowerCAmelCase ( lowercase : Dict ) -> Any: """simple docstring""" import tensorflow as tf return isinstance(lowercase , tf.Tensor ) def __lowerCAmelCase ( lowercase : List[str] ) -> int: """simple docstring""" return False if not is_tf_available() else _is_tensorflow(lowercase ) def __lowerCAmelCase ( lowercase : List[str] ) -> Dict: """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowercase , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(lowercase ) return type(lowercase ) == tf.Tensor def __lowerCAmelCase ( lowercase : int ) -> str: """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(lowercase ) def __lowerCAmelCase ( lowercase : Any ) -> Optional[Any]: """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(lowercase , jnp.ndarray ) def __lowerCAmelCase ( lowercase : List[str] ) -> Optional[int]: """simple docstring""" return False if not is_flax_available() else _is_jax(lowercase ) def __lowerCAmelCase ( lowercase : Any ) -> Tuple: """simple docstring""" if isinstance(lowercase , (dict, UserDict) ): return {k: to_py_obj(lowercase ) for k, v in obj.items()} elif isinstance(lowercase , (list, tuple) ): return [to_py_obj(lowercase ) for o in obj] elif is_tf_tensor(lowercase ): return obj.numpy().tolist() elif is_torch_tensor(lowercase ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowercase ): return np.asarray(lowercase ).tolist() elif isinstance(lowercase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> List[str]: """simple docstring""" if isinstance(lowercase , (dict, UserDict) ): return {k: to_numpy(lowercase ) for k, v in obj.items()} elif isinstance(lowercase , (list, tuple) ): return np.array(lowercase ) elif is_tf_tensor(lowercase ): return obj.numpy() elif is_torch_tensor(lowercase ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowercase ): return np.asarray(lowercase ) else: return obj class _lowerCAmelCase ( snake_case_ ): def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : Dict = fields(self ) # Safety and consistency checks if not len(UpperCamelCase__ ): raise ValueError(F'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'{self.__class__.__name__} should not have more than one required field.' ) snake_case : List[Any] = getattr(self , class_fields[0].name ) snake_case : int = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(UpperCamelCase__ ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : Any = first_field.items() snake_case : List[str] = True else: try: snake_case : int = iter(UpperCamelCase__ ) snake_case : Optional[int] = True except TypeError: snake_case : Any = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(UpperCamelCase__ ): if ( not isinstance(UpperCamelCase__ , (list, tuple) ) or not len(UpperCamelCase__ ) == 2 or not isinstance(element[0] , UpperCamelCase__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute snake_case : int = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: snake_case : List[str] = element[1] elif first_field is not None: snake_case : List[Any] = first_field else: for field in class_fields: snake_case : Tuple = getattr(self , field.name ) if v is not None: snake_case : Optional[int] = v def __delitem__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case : Optional[int] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(UpperCamelCase__ , UpperCamelCase__ ) super().__setattr__(UpperCamelCase__ , UpperCamelCase__ ) def __setitem__( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' super().__setitem__(UpperCamelCase__ , UpperCamelCase__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self ) -> Tuple[Any]: '''simple docstring''' return tuple(self[k] for k in self.keys() ) class _lowerCAmelCase ( snake_case_ , snake_case_ ): @classmethod def lowerCamelCase ( cls , UpperCamelCase__ ) -> List[str]: '''simple docstring''' raise ValueError( F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Optional[Any] = '''longest''' __UpperCAmelCase : Tuple = '''max_length''' __UpperCAmelCase : Optional[Any] = '''do_not_pad''' class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Tuple = '''pt''' __UpperCAmelCase : int = '''tf''' __UpperCAmelCase : List[str] = '''np''' __UpperCAmelCase : Union[str, Any] = '''jax''' class _lowerCAmelCase : def __init__( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' snake_case : Tuple = context_managers snake_case : Union[str, Any] = ExitStack() def __enter__( self ) -> List[Any]: '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(UpperCamelCase__ ) def __exit__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' self.stack.__exit__(*UpperCamelCase__ , **UpperCamelCase__ ) def __lowerCAmelCase ( lowercase : List[Any] ) -> List[str]: """simple docstring""" snake_case : str = infer_framework(lowercase ) if framework == "tf": snake_case : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": snake_case : Dict = inspect.signature(model_class.forward ) # PyTorch models else: snake_case : Optional[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __lowerCAmelCase ( lowercase : int ) -> Optional[int]: """simple docstring""" snake_case : Tuple = model_class.__name__ snake_case : Dict = infer_framework(lowercase ) if framework == "tf": snake_case : str = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": snake_case : Optional[int] = inspect.signature(model_class.forward ) # PyTorch models else: snake_case : List[str] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __lowerCAmelCase ( lowercase : MutableMapping , lowercase : str = "" , lowercase : str = "." ) -> Tuple: """simple docstring""" def _flatten_dict(lowercase : List[Any] , lowercase : str="" , lowercase : Tuple="." ): for k, v in d.items(): snake_case : Any = str(lowercase ) + delimiter + str(lowercase ) if parent_key else k if v and isinstance(lowercase , lowercase ): yield from flatten_dict(lowercase , lowercase , delimiter=lowercase ).items() else: yield key, v return dict(_flatten_dict(lowercase , lowercase , lowercase ) ) @contextmanager def __lowerCAmelCase ( lowercase : str , lowercase : bool = False ) -> Union[str, Any]: """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __lowerCAmelCase ( lowercase : List[Any] , lowercase : Any=None ) -> Optional[int]: """simple docstring""" if is_numpy_array(lowercase ): return np.transpose(lowercase , axes=lowercase ) elif is_torch_tensor(lowercase ): return array.T if axes is None else array.permute(*lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.transpose(lowercase , perm=lowercase ) elif is_jax_tensor(lowercase ): return jnp.transpose(lowercase , axes=lowercase ) else: raise ValueError(F'Type not supported for transpose: {type(lowercase )}.' ) def __lowerCAmelCase ( lowercase : Union[str, Any] , lowercase : Any ) -> Union[str, Any]: """simple docstring""" if is_numpy_array(lowercase ): return np.reshape(lowercase , lowercase ) elif is_torch_tensor(lowercase ): return array.reshape(*lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.reshape(lowercase , lowercase ) elif is_jax_tensor(lowercase ): return jnp.reshape(lowercase , lowercase ) else: raise ValueError(F'Type not supported for reshape: {type(lowercase )}.' ) def __lowerCAmelCase ( lowercase : str , lowercase : List[Any]=None ) -> str: """simple docstring""" if is_numpy_array(lowercase ): return np.squeeze(lowercase , axis=lowercase ) elif is_torch_tensor(lowercase ): return array.squeeze() if axis is None else array.squeeze(dim=lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.squeeze(lowercase , axis=lowercase ) elif is_jax_tensor(lowercase ): return jnp.squeeze(lowercase , axis=lowercase ) else: raise ValueError(F'Type not supported for squeeze: {type(lowercase )}.' ) def __lowerCAmelCase ( lowercase : Optional[Any] , lowercase : List[Any] ) -> Any: """simple docstring""" if is_numpy_array(lowercase ): return np.expand_dims(lowercase , lowercase ) elif is_torch_tensor(lowercase ): return array.unsqueeze(dim=lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.expand_dims(lowercase , axis=lowercase ) elif is_jax_tensor(lowercase ): return jnp.expand_dims(lowercase , axis=lowercase ) else: raise ValueError(F'Type not supported for expand_dims: {type(lowercase )}.' ) def __lowerCAmelCase ( lowercase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if is_numpy_array(lowercase ): return np.size(lowercase ) elif is_torch_tensor(lowercase ): return array.numel() elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.size(lowercase ) elif is_jax_tensor(lowercase ): return array.size else: raise ValueError(F'Type not supported for expand_dims: {type(lowercase )}.' ) def __lowerCAmelCase ( lowercase : str , lowercase : Any ) -> Tuple: """simple docstring""" for key, value in auto_map.items(): if isinstance(lowercase , (tuple, list) ): snake_case : int = [F'{repo_id}--{v}' if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: snake_case : str = F'{repo_id}--{value}' return auto_map def __lowerCAmelCase ( lowercase : Optional[Any] ) -> Optional[Any]: """simple docstring""" for base_class in inspect.getmro(lowercase ): snake_case : Dict = base_class.__module__ snake_case : int = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'Could not infer framework from class {model_class}.' )
178
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __snake_case = logging.get_logger(__name__) class _lowerCAmelCase ( snake_case_ ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
178
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __magic_name__ ( __UpperCAmelCase ): __A : Any = "mobilenet_v2" def __init__( self : int , snake_case__ : Any=3 , snake_case__ : Optional[int]=2_2_4 , snake_case__ : str=1.0 , snake_case__ : Optional[int]=8 , snake_case__ : str=8 , snake_case__ : Tuple=6 , snake_case__ : Any=3_2 , snake_case__ : Dict=True , snake_case__ : Optional[int]=True , snake_case__ : Any="relu6" , snake_case__ : int=True , snake_case__ : Any=0.8 , snake_case__ : Dict=0.02 , snake_case__ : int=0.0_01 , snake_case__ : List[str]=2_5_5 , **snake_case__ : List[str] , ): '''simple docstring''' super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) lowercase :str = num_channels lowercase :Tuple = image_size lowercase :Dict = depth_multiplier lowercase :List[str] = depth_divisible_by lowercase :Tuple = min_depth lowercase :Tuple = expand_ratio lowercase :Union[str, Any] = output_stride lowercase :List[Any] = first_layer_is_expansion lowercase :Any = finegrained_output lowercase :int = hidden_act lowercase :Optional[Any] = tf_padding lowercase :Optional[Any] = classifier_dropout_prob lowercase :str = initializer_range lowercase :int = layer_norm_eps lowercase :int = semantic_loss_ignore_index class __magic_name__ ( __UpperCAmelCase ): __A : Optional[int] = version.parse("1.11" ) @property def __snake_case ( self : Any ): '''simple docstring''' return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __snake_case ( self : List[Any] ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __snake_case ( self : List[Any] ): '''simple docstring''' return 1e-4
475
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __magic_name__ ( __UpperCAmelCase ): __A : UNetaDModel __A : ScoreSdeVeScheduler def __init__( self : Optional[Any] , snake_case__ : UNetaDModel , snake_case__ : ScoreSdeVeScheduler ): '''simple docstring''' super().__init__() self.register_modules(unet=snake_case__ , scheduler=snake_case__ ) @torch.no_grad() def __call__( self : Tuple , snake_case__ : int = 1 , snake_case__ : int = 2_0_0_0 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , **snake_case__ : Optional[Any] , ): '''simple docstring''' lowercase :str = self.unet.config.sample_size lowercase :str = (batch_size, 3, img_size, img_size) lowercase :Any = self.unet lowercase :Dict = randn_tensor(snake_case__ , generator=snake_case__ ) * self.scheduler.init_noise_sigma lowercase :int = sample.to(self.device ) self.scheduler.set_timesteps(snake_case__ ) self.scheduler.set_sigmas(snake_case__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase :Optional[int] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase :str = self.unet(snake_case__ , snake_case__ ).sample lowercase :Optional[Any] = self.scheduler.step_correct(snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample # prediction step lowercase :Optional[Any] = model(snake_case__ , snake_case__ ).sample lowercase :Dict = self.scheduler.step_pred(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ) lowercase , lowercase :Tuple = output.prev_sample, output.prev_sample_mean lowercase :str = sample_mean.clamp(0 , 1 ) lowercase :int = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase :str = self.numpy_to_pil(snake_case__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=snake_case__ )
475
1
def _A ( _lowercase = 4_00_00_00 ) -> int: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase, __UpperCamelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_lowercase ) __UpperCamelCase, __UpperCamelCase = b, a + b return sum(_lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
284
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Tuple = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class __magic_name__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'bit' UpperCamelCase__ = ['preactivation', 'bottleneck'] UpperCamelCase__ = ['SAME', 'VALID'] def __init__( self , snake_case_=3 , snake_case_=64 , snake_case_=[2_56, 5_12, 10_24, 20_48] , snake_case_=[3, 4, 6, 3] , snake_case_="preactivation" , snake_case_="relu" , snake_case_=None , snake_case_=32 , snake_case_=0.0 , snake_case_=False , snake_case_=32 , snake_case_=1 , snake_case_=None , snake_case_=None , **snake_case_ , ): super().__init__(**snake_case_ ) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: lowercase =global_padding.upper() else: raise ValueError(f'Padding strategy {global_padding} not supported' ) lowercase =num_channels lowercase =embedding_size lowercase =hidden_sizes lowercase =depths lowercase =layer_type lowercase =hidden_act lowercase =global_padding lowercase =num_groups lowercase =drop_path_rate lowercase =embedding_dynamic_padding lowercase =output_stride lowercase =width_factor lowercase =['''stem'''] + [f'stage{idx}' for idx in range(1 , len(snake_case_ ) + 1 )] lowercase , lowercase =get_aligned_output_features_output_indices( out_features=snake_case_ , out_indices=snake_case_ , stage_names=self.stage_names )
716
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __magic_name__ : UpperCamelCase__ = LEDConfig UpperCamelCase__ = {} UpperCamelCase__ = 'gelu' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=False , snake_case_=99 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=20 , snake_case_=2 , snake_case_=1 , snake_case_=0 , snake_case_=4 , ): lowercase =parent lowercase =batch_size lowercase =seq_length lowercase =is_training lowercase =use_labels lowercase =vocab_size lowercase =hidden_size lowercase =num_hidden_layers lowercase =num_attention_heads lowercase =intermediate_size lowercase =hidden_dropout_prob lowercase =attention_probs_dropout_prob lowercase =max_position_embeddings lowercase =eos_token_id lowercase =pad_token_id lowercase =bos_token_id lowercase =attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after lowercase =self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests lowercase =( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _A( self ): lowercase =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase =tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) lowercase =prepare_led_inputs_dict(snake_case_ , snake_case_ , snake_case_ ) lowercase =tf.concat( [tf.zeros_like(snake_case_ )[:, :-1], tf.ones_like(snake_case_ )[:, -1:]] , axis=-1 , ) lowercase =global_attention_mask return config, inputs_dict def _A( self , snake_case_ , snake_case_ ): lowercase =TFLEDModel(config=snake_case_ ).get_decoder() lowercase =inputs_dict['''input_ids'''] lowercase =input_ids[:1, :] lowercase =inputs_dict['''attention_mask'''][:1, :] lowercase =1 # first forward pass lowercase =model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) lowercase , lowercase =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase =ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowercase =tf.concat([input_ids, next_tokens] , axis=-1 ) lowercase =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowercase =model(snake_case_ , attention_mask=snake_case_ )[0] lowercase =model(snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowercase =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowercase =output_from_no_past[:, -3:, random_slice_idx] lowercase =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1E-3 ) def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : List[str]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Any=None , lowercase_ : Any=None , ) -> Optional[int]: '''simple docstring''' if attention_mask is None: lowercase =tf.cast(tf.math.not_equal(lowercase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __magic_name__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase__ = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def _A( self ): lowercase =TFLEDModelTester(self ) lowercase =ConfigTester(self , config_class=snake_case_ ) def _A( self ): self.config_tester.run_common_tests() def _A( self ): lowercase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case_ ) def _A( self ): lowercase , lowercase =self.model_tester.prepare_config_and_inputs_for_common() lowercase =tf.zeros_like(inputs_dict['''attention_mask'''] ) lowercase =2 lowercase =tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) lowercase =True lowercase =self.model_tester.seq_length lowercase =self.model_tester.encoder_seq_length def check_decoder_attentions_output(snake_case_ ): lowercase =outputs.decoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(snake_case_ ): lowercase =[t.numpy() for t in outputs.encoder_attentions] lowercase =[t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: lowercase =True lowercase =False lowercase =False lowercase =model_class(snake_case_ ) lowercase =model(self._prepare_for_class(snake_case_ , snake_case_ ) ) lowercase =len(snake_case_ ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) if self.is_encoder_decoder: lowercase =model_class(snake_case_ ) lowercase =model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_decoder_attentions_output(snake_case_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase =True lowercase =model_class(snake_case_ ) lowercase =model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) # Check attention is always last and order is fine lowercase =True lowercase =True lowercase =model_class(snake_case_ ) lowercase =model(self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case_ ) ) self.assertEqual(model.config.output_hidden_states , snake_case_ ) check_encoder_attentions_output(snake_case_ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def _A( self ): pass def _A( self ): # TODO: Head-masking not yet implement pass def UpperCamelCase ( lowercase_ : List[str] ) -> Optional[int]: '''simple docstring''' return tf.constant(lowercase_ , dtype=tf.intaa ) _UpperCAmelCase : Any = 1e-4 @slow @require_tf class __magic_name__ ( unittest.TestCase ): def _A( self ): lowercase =TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here lowercase =_long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowercase =_long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowercase =prepare_led_inputs_dict(model.config , snake_case_ , snake_case_ ) lowercase =model(**snake_case_ )[0] lowercase =(1, 10_24, 7_68) self.assertEqual(output.shape , snake_case_ ) # change to expected output here lowercase =tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-3 ) def _A( self ): lowercase =TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here lowercase =_long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowercase =_long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowercase =prepare_led_inputs_dict(model.config , snake_case_ , snake_case_ ) lowercase =model(**snake_case_ )[0] lowercase =(1, 10_24, model.config.vocab_size) self.assertEqual(output.shape , snake_case_ ) # change to expected output here lowercase =tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-3 , rtol=1E-3 )
145
0
# Lint as: python3 import itertools import os import re __A : Tuple = re.compile(R'''([A-Z]+)([A-Z][a-z])''') __A : Any = re.compile(R'''([a-z\d])([A-Z])''') __A : Optional[int] = re.compile(R'''(?<!_)_(?!_)''') __A : Any = re.compile(R'''(_{2,})''') __A : str = R'''^\w+(\.\w+)*$''' __A : List[str] = R'''<>:/\|?*''' def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : int = _uppercase_uppercase_re.sub(r'\1_\2', _UpperCAmelCase ) lowerCAmelCase : Optional[int] = _lowercase_uppercase_re.sub(r'\1_\2', _UpperCAmelCase ) return name.lower() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Optional[Any] = _single_underscore_re.split(_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = [_multiple_underscores_re.split(_UpperCAmelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_UpperCAmelCase ) if n != '' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' if os.path.basename(_UpperCAmelCase ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' if os.path.basename(_UpperCAmelCase ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re, _UpperCAmelCase ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(_UpperCAmelCase )}-{split}" def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None ) -> str: '''simple docstring''' lowerCAmelCase : Tuple = filename_prefix_for_split(_UpperCAmelCase, _UpperCAmelCase ) if filetype_suffix: prefix += f".{filetype_suffix}" lowerCAmelCase : Tuple = os.path.join(_UpperCAmelCase, _UpperCAmelCase ) return f"{filepath}*" def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Dict = filename_prefix_for_split(_UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : Optional[Any] = os.path.join(_UpperCAmelCase, _UpperCAmelCase ) if shard_lengths: lowerCAmelCase : List[str] = len(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(_UpperCAmelCase )] if filetype_suffix: lowerCAmelCase : List[str] = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowerCAmelCase : str = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
343
from ...processing_utils import ProcessorMixin class __A ( lowerCAmelCase ): lowerCAmelCase_ : str = "SpeechT5FeatureExtractor" lowerCAmelCase_ : Any = "SpeechT5Tokenizer" def __init__( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : List[str] = kwargs.pop('audio' , UpperCAmelCase_ ) lowerCAmelCase : str = kwargs.pop('text' , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = kwargs.pop('text_target' , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = kwargs.pop('audio_target' , UpperCAmelCase_ ) lowerCAmelCase : int = kwargs.pop('sampling_rate' , UpperCAmelCase_ ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: lowerCAmelCase : Dict = self.feature_extractor(UpperCAmelCase_ , *UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , **UpperCAmelCase_ ) elif text is not None: lowerCAmelCase : List[Any] = self.tokenizer(UpperCAmelCase_ , **UpperCAmelCase_ ) else: lowerCAmelCase : Any = None if audio_target is not None: lowerCAmelCase : Tuple = self.feature_extractor(audio_target=UpperCAmelCase_ , *UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : int = targets['input_values'] elif text_target is not None: lowerCAmelCase : Optional[int] = self.tokenizer(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = targets['input_ids'] else: lowerCAmelCase : Union[str, Any] = None if inputs is None: return targets if targets is not None: lowerCAmelCase : Dict = labels lowerCAmelCase : Any = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowerCAmelCase : Tuple = decoder_attention_mask return inputs def lowercase__ ( self : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = kwargs.pop('input_values' , UpperCAmelCase_ ) lowerCAmelCase : List[str] = kwargs.pop('input_ids' , UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = kwargs.pop('labels' , UpperCAmelCase_ ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: lowerCAmelCase : List[str] = self.feature_extractor.pad(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) elif input_ids is not None: lowerCAmelCase : Dict = self.tokenizer.pad(UpperCAmelCase_ , **UpperCAmelCase_ ) else: lowerCAmelCase : str = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and "input_ids" in labels[0]): lowerCAmelCase : int = self.tokenizer.pad(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : Dict = targets['input_ids'] else: lowerCAmelCase : Any = self.feature_extractor.feature_size lowerCAmelCase : str = self.feature_extractor.num_mel_bins lowerCAmelCase : Optional[int] = self.feature_extractor.pad(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase : List[Any] = feature_size_hack lowerCAmelCase : Tuple = targets['input_values'] else: lowerCAmelCase : Tuple = None if inputs is None: return targets if targets is not None: lowerCAmelCase : Union[str, Any] = labels lowerCAmelCase : List[str] = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowerCAmelCase : Optional[Any] = decoder_attention_mask return inputs def lowercase__ ( self : int , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str] ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def lowercase__ ( self : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str] ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ )
343
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _UpperCamelCase: def __init__( self : Dict , _lowerCamelCase : int , _lowerCamelCase : int=13 , _lowerCamelCase : List[Any]=7 , _lowerCamelCase : List[str]=True , _lowerCamelCase : int=True , _lowerCamelCase : Any=True , _lowerCamelCase : List[Any]=True , _lowerCamelCase : List[str]=99 , _lowerCamelCase : Any=64 , _lowerCamelCase : Dict=32 , _lowerCamelCase : Dict=5 , _lowerCamelCase : int=4 , _lowerCamelCase : Optional[Any]=37 , _lowerCamelCase : Optional[Any]="gelu" , _lowerCamelCase : int=0.1 , _lowerCamelCase : str=0.1 , _lowerCamelCase : Dict=5_12 , _lowerCamelCase : Union[str, Any]=16 , _lowerCamelCase : Dict=2 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Dict=3 , _lowerCamelCase : Tuple=4 , _lowerCamelCase : Optional[Any]=None , ): _UpperCAmelCase : int = parent _UpperCAmelCase : Dict = batch_size _UpperCAmelCase : Dict = seq_length _UpperCAmelCase : Optional[Any] = is_training _UpperCAmelCase : List[str] = use_input_mask _UpperCAmelCase : int = use_token_type_ids _UpperCAmelCase : Dict = use_labels _UpperCAmelCase : List[str] = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : Dict = embedding_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : List[Any] = type_vocab_size _UpperCAmelCase : Optional[int] = type_sequence_label_size _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Dict = num_labels _UpperCAmelCase : List[str] = num_choices _UpperCAmelCase : Optional[int] = scope def a__ ( self : str ): _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Optional[int] = None if self.use_input_mask: _UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : str = None if self.use_token_type_ids: _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : List[str] = None if self.use_labels: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) def a__ ( self : Tuple , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : int ): _UpperCAmelCase : int = MegatronBertModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _UpperCAmelCase : List[str] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) _UpperCAmelCase : Union[str, Any] = model(_lowerCamelCase , token_type_ids=_lowerCamelCase ) _UpperCAmelCase : int = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] ): _UpperCAmelCase : str = MegatronBertForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _UpperCAmelCase : Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple ): _UpperCAmelCase : Union[str, Any] = MegatronBertForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _UpperCAmelCase : Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : Dict , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any] ): _UpperCAmelCase : int = MegatronBertForNextSentencePrediction(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _UpperCAmelCase : Any = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def a__ ( self : Dict , _lowerCamelCase : Any , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] ): _UpperCAmelCase : List[str] = MegatronBertForPreTraining(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _UpperCAmelCase : Optional[int] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , next_sentence_label=_lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def a__ ( self : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : int ): _UpperCAmelCase : List[Any] = MegatronBertForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _UpperCAmelCase : Optional[Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Any ): _UpperCAmelCase : str = self.num_labels _UpperCAmelCase : Tuple = MegatronBertForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _UpperCAmelCase : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : List[Any] ): _UpperCAmelCase : Optional[int] = self.num_labels _UpperCAmelCase : Dict = MegatronBertForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _UpperCAmelCase : List[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Tuple , _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : Tuple ): _UpperCAmelCase : Any = self.num_choices _UpperCAmelCase : Tuple = MegatronBertForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : List[Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ): _UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) : str = config_and_inputs _UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __A: Tuple = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) __A: Optional[int] = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) __A: Tuple = True # test_resize_embeddings = False __A: Tuple = False def a__ ( self : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Optional[int]=False ): _UpperCAmelCase : List[Any] = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class in get_values(_lowerCamelCase ): _UpperCAmelCase : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCamelCase ) _UpperCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCamelCase ) return inputs_dict def a__ ( self : Tuple ): _UpperCAmelCase : str = MegatronBertModelTester(self ) _UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def a__ ( self : Dict ): self.config_tester.run_common_tests() def a__ ( self : str ): _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_lowerCamelCase ) def a__ ( self : List[str] ): _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_lowerCamelCase ) def a__ ( self : Tuple ): _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_lowerCamelCase ) def a__ ( self : Optional[int] ): _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_lowerCamelCase ) def a__ ( self : Any ): _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_lowerCamelCase ) def a__ ( self : Dict ): _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_lowerCamelCase ) def a__ ( self : Optional[int] ): _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_lowerCamelCase ) def a__ ( self : Any ): _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_lowerCamelCase ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return torch.tensor( _SCREAMING_SNAKE_CASE , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) __lowerCamelCase = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase( unittest.TestCase ): @slow @unittest.skip("Model is not available." ) def a__ ( self : Optional[Any] ): _UpperCAmelCase : Union[str, Any] = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: _UpperCAmelCase : Optional[Any] = os.path.join(os.environ["MYDIR"] , _lowerCamelCase ) _UpperCAmelCase : str = MegatronBertModel.from_pretrained(_lowerCamelCase ) model.to(_lowerCamelCase ) model.half() _UpperCAmelCase : Dict = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(_lowerCamelCase )[0] _UpperCAmelCase : int = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , _lowerCamelCase ) _UpperCAmelCase : Dict = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): _UpperCAmelCase : str = output[0, ii, jj] _UpperCAmelCase : Optional[int] = expected[3 * ii + jj] _UpperCAmelCase : int = "ii={} jj={} a={} b={}".format(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.assertTrue(math.isclose(_lowerCamelCase , _lowerCamelCase , rel_tol=_lowerCamelCase , abs_tol=_lowerCamelCase ) , msg=_lowerCamelCase )
328
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _UpperCamelCase( SCREAMING_SNAKE_CASE ): __A: Optional[Any] = """microsoft/speecht5_tts""" __A: Tuple = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) __A: Any = """text_reader""" __A: Optional[Any] = SpeechTaProcessor __A: int = SpeechTaForTextToSpeech __A: Tuple = SpeechTaHifiGan __A: Optional[Any] = ["""text"""] __A: int = ["""audio"""] def a__ ( self : List[str] ): if self.post_processor is None: _UpperCAmelCase : Union[str, Any] = "microsoft/speecht5_hifigan" super().setup() def a__ ( self : Any , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any]=None ): _UpperCAmelCase : Any = self.pre_processor(text=_lowerCamelCase , return_tensors="pt" , truncation=_lowerCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) _UpperCAmelCase : str = load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) _UpperCAmelCase : Optional[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def a__ ( self : Union[str, Any] , _lowerCamelCase : List[str] ): with torch.no_grad(): return self.model.generate_speech(**_lowerCamelCase ) def a__ ( self : int , _lowerCamelCase : str ): with torch.no_grad(): return self.post_processor(_lowerCamelCase ).cpu().detach()
328
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def a__ ( lowercase__ ): '''simple docstring''' def is_in_circle(lowercase__ , lowercase__ ) -> bool: UpperCAmelCase_ =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase_ =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowercase__ ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase_ =proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def a__ ( lowercase__ , lowercase__ , lowercase__ = 0.0 , lowercase__ = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(lowercase__ , lowercase__ ) ) for _ in range(lowercase__ ) ) * (max_value - min_value) def a__ ( lowercase__ , lowercase__ = 0.0 , lowercase__ = 1.0 ): '''simple docstring''' def identity_function(lowercase__ ) -> float: return x UpperCAmelCase_ =area_under_curve_estimator( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) UpperCAmelCase_ =(max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("******************" ) def a__ ( lowercase__ ): '''simple docstring''' def function_to_integrate(lowercase__ ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase_ =area_under_curve_estimator( lowercase__ , lowercase__ , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
54
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor _SCREAMING_SNAKE_CASE : List[Any] = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = 50 # max width of layer names _SCREAMING_SNAKE_CASE : Union[str, Any] = 70 # max width of quantizer names def UpperCamelCase_( snake_case : int ): '''simple docstring''' snake_case_ = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=snake_case , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=snake_case , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=snake_case , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=snake_case , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=snake_case , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=snake_case , type=snake_case , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=snake_case , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def UpperCamelCase_( snake_case : List[str] ): '''simple docstring''' if args.calibrator == "max": snake_case_ = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) snake_case_ = "histogram" elif args.calibrator == "mse": snake_case_ = "histogram" else: raise ValueError(f'Invalid calibrator {args.calibrator}' ) snake_case_ = QuantDescriptor(num_bits=args.aprec , calib_method=snake_case ) snake_case_ = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(snake_case ) def UpperCamelCase_( snake_case : List[str] , snake_case : Any , snake_case : Optional[int]=False , snake_case : List[Any]=False ): '''simple docstring''' logger.info("Configuring Model for Quantization" ) logger.info(f'using quantization package {pytorch_quantization.__file__}' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(snake_case , ["embeddings"] , which="weight" , _disabled=snake_case ) if args.quant_disable: set_quantizer_by_name(snake_case , [""] , _disabled=snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(snake_case , args.quant_disable_keyword , _disabled=snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(snake_case , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(snake_case , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=snake_case ) if args.recalibrate_weights: recalibrate_weights(snake_case ) if args.fuse_qkv: fuse_qkv(snake_case , snake_case ) if args.clip_gelu: clip_gelu(snake_case , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(snake_case ) def UpperCamelCase_( snake_case : List[Any] ): '''simple docstring''' logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'{name:80}: {module}' ) def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : Optional[int] ): '''simple docstring''' logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(snake_case ) def UpperCamelCase_( snake_case : str , snake_case : List[str] ): '''simple docstring''' def fusea(snake_case : List[Any] , snake_case : str , snake_case : Dict ): for mod in [qq, qk, qv]: if not hasattr(snake_case , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return snake_case_ = qq._amax.detach().item() snake_case_ = qk._amax.detach().item() snake_case_ = qv._amax.detach().item() snake_case_ = max(snake_case , snake_case , snake_case ) qq._amax.fill_(snake_case ) qk._amax.fill_(snake_case ) qv._amax.fill_(snake_case ) logger.info(f' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}' ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(f'FUSE_QKV: {name:{name_width}}' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def UpperCamelCase_( snake_case : str , snake_case : Optional[Any] ): '''simple docstring''' for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): snake_case_ = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=snake_case ) snake_case_ = mod._input_quantizer._amax.data.detach().item() logger.info(f'CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}' ) def UpperCamelCase_( snake_case : Any ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(snake_case , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: snake_case_ = mod.weight.shape[0] snake_case_ = mod._weight_quantizer._amax.detach() snake_case_ = torch.ones(snake_case , dtype=amax.dtype , device=amax.device ) * amax print(f'expanding {name} {amax} -> {mod._weight_quantizer._amax}' ) def UpperCamelCase_( snake_case : str ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(snake_case , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) snake_case_ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) snake_case_ = set(range(len(mod.weight.size() ) ) ) - axis_set snake_case_ = pytorch_quantization.utils.reduce_amax(mod.weight , axis=snake_case , keepdims=snake_case ).detach() logger.info(f'RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}' ) snake_case_ = amax def UpperCamelCase_( snake_case : Optional[Any] , snake_case : List[Any]=2_5 , snake_case : Optional[Any]=1_8_0 , snake_case : int=None ): '''simple docstring''' if ignore is None: snake_case_ = [] elif not isinstance(snake_case , snake_case ): snake_case_ = [ignore] snake_case_ = 0 for name, mod in model.named_modules(): if not hasattr(snake_case , "weight" ): continue snake_case_ = max(snake_case , len(snake_case ) ) for name, mod in model.named_modules(): snake_case_ = getattr(snake_case , "_input_quantizer" , snake_case ) snake_case_ = getattr(snake_case , "_weight_quantizer" , snake_case ) if not hasattr(snake_case , "weight" ): continue if type(snake_case ) in ignore: continue if [True for s in ignore if type(snake_case ) is str and s in name]: continue snake_case_ = f'Act:{input_q.extra_repr()}' snake_case_ = f'Wgt:{weight_q.extra_repr()}' snake_case_ = f'{name:{name_width}} {act_str} {wgt_str}' if len(snake_case ) <= line_width: logger.info(snake_case ) else: logger.info(f'{name:{name_width}} {act_str}' ) logger.info(f'{" ":{name_width}} {wgt_str}' ) def UpperCamelCase_( snake_case : Dict ): '''simple docstring''' snake_case_ = 0 for name, mod in model.named_modules(): if isinstance(snake_case , pytorch_quantization.nn.TensorQuantizer ): print(f'{name:80} {mod}' ) count += 1 print(f'{count} TensorQuantizers found in model' ) def UpperCamelCase_( snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Dict , snake_case : Any , snake_case : Optional[int] ): '''simple docstring''' snake_case_ = getattr(snake_case , snake_case , snake_case ) if quantizer_mod is not None: assert hasattr(snake_case , snake_case ) setattr(snake_case , snake_case , snake_case ) else: logger.warning(f'{name} has no {quantizer}' ) def UpperCamelCase_( snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Tuple="both" , **snake_case : Union[str, Any] ): '''simple docstring''' snake_case_ = f'Warning: changing {which} quantizers of {name:{qname_width}}' for k, v in kwargs.items(): s += f' {k}={v}' if which in ["input", "both"]: set_quantizer(snake_case , snake_case , "_input_quantizer" , snake_case , snake_case ) if which in ["weight", "both"]: set_quantizer(snake_case , snake_case , "_weight_quantizer" , snake_case , snake_case ) logger.info(snake_case ) def UpperCamelCase_( snake_case : Optional[Any] , snake_case : str , **snake_case : str ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(snake_case , "_input_quantizer" ) or hasattr(snake_case , "_weight_quantizer" ): for n in names: if re.search(snake_case , snake_case ): set_quantizers(snake_case , snake_case , **snake_case ) elif name.endswith("_quantizer" ): for n in names: if re.search(snake_case , snake_case ): snake_case_ = f'Warning: changing {name:{name_width}}' for k, v in kwargs.items(): s += f' {k}={v}' setattr(snake_case , snake_case , snake_case ) logger.info(snake_case )
400
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Any, __snake_case : Tuple, __snake_case : Union[str, Any] ) -> None: """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): A__ , A__ : Optional[Any] =array[indexa], array[indexa] def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Optional[int], __snake_case : Dict, __snake_case : Union[str, Any] ) -> None: """simple docstring""" if length > 1: A__ : Optional[Any] =int(length / 2 ) for i in range(__snake_case, low + middle ): comp_and_swap(__snake_case, __snake_case, i + middle, __snake_case ) bitonic_merge(__snake_case, __snake_case, __snake_case, __snake_case ) bitonic_merge(__snake_case, low + middle, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str], __snake_case : Optional[int], __snake_case : Dict ) -> None: """simple docstring""" if length > 1: A__ : int =int(length / 2 ) bitonic_sort(__snake_case, __snake_case, __snake_case, 1 ) bitonic_sort(__snake_case, low + middle, __snake_case, 0 ) bitonic_merge(__snake_case, __snake_case, __snake_case, __snake_case ) if __name__ == "__main__": __snake_case : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() __snake_case : Tuple = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
712
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __lowerCamelCase ( __snake_case : Dict ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str: '''simple docstring''' super().__init__() A__ : Union[str, Any] =module A__ : Union[str, Any] =nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict: '''simple docstring''' return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'bigscience/bloom-1b7' # Constant values __snake_case = 2.109659552692574 __snake_case = 'Hello my name is' __snake_case = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __snake_case = 10 def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' # Models and tokenizer A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Models and tokenizer A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : str =self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) ) A__ : Union[str, Any] =config.to_dict() A__ : Any =config.to_diff_dict() A__ : Optional[Any] =config.to_json_string() def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' from bitsandbytes.nn import Paramsabit A__ : int =self.model_fpaa.get_memory_footprint() A__ : Optional[Any] =self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A__ : Tuple =get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() A__ : Tuple =True A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" ) A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): A__ : Dict =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =self.model_fpaa.to(torch.floataa ) A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.to("""cpu""" ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.half() # Check this does not throw an error A__ : int =self.model_fpaa.float() def lowercase__ ( self : int ) -> Dict: '''simple docstring''' A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowercase__ ( cls : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple ="""t5-small""" A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name ) A__ : Optional[int] ="""Translate in German: Hello, my dog is cute""" def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' from transformers import TaForConditionalGeneration A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules A__ : Optional[Any] =None # test with `t5-small` A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Optional[Any] =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : List[str] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ ) A__ : Dict =modules def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Any =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Dict =model.generate(**lowerCAmelCase_ ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' super().setUp() # model_name A__ : Any ="""bigscience/bloom-560m""" A__ : List[Any] ="""t5-small""" # Different types of model A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Sequence classification model A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # CausalLM model A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Seq2seq model A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' super().setUp() def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A__ : Optional[int] =self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : str ) -> int: '''simple docstring''' super().setUp() def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : int =AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] ="""facebook/opt-350m""" super().setUp() def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A__ : int =False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A__ : Dict =param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): A__ : int =LoRALayer(module.q_proj , rank=16 ) A__ : Any =LoRALayer(module.k_proj , rank=16 ) A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A__ : Any =model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'gpt2-xl' __snake_case = 3.3191854854152187
687
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = "microsoft/speecht5_tts" _snake_case = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _snake_case = "text_reader" _snake_case = SpeechTaProcessor _snake_case = SpeechTaForTextToSpeech _snake_case = SpeechTaHifiGan _snake_case = ["text"] _snake_case = ["audio"] def UpperCAmelCase ( self ): '''simple docstring''' if self.post_processor is None: UpperCamelCase = '''microsoft/speecht5_hifigan''' super().setup() def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__=None ): '''simple docstring''' UpperCamelCase = self.pre_processor(text=lowerCamelCase__ , return_tensors='''pt''' , truncation=lowerCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) UpperCamelCase = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) UpperCamelCase = torch.tensor(embeddings_dataset[7_3_0_5]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCamelCase__ ).cpu().detach()
212
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowerCamelCase : List[Any] = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _lowerCamelCase : Any = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _lowerCamelCase : Union[str, Any] = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a_ ( __lowercase : List[Any] , __lowercase : Any ) -> Union[str, Any]: return float((preds == labels).mean() ) def a_ ( __lowercase : Optional[Any] , __lowercase : List[str] ) -> Dict: _snake_case = simple_accuracy(__lowercase , __lowercase ) _snake_case = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( __lowercase : int , __lowercase : str ) -> str: _snake_case = float(pearsonr(__lowercase , __lowercase )[0] ) _snake_case = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : List[Any] , lowercase : List[str] , lowercase : Optional[Any] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(lowercase , lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowercase , lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
686
0
'''simple docstring''' import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __A ( a ): """simple docstring""" UpperCamelCase__ : Any ="""microsoft/speecht5_tts""" UpperCamelCase__ : List[Any] =( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) UpperCamelCase__ : Tuple ="""text_reader""" UpperCamelCase__ : Optional[Any] =SpeechTaProcessor UpperCamelCase__ : List[str] =SpeechTaForTextToSpeech UpperCamelCase__ : int =SpeechTaHifiGan UpperCamelCase__ : Union[str, Any] =["""text"""] UpperCamelCase__ : str =["""audio"""] def __lowercase ( self ): """simple docstring""" if self.post_processor is None: __UpperCamelCase : Union[str, Any] ='microsoft/speecht5_hifigan' super().setup() def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" __UpperCamelCase : Any =self.pre_processor(text=_UpperCAmelCase , return_tensors='pt' , truncation=_UpperCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) __UpperCamelCase : str =load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) __UpperCamelCase : List[str] =torch.tensor(embeddings_dataset[7305]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**_UpperCAmelCase ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" with torch.no_grad(): return self.post_processor(_UpperCAmelCase ).cpu().detach()
714
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() A_ :Optional[int] = logging.get_logger() @dataclass class __A : """simple docstring""" UpperCamelCase__ : nn.Module UpperCamelCase__ : List[nn.Module] =field(default_factory=a ) UpperCamelCase__ : list =field(default_factory=a ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Dict =len(list(m.modules() ) ) == 1 or isinstance(lowerCamelCase__ , nn.Convad ) or isinstance(lowerCamelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCamelCase__ ) def __call__( self , lowerCamelCase__ ): """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCamelCase__ ) [x.remove() for x in self.handles] return self @property def __lowercase ( self ): """simple docstring""" return list(filter(lambda lowerCamelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __A : """simple docstring""" UpperCamelCase__ : nn.Module UpperCamelCase__ : nn.Module UpperCamelCase__ : int =0 UpperCamelCase__ : List =field(default_factory=a ) UpperCamelCase__ : List =field(default_factory=a ) def __call__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : int =Tracker(self.dest )(lowerCamelCase__ ).parametrized __UpperCamelCase : int =Tracker(self.src )(lowerCamelCase__ ).parametrized __UpperCamelCase : Optional[int] =list(filter(lambda lowerCamelCase__ : type(lowerCamelCase__ ) not in self.src_skip , lowerCamelCase__ ) ) __UpperCamelCase : Optional[int] =list(filter(lambda lowerCamelCase__ : type(lowerCamelCase__ ) not in self.dest_skip , lowerCamelCase__ ) ) if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise Exception( f'Numbers of operations are different. Source module has {len(lowerCamelCase__ )} operations while' f' destination module has {len(lowerCamelCase__ )}.' ) for dest_m, src_m in zip(lowerCamelCase__ , lowerCamelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def A ( a_ ,a_ ,a_ ,a_ = True ) -> Dict: print(F'Converting {name}...' ) with torch.no_grad(): __UpperCamelCase : Tuple =timm.create_model(a_ ,pretrained=a_ ).eval() __UpperCamelCase : Tuple =ResNetForImageClassification(a_ ).eval() __UpperCamelCase : Optional[int] =ModuleTransfer(src=a_ ,dest=a_ ) __UpperCamelCase : Optional[int] =torch.randn((1, 3, 224, 224) ) module_transfer(a_ ) assert torch.allclose(from_model(a_ ) ,our_model(a_ ).logits ), "The model logits don't match the original one." __UpperCamelCase : int =F'resnet{"-".join(name.split("resnet" ) )}' print(a_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name ,commit_message='Add model' ,use_temp_dir=a_ ,) # we can use the convnext one __UpperCamelCase : Optional[int] =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name ,commit_message='Add image processor' ,use_temp_dir=a_ ,) print(F'Pushed {checkpoint_name}' ) def A ( a_ ,a_ = None ,a_ = True ) -> int: __UpperCamelCase : Any ='imagenet-1k-id2label.json' __UpperCamelCase : Optional[Any] =1_000 __UpperCamelCase : Optional[int] =(1, num_labels) __UpperCamelCase : Any ='huggingface/label-files' __UpperCamelCase : List[Any] =num_labels __UpperCamelCase : int =json.load(open(hf_hub_download(a_ ,a_ ,repo_type='dataset' ) ,'r' ) ) __UpperCamelCase : Union[str, Any] ={int(a_ ): v for k, v in idalabel.items()} __UpperCamelCase : str =idalabel __UpperCamelCase : List[str] ={v: k for k, v in idalabel.items()} __UpperCamelCase : Union[str, Any] =partial(a_ ,num_labels=a_ ,idalabel=a_ ,labelaid=a_ ) __UpperCamelCase : Optional[Any] ={ 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] ,hidden_sizes=[64, 128, 256, 512] ,layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] ,hidden_sizes=[256, 512, 1_024, 2_048] ,layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] ,hidden_sizes=[64, 128, 256, 512] ,layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] ,hidden_sizes=[256, 512, 1_024, 2_048] ,layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] ,hidden_sizes=[256, 512, 1_024, 2_048] ,layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] ,hidden_sizes=[256, 512, 1_024, 2_048] ,layer_type='bottleneck' ), } if model_name: convert_weight_and_push(a_ ,names_to_config[model_name] ,a_ ,a_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(a_ ,a_ ,a_ ,a_ ) return config, expected_shape if __name__ == "__main__": A_ :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) A_ :Optional[int] = parser.parse_args() A_ :Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
154
0
import math def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(SCREAMING_SNAKE_CASE ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
203
from __future__ import annotations def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if start is None: A_ = 0 if end is None: A_ = len(SCREAMING_SNAKE_CASE ) - 1 if start >= end: return A_ = (start + end) // 2 slowsort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) slowsort(SCREAMING_SNAKE_CASE , mid + 1 , SCREAMING_SNAKE_CASE ) if sequence[end] < sequence[mid]: A_ ,A_ = sequence[mid], sequence[end] slowsort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
203
1
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def lowercase (SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ) -> tuple: if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
707
"""simple docstring""" from collections import defaultdict from math import gcd def lowercase (SCREAMING_SNAKE_CASE_ : int = 1_50_00_00 ) -> int: SCREAMING_SNAKE_CASE = defaultdict(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , SCREAMING_SNAKE_CASE_ , 2 ): if gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) > 1: continue SCREAMING_SNAKE_CASE = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(SCREAMING_SNAKE_CASE_ , limit + 1 , SCREAMING_SNAKE_CASE_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
327
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase: Tuple =logging.get_logger(__name__) lowerCAmelCase: int ={ "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class lowerCamelCase__ ( lowerCAmelCase__ ): __UpperCAmelCase = "rwkv" __UpperCAmelCase = {"max_position_embeddings": "context_length"} def __init__( self , snake_case=5_0_2_7_7 , snake_case=1_0_2_4 , snake_case=4_0_9_6 , snake_case=3_2 , snake_case=None , snake_case=None , snake_case=1E-5 , snake_case=0 , snake_case=0 , snake_case=6 , snake_case=False , snake_case=True , **snake_case , ) -> str: """simple docstring""" lowercase : Tuple = vocab_size lowercase : Optional[int] = context_length lowercase : List[str] = hidden_size lowercase : Any = num_hidden_layers lowercase : List[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase : List[str] = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase : Tuple = layer_norm_epsilon lowercase : Any = rescale_every lowercase : int = use_cache lowercase : List[Any] = bos_token_id lowercase : List[str] = eos_token_id super().__init__( tie_word_embeddings=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case )
607
'''simple docstring''' A = 9.80_665 def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float = g) -> float: '''simple docstring''' if fluid_density <= 0: raise ValueError('Impossible fluid density') if volume < 0: raise ValueError('Impossible Object volume') if gravity <= 0: raise ValueError('Impossible Gravity') return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
125
0
"""simple docstring""" import qiskit def A__ ( __lowerCamelCase = 2 ): """simple docstring""" _lowerCAmelCase = qubits # Using Aer's simulator _lowerCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register _lowerCAmelCase = qiskit.QuantumCircuit(lowerCamelCase_, lowerCamelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1, lowerCamelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1, lowerCamelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCamelCase_ ) ), list(range(lowerCamelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator _lowerCAmelCase = qiskit.execute(lowerCamelCase_, lowerCamelCase_, shots=1_0_0_0 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(f'Total count for various states are: {quantum_entanglement(3)}')
713
"""simple docstring""" import operator as op a__ : Optional[int] = """scaler.pt""" a__ : Dict = """pytorch_model""" a__ : List[Any] = """random_states""" a__ : Union[str, Any] = """optimizer""" a__ : Tuple = """scheduler""" a__ : Any = """pytorch_model.bin""" a__ : int = """pytorch_model.bin.index.json""" a__ : Union[str, Any] = """model.safetensors""" a__ : Optional[int] = """model.safetensors.index.json""" a__ : str = """1.10.2""" a__ : int = """py38""" a__ : Any = """4.17.0""" a__ : List[str] = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] a__ : str = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] a__ : Optional[int] = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] a__ : int = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] a__ : int = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] a__ : int = """2.0.1""" a__ : Optional[Any] = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] a__ : int = ["""default""", """reduce-overhead""", """max-autotune"""] a__ : Optional[Any] = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 a__ : Any = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] a__ : List[str] = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] a__ : Dict = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
309
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( __UpperCamelCase ): if not nums: raise ValueError('''List is empty''' ) return sum(__UpperCamelCase ) / len(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
76
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCAmelCase__ : List[str] = logging.get_logger(__name__) class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
223
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer A_ : Any = ["gpt2"] A_ : Any = "gpt2" if is_tf_available(): class a_ ( tf.Module ): '''simple docstring''' def __init__(self, lowerCamelCase_ ): '''simple docstring''' super().__init__() lowerCamelCase__ : List[str] = tokenizer lowerCamelCase__ : Optional[Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Any = TFGPTaLMHeadModel.from_config(lowerCamelCase_ ) @tf.function(input_signature=(tf.TensorSpec((None,), tf.string, name='text' ),) ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.tokenizer(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = tokenized['input_ids'].to_tensor() lowerCamelCase__ : str = tf.cast(input_ids_dense > 0, tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) lowerCamelCase__ : Union[str, Any] = self.model(input_ids=lowerCamelCase_, attention_mask=lowerCamelCase_ )['logits'] return outputs @require_tf @require_keras_nlp class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().setUp() lowerCamelCase__ : Optional[Any] = [GPTaTokenizer.from_pretrained(lowerCamelCase_ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] lowerCamelCase__ : Any = [TFGPTaTokenizer.from_pretrained(lowerCamelCase_ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowerCamelCase__ : Optional[Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] lowerCamelCase__ : Optional[int] = list(zip(self.test_sentences, self.test_sentences[::-1] ) ) def a__ (self ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers, self.tf_tokenizers ): for test_inputs in self.test_sentences: lowerCamelCase__ : Union[str, Any] = tokenizer([test_inputs], return_tensors='tf' ) lowerCamelCase__ : List[str] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors lowerCamelCase__ : Dict = python_outputs[key].numpy() lowerCamelCase__ : List[str] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowerCamelCase_, tf.intaa ) == tf_outputs_values ) ) @slow def a__ (self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCamelCase__ : Any = tf.function(lowerCamelCase_ ) for test_inputs in self.test_sentences: lowerCamelCase__ : List[str] = tf.constant(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = compiled_tokenizer(lowerCamelCase_ ) lowerCamelCase__ : Any = tf_tokenizer(lowerCamelCase_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def a__ (self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCamelCase__ : Dict = ModelToSave(tokenizer=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCamelCase__ : Tuple = model.serving(lowerCamelCase_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCamelCase__ : Any = Path(lowerCamelCase_ ) / 'saved.model' tf.saved_model.save(lowerCamelCase_, lowerCamelCase_, signatures={'serving_default': model.serving} ) lowerCamelCase__ : List[str] = tf.saved_model.load(lowerCamelCase_ ) lowerCamelCase__ : List[str] = loaded_model.signatures['serving_default'](lowerCamelCase_ )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def a__ (self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: lowerCamelCase__ : List[str] = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCamelCase__ : Optional[int] = tf_tokenizer(lowerCamelCase_ ) # Build model with some sample inputs lowerCamelCase__ : int = tf_tokenizer.get_config() lowerCamelCase__ : List[Any] = TFGPTaTokenizer.from_config(lowerCamelCase_ ) lowerCamelCase__ : Tuple = model_from_config(lowerCamelCase_ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def a__ (self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run lowerCamelCase__ : Any = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: lowerCamelCase__ : List[str] = tf.convert_to_tensor([self.test_sentences[0]] ) lowerCamelCase__ : Any = tf_tokenizer(lowerCamelCase_, max_length=lowerCamelCase_ ) lowerCamelCase__ : Any = out['input_ids'].numpy().shape[1] assert out_length == max_length
696
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : int = 'Speech2TextFeatureExtractor' lowerCamelCase__ : Dict = 'Speech2TextTokenizer' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = self.feature_extractor lowerCamelCase__ : List[Any] = False def __call__(self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_, **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio', lowerCamelCase_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('sampling_rate', lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('text', lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase__ : List[str] = args[0] lowerCamelCase__ : Any = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Union[str, Any] = self.feature_extractor(lowerCamelCase_, *lowerCamelCase_, sampling_rate=lowerCamelCase_, **lowerCamelCase_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(lowerCamelCase_, **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Tuple = encodings['input_ids'] return inputs def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_, **lowerCamelCase_ ) def a__ (self, *lowerCamelCase_, **lowerCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_, **lowerCamelCase_ ) @contextmanager def a__ (self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = self.tokenizer yield lowerCamelCase__ : Optional[int] = self.feature_extractor lowerCamelCase__ : List[Any] = False
696
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _a ( snake_case_ , snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[int] = 'pixel_values' _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Union[str, Any] = TimmBackboneConfig def __init__( self : Optional[int] , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Optional[Any] ): requires_backends(self , "timm" ) super().__init__(UpperCAmelCase ) A_ = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(UpperCAmelCase , "out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) A_ = getattr(UpperCAmelCase , "use_pretrained_backbone" , UpperCAmelCase ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. A_ = config.out_indices if getattr(UpperCAmelCase , "out_indices" , UpperCAmelCase ) is not None else (-1,) A_ = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. A_ = self._backbone.return_layers A_ = {layer["module"]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def __A ( cls : Optional[int] , UpperCAmelCase : List[Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : List[Any] ): requires_backends(cls , ["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig A_ = kwargs.pop("config" , TimmBackboneConfig() ) A_ = kwargs.pop("use_timm_backbone" , UpperCAmelCase ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) A_ = kwargs.pop("num_channels" , config.num_channels ) A_ = kwargs.pop("features_only" , config.features_only ) A_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone ) A_ = kwargs.pop("out_indices" , config.out_indices ) A_ = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Tuple , UpperCAmelCase : Optional[int] ): pass def __A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict=None , **UpperCAmelCase : int ): A_ = return_dict if return_dict is not None else self.config.use_return_dict A_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone A_ = self._all_layers A_ = self._backbone(UpperCAmelCase , **UpperCAmelCase ) A_ = self._return_layers A_ = tuple(hidden_states[i] for i in self.out_indices ) else: A_ = self._backbone(UpperCAmelCase , **UpperCAmelCase ) A_ = None A_ = tuple(UpperCAmelCase ) A_ = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: A_ = (feature_maps,) if output_hidden_states: A_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
86
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : jnp.ndarray _UpperCamelCase : jnp.ndarray class A_ ( nn.Module ): '''simple docstring''' _UpperCamelCase : int _UpperCamelCase : Tuple[int] = (16, 32, 96, 256) _UpperCamelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self ): lowercase = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): lowercase = self.block_out_channels[i] lowercase = self.block_out_channels[i + 1] lowercase = nn.Conv( snake_case , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case ) lowercase = nn.Conv( snake_case , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case ) lowercase = blocks lowercase = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , snake_case ): lowercase = self.conv_in(snake_case ) lowercase = nn.silu(snake_case ) for block in self.blocks: lowercase = block(snake_case ) lowercase = nn.silu(snake_case ) lowercase = self.conv_out(snake_case ) return embedding @flax_register_to_config class A_ ( nn.Module , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : int = 32 _UpperCamelCase : int = 4 _UpperCamelCase : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _UpperCamelCase : Union[bool, Tuple[bool]] = False _UpperCamelCase : Tuple[int] = (320, 640, 1280, 1280) _UpperCamelCase : int = 2 _UpperCamelCase : Union[int, Tuple[int]] = 8 _UpperCamelCase : Optional[Union[int, Tuple[int]]] = None _UpperCamelCase : int = 1280 _UpperCamelCase : float = 0.0 _UpperCamelCase : bool = False _UpperCamelCase : jnp.dtype = jnp.floataa _UpperCamelCase : bool = True _UpperCamelCase : int = 0 _UpperCamelCase : str = "rgb" _UpperCamelCase : Tuple[int] = (16, 32, 96, 256) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): # init input tensors lowercase = (1, self.in_channels, self.sample_size, self.sample_size) lowercase = jnp.zeros(snake_case , dtype=jnp.floataa ) lowercase = jnp.ones((1,) , dtype=jnp.intaa ) lowercase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) lowercase = jnp.zeros(snake_case , dtype=jnp.floataa ) lowercase , lowercase = jax.random.split(snake_case ) lowercase = {'params': params_rng, 'dropout': dropout_rng} return self.init(snake_case , snake_case , snake_case , snake_case , snake_case )["params"] def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.block_out_channels lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowercase = self.num_attention_heads or self.attention_head_dim # input lowercase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowercase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowercase = FlaxTimestepEmbedding(snake_case , dtype=self.dtype ) lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowercase = self.only_cross_attention if isinstance(snake_case , snake_case ): lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case , snake_case ): lowercase = (num_attention_heads,) * len(self.down_block_types ) # down lowercase = [] lowercase = [] lowercase = block_out_channels[0] lowercase = nn.Conv( snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case ) for i, down_block_type in enumerate(self.down_block_types ): lowercase = output_channel lowercase = block_out_channels[i] lowercase = i == len(snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowercase = FlaxCrossAttnDownBlockaD( in_channels=snake_case , out_channels=snake_case , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowercase = FlaxDownBlockaD( in_channels=snake_case , out_channels=snake_case , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case ) for _ in range(self.layers_per_block ): lowercase = nn.Conv( snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case ) if not is_final_block: lowercase = nn.Conv( snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case ) lowercase = down_blocks lowercase = controlnet_down_blocks # mid lowercase = block_out_channels[-1] lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=snake_case , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowercase = nn.Conv( snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , snake_case , snake_case , snake_case , snake_case , snake_case = 1.0 , snake_case = True , snake_case = False , ): lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowercase = jnp.flip(snake_case , axis=1 ) # 1. time if not isinstance(snake_case , jnp.ndarray ): lowercase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case , jnp.ndarray ) and len(timesteps.shape ) == 0: lowercase = timesteps.astype(dtype=jnp.floataa ) lowercase = jnp.expand_dims(snake_case , 0 ) lowercase = self.time_proj(snake_case ) lowercase = self.time_embedding(snake_case ) # 2. pre-process lowercase = jnp.transpose(snake_case , (0, 2, 3, 1) ) lowercase = self.conv_in(snake_case ) lowercase = jnp.transpose(snake_case , (0, 2, 3, 1) ) lowercase = self.controlnet_cond_embedding(snake_case ) sample += controlnet_cond # 3. down lowercase = (sample,) for down_block in self.down_blocks: if isinstance(snake_case , snake_case ): lowercase , lowercase = down_block(snake_case , snake_case , snake_case , deterministic=not train ) else: lowercase , lowercase = down_block(snake_case , snake_case , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowercase = self.mid_block(snake_case , snake_case , snake_case , deterministic=not train ) # 5. contronet blocks lowercase = () for down_block_res_sample, controlnet_block in zip(snake_case , self.controlnet_down_blocks ): lowercase = controlnet_block(snake_case ) controlnet_down_block_res_samples += (down_block_res_sample,) lowercase = controlnet_down_block_res_samples lowercase = self.controlnet_mid_block(snake_case ) # 6. scaling lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=snake_case , mid_block_res_sample=snake_case )
84
0
'''simple docstring''' import random from typing import Any def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): for _ in range(len(_SCREAMING_SNAKE_CASE ) ): lowerCAmelCase_ : List[Any] =random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) lowerCAmelCase_ : str =random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) lowerCAmelCase_ , lowerCAmelCase_ : Any =data[b], data[a] return data if __name__ == "__main__": __lowercase = [0, 1, 2, 3, 4, 5, 6, 7] __lowercase = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
305
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __lowercase = logging.get_logger(__name__) __lowercase = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : Dict = '''marian''' _UpperCamelCase : List[str] = ['''past_key_values'''] _UpperCamelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , UpperCamelCase_ : Tuple=58101 , UpperCamelCase_ : int=None , UpperCamelCase_ : str=1024 , UpperCamelCase_ : List[str]=12 , UpperCamelCase_ : List[Any]=4096 , UpperCamelCase_ : Union[str, Any]=16 , UpperCamelCase_ : int=12 , UpperCamelCase_ : Optional[Any]=4096 , UpperCamelCase_ : Union[str, Any]=16 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Optional[Any]=0.0 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]="gelu" , UpperCamelCase_ : int=1024 , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Dict=0.0 , UpperCamelCase_ : List[str]=0.0 , UpperCamelCase_ : Optional[int]=0.0_2 , UpperCamelCase_ : Union[str, Any]=58100 , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Union[str, Any]=58100 , UpperCamelCase_ : Dict=0 , UpperCamelCase_ : int=0 , UpperCamelCase_ : int=True , **UpperCamelCase_ : Union[str, Any] , ): lowerCAmelCase_ : Tuple =vocab_size lowerCAmelCase_ : int =decoder_vocab_size or vocab_size lowerCAmelCase_ : int =max_position_embeddings lowerCAmelCase_ : Any =d_model lowerCAmelCase_ : List[Any] =encoder_ffn_dim lowerCAmelCase_ : List[Any] =encoder_layers lowerCAmelCase_ : Any =encoder_attention_heads lowerCAmelCase_ : Optional[int] =decoder_ffn_dim lowerCAmelCase_ : List[str] =decoder_layers lowerCAmelCase_ : Union[str, Any] =decoder_attention_heads lowerCAmelCase_ : List[str] =dropout lowerCAmelCase_ : int =attention_dropout lowerCAmelCase_ : Optional[int] =activation_dropout lowerCAmelCase_ : Union[str, Any] =activation_function lowerCAmelCase_ : List[str] =init_std lowerCAmelCase_ : List[Any] =encoder_layerdrop lowerCAmelCase_ : Optional[int] =decoder_layerdrop lowerCAmelCase_ : int =use_cache lowerCAmelCase_ : Tuple =encoder_layers lowerCAmelCase_ : Any =scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase_ : Union[str, Any] =share_encoder_decoder_embeddings super().__init__( pad_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , forced_eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) class _snake_case ( lowerCAmelCase_ ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __A ( self : str ): if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase_ : List[str] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCAmelCase_ : Any ={0: '''batch'''} lowerCAmelCase_ : Any ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowerCAmelCase_ : List[Any] ={0: '''batch''', 1: '''decoder_sequence'''} lowerCAmelCase_ : int ={0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCAmelCase_ : List[str] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] =self.num_layers for i in range(UpperCamelCase_ ): lowerCAmelCase_ : int ={0: '''batch''', 2: '''past_sequence + sequence'''} lowerCAmelCase_ : List[Any] ={0: '''batch''', 2: '''past_sequence + sequence'''} else: lowerCAmelCase_ : Optional[Any] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __A ( self : Union[str, Any] ): if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase_ : List[str] =super().outputs else: lowerCAmelCase_ : Optional[Any] =super(UpperCamelCase_ , self ).outputs if self.use_past: lowerCAmelCase_ , lowerCAmelCase_ : Dict =self.num_layers for i in range(UpperCamelCase_ ): lowerCAmelCase_ : Optional[Any] ={0: '''batch''', 2: '''past_sequence + sequence'''} lowerCAmelCase_ : Optional[Any] ={0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __A ( self : int , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] =self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Generate decoder inputs lowerCAmelCase_ : List[Any] =seq_length if not self.use_past else 1 lowerCAmelCase_ : Dict =self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase_ : Union[str, Any] ={F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} lowerCAmelCase_ : List[Any] =dict(**UpperCamelCase_ , **UpperCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : Dict =common_inputs['''input_ids'''].shape lowerCAmelCase_ : Tuple =common_inputs['''decoder_input_ids'''].shape[1] lowerCAmelCase_ , lowerCAmelCase_ : Any =self.num_attention_heads lowerCAmelCase_ : Optional[int] =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCAmelCase_ : Optional[int] =decoder_seq_length + 3 lowerCAmelCase_ : List[Any] =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCAmelCase_ : Dict =torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(UpperCamelCase_ , UpperCamelCase_ )] , dim=1 ) lowerCAmelCase_ : int =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCAmelCase_ , lowerCAmelCase_ : Dict =self.num_layers lowerCAmelCase_ : Union[str, Any] =min(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase_ : Optional[Any] =max(UpperCamelCase_ , UpperCamelCase_ ) - min_num_layers lowerCAmelCase_ : Union[str, Any] ='''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(UpperCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), ) ) # TODO: test this. lowerCAmelCase_ : List[str] =encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(UpperCamelCase_ , UpperCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) ) return common_inputs def __A ( self : Optional[Any] , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ): lowerCAmelCase_ : str =self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : List[Any] =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCAmelCase_ : int =seqlen + 2 lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] =self.num_layers lowerCAmelCase_ , lowerCAmelCase_ : List[Any] =self.num_attention_heads lowerCAmelCase_ : Tuple =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCAmelCase_ : Any =common_inputs['''attention_mask'''].dtype lowerCAmelCase_ : List[str] =torch.cat( [common_inputs['''attention_mask'''], torch.ones(UpperCamelCase_ , UpperCamelCase_ , dtype=UpperCamelCase_ )] , dim=1 ) lowerCAmelCase_ : List[str] =[ (torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) for _ in range(UpperCamelCase_ ) ] return common_inputs def __A ( self : List[Any] , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase_ : Tuple =compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase_ : List[Any] =tokenizer.num_special_tokens_to_add(UpperCamelCase_ ) lowerCAmelCase_ : Tuple =compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase_ ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase_ : List[Any] =[''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCAmelCase_ : Any =dict(tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) ) return common_inputs def __A ( self : List[Any] , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase_ : Optional[Any] =self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) else: lowerCAmelCase_ : int =self._generate_dummy_inputs_for_causal_lm( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) return common_inputs def __A ( self : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int ): if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase_ : Optional[Any] =super()._flatten_past_key_values_(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: lowerCAmelCase_ : Dict =super(UpperCamelCase_ , self )._flatten_past_key_values_( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) @property def __A ( self : Union[str, Any] ): return 1E-4
305
1
'''simple docstring''' lowercase =[0, 2, 4, 6, 8] lowercase =[1, 3, 5, 7, 9] def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : int ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _UpperCAmelCase : Any =0 for digit in range(1_0 ): _UpperCAmelCase : List[str] =digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 1_0 , __snake_case , __snake_case ) return result _UpperCAmelCase : str =0 for digita in range(1_0 ): _UpperCAmelCase : List[Any] =digita if (remainder + digita) % 2 == 0: _UpperCAmelCase : str =ODD_DIGITS else: _UpperCAmelCase : Tuple =EVEN_DIGITS for digita in other_parity_digits: _UpperCAmelCase : Any =digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 1_0 , __snake_case , __snake_case , ) return result def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] = 9 ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__snake_case , 0 , [0] * length , __snake_case ) return result if __name__ == "__main__": print(F"""{solution() = }""")
446
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = True , __a = 1 / 2_55 , __a = None , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = do_rescale _UpperCamelCase = do_normalize _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = rescale_factor _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''' , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a) if not is_batched(__a): _UpperCamelCase = [images] if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
19
0
'''simple docstring''' import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
312
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowerCamelCase_ ( enum.Enum ): lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 @add_end_docstrings(__a ) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self : List[str] , *_A : List[Any] , **_A : List[str] ): '''simple docstring''' super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase__ : Any = None if self.model.config.prefix is not None: UpperCAmelCase__ : int = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase__ : List[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase__ : Any = {**self._preprocess_params, **preprocess_params} UpperCAmelCase__ : Optional[int] = {**self._forward_params, **forward_params} def lowercase_ ( self : Dict , _A : int=None , _A : Optional[Any]=None , _A : Union[str, Any]=None , _A : Optional[int]=None , _A : Dict=None , _A : str=None , _A : List[str]=None , _A : List[str]=None , **_A : int , ): '''simple docstring''' UpperCAmelCase__ : Any = {} if prefix is not None: UpperCAmelCase__ : Optional[int] = prefix if prefix: UpperCAmelCase__ : Any = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase__ : Dict = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) UpperCAmelCase__ : Optional[int] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase__ : Union[str, Any] = generate_kwargs UpperCAmelCase__ : Optional[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase__ : Optional[int] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase__ : Union[str, Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase__ : Optional[int] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase__ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase__ : Optional[int] = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase__ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowercase_ ( self : Tuple , *_A : List[Any] , **_A : Optional[int] ): '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : List[Any] , **_A : List[Any] ): '''simple docstring''' return super().__call__(_A , **_A ) def lowercase_ ( self : Optional[Any] , _A : Tuple , _A : List[str]="" , _A : Optional[int]=None , **_A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase__ : Union[str, Any] = prompt_text if handle_long_generation == "hole": UpperCAmelCase__ : Any = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase__ : str = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase__ : Tuple = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase__ : Optional[Any] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase__ : Optional[int] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase__ : List[Any] = inputs['''attention_mask'''][:, -keep_length:] return inputs def lowercase_ ( self : List[Any] , _A : Any , **_A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = model_inputs['''input_ids'''] UpperCAmelCase__ : Tuple = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : int = None UpperCAmelCase__ : Tuple = 1 else: UpperCAmelCase__ : Union[str, Any] = input_ids.shape[0] UpperCAmelCase__ : int = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase__ : Dict = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase__ : Tuple = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase__ : Optional[Any] = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase__ : List[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase__ : Optional[Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase__ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase__ : Optional[int] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase__ : List[Any] = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowercase_ ( self : Any , _A : Dict , _A : Optional[int]=ReturnType.FULL_TEXT , _A : int=True ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = model_outputs['''generated_sequence'''][0] UpperCAmelCase__ : Tuple = model_outputs['''input_ids'''] UpperCAmelCase__ : List[str] = model_outputs['''prompt_text'''] UpperCAmelCase__ : Any = generated_sequence.numpy().tolist() UpperCAmelCase__ : Union[str, Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase__ : List[str] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase__ : List[str] = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase__ : Union[str, Any] = 0 else: UpperCAmelCase__ : List[str] = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase__ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase__ : List[str] = text[prompt_length:] UpperCAmelCase__ : Any = {'''generated_text''': all_text} records.append(_A ) return records
312
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : int=False ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCAmelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : Union[str, Any]=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ = "" else: UpperCAmelCase_ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ = in_proj_bias[: config.hidden_size] UpperCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( snake_case_ : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Any , snake_case_ : Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = dct.pop(snake_case_ ) UpperCAmelCase_ = val def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = ViTConfig() UpperCAmelCase_ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": UpperCAmelCase_ = True UpperCAmelCase_ = int(vit_name[-12:-10] ) UpperCAmelCase_ = int(vit_name[-9:-6] ) else: UpperCAmelCase_ = 10_00 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "imagenet-1k-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(snake_case_ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = int(vit_name[-6:-4] ) UpperCAmelCase_ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): UpperCAmelCase_ = 1_92 UpperCAmelCase_ = 7_68 UpperCAmelCase_ = 12 UpperCAmelCase_ = 3 elif vit_name[9:].startswith("small" ): UpperCAmelCase_ = 3_84 UpperCAmelCase_ = 15_36 UpperCAmelCase_ = 12 UpperCAmelCase_ = 6 else: pass else: if vit_name[4:].startswith("small" ): UpperCAmelCase_ = 7_68 UpperCAmelCase_ = 23_04 UpperCAmelCase_ = 8 UpperCAmelCase_ = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): UpperCAmelCase_ = 10_24 UpperCAmelCase_ = 40_96 UpperCAmelCase_ = 24 UpperCAmelCase_ = 16 elif vit_name[4:].startswith("huge" ): UpperCAmelCase_ = 12_80 UpperCAmelCase_ = 51_20 UpperCAmelCase_ = 32 UpperCAmelCase_ = 16 # load original model from timm UpperCAmelCase_ = timm.create_model(snake_case_ , pretrained=snake_case_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ = timm_model.state_dict() if base_model: remove_classification_head_(snake_case_ ) UpperCAmelCase_ = create_rename_keys(snake_case_ , snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) read_in_q_k_v(snake_case_ , snake_case_ , snake_case_ ) # load HuggingFace model if vit_name[-5:] == "in21k": UpperCAmelCase_ = ViTModel(snake_case_ ).eval() else: UpperCAmelCase_ = ViTForImageClassification(snake_case_ ).eval() model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: UpperCAmelCase_ = DeiTImageProcessor(size=config.image_size ) else: UpperCAmelCase_ = ViTImageProcessor(size=config.image_size ) UpperCAmelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase_ = encoding["pixel_values"] UpperCAmelCase_ = model(snake_case_ ) if base_model: UpperCAmelCase_ = timm_model.forward_features(snake_case_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(snake_case_ , outputs.pooler_output , atol=1E-3 ) else: UpperCAmelCase_ = timm_model(snake_case_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(snake_case_ , outputs.logits , atol=1E-3 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_: List[str] =parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
78
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase_ ( snake_case_ : ndarray ) -> float: '''simple docstring''' return np.dot(snake_case_ , snake_case_ ) class __A : def __init__(self : int , *, __a : float = np.inf , __a : str = "linear" , __a : float = 0.0 , ): UpperCAmelCase_ = regularization UpperCAmelCase_ = gamma if kernel == "linear": UpperCAmelCase_ = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("rbf kernel requires gamma" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("gamma must be float or int" ) if not self.gamma > 0: raise ValueError("gamma must be > 0" ) UpperCAmelCase_ = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCAmelCase_ = f"""Unknown kernel: {kernel}""" raise ValueError(__a ) def _lowercase (self : Optional[int] , __a : ndarray , __a : ndarray ): return np.dot(__a , __a ) def _lowercase (self : Optional[int] , __a : ndarray , __a : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def _lowercase (self : str , __a : list[ndarray] , __a : ndarray ): UpperCAmelCase_ = observations UpperCAmelCase_ = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCAmelCase_) , ) = np.shape(__a ) def to_minimize(__a : ndarray ) -> float: UpperCAmelCase_ = 0 ((UpperCAmelCase_) , ) = np.shape(__a ) for i in range(__a ): for j in range(__a ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(__a ) UpperCAmelCase_ = LinearConstraint(__a , 0 , 0 ) UpperCAmelCase_ = Bounds(0 , self.regularization ) UpperCAmelCase_ = minimize( __a , np.ones(__a ) , bounds=__a , constraints=[ly_contraint] ).x UpperCAmelCase_ = l_star # calculating mean offset of separation plane to points UpperCAmelCase_ = 0 for i in range(__a ): for j in range(__a ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) UpperCAmelCase_ = s / n def _lowercase (self : Optional[int] , __a : ndarray ): UpperCAmelCase_ = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , __a ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
78
1
"""simple docstring""" import argparse import datetime def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Any = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } UpperCAmelCase__ : Optional[int] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(__UpperCamelCase ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month UpperCAmelCase__ : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) UpperCAmelCase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day UpperCAmelCase__ : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator UpperCAmelCase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year UpperCAmelCase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation UpperCAmelCase__ : Dict = datetime.date(int(__UpperCamelCase ) , int(__UpperCamelCase ) , int(__UpperCamelCase ) ) # Start math if m <= 2: UpperCAmelCase__ : Optional[Any] = y - 1 UpperCAmelCase__ : Any = m + 12 # maths var UpperCAmelCase__ : int = int(str(__UpperCamelCase )[:2] ) UpperCAmelCase__ : int = int(str(__UpperCamelCase )[2:] ) UpperCAmelCase__ : int = int(2.6 * m - 5.39 ) UpperCAmelCase__ : int = int(c / 4 ) UpperCAmelCase__ : int = int(k / 4 ) UpperCAmelCase__ : int = int(d + k ) UpperCAmelCase__ : int = int(t + u + v + x ) UpperCAmelCase__ : int = int(z - (2 * c) ) UpperCAmelCase__ : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response UpperCAmelCase__ : str = F"Your date {date_input}, is a {days[str(__UpperCamelCase )]}!" return response if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) __UpperCAmelCase = parser.parse_args() zeller(args.date_input)
194
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : str = [] if len(__UpperCamelCase ) == 1: return [nums.copy()] for _ in range(len(__UpperCamelCase ) ): UpperCAmelCase__ : Tuple = nums.pop(0 ) UpperCAmelCase__ : List[str] = permute(__UpperCamelCase ) for perm in permutations: perm.append(__UpperCamelCase ) result.extend(__UpperCamelCase ) nums.append(__UpperCamelCase ) return result def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' def backtrack(__UpperCamelCase ): if start == len(__UpperCamelCase ) - 1: output.append(nums[:] ) else: for i in range(__UpperCamelCase , len(__UpperCamelCase ) ): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = nums[i], nums[start] backtrack(start + 1 ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = nums[i], nums[start] # backtrack UpperCAmelCase__ : List[str] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __UpperCAmelCase = permutea([1, 2, 3]) print(res) doctest.testmod()
194
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __lowercase : Optional[Any] =random.Random() def a__ ( lowercase__ , lowercase__=1.0 , lowercase__=None , lowercase__=None ): '''simple docstring''' if rng is None: UpperCAmelCase_ =global_rng UpperCAmelCase_ =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Any , _lowerCAmelCase: str=7 , _lowerCAmelCase: Optional[int]=400 , _lowerCAmelCase: Optional[Any]=2000 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: Optional[int]=160 , _lowerCAmelCase: Any=8 , _lowerCAmelCase: str=0.0 , _lowerCAmelCase: Optional[int]=4000 , _lowerCAmelCase: Dict=False , _lowerCAmelCase: Optional[Any]=True , ) -> Dict: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =min_seq_length UpperCAmelCase_ =max_seq_length UpperCAmelCase_ =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase_ =padding_value UpperCAmelCase_ =sampling_rate UpperCAmelCase_ =return_attention_mask UpperCAmelCase_ =do_normalize UpperCAmelCase_ =feature_size UpperCAmelCase_ =chunk_length UpperCAmelCase_ =hop_length def lowerCAmelCase__ ( self: Union[str, Any] ) -> int: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[str]=False , _lowerCAmelCase: Dict=False ) -> str: '''simple docstring''' def _flatten(_lowerCAmelCase: List[str] ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: UpperCAmelCase_ =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase_ =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase_ =[np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A ( __lowercase , unittest.TestCase ): _snake_case =WhisperFeatureExtractor if is_speech_available() else None def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =WhisperFeatureExtractionTester(self ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ =feat_extract_first.save_pretrained(_lowerCAmelCase )[0] check_json_file_has_correct_format(_lowerCAmelCase ) UpperCAmelCase_ =self.feature_extraction_class.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =feat_extract_first.to_dict() UpperCAmelCase_ =feat_extract_second.to_dict() UpperCAmelCase_ =feat_extract_first.mel_filters UpperCAmelCase_ =feat_extract_second.mel_filters self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ =os.path.join(_lowerCAmelCase , "feat_extract.json" ) feat_extract_first.to_json_file(_lowerCAmelCase ) UpperCAmelCase_ =self.feature_extraction_class.from_json_file(_lowerCAmelCase ) UpperCAmelCase_ =feat_extract_first.to_dict() UpperCAmelCase_ =feat_extract_second.to_dict() UpperCAmelCase_ =feat_extract_first.mel_filters UpperCAmelCase_ =feat_extract_second.mel_filters self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase_ =[np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size UpperCAmelCase_ =feature_extractor(_lowerCAmelCase , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input UpperCAmelCase_ =feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features UpperCAmelCase_ =feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # Test batched UpperCAmelCase_ =feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features UpperCAmelCase_ =feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase_ =[floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase_ =np.asarray(_lowerCAmelCase ) UpperCAmelCase_ =feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features UpperCAmelCase_ =feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # Test truncation required UpperCAmelCase_ =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] UpperCAmelCase_ =[np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] UpperCAmelCase_ =[x[: feature_extractor.n_samples] for x in speech_inputs] UpperCAmelCase_ =[np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs_truncated] UpperCAmelCase_ =feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features UpperCAmelCase_ =feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) def lowerCAmelCase__ ( self: str ) -> Tuple: '''simple docstring''' import torch UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ =np.random.rand(100 , 32 ).astype(np.floataa ) UpperCAmelCase_ =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase_ =feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCAmelCase_ =feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCAmelCase_ =ds.sort("id" ).select(range(_lowerCAmelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self: str ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on UpperCAmelCase_ =self._load_datasamples(1 ) UpperCAmelCase_ =WhisperFeatureExtractor() UpperCAmelCase_ =feature_extractor(_lowerCAmelCase , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _lowerCAmelCase , atol=1e-4 ) ) def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ =self._load_datasamples(1 )[0] UpperCAmelCase_ =((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue UpperCAmelCase_ =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_lowerCAmelCase )[0] self.assertTrue(np.all(np.mean(_lowerCAmelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase ) - 1 ) < 1e-3 ) )
54
import random from typing import Any def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> list[Any]: for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ : Union[str, Any] = random.randint(0 ,len(SCREAMING_SNAKE_CASE_ ) - 1 ) lowercase__ : str = random.randint(0 ,len(SCREAMING_SNAKE_CASE_ ) - 1 ) lowercase__ , lowercase__ : Any = data[b], data[a] return data if __name__ == "__main__": __a : Tuple = [0, 1, 2, 3, 4, 5, 6, 7] __a : str = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
397
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowercase ( unittest.TestCase ): def __init__( self , A__ , A__=7 , A__=3 , A__=18 , A__=30 , A__=4_00 , A__=True , A__=None , A__=True , A__=None , A__=True , ) -> Dict: snake_case = size if size is not None else {'''shortest_edge''': 20} snake_case = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = do_center_crop snake_case = crop_size snake_case = do_flip_channel_order def UpperCamelCase ( self ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _lowercase ( __a , unittest.TestCase ): _UpperCAmelCase = MobileViTImageProcessor if is_vision_available() else None def UpperCamelCase ( self ) -> str: snake_case = MobileViTImageProcessingTester(self ) @property def UpperCamelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self ) -> Dict: snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , '''do_resize''' ) ) self.assertTrue(hasattr(A__ , '''size''' ) ) self.assertTrue(hasattr(A__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(A__ , '''center_crop''' ) ) self.assertTrue(hasattr(A__ , '''do_flip_channel_order''' ) ) def UpperCamelCase ( self ) -> Optional[Any]: snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def UpperCamelCase ( self ) -> Any: pass def UpperCamelCase ( self ) -> Dict: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ ) for image in image_inputs: self.assertIsInstance(A__ , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase ( self ) -> Dict: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , numpify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase ( self ) -> str: # Initialize image_processing snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , torchify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched snake_case = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
710
'''simple docstring''' import argparse import copy def __UpperCamelCase ( a : Union[str, Any] ) ->Tuple: snake_case = {} with open(a ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case = [] _list.append([line.split()[1], line.split()[2]] ) snake_case = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case = [] _list.append([line.split()[0], line.split()[2]] ) snake_case = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def __UpperCamelCase ( a : Dict , a : Tuple ) ->int: with open(a ) as f: snake_case = f.read(1 ) snake_case = start_node snake_case = [] snake_case = start_node snake_case = 0 while visiting not in first_solution: snake_case = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(a ) and k[0] not in first_solution: snake_case = k[1] snake_case = k[0] first_solution.append(a ) snake_case = distance_of_first_solution + int(a ) snake_case = best_node first_solution.append(a ) snake_case = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def __UpperCamelCase ( a : Optional[int] , a : str ) ->str: snake_case = [] for n in solution[1:-1]: snake_case = solution.index(a ) for kn in solution[1:-1]: snake_case = solution.index(a ) if n == kn: continue snake_case = copy.deepcopy(a ) snake_case = kn snake_case = n snake_case = 0 for k in _tmp[:-1]: snake_case = _tmp[_tmp.index(a ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case = distance + int(i[1] ) _tmp.append(a ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda a : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def __UpperCamelCase ( a : Any , a : Optional[Any] , a : int , a : Optional[int] , a : Union[str, Any] ) ->List[Any]: snake_case = 1 snake_case = first_solution snake_case = [] snake_case = distance_of_first_solution snake_case = solution while count <= iters: snake_case = find_neighborhood(a , a ) snake_case = 0 snake_case = neighborhood[index_of_best_solution] snake_case = len(a ) - 1 snake_case = False while not found: snake_case = 0 while i < len(a ): if best_solution[i] != solution[i]: snake_case = best_solution[i] snake_case = solution[i] break snake_case = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case = True snake_case = best_solution[:-1] snake_case = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case = cost snake_case = solution else: snake_case = index_of_best_solution + 1 snake_case = neighborhood[index_of_best_solution] if len(a ) >= size: tabu_list.pop(0 ) snake_case = count + 1 return best_solution_ever, best_cost def __UpperCamelCase ( a : Union[str, Any]=None ) ->Optional[Any]: snake_case = generate_neighbours(args.File ) snake_case , snake_case = generate_first_solution( args.File , a ) snake_case , snake_case = tabu_search( a , a , a , args.Iterations , args.Size , ) print(f"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
44
0
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class a__ : def __init__(self : Optional[int], __UpperCAmelCase : list[tuple[float, float]] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. SCREAMING_SNAKE_CASE : int = len(__UpperCAmelCase ) - 1 def lowercase__ (self : List[str], __UpperCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree, __UpperCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__UpperCAmelCase ), 5 ) == 1 return output_values def lowercase__ (self : Optional[int], __UpperCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE : Union[str, Any] = self.basis_function(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = 0.0 SCREAMING_SNAKE_CASE : str = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowercase__ (self : int, __UpperCAmelCase : float = 0.01 ) -> List[str]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore SCREAMING_SNAKE_CASE : list[float] = [] # x coordinates of points to plot SCREAMING_SNAKE_CASE : list[float] = [] # y coordinates of points to plot SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0 while t <= 1: SCREAMING_SNAKE_CASE : Optional[Any] = self.bezier_curve_function(__UpperCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size SCREAMING_SNAKE_CASE : Dict = [i[0] for i in self.list_of_points] SCREAMING_SNAKE_CASE : Any = [i[1] for i in self.list_of_points] plt.plot( __UpperCAmelCase, __UpperCAmelCase, color='''blue''', label='''Curve of Degree ''' + str(self.degree ), ) plt.scatter(__UpperCAmelCase, __UpperCAmelCase, color='''red''', label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
507
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): def lowercase__ (self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE : Tuple = DisjunctiveConstraint(__UpperCAmelCase ) self.assertTrue(isinstance(dc.token_ids, __UpperCAmelCase ) ) with self.assertRaises(__UpperCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def lowercase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCAmelCase ): DisjunctiveConstraint(__UpperCAmelCase ) # fails here def lowercase__ (self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveConstraint(__UpperCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = dc.update(1 ) SCREAMING_SNAKE_CASE : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = dc.update(2 ) SCREAMING_SNAKE_CASE : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = dc.update(3 ) SCREAMING_SNAKE_CASE : List[Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def lowercase__ (self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE : Union[str, Any] = DisjunctiveConstraint(__UpperCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
507
1
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( snake_case_ ): def __lt__( self , _lowerCAmelCase ): return self[-1] < other[-1] def __eq__( self , _lowerCAmelCase ): return self[-1] == other[-1] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: _lowerCAmelCase = [] # sort into stacks for element in collection: _lowerCAmelCase = Stack([element] ) _lowerCAmelCase = bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if i != len(_SCREAMING_SNAKE_CASE ): stacks[i].append(_SCREAMING_SNAKE_CASE ) else: stacks.append(_SCREAMING_SNAKE_CASE ) # use a heap-based merge to merge stack efficiently _lowerCAmelCase = merge(*(reversed(_SCREAMING_SNAKE_CASE ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase_ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase_ = [int(item) for item in user_input.split(",")] print(patience_sort(unsorted))
719
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCAmelCase ( snake_case_ ): def __lowerCAmelCase ( self ): _lowerCAmelCase = SMALL_MODEL_IDENTIFIER _lowerCAmelCase = '''pt''' _lowerCAmelCase = '''tf''' def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowerCAmelCase ) model_tf.save_pretrained(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''mock_framework''' # Framework provided - return whatever the user provides _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def __lowerCAmelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowerCAmelCase ) _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) _lowerCAmelCase = MagicMock(return_value=_lowerCAmelCase ) with patch('''transformers.onnx.features.is_tf_available''' , _lowerCAmelCase ), patch( '''transformers.onnx.features.is_torch_available''' , _lowerCAmelCase ): with self.assertRaises(_lowerCAmelCase ): _lowerCAmelCase = FeaturesManager.determine_framework(self.test_model )
664
0
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Dict ): """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : List[Any]=0 ): """simple docstring""" return sorted(__UpperCamelCase ,key=lambda __UpperCamelCase : x[column] ) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : str ,__UpperCamelCase : Optional[int]=float("inf" ) ): """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 ,__UpperCamelCase ): A_ = euclidean_distance_sqr(points[i] ,points[j] ) if current_dis < min_dis: A_ = current_dis return min_dis def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : str ,__UpperCamelCase : Optional[int]=float("inf" ) ): """simple docstring""" for i in range(min(6 ,points_counts - 1 ) ,__UpperCamelCase ): for j in range(max(0 ,i - 6 ) ,__UpperCamelCase ): A_ = euclidean_distance_sqr(points[i] ,points[j] ) if current_dis < min_dis: A_ = current_dis return min_dis def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : List[Any] ): """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(__UpperCamelCase ,__UpperCamelCase ) # recursion A_ = points_counts // 2 A_ = closest_pair_of_points_sqr( __UpperCamelCase ,points_sorted_on_y[:mid] ,__UpperCamelCase ) A_ = closest_pair_of_points_sqr( __UpperCamelCase ,points_sorted_on_y[mid:] ,points_counts - mid ) A_ = min(__UpperCamelCase ,__UpperCamelCase ) A_ = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(__UpperCamelCase ) A_ = dis_between_closest_in_strip( __UpperCamelCase ,len(__UpperCamelCase ) ,__UpperCamelCase ) return min(__UpperCamelCase ,__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ): """simple docstring""" A_ = column_based_sort(__UpperCamelCase ,column=0 ) A_ = column_based_sort(__UpperCamelCase ,column=1 ) return ( closest_pair_of_points_sqr( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ) ** 0.5 if __name__ == "__main__": __a :List[Any] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
86
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter SCREAMING_SNAKE_CASE : Union[str, Any] = "Create a default config file for Accelerate with only a few flags set." def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Optional[Any]="no" , SCREAMING_SNAKE_CASE_ : str = default_json_config_file , SCREAMING_SNAKE_CASE_ : bool = False ): """simple docstring""" a_ : Optional[Any] = Path(SCREAMING_SNAKE_CASE_ ) path.parent.mkdir(parents=SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False a_ : Tuple = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) a_ : str = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): a_ : Union[str, Any] = torch.cuda.device_count() a_ : Any = num_gpus a_ : Union[str, Any] = False if num_gpus > 1: a_ : str = """MULTI_GPU""" else: a_ : List[str] = """NO""" elif is_xpu_available() and use_xpu: a_ : List[Any] = torch.xpu.device_count() a_ : List[str] = num_xpus a_ : List[Any] = False if num_xpus > 1: a_ : List[str] = """MULTI_XPU""" else: a_ : Union[str, Any] = """NO""" elif is_npu_available(): a_ : Tuple = torch.npu.device_count() a_ : Union[str, Any] = num_npus a_ : List[Any] = False if num_npus > 1: a_ : List[str] = """MULTI_NPU""" else: a_ : Optional[int] = """NO""" else: a_ : List[str] = 0 a_ : Optional[int] = True a_ : Optional[Any] = 1 a_ : List[str] = """NO""" a_ : int = ClusterConfig(**SCREAMING_SNAKE_CASE_ ) config.to_json_file(SCREAMING_SNAKE_CASE_ ) return path def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" a_ : Dict = parser.add_parser("""default""" , parents=SCREAMING_SNAKE_CASE_ , help=SCREAMING_SNAKE_CASE_ , formatter_class=SCREAMING_SNAKE_CASE_ ) parser.add_argument( """--config_file""" , default=SCREAMING_SNAKE_CASE_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=SCREAMING_SNAKE_CASE_ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) return parser def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" a_ : int = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
419
0
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } __SCREAMING_SNAKE_CASE =[ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE_ = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: SCREAMING_SNAKE_CASE_ = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: SCREAMING_SNAKE_CASE_ = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE_ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE_ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE_ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE_ = value else: SCREAMING_SNAKE_CASE_ = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def a (_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = fairseq_model.state_dict() SCREAMING_SNAKE_CASE_ = hf_model.feature_extractor SCREAMING_SNAKE_CASE_ = hf_model.adapter for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE_ = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE_ = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE_ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE_ = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE_ = mapped_key.replace('''*''' , _lowerCAmelCase ) if "weight_g" in name: SCREAMING_SNAKE_CASE_ = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE_ = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE_ = '''bias''' elif "weight" in name: SCREAMING_SNAKE_CASE_ = '''weight''' else: SCREAMING_SNAKE_CASE_ = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE_ = name.split('''.''' ) SCREAMING_SNAKE_CASE_ = int(items[0] ) SCREAMING_SNAKE_CASE_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE_ = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE_ = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) SCREAMING_SNAKE_CASE_ = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE_ = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = full_name.split('''adaptor.''' )[-1] SCREAMING_SNAKE_CASE_ = name.split('''.''' ) if items[1].isdigit(): SCREAMING_SNAKE_CASE_ = int(items[1] ) else: SCREAMING_SNAKE_CASE_ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." SCREAMING_SNAKE_CASE_ = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." SCREAMING_SNAKE_CASE_ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." SCREAMING_SNAKE_CASE_ = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." SCREAMING_SNAKE_CASE_ = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." SCREAMING_SNAKE_CASE_ = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." SCREAMING_SNAKE_CASE_ = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) def a (_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = emb.weight.shape SCREAMING_SNAKE_CASE_ = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = emb.weight.data return lin_layer @torch.no_grad() def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): SCREAMING_SNAKE_CASE_ = WavaVecaConfig.from_pretrained( _lowerCAmelCase , add_adapter=_lowerCAmelCase , adapter_stride=_lowerCAmelCase , adapter_kernel_size=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , output_hidden_size=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = MBartConfig.from_pretrained(_lowerCAmelCase ) # load model SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) SCREAMING_SNAKE_CASE_ = model[0].eval() # load feature extractor SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(_lowerCAmelCase , use_auth_token=_lowerCAmelCase ) # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE_ = WavaVecaModel(_lowerCAmelCase ) recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) # load decoder weights SCREAMING_SNAKE_CASE_ = MBartForCausalLM(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) SCREAMING_SNAKE_CASE_ = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = MBartaaTokenizer(_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE_ = tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ = tokenizer.bos_token_id SCREAMING_SNAKE_CASE_ = tokenizer.eos_token_id SCREAMING_SNAKE_CASE_ = '''mbart50''' SCREAMING_SNAKE_CASE_ = '''wav2vec2''' SCREAMING_SNAKE_CASE_ = tokenizer.eos_token_id SCREAMING_SNAKE_CASE_ = 2_5_0_0_0_4 SCREAMING_SNAKE_CASE_ = tokenizer.eos_token_id SCREAMING_SNAKE_CASE_ = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1_024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=250_004, type=int, help="""`decoder_start_token_id` of model config""") __SCREAMING_SNAKE_CASE =parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
716
def a (_lowerCAmelCase ): if number > 0: raise ValueError('''input must be a negative integer''' ) SCREAMING_SNAKE_CASE_ = len(bin(_lowerCAmelCase )[3:] ) SCREAMING_SNAKE_CASE_ = bin(abs(_lowerCAmelCase ) - (1 << binary_number_length) )[3:] SCREAMING_SNAKE_CASE_ = ( ( '''1''' + '''0''' * (binary_number_length - len(_lowerCAmelCase )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
89
0
from typing import Dict from .base import GenericTensor, Pipeline class lowerCamelCase_ ( lowerCamelCase ): def A ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" if tokenize_kwargs is None: __magic_name__ :List[str] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __magic_name__ :List[Any] = truncation __magic_name__ :Dict = tokenize_kwargs __magic_name__ :str = {} if return_tensors is not None: __magic_name__ :Any = return_tensors return preprocess_params, {}, postprocess_params def A ( self , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" __magic_name__ :str = self.framework __magic_name__ :Optional[Any] = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) return model_inputs def A ( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[Any] = self.model(**__lowerCAmelCase ) return model_outputs def A ( self , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return super().__call__(*__lowerCAmelCase , **__lowerCAmelCase )
0
from sklearn.metrics import matthews_corrcoef import datasets SCREAMING_SNAKE_CASE__ : Optional[Any] = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ SCREAMING_SNAKE_CASE__ : Union[str, Any] = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ SCREAMING_SNAKE_CASE__ : int = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def A ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(__lowerCAmelCase , __lowerCAmelCase , sample_weight=__lowerCAmelCase ) ), }
0
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : List[Any] = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: snake_case__ : Optional[Any] = 1024 snake_case__ : Union[str, Any] = 4096 snake_case__ : Any = 24 snake_case__ : int = 16 snake_case__ : Dict = [5, 11, 17, 23] snake_case__ : List[str] = [256, 512, 1024, 1024] snake_case__ : Optional[Any] = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: snake_case__ : int = 768 snake_case__ : Tuple = [1, 1, 1, 0.5] snake_case__ : Union[str, Any] = [256, 512, 768, 768] snake_case__ : Optional[int] = 150 snake_case__ : Any = 16 snake_case__ : Optional[Any] = (1, 384, 384) snake_case__ : int = False snake_case__ : List[str] = 'project' if "ade" in checkpoint_url: snake_case__ : List[str] = True snake_case__ : List[str] = 768 snake_case__ : Optional[int] = [1, 1, 1, 0.5] snake_case__ : Optional[Any] = 150 snake_case__ : int = 16 snake_case__ : Any = 'huggingface/label-files' snake_case__ : Optional[Any] = 'ade20k-id2label.json' snake_case__ : Tuple = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) snake_case__ : List[str] = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : int = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = [1, 150, 480, 480] return config, expected_shape def _lowerCAmelCase ( __lowerCAmelCase ) -> Dict: """simple docstring""" snake_case__ : Union[str, Any] = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase ) -> Any: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): snake_case__ : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: snake_case__ : str = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: snake_case__ : Union[str, Any] = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: snake_case__ : Union[str, Any] = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: snake_case__ : Union[str, Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: snake_case__ : Optional[Any] = name.replace('''proj''' , '''projection''' ) if "blocks" in name: snake_case__ : Optional[int] = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: snake_case__ : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case__ : Any = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: snake_case__ : Tuple = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: snake_case__ : Union[str, Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: snake_case__ : List[str] = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: snake_case__ : Any = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: snake_case__ : List[Any] = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: snake_case__ : Optional[Any] = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: snake_case__ : List[str] = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: snake_case__ : Dict = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: snake_case__ : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 snake_case__ : Optional[Any] = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: snake_case__ : Dict = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: snake_case__ : str = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: snake_case__ : Union[str, Any] = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: snake_case__ : Optional[Any] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: snake_case__ : Tuple = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: snake_case__ : str = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: snake_case__ : Dict = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: snake_case__ : Tuple = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: snake_case__ : Optional[int] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: snake_case__ : Any = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: snake_case__ : Optional[int] = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: snake_case__ : str = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: snake_case__ : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: snake_case__ : Tuple = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: snake_case__ : str = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: snake_case__ : Optional[int] = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: snake_case__ : List[str] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: snake_case__ : List[str] = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: snake_case__ : Optional[Any] = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: snake_case__ : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: snake_case__ : List[Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: snake_case__ : List[str] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: snake_case__ : List[str] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: snake_case__ : Any = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: snake_case__ : List[str] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: snake_case__ : int = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: snake_case__ : Optional[int] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: snake_case__ : Union[str, Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: snake_case__ : int = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: snake_case__ : str = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Any = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) snake_case__ : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Any = in_proj_weight[: config.hidden_size, :] snake_case__ : Dict = in_proj_bias[: config.hidden_size] snake_case__ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : Tuple = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : str = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" snake_case__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : Tuple = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: """simple docstring""" snake_case__ : int = get_dpt_config(__lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") snake_case__ : Any = torch.load(__lowerCAmelCase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(__lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): snake_case__ : int = state_dict.pop(__lowerCAmelCase ) snake_case__ : List[Any] = val # read in qkv matrices read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model snake_case__ : Optional[Any] = DPTForSemanticSegmentation(__lowerCAmelCase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Check outputs on an image snake_case__ : str = 480 if 'ade' in checkpoint_url else 384 snake_case__ : Dict = DPTImageProcessor(size=__lowerCAmelCase ) snake_case__ : int = prepare_img() snake_case__ : Optional[int] = image_processor(__lowerCAmelCase , return_tensors='''pt''' ) # forward pass snake_case__ : List[Any] = model(**__lowerCAmelCase ).logits if 'ade' in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth if show_prediction: snake_case__ : str = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=__lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) A__ = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
717
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class a : def __init__( self :List[Any] ,__lowercase :Tuple ,__lowercase :List[Any]=1_3 ,__lowercase :List[Any]=7 ,__lowercase :int=True ,__lowercase :int=True ,__lowercase :Tuple=True ,__lowercase :int=True ,__lowercase :Dict=9_9 ,__lowercase :Any=3_2 ,__lowercase :Tuple=2 ,__lowercase :Union[str, Any]=4 ,__lowercase :Tuple=3_7 ,__lowercase :int="gelu" ,__lowercase :int=0.1 ,__lowercase :Dict=0.1 ,__lowercase :Optional[Any]=5_1_2 ,__lowercase :Optional[Any]=1_6 ,__lowercase :Optional[int]=2 ,__lowercase :Optional[int]=0.02 ,__lowercase :str=3 ,__lowercase :int=4 ,__lowercase :List[str]=None ,__lowercase :Union[str, Any]=0 ,): snake_case__ : List[str] = parent snake_case__ : int = batch_size snake_case__ : Any = seq_length snake_case__ : List[Any] = is_training snake_case__ : str = use_input_mask snake_case__ : str = use_token_type_ids snake_case__ : Dict = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Any = hidden_size snake_case__ : str = num_hidden_layers snake_case__ : int = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : int = hidden_act snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : Tuple = type_sequence_label_size snake_case__ : Any = initializer_range snake_case__ : List[str] = num_labels snake_case__ : str = num_choices snake_case__ : Optional[Any] = scope snake_case__ : str = projection_dim def __lowerCamelCase ( self :List[Any] ): snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ : List[Any] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py snake_case__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Any = None if self.use_token_type_ids: snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case__ : List[Any] = None snake_case__ : Optional[Any] = None snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case__ : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) snake_case__ : Optional[int] = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowercase ,initializer_range=self.initializer_range ,) snake_case__ : Optional[int] = DPRConfig(projection_dim=self.projection_dim ,**config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self :Tuple ,__lowercase :List[Any] ,__lowercase :Union[str, Any] ,__lowercase :Optional[int] ,__lowercase :Any ,__lowercase :Optional[int] ,__lowercase :Any ,__lowercase :Tuple ): snake_case__ : List[str] = TFDPRContextEncoder(config=__lowercase ) snake_case__ : Optional[int] = model(__lowercase ,attention_mask=__lowercase ,token_type_ids=__lowercase ) snake_case__ : Optional[int] = model(__lowercase ,token_type_ids=__lowercase ) snake_case__ : Dict = model(__lowercase ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self :Any ,__lowercase :List[str] ,__lowercase :List[str] ,__lowercase :Optional[Any] ,__lowercase :int ,__lowercase :List[Any] ,__lowercase :List[Any] ,__lowercase :Union[str, Any] ): snake_case__ : Dict = TFDPRQuestionEncoder(config=__lowercase ) snake_case__ : Any = model(__lowercase ,attention_mask=__lowercase ,token_type_ids=__lowercase ) snake_case__ : int = model(__lowercase ,token_type_ids=__lowercase ) snake_case__ : Optional[int] = model(__lowercase ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self :Optional[int] ,__lowercase :List[Any] ,__lowercase :str ,__lowercase :Tuple ,__lowercase :Any ,__lowercase :Optional[Any] ,__lowercase :List[Any] ,__lowercase :Tuple ): snake_case__ : int = TFDPRReader(config=__lowercase ) snake_case__ : Any = model(__lowercase ,attention_mask=__lowercase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape ,(self.batch_size,) ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : str = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Optional[int] = config_and_inputs snake_case__ : Optional[Any] = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Tuple = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __lowerCAmelCase : List[str] = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : List[Any] = False __lowerCAmelCase : int = False __lowerCAmelCase : Optional[int] = False def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : str = TFDPRModelTester(self ) snake_case__ : Union[str, Any] = ConfigTester(self ,config_class=__lowercase ,hidden_size=3_7 ) def __lowerCamelCase ( self :List[str] ): self.config_tester.run_common_tests() def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__lowercase ) def __lowerCamelCase ( self :List[str] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__lowercase ) def __lowerCamelCase ( self :str ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__lowercase ) @slow def __lowerCamelCase ( self :Union[str, Any] ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Union[str, Any] = TFDPRContextEncoder.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Tuple = TFDPRContextEncoder.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Tuple = TFDPRQuestionEncoder.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[int] = TFDPRReader.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_tf class a ( unittest.TestCase ): @slow def __lowerCamelCase ( self :List[str] ): snake_case__ : str = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) snake_case__ : Optional[int] = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] snake_case__ : Union[str, Any] = model(__lowercase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. snake_case__ : Optional[Any] = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
219
0
class __a : """simple docstring""" def __init__( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ =0 SCREAMING_SNAKE_CASE__ =0 SCREAMING_SNAKE_CASE__ ={} def __A ( self : Tuple ,_UpperCamelCase : int ) -> Optional[int]: '''simple docstring''' if vertex not in self.adjacency: SCREAMING_SNAKE_CASE__ ={} self.num_vertices += 1 def __A ( self : str ,_UpperCamelCase : str ,_UpperCamelCase : Tuple ,_UpperCamelCase : Any ) -> Any: '''simple docstring''' self.add_vertex(_UpperCamelCase ) self.add_vertex(_UpperCamelCase ) if head == tail: return SCREAMING_SNAKE_CASE__ =weight SCREAMING_SNAKE_CASE__ =weight def __A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.get_edges() for edge in edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =edge edges.remove((tail, head, weight) ) for i in range(len(_UpperCamelCase ) ): SCREAMING_SNAKE_CASE__ =list(edges[i] ) edges.sort(key=lambda _UpperCamelCase : e[2] ) for i in range(len(_UpperCamelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: SCREAMING_SNAKE_CASE__ =edges[i][2] + 1 for edge in edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =edge SCREAMING_SNAKE_CASE__ =weight SCREAMING_SNAKE_CASE__ =weight def __str__( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ ="""""" for tail in self.adjacency: for head in self.adjacency[tail]: SCREAMING_SNAKE_CASE__ =self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip("""\n""" ) def __A ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =[] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return self.adjacency.keys() @staticmethod def __A ( _UpperCamelCase : Union[str, Any]=None ,_UpperCamelCase : List[Any]=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ =Graph() if vertices is None: SCREAMING_SNAKE_CASE__ =[] if edges is None: SCREAMING_SNAKE_CASE__ =[] for vertex in vertices: g.add_vertex(_UpperCamelCase ) for edge in edges: g.add_edge(*_UpperCamelCase ) return g class __a : """simple docstring""" def __init__( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ ={} SCREAMING_SNAKE_CASE__ ={} def __len__( self : int ) -> Optional[int]: '''simple docstring''' return len(self.parent ) def __A ( self : Any ,_UpperCamelCase : Any ) -> Optional[int]: '''simple docstring''' if item in self.parent: return self.find(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =item SCREAMING_SNAKE_CASE__ =0 return item def __A ( self : Union[str, Any] ,_UpperCamelCase : Tuple ) -> List[Any]: '''simple docstring''' if item not in self.parent: return self.make_set(_UpperCamelCase ) if item != self.parent[item]: SCREAMING_SNAKE_CASE__ =self.find(self.parent[item] ) return self.parent[item] def __A ( self : Any ,_UpperCamelCase : Any ,_UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ =self.find(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =self.find(_UpperCamelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: SCREAMING_SNAKE_CASE__ =roota return roota if self.rank[roota] < self.rank[roota]: SCREAMING_SNAKE_CASE__ =roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 SCREAMING_SNAKE_CASE__ =roota return roota return None @staticmethod def __A ( _UpperCamelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =graph.num_vertices SCREAMING_SNAKE_CASE__ =Graph.UnionFind() SCREAMING_SNAKE_CASE__ =[] while num_components > 1: SCREAMING_SNAKE_CASE__ ={} for vertex in graph.get_vertices(): SCREAMING_SNAKE_CASE__ =-1 SCREAMING_SNAKE_CASE__ =graph.get_edges() for edge in edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =edge edges.remove((tail, head, weight) ) for edge in edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =edge SCREAMING_SNAKE_CASE__ =union_find.find(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =union_find.find(_UpperCamelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE__ =[head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE__ =[head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =cheap_edge[vertex] if union_find.find(_UpperCamelCase ) != union_find.find(_UpperCamelCase ): union_find.union(_UpperCamelCase ,_UpperCamelCase ) mst_edges.append(cheap_edge[vertex] ) SCREAMING_SNAKE_CASE__ =num_components - 1 SCREAMING_SNAKE_CASE__ =Graph.build(edges=_UpperCamelCase ) return mst
151
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCAmelCase_ ( __UpperCamelCase="" ): SCREAMING_SNAKE_CASE__ =tempfile.mkdtemp() return os.path.join(__UpperCamelCase, str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class __a ( unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =torch.rand(1_2 ,dtype=torch.floataa ) - 0.5 SCREAMING_SNAKE_CASE__ =AgentAudio(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_UpperCamelCase ,agent_type.to_raw() ,atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(_UpperCamelCase ) ) # Ensure that the file contains the same value as the original tensor SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =sf.read(_UpperCamelCase ) self.assertTrue(torch.allclose(_UpperCamelCase ,torch.tensor(_UpperCamelCase ) ,atol=1e-4 ) ) def __A ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ =torch.rand(1_2 ,dtype=torch.floataa ) - 0.5 SCREAMING_SNAKE_CASE__ =get_new_path(suffix=""".wav""" ) sf.write(_UpperCamelCase ,_UpperCamelCase ,1_6_0_0_0 ) SCREAMING_SNAKE_CASE__ =AgentAudio(_UpperCamelCase ) self.assertTrue(torch.allclose(_UpperCamelCase ,agent_type.to_raw() ,atol=1e-4 ) ) self.assertEqual(agent_type.to_string() ,_UpperCamelCase ) @require_vision @require_torch class __a ( unittest.TestCase ): """simple docstring""" def __A ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =torch.randint(0 ,2_5_6 ,(6_4, 6_4, 3) ) SCREAMING_SNAKE_CASE__ =AgentImage(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_UpperCamelCase ,agent_type._tensor ,atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() ,Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_UpperCamelCase ) ) def __A ( self : Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ =Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" SCREAMING_SNAKE_CASE__ =Image.open(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =AgentImage(_UpperCamelCase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_UpperCamelCase ) ) def __A ( self : Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" SCREAMING_SNAKE_CASE__ =Image.open(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =AgentImage(_UpperCamelCase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_UpperCamelCase ) ) class __a ( unittest.TestCase ): """simple docstring""" def __A ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ ="""Hey!""" SCREAMING_SNAKE_CASE__ =AgentText(_UpperCamelCase ) self.assertEqual(_UpperCamelCase ,agent_type.to_string() ) self.assertEqual(_UpperCamelCase ,agent_type.to_raw() ) self.assertEqual(_UpperCamelCase ,_UpperCamelCase )
151
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _SCREAMING_SNAKE_CASE( _snake_case ): A_ : Dict = ['image_processor', 'tokenizer'] A_ : Optional[Any] = 'CLIPImageProcessor' A_ : Union[str, Any] = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self : int , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ :Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE__ :Optional[int] = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE__ :Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self : Optional[Any] , UpperCamelCase_ : str=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[str] ) -> Optional[Any]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: SCREAMING_SNAKE_CASE__ :int = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if images is not None: SCREAMING_SNAKE_CASE__ :Tuple = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ :Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ ) def __lowerCamelCase ( self : Optional[Any] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : Optional[Any] ) -> Any: return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __lowerCamelCase ( self : Optional[Any] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : str ) -> Union[str, Any]: return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __lowerCamelCase ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ :str = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
701
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _SCREAMING_SNAKE_CASE: A_ : int A_ : int class _SCREAMING_SNAKE_CASE: def __init__( self : str , UpperCamelCase_ : int ) -> Any: SCREAMING_SNAKE_CASE__ :list[list[Edge]] = [[] for _ in range(UpperCamelCase_ )] SCREAMING_SNAKE_CASE__ :List[Any] = size def __getitem__( self : Optional[Any] , UpperCamelCase_ : int ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def __lowerCamelCase ( self : Optional[int] ) -> Any: return self._size def __lowerCamelCase ( self : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> Dict: if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(UpperCamelCase_ , UpperCamelCase_ ) ) def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> int | None: SCREAMING_SNAKE_CASE__ :int = deque([start_vertex] ) SCREAMING_SNAKE_CASE__ :list[int | None] = [None] * self.size SCREAMING_SNAKE_CASE__ :List[str] = 0 while queue: SCREAMING_SNAKE_CASE__ :Any = queue.popleft() SCREAMING_SNAKE_CASE__ :Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: SCREAMING_SNAKE_CASE__ :Tuple = current_distance + edge.weight SCREAMING_SNAKE_CASE__ :str = distances[edge.destination_vertex] if ( isinstance(UpperCamelCase_ , UpperCamelCase_ ) and new_distance >= dest_vertex_distance ): continue SCREAMING_SNAKE_CASE__ :Optional[int] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
320
0
"""simple docstring""" def __lowerCamelCase ( a_ : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") lowerCamelCase_ = int(input("Enter number: ").strip()) print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
498
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCamelCase_ = 1.0_5457_1817e-34 # unit of ℏ : J * s lowerCamelCase_ = 3e8 # unit of c : m * s^-1 def SCREAMING_SNAKE_CASE_ ( __A : float , __A : float , __A : float ) -> dict[str, float]: if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: _SCREAMING_SNAKE_CASE = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_40 * (distance) ** 4 ) return {"force": force} elif area == 0: _SCREAMING_SNAKE_CASE = (2_40 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _SCREAMING_SNAKE_CASE = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
418
0
'''simple docstring''' def __A ( lowerCamelCase_ ): """simple docstring""" if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True SCREAMING_SNAKE_CASE : Optional[int] = 4 SCREAMING_SNAKE_CASE : Tuple = (1 << p) - 1 for _ in range(p - 2 ): SCREAMING_SNAKE_CASE : Optional[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
79
'''simple docstring''' __UpperCAmelCase = [ """Audio""", """Array2D""", """Array3D""", """Array4D""", """Array5D""", """ClassLabel""", """Features""", """Sequence""", """Value""", """Image""", """Translation""", """TranslationVariableLanguages""", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
79
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase : Dict = { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] = [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __lowercase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
315
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowercase : Union[str, Any] = 16 __lowercase : int = 32 def lowercase ( __A : Optional[Any] ) -> Dict: '''simple docstring''' return int(x / 2**20 ) class _A : '''simple docstring''' def __enter__( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero snake_case : Union[str, Any] = torch.cuda.memory_allocated() return self def __exit__( self ,*SCREAMING_SNAKE_CASE_ ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() snake_case : int = torch.cuda.memory_allocated() snake_case : str = torch.cuda.max_memory_allocated() snake_case : List[Any] = bamb(self.end - self.begin ) snake_case : str = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowercase ( __A : Accelerator , __A : int = 16 , __A : str = "bert-base-cased" , __A : int = 320 , __A : int = 160 , ) -> Union[str, Any]: '''simple docstring''' snake_case : List[Any] = AutoTokenizer.from_pretrained(__A ) snake_case : Optional[Any] = load_dataset( """glue""" , """mrpc""" , split={"""train""": f"""train[:{n_train}]""", """validation""": f"""validation[:{n_val}]"""} ) def tokenize_function(__A : List[str] ): # max_length=None => use the model max length (it's actually the default) snake_case : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__A , max_length=__A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case : Dict = datasets.map( __A , batched=__A , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case : List[str] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__A , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__A , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. snake_case : Dict = DataLoader( tokenized_datasets["""train"""] , shuffle=__A , collate_fn=__A , batch_size=__A ) snake_case : Optional[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__A , collate_fn=__A , batch_size=__A ) return train_dataloader, eval_dataloader def lowercase ( __A : Optional[Any] , __A : Optional[Any] ) -> Any: '''simple docstring''' snake_case : int = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case : Any = config["""lr"""] snake_case : Tuple = int(config["""num_epochs"""] ) snake_case : Union[str, Any] = int(config["""seed"""] ) snake_case : List[Any] = int(config["""batch_size"""] ) snake_case : Optional[int] = args.model_name_or_path set_seed(__A ) snake_case , snake_case : Any = get_dataloaders(__A , __A , __A , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case : List[str] = AutoModelForSequenceClassification.from_pretrained(__A , return_dict=__A ) # Instantiate optimizer snake_case : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case : Union[str, Any] = optimizer_cls(params=model.parameters() , lr=__A ) if accelerator.state.deepspeed_plugin is not None: snake_case : Dict = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: snake_case : List[Any] = 1 snake_case : Tuple = (len(__A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case : Optional[int] = get_linear_schedule_with_warmup( optimizer=__A , num_warmup_steps=0 , num_training_steps=__A , ) else: snake_case : int = DummyScheduler(__A , total_num_steps=__A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case , snake_case , snake_case , snake_case , snake_case : int = accelerator.prepare( __A , __A , __A , __A , __A ) # We need to keep track of how many total steps we have iterated over snake_case : Optional[Any] = 0 # We also need to keep track of the stating epoch so files are named properly snake_case : Optional[int] = 0 # Now we train the model snake_case : Optional[int] = {} for epoch in range(__A , __A ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(__A ): snake_case : Dict = model(**__A ) snake_case : str = outputs.loss snake_case : Any = loss / gradient_accumulation_steps accelerator.backward(__A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) snake_case : Dict = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(__A , __A ) def lowercase ( ) -> Tuple: '''simple docstring''' snake_case : int = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__A , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__A , ) parser.add_argument( """--output_dir""" , type=__A , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=__A , default=__A , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=__A , default=320 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=__A , default=160 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=__A , default=1 , help="""Number of train epochs.""" , ) snake_case : Optional[Any] = parser.parse_args() snake_case : Optional[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__A , __A ) if __name__ == "__main__": main()
315
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ (SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowercase : str = (DDPMScheduler,) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , **_a:str ): snake_case__ = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase_ ) return config def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self:str ): self.check_over_configs(thresholding=UpperCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**UpperCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**UpperCAmelCase_ ) snake_case__ = len(UpperCAmelCase_ ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter snake_case__ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase_ ) ): # 1. predict noise residual snake_case__ = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict previous mean of sample x_t-1 snake_case__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(UpperCAmelCase_ ) ) snake_case__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case__ = scheduler_class(**UpperCAmelCase_ ) snake_case__ = len(UpperCAmelCase_ ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter snake_case__ = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase_ ) ): # 1. predict noise residual snake_case__ = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict previous mean of sample x_t-1 snake_case__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(UpperCAmelCase_ ) ) snake_case__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**UpperCAmelCase_ ) snake_case__ = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) snake_case__ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_ ): if i == len(UpperCAmelCase_ ) - 1: snake_case__ = -1 else: snake_case__ = timesteps[i + 1] snake_case__ = scheduler.previous_timestep(UpperCAmelCase_ ) snake_case__ = prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**UpperCAmelCase_ ) snake_case__ = [1_00, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**UpperCAmelCase_ ) snake_case__ = [1_00, 87, 50, 1, 0] snake_case__ = len(UpperCAmelCase_ ) with self.assertRaises(UpperCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**UpperCAmelCase_ ) snake_case__ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ )
33
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=7_68 ): super().__init__(UpperCAmelCase_ ) snake_case_ = proj_size snake_case_ = CLIPVisionModel(UpperCAmelCase_ ) snake_case_ = PaintByExampleMapper(UpperCAmelCase_ ) snake_case_ = nn.LayerNorm(config.hidden_size ) snake_case_ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling snake_case_ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_=False ): snake_case_ = self.model(pixel_values=UpperCAmelCase_ ) snake_case_ = clip_output.pooler_output snake_case_ = self.mapper(latent_states[:, None] ) snake_case_ = self.final_layer_norm(UpperCAmelCase_ ) snake_case_ = self.proj_out(UpperCAmelCase_ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase_ ): super().__init__() snake_case_ = (config.num_hidden_layers + 1) // 5 snake_case_ = config.hidden_size snake_case_ = 1 snake_case_ = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , activation_fn="gelu" , attention_bias=UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ) ] ) def _lowercase ( self , UpperCAmelCase_ ): for block in self.blocks: snake_case_ = block(UpperCAmelCase_ ) return hidden_states
508
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): A_ : str = (DDIMParallelScheduler,) A_ : Optional[int] = (('eta', 0.0), ('num_inference_steps', 50)) def a (self : Union[str, Any] , **a__ : int ): """simple docstring""" __snake_case = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**a__ ) return config def a (self : Any , **a__ : Optional[Any] ): """simple docstring""" __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config(**a__ ) __snake_case = scheduler_class(**a__ ) __snake_case = 10, 0.0 __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter scheduler.set_timesteps(a__ ) for t in scheduler.timesteps: __snake_case = model(a__ , a__ ) __snake_case = scheduler.step(a__ , a__ , a__ , a__ ).prev_sample return sample def a (self : Union[str, Any] ): """simple docstring""" for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def a (self : Union[str, Any] ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a__ ) __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config(steps_offset=1 ) __snake_case = scheduler_class(**a__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def a (self : str ): """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=a__ , beta_end=a__ ) def a (self : Tuple ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a__ ) def a (self : List[Any] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def a (self : List[str] ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=a__ ) def a (self : str ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=a__ ) def a (self : Union[str, Any] ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=a__ ) def a (self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=a__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=a__ , prediction_type=a__ , sample_max_value=a__ , ) def a (self : Union[str, Any] ): """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=a__ ) def a (self : Union[str, Any] ): """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=a__ , num_inference_steps=a__ ) def a (self : Optional[int] ): """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=a__ , eta=a__ ) def a (self : str ): """simple docstring""" __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**a__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4_7_7_1 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2_4_6_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.0_2 ) ) < 1E-5 def a (self : List[str] ): """simple docstring""" __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**a__ ) __snake_case = 10, 0.0 scheduler.set_timesteps(a__ ) __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter __snake_case = self.dummy_sample_deter + 0.1 __snake_case = self.dummy_sample_deter - 0.1 __snake_case = samplea.shape[0] __snake_case = torch.stack([samplea, samplea, samplea] , dim=0 ) __snake_case = torch.arange(a__ )[0:3, None].repeat(1 , a__ ) __snake_case = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __snake_case = scheduler.batch_step_no_noise(a__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , a__ ) __snake_case = torch.sum(torch.abs(a__ ) ) __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 1_1_4_7.7_9_0_4 ) < 1E-2 assert abs(result_mean.item() - 0.4_9_8_2 ) < 1E-3 def a (self : Optional[int] ): """simple docstring""" __snake_case = self.full_loop() __snake_case = torch.sum(torch.abs(a__ ) ) __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1E-3 def a (self : Dict ): """simple docstring""" __snake_case = self.full_loop(prediction_type='''v_prediction''' ) __snake_case = torch.sum(torch.abs(a__ ) ) __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 5_2.5_3_0_2 ) < 1E-2 assert abs(result_mean.item() - 0.0_6_8_4 ) < 1E-3 def a (self : int ): """simple docstring""" __snake_case = self.full_loop(set_alpha_to_one=a__ , beta_start=0.0_1 ) __snake_case = torch.sum(torch.abs(a__ ) ) __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_5_1 ) < 1E-3 def a (self : Union[str, Any] ): """simple docstring""" __snake_case = self.full_loop(set_alpha_to_one=a__ , beta_start=0.0_1 ) __snake_case = torch.sum(torch.abs(a__ ) ) __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_4_1 ) < 1E-3
719
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A_ : List[str] = inspect.getfile(accelerate.test_utils ) A_ : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_cli.py'] ) A_ : int = ['accelerate', 'launch'] A_ : Tuple = Path.home() / '.cache/huggingface/accelerate' A_ : List[Any] = 'default_config.yaml' A_ : Optional[Any] = config_folder / config_file A_ : Union[str, Any] = config_folder / '_default_config.yaml' A_ : int = Path('tests/test_configs' ) @classmethod def a (cls : Any ): """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def a (cls : List[str] ): """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def a (self : List[str] ): """simple docstring""" __snake_case = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def a (self : str ): """simple docstring""" for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=a__ ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(a__ ), self.test_file_path] , env=os.environ.copy() ) def a (self : int ): """simple docstring""" execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A_ : List[Any] = 'test-tpu' A_ : List[str] = 'us-central1-a' A_ : int = 'ls' A_ : Tuple = ['accelerate', 'tpu-config'] A_ : Union[str, Any] = 'cd /usr/share' A_ : int = 'tests/test_samples/test_command_file.sh' A_ : int = 'Running gcloud compute tpus tpu-vm ssh' def a (self : Any ): """simple docstring""" __snake_case = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=a__ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , a__ , ) def a (self : str ): """simple docstring""" __snake_case = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=a__ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , a__ , ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=a__ ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , a__ , ) def a (self : str ): """simple docstring""" __snake_case = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=a__ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , a__ , ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=a__ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , a__ , ) def a (self : List[Any] ): """simple docstring""" __snake_case = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=a__ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , a__ , ) def a (self : Any ): """simple docstring""" __snake_case = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=a__ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , a__ , ) def a (self : Any ): """simple docstring""" __snake_case = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=a__ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , a__ , ) def a (self : Tuple ): """simple docstring""" __snake_case = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=a__ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , a__ , )
388
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Dict = 'data2vec-text' def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.0_2 , _UpperCamelCase=1E-1_2 , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , _UpperCamelCase="absolute" , _UpperCamelCase=True , _UpperCamelCase=None , **_UpperCamelCase , ): """simple docstring""" super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) _lowercase : str = vocab_size _lowercase : str = hidden_size _lowercase : Optional[int] = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Optional[int] = hidden_act _lowercase : str = intermediate_size _lowercase : List[str] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Optional[int] = initializer_range _lowercase : Tuple = layer_norm_eps _lowercase : int = position_embedding_type _lowercase : str = use_cache _lowercase : Dict = classifier_dropout class a__ ( lowerCamelCase_ ): @property def _lowerCamelCase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowercase : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: _lowercase : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
245
'''simple docstring''' def _A ( snake_case = 60_08_51_47_51_43 ) -> int: try: _lowercase : str = int(snake_case ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) _lowercase : Union[str, Any] = 2 _lowercase : Dict = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 _lowercase : Optional[Any] = i while n % i == 0: _lowercase : Dict = n // i i += 1 return int(snake_case ) if __name__ == "__main__": print(F'''{solution() = }''')
245
1
from __future__ import annotations def lowerCAmelCase__(__snake_case ,__snake_case ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = 0 lowerCamelCase__ = len(_lowerCamelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCamelCase__ = i + 1 else: lowerCamelCase__ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
718
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _a = logging.get_logger(__name__) class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
29
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE : str = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A_ = state_dict.pop(__UpperCamelCase ) A_ = val def lowerCamelCase_ ( __UpperCamelCase ): A_ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A_ = value else: A_ = value return new_state_dict def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase=False ): A_ = '''''' if is_panoptic: A_ = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) A_ = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[:2_56, :] A_ = in_proj_bias[:2_56] A_ = in_proj_weight[2_56:5_12, :] A_ = in_proj_bias[2_56:5_12] A_ = in_proj_weight[-2_56:, :] A_ = in_proj_bias[-2_56:] def lowerCamelCase_ ( ): A_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A_ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): A_ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A_ = '''resnet101''' if "dc5" in model_name: A_ = True A_ = '''panoptic''' in model_name if is_panoptic: A_ = 2_50 else: A_ = 91 A_ = '''huggingface/label-files''' A_ = '''coco-detection-id2label.json''' A_ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} # load image processor A_ = '''coco_panoptic''' if is_panoptic else '''coco_detection''' A_ = ConditionalDetrImageProcessor(format=__UpperCamelCase ) # prepare image A_ = prepare_img() A_ = image_processor(images=__UpperCamelCase , return_tensors='''pt''' ) A_ = encoding['''pixel_values'''] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub A_ = torch.hub.load('''DeppMeng/ConditionalDETR''' , __UpperCamelCase , pretrained=__UpperCamelCase ).eval() A_ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A_ = '''conditional_detr.''' + src rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A_ = rename_backbone_keys(__UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCamelCase , is_panoptic=__UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): A_ = state_dict.pop(__UpperCamelCase ) A_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A_ = state_dict.pop(__UpperCamelCase ) A_ = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: A_ = state_dict.pop(__UpperCamelCase ) A_ = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A_ = state_dict.pop(__UpperCamelCase ) A_ = val # finally, create HuggingFace model and load state dict A_ = ConditionalDetrForSegmentation(__UpperCamelCase ) if is_panoptic else ConditionalDetrForObjectDetection(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() model.push_to_hub(repo_id=__UpperCamelCase , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion A_ = conditional_detr(__UpperCamelCase ) A_ = model(__UpperCamelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
141
def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__UpperCamelCase , n - 1 , __UpperCamelCase ) * a) % mod else: A_ = binary_exponentiation(__UpperCamelCase , n / 2 , __UpperCamelCase ) return (b * b) % mod # a prime number SCREAMING_SNAKE_CASE : str = 701 SCREAMING_SNAKE_CASE : int = 10_0000_0000 SCREAMING_SNAKE_CASE : Optional[Any] = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
141
1
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _UpperCAmelCase ( ) -> Generator[int, None, None]: _snake_case = {} _snake_case = 2 while True: _snake_case = factor_map.pop(__lowerCamelCase , __lowerCamelCase ) if factor: _snake_case = factor + prime while x in factor_map: x += factor _snake_case = factor else: _snake_case = prime yield prime prime += 1 def _UpperCAmelCase ( __lowerCamelCase : float = 1E1_0 ) -> int: _snake_case = sieve() _snake_case = 1 while True: _snake_case = next(__lowerCamelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__lowerCamelCase ) n += 2 if __name__ == "__main__": print(solution())
430
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _UpperCAmelCase ( ) -> Generator[int, None, None]: _snake_case = {} _snake_case = 2 while True: _snake_case = factor_map.pop(__lowerCamelCase , __lowerCamelCase ) if factor: _snake_case = factor + prime while x in factor_map: x += factor _snake_case = factor else: _snake_case = prime yield prime prime += 1 def _UpperCAmelCase ( __lowerCamelCase : float = 1E1_0 ) -> int: _snake_case = sieve() _snake_case = 1 while True: _snake_case = next(__lowerCamelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__lowerCamelCase ) n += 2 if __name__ == "__main__": print(solution())
430
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] )-> List[str]: '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(snake_case__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(snake_case__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
438
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: SCREAMING_SNAKE_CASE__ = torch.nn.Linear(1_0 , 1_0 ) SCREAMING_SNAKE_CASE__ = torch.optim.SGD(model.parameters() , 0.1 ) SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = accelerator.prepare(__UpperCAmelCase ) try: pickle.loads(pickle.dumps(__UpperCAmelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
196
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
286
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration a_ = { """tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""", """tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""", """base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""", """base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""", """small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""", """small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""", """medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""", """medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""", """large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""", """large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""", } def __lowerCAmelCase ( A_ : Optional[int] ) -> str: __UpperCAmelCase = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(A_ , A_ ) a_ = { """blocks""": """layers""", """mlp.0""": """fc1""", """mlp.2""": """fc2""", """mlp_ln""": """final_layer_norm""", """.attn.query""": """.self_attn.q_proj""", """.attn.key""": """.self_attn.k_proj""", """.attn.value""": """.self_attn.v_proj""", """.attn_ln""": """.self_attn_layer_norm""", """.attn.out""": """.self_attn.out_proj""", """.cross_attn.query""": """.encoder_attn.q_proj""", """.cross_attn.key""": """.encoder_attn.k_proj""", """.cross_attn.value""": """.encoder_attn.v_proj""", """.cross_attn_ln""": """.encoder_attn_layer_norm""", """.cross_attn.out""": """.encoder_attn.out_proj""", """decoder.ln.""": """decoder.layer_norm.""", """encoder.ln.""": """encoder.layer_norm.""", """token_embedding""": """embed_tokens""", """encoder.positional_embedding""": """encoder.embed_positions.weight""", """decoder.positional_embedding""": """decoder.embed_positions.weight""", """ln_post""": """layer_norm""", } def __lowerCAmelCase ( A_ : str ) -> List[str]: __UpperCAmelCase = list(s_dict.keys() ) for key in keys: __UpperCAmelCase = key for k, v in WHISPER_MAPPING.items(): if k in key: __UpperCAmelCase = new_key.replace(A_ , A_ ) print(F'''{key} -> {new_key}''' ) __UpperCAmelCase = s_dict.pop(A_ ) return s_dict def __lowerCAmelCase ( A_ : List[Any] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase = emb.weight.shape __UpperCAmelCase = nn.Linear(A_ , A_ , bias=A_ ) __UpperCAmelCase = emb.weight.data return lin_layer def __lowerCAmelCase ( A_ : str , A_ : str ) -> bytes: os.makedirs(A_ , exist_ok=A_ ) __UpperCAmelCase = os.path.basename(A_ ) __UpperCAmelCase = url.split("/" )[-2] __UpperCAmelCase = os.path.join(A_ , A_ ) if os.path.exists(A_ ) and not os.path.isfile(A_ ): raise RuntimeError(F'''{download_target} exists and is not a regular file''' ) if os.path.isfile(A_ ): __UpperCAmelCase = open(A_ , "rb" ).read() if hashlib.shaaaa(A_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(A_ ) as source, open(A_ , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=A_ , unit_divisor=10_24 ) as loop: while True: __UpperCAmelCase = source.read(81_92 ) if not buffer: break output.write(A_ ) loop.update(len(A_ ) ) __UpperCAmelCase = open(A_ , "rb" ).read() if hashlib.shaaaa(A_ ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def __lowerCAmelCase ( A_ : Dict , A_ : Optional[Any] ) -> Optional[Any]: if ".pt" not in checkpoint_path: __UpperCAmelCase = _download(_MODELS[checkpoint_path] ) else: __UpperCAmelCase = torch.load(A_ , map_location="cpu" ) __UpperCAmelCase = original_checkpoint["dims"] __UpperCAmelCase = original_checkpoint["model_state_dict"] __UpperCAmelCase = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(A_ ) rename_keys(A_ ) __UpperCAmelCase = True __UpperCAmelCase = state_dict["decoder.layers.0.fc1.weight"].shape[0] __UpperCAmelCase = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=A_ , decoder_ffn_dim=A_ , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) __UpperCAmelCase = WhisperForConditionalGeneration(A_ ) __UpperCAmelCase , __UpperCAmelCase = model.model.load_state_dict(A_ , strict=A_ ) if len(A_ ) > 0 and not set(A_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F''' but all the following weights are missing {missing}''' ) if tie_embeds: __UpperCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: __UpperCAmelCase = proj_out_weights model.save_pretrained(A_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
286
1
"""simple docstring""" A_ : Union[str, Any] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" A_ : Tuple = [{"type": "code", "content": INSTALL_CONTENT}] A_ : Optional[Any] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
196
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class lowerCamelCase (unittest.TestCase ): def __init__( self : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any]=1_3 , __UpperCAmelCase : Tuple=3_0 , __UpperCAmelCase : str=2 , __UpperCAmelCase : List[Any]=3 , __UpperCAmelCase : Any=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Optional[Any]=3_2 , __UpperCAmelCase : Any=5 , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : Tuple=3_7 , __UpperCAmelCase : List[str]="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : int=1_0 , __UpperCAmelCase : Any=0.02 , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ = num_patches + 1 def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) return config, pixel_values def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = FlaxViTModel(config=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE__ = (self.patch_size, self.patch_size) SCREAMING_SNAKE_CASE__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.type_sequence_label_size SCREAMING_SNAKE_CASE__ = FlaxViTForImageClassification(config=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = FlaxViTForImageClassification(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowerCamelCase (A__ ,unittest.TestCase ): lowerCamelCase__ : Tuple = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def SCREAMING_SNAKE_CASE ( self : int ) -> None: SCREAMING_SNAKE_CASE__ = FlaxViTModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) @jax.jit def model_jitted(__UpperCAmelCase : int , **__UpperCAmelCase : Tuple ): return model(pixel_values=__UpperCAmelCase , **__UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): SCREAMING_SNAKE_CASE__ = model_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE__ = model_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) SCREAMING_SNAKE_CASE__ = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(__UpperCAmelCase )
196
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = 1 __a = 3 __a = (3_2, 3_2) __a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) return model @property def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(UpperCAmelCase ) @property def __SCREAMING_SNAKE_CASE ( self ) -> str: def extract(*UpperCAmelCase , **UpperCAmelCase ): class a__ : def __init__( self ) -> Any: __a = torch.ones([0] ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Optional[Any]: self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = 'cpu' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet __a = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __a = 'A painting of a squirrel eating a burger' __a = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) __a = sd_pipe([prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) __a = output.images __a = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) __a = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __a = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = 'cpu' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet __a = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __a = 'A painting of a squirrel eating a burger' __a = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) __a = sd_pipe([prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) __a = output.images __a = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) __a = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __a = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase ) assert isinstance(UpperCAmelCase , UpperCAmelCase ) assert isinstance(pipe.scheduler , UpperCAmelCase ) assert pipe.safety_checker is None __a = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase ) __a = StableDiffusionPipeline.from_pretrained(UpperCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __a = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = self.dummy_cond_unet __a = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 __a = unet.half() __a = vae.half() __a = bert.half() # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __a = 'A painting of a squirrel eating a burger' __a = sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase ) __a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __a = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __a = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) __a = 4_0_0_3_6_6_0_3_4_6 __a = 7 # without safety guidance (sld_guidance_scale = 0) __a = torch.manual_seed(UpperCAmelCase ) __a = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) __a = torch.manual_seed(UpperCAmelCase ) __a = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> int: __a = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase ) __a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __a = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __a = 'padme amidala taking a bath artwork, safe for work, no nudity' __a = 2_7_3_4_9_7_1_7_5_5 __a = 7 __a = torch.manual_seed(UpperCAmelCase ) __a = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 __a = torch.manual_seed(UpperCAmelCase ) __a = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) __a = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) __a = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) __a = 1_0_4_4_3_5_5_2_3_4 __a = 1_2 __a = torch.manual_seed(UpperCAmelCase ) __a = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 __a = torch.manual_seed(UpperCAmelCase ) __a = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=UpperCAmelCase , num_inference_steps=5_0 , output_type='np' , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
246
def lowerCAmelCase( __lowerCamelCase ): __a = len(__lowerCamelCase ) while cur > 1: # Find the maximum number in arr __a = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __a = arr[mi::-1] + arr[mi + 1 : len(__lowerCamelCase )] # Reverse whole list __a = arr[cur - 1 :: -1] + arr[cur : len(__lowerCamelCase )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase_ : Optional[int] = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
246
1
from typing import List import numpy as np def lowerCamelCase ( UpperCamelCase : dict ) -> int: _lowerCamelCase = {key: len(UpperCamelCase ) for key, value in gen_kwargs.items() if isinstance(UpperCamelCase , UpperCamelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( 'Sharding is ambiguous for this dataset: ' + 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n' + '\n'.join(F"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ' + 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.' ) ) _lowerCamelCase = max(lists_lengths.values() , default=0 ) return max(1 , UpperCamelCase ) def lowerCamelCase ( UpperCamelCase : int , UpperCamelCase : int ) -> List[range]: _lowerCamelCase = [] for group_idx in range(UpperCamelCase ): _lowerCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowerCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowerCamelCase = range(UpperCamelCase , start + num_shards_to_add ) shards_indices_per_group.append(UpperCamelCase ) return shards_indices_per_group def lowerCamelCase ( UpperCamelCase : dict , UpperCamelCase : int ) -> List[dict]: _lowerCamelCase = _number_of_shards_in_gen_kwargs(UpperCamelCase ) if num_shards == 1: return [dict(UpperCamelCase )] else: _lowerCamelCase = _distribute_shards(num_shards=UpperCamelCase , max_num_jobs=UpperCamelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(UpperCamelCase , UpperCamelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(UpperCamelCase ) ) ] def lowerCamelCase ( UpperCamelCase : List[dict] ) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , UpperCamelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def lowerCamelCase ( UpperCamelCase : np.random.Generator , UpperCamelCase : dict ) -> dict: _lowerCamelCase = {len(UpperCamelCase ) for value in gen_kwargs.values() if isinstance(UpperCamelCase , UpperCamelCase )} _lowerCamelCase = {} for size in list_sizes: _lowerCamelCase = list(range(UpperCamelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowerCamelCase = dict(UpperCamelCase ) for key, value in shuffled_kwargs.items(): if isinstance(UpperCamelCase , UpperCamelCase ): _lowerCamelCase = [value[i] for i in indices_per_size[len(UpperCamelCase )]] return shuffled_kwargs
544
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def _snake_case ( *snake_case__ : Optional[int] , **snake_case__ : Tuple ) -> Optional[Any]: pass def lowerCamelCase ( UpperCamelCase : str ) -> Tuple: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. A = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _snake_case ( self : str , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Union[str, Any] ) -> Dict: _lowerCamelCase = pipeline( 'document-question-answering' , model=snake_case__ , tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = list(zip(*apply_tesseract(load_image(snake_case__ ) , snake_case__ , '' ) ) ) _lowerCamelCase = 'What is the placebo?' _lowerCamelCase = [ { 'image': load_image(snake_case__ ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def _snake_case ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ) -> Tuple: _lowerCamelCase = dqa_pipeline(snake_case__ , top_k=2 ) self.assertEqual( snake_case__ , [ [ {'score': ANY(snake_case__ ), 'answer': ANY(snake_case__ ), 'start': ANY(snake_case__ ), 'end': ANY(snake_case__ )}, {'score': ANY(snake_case__ ), 'answer': ANY(snake_case__ ), 'start': ANY(snake_case__ ), 'end': ANY(snake_case__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Union[str, Any] ) -> Optional[int]: _lowerCamelCase = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'How many cats are there?' _lowerCamelCase = [ {'score': 0.0001, 'answer': 'oy 2312/2019', 'start': 3_8, 'end': 3_9}, {'score': 0.0001, 'answer': 'oy 2312/2019 DUE', 'start': 3_8, 'end': 4_0}, ] _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual(nested_simplify(snake_case__ , decimals=4 ) , snake_case__ ) _lowerCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(snake_case__ , decimals=4 ) , snake_case__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably _lowerCamelCase = './tests/fixtures/tests_samples/COCO/000000039769.png' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual(snake_case__ , [] ) # We can optionnally pass directly the words and bounding boxes _lowerCamelCase = './tests/fixtures/tests_samples/COCO/000000039769.png' _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , words=snake_case__ , boxes=snake_case__ , top_k=2 ) self.assertEqual(snake_case__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Optional[int] ) -> List[Any]: _lowerCamelCase = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'What is the invoice number?' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9944, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0009, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) _lowerCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9944, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0009, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) _lowerCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {'score': 0.9944, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0009, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : int ) -> Optional[Any]: _lowerCamelCase = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=5_0 , ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'What is the invoice number?' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9974, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.9948, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) _lowerCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9974, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.9948, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) _lowerCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {'score': 0.9974, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.9948, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : int ) -> List[Any]: _lowerCamelCase = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=snake_case__ ) _lowerCamelCase = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=snake_case__ , revision='3dc6de3' , ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'What is the invoice number?' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.4251, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0819, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) _lowerCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.4251, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0819, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) _lowerCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {'score': 0.4251, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0819, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] ] * 2 , ) _lowerCamelCase = list(zip(*apply_tesseract(load_image(snake_case__ ) , snake_case__ , '' ) ) ) # This model should also work if `image` is set to None _lowerCamelCase = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.4251, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0819, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : Dict ) -> List[str]: _lowerCamelCase = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=snake_case__ ) _lowerCamelCase = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=snake_case__ , revision='3dc6de3' , max_seq_len=5_0 , ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'What is the invoice number?' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9999, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.9998, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) _lowerCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {'score': 0.9999, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.9998, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 , ) _lowerCamelCase = list(zip(*apply_tesseract(load_image(snake_case__ ) , snake_case__ , '' ) ) ) # This model should also work if `image` is set to None _lowerCamelCase = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9999, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.9998, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) @slow @require_torch def _snake_case ( self : Dict ) -> int: _lowerCamelCase = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'What is the invoice number?' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual(nested_simplify(snake_case__ , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def _snake_case ( self : Optional[Any] ) -> Any: pass
544
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __UpperCAmelCase : """simple docstring""" def __init__( self : Dict , A_ : List[Any] , A_ : Optional[Any]=13 , A_ : Any=7 , A_ : Union[str, Any]=True , A_ : Optional[Any]=True , A_ : Dict=True , A_ : Optional[int]=True , A_ : Optional[int]=99 , A_ : int=32 , A_ : Tuple=2 , A_ : Union[str, Any]=4 , A_ : Tuple=37 , A_ : Union[str, Any]="gelu" , A_ : Union[str, Any]=0.1 , A_ : int=0.1 , A_ : List[str]=5_12 , A_ : Dict=16 , A_ : str=2 , A_ : Any=0.02 , A_ : Any=3 , A_ : Any=4 , A_ : int=None , )-> Dict: __UpperCamelCase = parent __UpperCamelCase = 13 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = 99 __UpperCamelCase = 32 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 37 __UpperCamelCase = "gelu" __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 5_12 __UpperCamelCase = 16 __UpperCamelCase = 2 __UpperCamelCase = 0.02 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = None def A ( self : List[str] )-> List[Any]: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : List[Any] , A_ : List[str] , A_ : Optional[int] , A_ : Union[str, Any] , A_ : Dict , A_ : Union[str, Any] , A_ : str , A_ : Tuple )-> Union[str, Any]: __UpperCamelCase = TFRoFormerModel(config=A_ ) __UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(A_ ) __UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : str , A_ : Tuple , A_ : List[str] , A_ : Dict , A_ : Any , A_ : Dict , A_ : str , A_ : List[Any] )-> List[Any]: __UpperCamelCase = True __UpperCamelCase = TFRoFormerForCausalLM(config=A_ ) __UpperCamelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase = model(A_ )["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A ( self : Any , A_ : Optional[Any] , A_ : List[Any] , A_ : str , A_ : Dict , A_ : List[Any] , A_ : Any , A_ : Optional[int] )-> str: __UpperCamelCase = TFRoFormerForMaskedLM(config=A_ ) __UpperCamelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[str] , A_ : Any , A_ : Any , A_ : Optional[Any] , A_ : Optional[int] , A_ : Optional[int] , A_ : Optional[int] , A_ : List[str] )-> List[str]: __UpperCamelCase = self.num_labels __UpperCamelCase = TFRoFormerForSequenceClassification(config=A_ ) __UpperCamelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[Any] , A_ : str , A_ : Dict , A_ : List[Any] , A_ : List[Any] , A_ : Any , A_ : Optional[int] , A_ : Tuple )-> List[str]: __UpperCamelCase = self.num_choices __UpperCamelCase = TFRoFormerForMultipleChoice(config=A_ ) __UpperCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : List[Any] , A_ : Union[str, Any] , A_ : Optional[int] , A_ : Any , A_ : Tuple , A_ : Tuple , A_ : Dict , A_ : Optional[int] )-> List[str]: __UpperCamelCase = self.num_labels __UpperCamelCase = TFRoFormerForTokenClassification(config=A_ ) __UpperCamelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : int , A_ : Optional[Any] , A_ : Tuple , A_ : Any , A_ : Dict , A_ : str , A_ : Dict , A_ : Optional[int] )-> Optional[Any]: __UpperCamelCase = TFRoFormerForQuestionAnswering(config=A_ ) __UpperCamelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : int )-> List[str]: __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : Union[str, Any] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) _snake_case : List[str] = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) _snake_case : str = False _snake_case : Union[str, Any] = False def A ( self : List[str] , A_ : Union[str, Any] , A_ : List[str] , A_ : List[Any] , A_ : Dict , A_ : Union[str, Any] )-> Any: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A ( self : Tuple )-> Tuple: __UpperCamelCase = TFRoFormerModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def A ( self : Tuple )-> List[Any]: self.config_tester.run_common_tests() def A ( self : Dict )-> Dict: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def A ( self : int )-> str: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def A ( self : List[str] )-> List[Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def A ( self : int )-> List[str]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def A ( self : Any )-> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def A ( self : Tuple )-> str: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def A ( self : Optional[int] )-> Optional[Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def A ( self : int )-> int: __UpperCamelCase = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base" ) self.assertIsNotNone(A_ ) @require_tf class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def A ( self : Dict )-> Tuple: __UpperCamelCase = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) __UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase = model(A_ )[0] # TODO Replace vocab size __UpperCamelCase = 5_00_00 __UpperCamelCase = [1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCamelCase = tf.constant( [ [ [-0.12_053_341, -1.0_264_901, 0.29_221_946], [-1.5_133_783, 0.197_433, 0.15_190_607], [-5.0_135_403, -3.900_256, -0.84_038_764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1e-4 ) @require_tf class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : Tuple = 1E-4 def A ( self : str )-> Tuple: __UpperCamelCase = tf.constant([[4, 10]] ) __UpperCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCamelCase = emba(input_ids.shape ) __UpperCamelCase = tf.constant( [[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def A ( self : Tuple )-> Optional[int]: __UpperCamelCase = tf.constant( [ [0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000], [0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617], [0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870], ] ) __UpperCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) __UpperCamelCase = emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : int = 1E-4 def A ( self : Optional[Any] )-> Any: # 2,12,16,64 __UpperCamelCase = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 __UpperCamelCase = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 __UpperCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCamelCase = embed_positions([2, 16, 7_68] )[None, None, :, :] __UpperCamelCase , __UpperCamelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __UpperCamelCase = tf.constant( [ [0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700], [-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343], [-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985], [-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871], [0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980], [3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253], ] ) __UpperCamelCase = tf.constant( [ [0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700], [0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343], [1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985], [2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871], [-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980], [-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
228
"""simple docstring""" import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _A = logging.get_logger(__name__) _A = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Union[str, Any] = 'conditional_detr' _snake_case : Any = ['past_key_values'] _snake_case : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : List[Any] , A_ : int=True , A_ : List[Any]=None , A_ : int=3 , A_ : Union[str, Any]=3_00 , A_ : int=6 , A_ : List[Any]=20_48 , A_ : str=8 , A_ : Dict=6 , A_ : str=20_48 , A_ : str=8 , A_ : str=0.0 , A_ : List[Any]=0.0 , A_ : Union[str, Any]=True , A_ : List[str]="relu" , A_ : Optional[Any]=2_56 , A_ : Optional[int]=0.1 , A_ : Tuple=0.0 , A_ : List[str]=0.0 , A_ : Any=0.02 , A_ : int=1.0 , A_ : Any=False , A_ : Tuple="sine" , A_ : int="resnet50" , A_ : Dict=True , A_ : List[str]=False , A_ : Optional[Any]=2 , A_ : List[Any]=5 , A_ : List[str]=2 , A_ : Union[str, Any]=1 , A_ : Dict=1 , A_ : str=2 , A_ : Any=5 , A_ : Optional[int]=2 , A_ : List[str]=0.25 , **A_ : Union[str, Any] , )-> Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCamelCase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(A_ , A_ ): __UpperCamelCase = backbone_config.get("model_type" ) __UpperCamelCase = CONFIG_MAPPING[backbone_model_type] __UpperCamelCase = config_class.from_dict(A_ ) __UpperCamelCase = use_timm_backbone __UpperCamelCase = backbone_config __UpperCamelCase = num_channels __UpperCamelCase = num_queries __UpperCamelCase = d_model __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = init_xavier_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = encoder_layers __UpperCamelCase = auxiliary_loss __UpperCamelCase = position_embedding_type __UpperCamelCase = backbone __UpperCamelCase = use_pretrained_backbone __UpperCamelCase = dilation # Hungarian matcher __UpperCamelCase = class_cost __UpperCamelCase = bbox_cost __UpperCamelCase = giou_cost # Loss coefficients __UpperCamelCase = mask_loss_coefficient __UpperCamelCase = dice_loss_coefficient __UpperCamelCase = cls_loss_coefficient __UpperCamelCase = bbox_loss_coefficient __UpperCamelCase = giou_loss_coefficient __UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=A_ , **A_ ) @property def A ( self : int )-> int: return self.encoder_attention_heads @property def A ( self : List[Any] )-> int: return self.d_model def A ( self : List[Any] )-> Tuple: __UpperCamelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __UpperCamelCase = self.backbone_config.to_dict() __UpperCamelCase = self.__class__.model_type return output class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Union[str, Any] = version.parse('1.11' ) @property def A ( self : str )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def A ( self : Optional[Any] )-> float: return 1e-5 @property def A ( self : List[Any] )-> int: return 12
228
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : Union[str, Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase_ : Dict = 2_5_0_0_0_4 UpperCAmelCase_ : Optional[Any] = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( _lowerCamelCase, unittest.TestCase ): '''simple docstring''' lowercase : str = MBartTokenizer lowercase : Optional[Any] = MBartTokenizerFast lowercase : Dict = True lowercase : List[str] = True def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _SCREAMING_SNAKE_CASE =MBartTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =MBartTokenizer(_A , keep_accents=_A ) _SCREAMING_SNAKE_CASE =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _SCREAMING_SNAKE_CASE =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _SCREAMING_SNAKE_CASE =tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _SCREAMING_SNAKE_CASE =tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def UpperCamelCase_ ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _SCREAMING_SNAKE_CASE =(self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _SCREAMING_SNAKE_CASE =self.rust_tokenizer_class.from_pretrained(_A , **_A ) _SCREAMING_SNAKE_CASE =self.tokenizer_class.from_pretrained(_A , **_A ) _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =tokenizer_r.save_pretrained(_A ) _SCREAMING_SNAKE_CASE =tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) _SCREAMING_SNAKE_CASE =tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way _SCREAMING_SNAKE_CASE =tokenizer_r.from_pretrained(_A ) _SCREAMING_SNAKE_CASE =tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =tokenizer_r.save_pretrained(_A , legacy_format=_A ) _SCREAMING_SNAKE_CASE =tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way _SCREAMING_SNAKE_CASE =tokenizer_r.from_pretrained(_A ) _SCREAMING_SNAKE_CASE =tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =tokenizer_r.save_pretrained(_A , legacy_format=_A ) _SCREAMING_SNAKE_CASE =tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _SCREAMING_SNAKE_CASE =tokenizer_r.from_pretrained(_A ) _SCREAMING_SNAKE_CASE =tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' lowercase : Optional[Any] = "facebook/mbart-large-en-ro" lowercase : List[str] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] lowercase : int = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] lowercase : Optional[Any] = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' _SCREAMING_SNAKE_CASE =MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) _SCREAMING_SNAKE_CASE =1 return cls def UpperCamelCase_ ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 2_5_0_0_2_0 ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _A ) def UpperCamelCase_ ( self ): '''simple docstring''' self.assertIn(_A , self.tokenizer.all_special_ids ) _SCREAMING_SNAKE_CASE =[RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] _SCREAMING_SNAKE_CASE =self.tokenizer.decode(_A , skip_special_tokens=_A ) _SCREAMING_SNAKE_CASE =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_A ) self.assertEqual(_A , _A ) self.assertNotIn(self.tokenizer.eos_token , _A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =['''this is gunna be a long sentence ''' * 2_0] assert isinstance(src_text[0] , _A ) _SCREAMING_SNAKE_CASE =1_0 _SCREAMING_SNAKE_CASE =self.tokenizer(_A , max_length=_A , truncation=_A ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _A ) self.assertEqual(len(_A ) , _A ) def UpperCamelCase_ ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_A ) _SCREAMING_SNAKE_CASE =MBartTokenizer.from_pretrained(_A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _A ) @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_A , return_tensors='''pt''' ) _SCREAMING_SNAKE_CASE =shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_A , truncation=_A , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _SCREAMING_SNAKE_CASE =shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) _SCREAMING_SNAKE_CASE =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _A ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.tokenizer(self.src_text , padding=_A , truncation=_A , max_length=3 , return_tensors='''pt''' ) _SCREAMING_SNAKE_CASE =self.tokenizer( text_target=self.tgt_text , padding=_A , truncation=_A , max_length=1_0 , return_tensors='''pt''' ) _SCREAMING_SNAKE_CASE =targets['''input_ids'''] _SCREAMING_SNAKE_CASE =shift_tokens_right(_A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_A ) , { # A, test, EOS, en_XX '''input_ids''': [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_0_0_0_1, } , )
255
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : Dict = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : Any = "gpt_neo" lowercase : Optional[int] = ["past_key_values"] lowercase : str = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _A=5_0_2_5_7 , _A=2_0_4_8 , _A=2_0_4_8 , _A=2_4 , _A=[[["global", "local"], 1_2]] , _A=1_6 , _A=None , _A=2_5_6 , _A="gelu_new" , _A=0.0 , _A=0.0 , _A=0.0 , _A=0.1 , _A=1E-5 , _A=0.02 , _A=True , _A=5_0_2_5_6 , _A=5_0_2_5_6 , **_A , ): '''simple docstring''' _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_layers _SCREAMING_SNAKE_CASE =num_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =window_size _SCREAMING_SNAKE_CASE =activation_function _SCREAMING_SNAKE_CASE =resid_dropout _SCREAMING_SNAKE_CASE =embed_dropout _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =classifier_dropout _SCREAMING_SNAKE_CASE =layer_norm_epsilon _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =use_cache _SCREAMING_SNAKE_CASE =bos_token_id _SCREAMING_SNAKE_CASE =eos_token_id _SCREAMING_SNAKE_CASE =attention_types _SCREAMING_SNAKE_CASE =self.expand_attention_types_params(_A ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ f"""`config.num_layers = {self.num_layers}`. """ '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=_A , eos_token_id=_A , **_A ) @staticmethod def UpperCamelCase_ ( _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =[] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _lowerCAmelCase(a : int , a : Tuple , a : Union[str, Any] , a : Optional[Any] ) -> str: import torch _SCREAMING_SNAKE_CASE =input.size() _SCREAMING_SNAKE_CASE =len(a ) _SCREAMING_SNAKE_CASE =shape[dimension] _SCREAMING_SNAKE_CASE =torch.arange(0 , a , a ) _SCREAMING_SNAKE_CASE =torch.div(sizedim - size , a , rounding_mode='''floor''' ) + 1 _SCREAMING_SNAKE_CASE =torch.arange(a ) + low_indices[:min_length][:, None] _SCREAMING_SNAKE_CASE =[slice(a )] * rank _SCREAMING_SNAKE_CASE =indices _SCREAMING_SNAKE_CASE =input[s] _SCREAMING_SNAKE_CASE =list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(a ) def _lowerCAmelCase(a : Optional[Any] , a : Optional[int] ) -> List[str]: import torch _SCREAMING_SNAKE_CASE =torch.arange(1 , a ) _SCREAMING_SNAKE_CASE =torch.remainder(a , a ) _SCREAMING_SNAKE_CASE =remainders == 0 _SCREAMING_SNAKE_CASE =candidates[divisor_indices] _SCREAMING_SNAKE_CASE =torch.max(a ) return largest_divisor, torch.div(a , a , rounding_mode='''floor''' ) class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' @property def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_A , direction='''inputs''' ) _SCREAMING_SNAKE_CASE ={0: '''batch''', 1: '''past_sequence + sequence'''} else: _SCREAMING_SNAKE_CASE ={0: '''batch''', 1: '''sequence'''} return common_inputs @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._config.num_heads def UpperCamelCase_ ( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE =super(_A , self ).generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) # We need to order the input in the way they appears in the forward() _SCREAMING_SNAKE_CASE =OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _SCREAMING_SNAKE_CASE =seqlen + 2 _SCREAMING_SNAKE_CASE =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _SCREAMING_SNAKE_CASE =[ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(self.num_layers ) ] _SCREAMING_SNAKE_CASE =common_inputs['''attention_mask'''] if self.use_past: _SCREAMING_SNAKE_CASE =ordered_inputs['''attention_mask'''].dtype _SCREAMING_SNAKE_CASE =torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_A , _A , dtype=_A )] , dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self ): '''simple docstring''' return 1_3
255
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES _UpperCamelCase: Optional[int] ='tiny-wmt19-en-ru' # Build # borrowed from a test _UpperCamelCase: Tuple =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _UpperCamelCase: List[Any] =dict(zip(vocab, range(len(vocab)))) _UpperCamelCase: List[str] =['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase: Optional[Any] =Path(tmpdirname) _UpperCamelCase: Optional[int] =build_dir / VOCAB_FILES_NAMES['src_vocab_file'] _UpperCamelCase: List[Any] =build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] _UpperCamelCase: Optional[int] =build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, 'w') as fp: fp.write('\n'.join(merges)) _UpperCamelCase: Optional[Any] =FSMTTokenizer( langs=['en', 'ru'], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) _UpperCamelCase: Tuple =FSMTConfig( langs=['ru', 'en'], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) _UpperCamelCase: Dict =FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test _UpperCamelCase: Optional[Any] =tokenizer(['Making tiny model'], return_tensors='pt') _UpperCamelCase: Optional[int] =tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
585
from math import isqrt def _a ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(__SCREAMING_SNAKE_CASE ) + 1 ) ) def _a ( __SCREAMING_SNAKE_CASE : int = 10**6 ): """simple docstring""" _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 7 while prime_candidate < max_prime: primes_count += is_prime(__SCREAMING_SNAKE_CASE ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"{solution() = }")
585
1
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCamelCase__ : str = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _UpperCAmelCase ( datasets.BuilderConfig): __a : Optional[datasets.Features] = None def UpperCamelCase ( _lowerCAmelCase : "pyspark.sql.DataFrame", _lowerCAmelCase : List[int], ) -> Dict: import pyspark def generate_fn(): _UpperCAmelCase : List[str] = df.select("""*""", pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: _UpperCAmelCase : Dict = df_with_partition_id.select("""*""" ).where(f'''part_id = {partition_id}''' ).drop("""part_id""" ) _UpperCAmelCase : Any = partition_df.collect() _UpperCAmelCase : str = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class _UpperCAmelCase ( _BaseExamplesIterable): def __init__( self , _A , _A=None , ) -> str: '''simple docstring''' _UpperCAmelCase : int = df _UpperCAmelCase : int = partition_order or range(self.df.rdd.getNumPartitions() ) _UpperCAmelCase : List[str] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ) -> Dict: '''simple docstring''' yield from self.generate_examples_fn() def __snake_case ( self , _A ) -> "SparkExamplesIterable": '''simple docstring''' _UpperCAmelCase : List[str] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(_A ) return SparkExamplesIterable(self.df , partition_order=_A ) def __snake_case ( self , _A , _A ) -> "SparkExamplesIterable": '''simple docstring''' _UpperCAmelCase : List[Any] = self.split_shard_indices_by_worker(_A , _A ) return SparkExamplesIterable(self.df , partition_order=_A ) @property def __snake_case ( self ) -> int: '''simple docstring''' return len(self.partition_order ) class _UpperCAmelCase ( datasets.DatasetBuilder): __a : Tuple = SparkConfig def __init__( self , _A , _A = None , _A = None , **_A , ) -> int: '''simple docstring''' import pyspark _UpperCAmelCase : Optional[Any] = pyspark.sql.SparkSession.builder.getOrCreate() _UpperCAmelCase : str = df _UpperCAmelCase : Optional[Any] = working_dir super().__init__( cache_dir=_A , config_name=str(self.df.semanticHash() ) , **_A , ) def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' def create_cache_and_write_probe(_A ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=_A ) _UpperCAmelCase : Any = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(_A , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _UpperCAmelCase : int = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(_A ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def __snake_case ( self ) -> str: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __snake_case ( self , _A ) -> Any: '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __snake_case ( self , _A ) -> Optional[int]: '''simple docstring''' import pyspark def get_arrow_batch_size(_A ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) _UpperCAmelCase : Union[str, Any] = self.df.count() _UpperCAmelCase : List[Any] = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _UpperCAmelCase : Any = ( self.df.limit(_A ) .repartition(1 ) .mapInArrow(_A , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) _UpperCAmelCase : Tuple = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _UpperCAmelCase : List[Any] = min(_A , int(approx_total_size / max_shard_size ) ) _UpperCAmelCase : int = self.df.repartition(_A ) def __snake_case ( self , _A , _A , _A , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: '''simple docstring''' import pyspark _UpperCAmelCase : str = ParquetWriter if file_format == """parquet""" else ArrowWriter _UpperCAmelCase : Any = os.path.join(self._working_dir , os.path.basename(_A ) ) if self._working_dir else fpath _UpperCAmelCase : str = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _UpperCAmelCase : List[Any] = self.config.features _UpperCAmelCase : Tuple = self._writer_batch_size _UpperCAmelCase : Any = self._fs.storage_options def write_arrow(_A ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _UpperCAmelCase : Optional[int] = pyspark.TaskContext().taskAttemptId() _UpperCAmelCase : Tuple = next(_A , _A ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Union[str, Any] = writer_class( features=_A , path=working_fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , ) _UpperCAmelCase : Optional[int] = pa.Table.from_batches([first_batch] ) writer.write_table(_A ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _UpperCAmelCase , _UpperCAmelCase : Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 _UpperCAmelCase : Any = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , writer_batch_size=_A , storage_options=_A , embed_local_files=_A , ) _UpperCAmelCase : Dict = pa.Table.from_batches([batch] ) writer.write_table(_A ) if writer._num_bytes > 0: _UpperCAmelCase , _UpperCAmelCase : int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(_A ) ): _UpperCAmelCase : Union[str, Any] = os.path.join(os.path.dirname(_A ) , os.path.basename(_A ) ) shutil.move(_A , _A ) _UpperCAmelCase : Optional[Any] = ( self.df.mapInArrow(_A , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __snake_case ( self , _A , _A = "arrow" , _A = None , _A = None , **_A , ) -> Any: '''simple docstring''' self._validate_cache_dir() _UpperCAmelCase : Optional[int] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(_A ) _UpperCAmelCase : Optional[int] = not is_remote_filesystem(self._fs ) _UpperCAmelCase : Union[str, Any] = os.path.join if is_local else posixpath.join _UpperCAmelCase : Optional[Any] = """-TTTTT-SSSSS-of-NNNNN""" _UpperCAmelCase : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' _UpperCAmelCase : List[Any] = path_join(self._output_dir , _A ) _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Any = 0 _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Dict = [] for task_id, content in self._prepare_split_single(_A , _A , _A ): ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Any = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(_A ) _UpperCAmelCase : Any = total_num_examples _UpperCAmelCase : List[str] = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: _UpperCAmelCase : List[str] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _UpperCAmelCase : List[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( _A , _A , _A , ): rename( _A , fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , fpath.replace("""TTTTT-SSSSS""" , f'''{global_shard_id:05d}''' ).replace("""NNNNN""" , f'''{total_shards:05d}''' ) , ) _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[str] = 0 for i in range(len(_A ) ): _UpperCAmelCase , _UpperCAmelCase : Any = task_id_and_num_shards[i] for shard_id in range(_A ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(_A , len(_A ) ).map(lambda _A : _rename_shard(*_A ) ).collect() else: # don't use any pattern _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Optional[int] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , fpath.replace(_A , """""" ) , ) def __snake_case ( self , _A , ) -> SparkExamplesIterable: '''simple docstring''' return SparkExamplesIterable(self.df )
238
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
238
1
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] =logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class A_ ( UpperCamelCase_ ): def __init__( self : Union[str, Any] , snake_case__ : int = 1_01 ): lowercase = length def __len__( self : Dict ): return self.length def __getitem__( self : int , snake_case__ : str ): return i class A_ : def __call__( self : Dict , snake_case__ : List[Any] ): return {"input_ids": torch.tensor(UpperCamelCase__ ), "labels": torch.tensor(UpperCamelCase__ )} class A_ ( nn.Module ): def __init__( self : List[str] ): super().__init__() # Add some (unused) params otherwise DDP will complain. lowercase = nn.Linear(1_20 , 80 ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case__ : List[Any] , snake_case__ : Any=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class A_ ( UpperCamelCase_ ): @require_torch_neuroncore def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = F"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() lowercase = self.get_auto_remove_tmp_dir() lowercase = F"""--output_dir {output_dir}""".split() lowercase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(UpperCamelCase__ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class A_ ( UpperCamelCase_ ): @require_torch_multi_gpu def SCREAMING_SNAKE_CASE__ ( self : str ): lowercase = F"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() lowercase = self.get_auto_remove_tmp_dir() lowercase = F"""--output_dir {output_dir}""".split() lowercase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(UpperCamelCase__ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __SCREAMING_SNAKE_CASE : Any =HfArgumentParser((TrainingArguments,)) __SCREAMING_SNAKE_CASE : Tuple =parser.parse_args_into_dataclasses()[0] logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __SCREAMING_SNAKE_CASE : List[str] =DummyDataset(dataset_length) def UpperCamelCase__ ( lowerCAmelCase__ ): lowercase = list(range(len(_lowercase ) ) ) lowercase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( """Predictions and/or labels do not match expected results:\n - predictions: """ f"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} __SCREAMING_SNAKE_CASE : Any =Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __SCREAMING_SNAKE_CASE : str =trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __SCREAMING_SNAKE_CASE : Tuple =trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __SCREAMING_SNAKE_CASE : Any =2 __SCREAMING_SNAKE_CASE : Any =trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __SCREAMING_SNAKE_CASE : Optional[int] =trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __SCREAMING_SNAKE_CASE : List[str] =None
712
import argparse import os import re import packaging.version __SCREAMING_SNAKE_CASE : Optional[int] ='''examples/''' __SCREAMING_SNAKE_CASE : Any ={ '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __SCREAMING_SNAKE_CASE : Union[str, Any] ={ '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __SCREAMING_SNAKE_CASE : Any ='''README.md''' def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): with open(lowerCAmelCase__ ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: lowercase = f.read() lowercase , lowercase = REPLACE_PATTERNS[pattern] lowercase = replace.replace("""VERSION""" ,lowerCAmelCase__ ) lowercase = re_pattern.sub(lowerCAmelCase__ ,lowerCAmelCase__ ) with open(lowerCAmelCase__ ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: f.write(lowerCAmelCase__ ) def UpperCamelCase__ ( lowerCAmelCase__ ): for folder, directories, fnames in os.walk(lowerCAmelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) ,lowerCAmelCase__ ,pattern="""examples""" ) def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) if not patch: update_version_in_examples(lowerCAmelCase__ ) def UpperCamelCase__ ( ): lowercase = """🤗 Transformers currently provides the following architectures""" lowercase = """1. Want to contribute a new model?""" with open(lowerCAmelCase__ ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: lowercase = f.readlines() # Find the start of the list. lowercase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowercase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): lowercase = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" ,"""https://huggingface.co/docs/transformers/model_doc""" ,) index += 1 with open(lowerCAmelCase__ ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: f.writelines(lowerCAmelCase__ ) def UpperCamelCase__ ( ): with open(REPLACE_FILES["""init"""] ,"""r""" ) as f: lowercase = f.read() lowercase = REPLACE_PATTERNS["""init"""][0].search(lowerCAmelCase__ ).groups()[0] return packaging.version.parse(lowerCAmelCase__ ) def UpperCamelCase__ ( lowerCAmelCase__=False ): lowercase = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: lowercase = default_version.base_version elif patch: lowercase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: lowercase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. lowercase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(lowerCAmelCase__ ) == 0: lowercase = default_version print(f"""Updating version to {version}.""" ) global_version_update(lowerCAmelCase__ ,patch=lowerCAmelCase__ ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def UpperCamelCase__ ( ): lowercase = get_version() lowercase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" lowercase = current_version.base_version # Check with the user we got that right. lowercase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(lowerCAmelCase__ ) == 0: lowercase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(lowerCAmelCase__ ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] =argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __SCREAMING_SNAKE_CASE : Optional[int] =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
72
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase (_a ): _lowercase = ["""image_processor""", """tokenizer"""] _lowercase = """AutoImageProcessor""" _lowercase = """AutoTokenizer""" def __init__( self: int,A_: Any,A_: Tuple ): '''simple docstring''' super().__init__(A_,A_ ) __UpperCamelCase = self.image_processor def __call__( self: str,A_: Union[str, Any]=None,A_: Optional[int]=None,A_: Optional[int]=None,**A_: Union[str, Any] ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __UpperCamelCase = self.tokenizer(A_,return_tensors=A_,**A_ ) if images is not None: __UpperCamelCase = self.image_processor(A_,return_tensors=A_,**A_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A_ ),tensor_type=A_ ) def snake_case_ ( self: Dict,*A_: Optional[Any],**A_: Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*A_,**A_ ) def snake_case_ ( self: int,*A_: Union[str, Any],**A_: Tuple ): '''simple docstring''' return self.tokenizer.decode(*A_,**A_ ) @property def snake_case_ ( self: int ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
1
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _UpperCAmelCase : List[Any] = random.Random() def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : Dict=1.0 , __snake_case : List[Any]=None , __snake_case : List[str]=None ): if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple, UpperCamelCase__ : Tuple, UpperCamelCase__ : Union[str, Any]=7, UpperCamelCase__ : List[str]=4_00, UpperCamelCase__ : Any=20_00, UpperCamelCase__ : int=10, UpperCamelCase__ : Tuple=1_60, UpperCamelCase__ : Tuple=8, UpperCamelCase__ : List[str]=0.0, UpperCamelCase__ : Optional[Any]=40_00, UpperCamelCase__ : List[str]=False, UpperCamelCase__ : List[Any]=True, ) -> Dict: _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = padding_value _A = sampling_rate _A = return_attention_mask _A = do_normalize _A = feature_size _A = chunk_length _A = hop_length def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : Optional[Any], UpperCamelCase__ : List[Any]=False, UpperCamelCase__ : str=False ) -> Any: def _flatten(UpperCamelCase__ : List[str] ): return list(itertools.chain(*UpperCamelCase__ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: _A = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase_ ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = WhisperFeatureExtractor if is_speech_available() else None def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: _A = WhisperFeatureExtractionTester(self ) def __UpperCAmelCase ( self : List[Any] ) -> int: _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) _A = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = feat_extract_first.mel_filters _A = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase__, UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__, UpperCamelCase__ ) def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(UpperCamelCase__, 'feat_extract.json' ) feat_extract_first.to_json_file(UpperCamelCase__ ) _A = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = feat_extract_first.mel_filters _A = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase__, UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__, UpperCamelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(8_00, 14_00, 2_00 )] _A = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test feature size _A = feature_extractor(UpperCamelCase__, padding='max_length', return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _A = feature_extractor(speech_inputs[0], return_tensors='np' ).input_features _A = feature_extractor(np_speech_inputs[0], return_tensors='np' ).input_features self.assertTrue(np.allclose(UpperCamelCase__, UpperCamelCase__, atol=1e-3 ) ) # Test batched _A = feature_extractor(UpperCamelCase__, return_tensors='np' ).input_features _A = feature_extractor(UpperCamelCase__, return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__, UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__, UpperCamelCase__, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] _A = np.asarray(UpperCamelCase__ ) _A = feature_extractor(UpperCamelCase__, return_tensors='np' ).input_features _A = feature_extractor(UpperCamelCase__, return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__, UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__, UpperCamelCase__, atol=1e-3 ) ) # Test truncation required _A = [floats_list((1, x) )[0] for x in range(2_00, (feature_extractor.n_samples + 5_00), 2_00 )] _A = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] _A = [x[: feature_extractor.n_samples] for x in speech_inputs] _A = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs_truncated] _A = feature_extractor(UpperCamelCase__, return_tensors='np' ).input_features _A = feature_extractor(UpperCamelCase__, return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase__, UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__, UpperCamelCase__, atol=1e-3 ) ) def __UpperCAmelCase ( self : Any ) -> Any: import torch _A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A = np.random.rand(1_00, 32 ).astype(np.floataa ) _A = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A = feature_extractor.pad([{'input_features': inputs}], return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A = feature_extractor.pad([{'input_features': inputs}], return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __UpperCAmelCase ( self : int, UpperCamelCase__ : int ) -> Optional[Any]: _A = load_dataset('hf-internal-testing/librispeech_asr_dummy', 'clean', split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(UpperCamelCase__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def __UpperCAmelCase ( self : Dict ) -> List[Any]: # fmt: off _A = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on _A = self._load_datasamples(1 ) _A = WhisperFeatureExtractor() _A = feature_extractor(UpperCamelCase__, return_tensors='pt' ).input_features self.assertEqual(input_features.shape, (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30], UpperCamelCase__, atol=1e-4 ) ) def __UpperCAmelCase ( self : int ) -> Any: _A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A = self._load_datasamples(1 )[0] _A = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue _A = feat_extract.zero_mean_unit_var_norm([audio], attention_mask=UpperCamelCase__ )[0] self.assertTrue(np.all(np.mean(UpperCamelCase__ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase__ ) - 1 ) < 1e-3 ) )
107
0
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __a ): def __init__( self : Any , a__ : int=None , **a__ : List[str] ): warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , a__ , ) super().__init__(args=a__ , **a__ )
715
'''simple docstring''' from typing import List import numpy as np def UpperCamelCase ( a ) -> int: '''simple docstring''' __magic_name__ = {key: len(a ) for key, value in gen_kwargs.items() if isinstance(a , a )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) __magic_name__ = max(lists_lengths.values() , default=0 ) return max(1 , a ) def UpperCamelCase ( a , a ) -> List[range]: '''simple docstring''' __magic_name__ = [] for group_idx in range(a ): __magic_name__ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break __magic_name__ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 __magic_name__ = range(a , start + num_shards_to_add ) shards_indices_per_group.append(a ) return shards_indices_per_group def UpperCamelCase ( a , a ) -> List[dict]: '''simple docstring''' __magic_name__ = _number_of_shards_in_gen_kwargs(a ) if num_shards == 1: return [dict(a )] else: __magic_name__ = _distribute_shards(num_shards=a , max_num_jobs=a ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(a , a ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(a ) ) ] def UpperCamelCase ( a ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , a ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def UpperCamelCase ( a , a ) -> dict: '''simple docstring''' __magic_name__ = {len(a ) for value in gen_kwargs.values() if isinstance(a , a )} __magic_name__ = {} for size in list_sizes: __magic_name__ = list(range(a ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes __magic_name__ = dict(a ) for key, value in shuffled_kwargs.items(): if isinstance(a , a ): __magic_name__ = [value[i] for i in indices_per_size[len(a )]] return shuffled_kwargs
245
0