code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return 10 - x * x def lowercase ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if equation(snake_case__ ) * equation(snake_case__ ) >= 0: raise ValueError('''Wrong space!''' ) _UpperCAmelCase = a while (b - a) >= 0.01: # Find middle point _UpperCAmelCase = (a + b) / 2 # Check if middle point is root if equation(snake_case__ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case__ ) * equation(snake_case__ ) < 0: _UpperCAmelCase = c else: _UpperCAmelCase = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
602
import os import string import sys SCREAMING_SNAKE_CASE__ : List[str] = 1 << 8 SCREAMING_SNAKE_CASE__ : str = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } SCREAMING_SNAKE_CASE__ : List[str] = KEYMAP['up'] SCREAMING_SNAKE_CASE__ : Optional[int] = KEYMAP['left'] if sys.platform == "win32": SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] SCREAMING_SNAKE_CASE__ : Dict = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): SCREAMING_SNAKE_CASE__ : List[str] = ord(str(i)) def a__ ( ): if os.name == "nt": import msvcrt _UpperCAmelCase : int = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(snake_case__ ) == 0: # Read the keystroke _UpperCAmelCase : Any = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _UpperCAmelCase : str = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _UpperCAmelCase : Optional[int] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(snake_case__ ) if ord(snake_case__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _UpperCAmelCase : Any = chr(KEYMAP["""esc"""] ) except KeyError: _UpperCAmelCase : Optional[int] = cha[1] else: _UpperCAmelCase : Union[str, Any] = ch.decode(snake_case__ ) else: _UpperCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _UpperCAmelCase : List[str] = sys.stdin.fileno() _UpperCAmelCase : Optional[Any] = termios.tcgetattr(snake_case__ ) try: tty.setraw(snake_case__ ) _UpperCAmelCase : Tuple = sys.stdin.read(1 ) finally: termios.tcsetattr(snake_case__ , termios.TCSADRAIN , snake_case__ ) return ch def a__ ( ): _UpperCAmelCase : int = get_raw_chars() if ord(snake_case__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(snake_case__ ) == KEYMAP["esc"]: _UpperCAmelCase : int = get_raw_chars() if ord(snake_case__ ) == KEYMAP["mod_int"]: _UpperCAmelCase : Optional[Any] = get_raw_chars() if ord(snake_case__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(snake_case__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(snake_case__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
643
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( snake_case : float , snake_case : float , snake_case : float ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
439
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed UpperCamelCase__ = logging.getLogger(__name__) def UpperCAmelCase ( snake_case : List[Any]=2 , snake_case : int=3 , snake_case : Optional[int]=16 , snake_case : int = 10 , snake_case : int = 2 ): def get_dataset(snake_case : Any ): _lowerCAmelCase:Union[str, Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) _lowerCAmelCase:Tuple = get_dataset(snake_case ) _lowerCAmelCase:List[Any] = get_dataset(snake_case ) _lowerCAmelCase:Dict = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) _lowerCAmelCase:Any = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def UpperCAmelCase ( snake_case : List[Any] , snake_case : int , snake_case : Dict , snake_case : Dict , snake_case : int , snake_case : Tuple=None ): _lowerCAmelCase:Optional[Any] = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: _lowerCAmelCase , _lowerCAmelCase:List[Any] = batch _lowerCAmelCase:int = model(snake_case ) _lowerCAmelCase:Optional[int] = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class a__ ( nn.Module ): def __init__( self : List[Any]) -> Any: """simple docstring""" super().__init__() _lowerCAmelCase:str = nn.Parameter(torch.randn(1)) _lowerCAmelCase:Dict = nn.Parameter(torch.randn(1)) def __UpperCamelCase ( self : Tuple ,a__ : List[Any]) -> Tuple: """simple docstring""" return x * self.a + self.b class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Any) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) _lowerCAmelCase:List[str] = DummyModel() _lowerCAmelCase:Any = torch.optim.Adam(params=model.parameters() ,lr=1E-3) _lowerCAmelCase , _lowerCAmelCase:Optional[Any] = dummy_dataloaders() _lowerCAmelCase:List[str] = ProjectConfiguration(total_limit=1 ,project_dir=a__ ,automatic_checkpoint_naming=a__) # Train baseline _lowerCAmelCase:List[Any] = Accelerator(project_config=a__) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase:int = accelerator.prepare( a__ ,a__ ,a__ ,a__) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir)) ,1) def __UpperCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) _lowerCAmelCase:int = DummyModel() _lowerCAmelCase:Dict = torch.optim.Adam(params=model.parameters() ,lr=1E-3) _lowerCAmelCase , _lowerCAmelCase:Dict = dummy_dataloaders() # Train baseline _lowerCAmelCase:List[str] = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase:Optional[Any] = accelerator.prepare( a__ ,a__ ,a__ ,a__) # Save initial _lowerCAmelCase:Union[str, Any] = os.path.join(a__ ,'''initial''') accelerator.save_state(a__) ((_lowerCAmelCase) , (_lowerCAmelCase)):Any = model.a.item(), model.b.item() _lowerCAmelCase:Optional[int] = optimizer.state_dict() _lowerCAmelCase:Tuple = train(3 ,a__ ,a__ ,a__ ,a__) ((_lowerCAmelCase) , (_lowerCAmelCase)):Optional[int] = model.a.item(), model.b.item() _lowerCAmelCase:Any = optimizer.state_dict() # Train partially set_seed(42) _lowerCAmelCase:str = DummyModel() _lowerCAmelCase:Union[str, Any] = torch.optim.Adam(params=model.parameters() ,lr=1E-3) _lowerCAmelCase , _lowerCAmelCase:Any = dummy_dataloaders() _lowerCAmelCase:Union[str, Any] = Accelerator() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase:Tuple = accelerator.prepare( a__ ,a__ ,a__ ,a__) accelerator.load_state(a__) ((_lowerCAmelCase) , (_lowerCAmelCase)):str = model.a.item(), model.b.item() _lowerCAmelCase:Any = optimizer.state_dict() self.assertEqual(a__ ,a__) self.assertEqual(a__ ,a__) self.assertEqual(a__ ,a__) _lowerCAmelCase:str = train(2 ,a__ ,a__ ,a__ ,a__) # Save everything _lowerCAmelCase:Optional[Any] = os.path.join(a__ ,'''checkpoint''') accelerator.save_state(a__) # Load everything back in and make sure all states work accelerator.load_state(a__) test_rands += train(1 ,a__ ,a__ ,a__ ,a__) ((_lowerCAmelCase) , (_lowerCAmelCase)):List[Any] = model.a.item(), model.b.item() _lowerCAmelCase:List[Any] = optimizer.state_dict() self.assertEqual(a__ ,a__) self.assertEqual(a__ ,a__) self.assertEqual(a__ ,a__) self.assertEqual(a__ ,a__) def __UpperCamelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) _lowerCAmelCase:List[str] = DummyModel() _lowerCAmelCase:int = torch.optim.Adam(params=model.parameters() ,lr=1E-3) _lowerCAmelCase , _lowerCAmelCase:Tuple = dummy_dataloaders() _lowerCAmelCase:Any = ProjectConfiguration(automatic_checkpoint_naming=a__) # Train baseline _lowerCAmelCase:str = Accelerator(project_dir=a__ ,project_config=a__) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase:List[Any] = accelerator.prepare( a__ ,a__ ,a__ ,a__) # Save initial accelerator.save_state() ((_lowerCAmelCase) , (_lowerCAmelCase)):List[str] = model.a.item(), model.b.item() _lowerCAmelCase:str = optimizer.state_dict() _lowerCAmelCase:Optional[int] = train(3 ,a__ ,a__ ,a__ ,a__) ((_lowerCAmelCase) , (_lowerCAmelCase)):int = model.a.item(), model.b.item() _lowerCAmelCase:int = optimizer.state_dict() # Train partially set_seed(42) _lowerCAmelCase:Optional[int] = DummyModel() _lowerCAmelCase:Union[str, Any] = torch.optim.Adam(params=model.parameters() ,lr=1E-3) _lowerCAmelCase , _lowerCAmelCase:Optional[Any] = dummy_dataloaders() _lowerCAmelCase:Union[str, Any] = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=a__) _lowerCAmelCase:Dict = Accelerator(project_dir=a__ ,project_config=a__) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase:Optional[int] = accelerator.prepare( a__ ,a__ ,a__ ,a__) accelerator.load_state(os.path.join(a__ ,'''checkpoints''' ,'''checkpoint_0''')) ((_lowerCAmelCase) , (_lowerCAmelCase)):Dict = model.a.item(), model.b.item() _lowerCAmelCase:int = optimizer.state_dict() self.assertEqual(a__ ,a__) self.assertEqual(a__ ,a__) self.assertEqual(a__ ,a__) _lowerCAmelCase:Dict = train(2 ,a__ ,a__ ,a__ ,a__) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(a__ ,'''checkpoints''' ,'''checkpoint_1''')) test_rands += train(1 ,a__ ,a__ ,a__ ,a__) ((_lowerCAmelCase) , (_lowerCAmelCase)):Dict = model.a.item(), model.b.item() _lowerCAmelCase:Union[str, Any] = optimizer.state_dict() self.assertEqual(a__ ,a__) self.assertEqual(a__ ,a__) self.assertEqual(a__ ,a__) self.assertEqual(a__ ,a__) def __UpperCamelCase ( self : Dict) -> int: """simple docstring""" _lowerCAmelCase:str = torch.tensor([1, 2, 3]) _lowerCAmelCase:Tuple = torch.tensor([2, 3, 4]) _lowerCAmelCase:Tuple = DummyModel() _lowerCAmelCase:Union[str, Any] = torch.optim.Adam(net.parameters()) _lowerCAmelCase:Union[str, Any] = Accelerator() with self.assertRaises(a__) as ve: accelerator.register_for_checkpointing(a__ ,a__ ,a__ ,a__) _lowerCAmelCase:List[Any] = str(ve.exception) self.assertTrue('''Item at index 0''' in message) self.assertTrue('''Item at index 1''' in message) self.assertFalse('''Item at index 2''' in message) self.assertFalse('''Item at index 3''' in message) def __UpperCamelCase ( self : str) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) _lowerCAmelCase:int = DummyModel() _lowerCAmelCase:str = torch.optim.Adam(params=model.parameters() ,lr=1E-3) _lowerCAmelCase:Union[str, Any] = torch.optim.lr_scheduler.StepLR(a__ ,step_size=1 ,gamma=0.99) _lowerCAmelCase , _lowerCAmelCase:List[str] = dummy_dataloaders() _lowerCAmelCase:Any = ProjectConfiguration(automatic_checkpoint_naming=a__) # Train baseline _lowerCAmelCase:Optional[int] = Accelerator(project_dir=a__ ,project_config=a__) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase:int = accelerator.prepare( a__ ,a__ ,a__ ,a__ ,a__) # Save initial accelerator.save_state() _lowerCAmelCase:Dict = scheduler.state_dict() train(3 ,a__ ,a__ ,a__ ,a__ ,a__) self.assertNotEqual(a__ ,scheduler.state_dict()) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(a__ ,'''checkpoints''' ,'''checkpoint_0''')) self.assertEqual(a__ ,scheduler.state_dict()) def __UpperCamelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) _lowerCAmelCase:str = DummyModel() _lowerCAmelCase:Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=a__ ,total_limit=2) # Train baseline _lowerCAmelCase:List[str] = Accelerator(project_dir=a__ ,project_config=a__) _lowerCAmelCase:List[str] = accelerator.prepare(a__) # Save 3 states: for _ in range(11): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(a__ ,'''checkpoints''' ,'''checkpoint_0'''))) self.assertTrue(os.path.exists(os.path.join(a__ ,'''checkpoints''' ,'''checkpoint_9'''))) self.assertTrue(os.path.exists(os.path.join(a__ ,'''checkpoints''' ,'''checkpoint_10'''))) @require_cuda def __UpperCamelCase ( self : int) -> str: """simple docstring""" _lowerCAmelCase:Union[str, Any] = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__)] execute_subprocess_async(a__ ,env=os.environ.copy()) if __name__ == "__main__": UpperCamelCase__ = '''/tmp/accelerate/state_checkpointing''' UpperCamelCase__ = DummyModel() UpperCamelCase__ = torch.optim.Adam(params=model.parameters(), lr=1e-3) UpperCamelCase__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) UpperCamelCase__ , UpperCamelCase__ = dummy_dataloaders() UpperCamelCase__ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline UpperCamelCase__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) UpperCamelCase__ , UpperCamelCase__ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: UpperCamelCase__ = group['''params'''][0].device break assert param_device.type == accelerator.device.type UpperCamelCase__ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: UpperCamelCase__ = group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: UpperCamelCase__ = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
439
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _A = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _A = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _A = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _A = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _A = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def __UpperCamelCase ( _A , _A ): for tf_name, hf_name in patterns: lowerCAmelCase_ = k.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return k def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = BigBirdPegasusConfig(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = BigBirdPegasusForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = torch_model.state_dict() lowerCAmelCase_ = {} # separating decoder weights lowerCAmelCase_ = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} lowerCAmelCase_ = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): lowerCAmelCase_ = [k.endswith(SCREAMING_SNAKE_CASE__ ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE__ ): continue lowerCAmelCase_ = DECODER_PATTERNS lowerCAmelCase_ = rename_state_dict_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if new_k not in state_dict: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): lowerCAmelCase_ = v.T lowerCAmelCase_ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) assert v.shape == state_dict[new_k].shape, f"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}" for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): lowerCAmelCase_ = [k.endswith(SCREAMING_SNAKE_CASE__ ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE__ ): continue lowerCAmelCase_ = REMAINING_PATTERNS lowerCAmelCase_ = rename_state_dict_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): lowerCAmelCase_ = v.T lowerCAmelCase_ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}" lowerCAmelCase_ = mapping['''model.embed_positions.weight'''] lowerCAmelCase_ = mapping.pop('''model.embed_positions.weight''' ) lowerCAmelCase_ , lowerCAmelCase_ = torch_model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def __UpperCamelCase ( _A ): lowerCAmelCase_ = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = {} lowerCAmelCase_ = ['''global_step'''] for name, shape in tqdm(SCREAMING_SNAKE_CASE__ , desc='''converting tf checkpoint to dict''' ): lowerCAmelCase_ = any(pat in name for pat in ignore_name ) if skip_key: continue lowerCAmelCase_ = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = array return tf_weights def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase_ = convert_bigbird_pegasus(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _A = parser.parse_args() _A = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
431
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "rwkv" SCREAMING_SNAKE_CASE : Any = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , _UpperCamelCase : Any=5_0_2_7_7 , _UpperCamelCase : Optional[int]=1_0_2_4 , _UpperCamelCase : Optional[int]=4_0_9_6 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=1e-5 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : int=6 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : int , ) ->List[str]: snake_case_ = vocab_size snake_case_ = context_length snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = attention_hidden_size if attention_hidden_size is not None else hidden_size snake_case_ = intermediate_size if intermediate_size is not None else 4 * hidden_size snake_case_ = layer_norm_epsilon snake_case_ = rescale_every snake_case_ = use_cache snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__( tie_word_embeddings=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
39
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCamelCase =TypeVar("T") UpperCamelCase =TypeVar("U") class A ( Generic[T, U] ): """simple docstring""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : int = key UpperCamelCase_ : List[Any] = val UpperCamelCase_ : DoubleLinkedListNode[T, U] | None = None UpperCamelCase_ : DoubleLinkedListNode[T, U] | None = None def __repr__( self ): return ( F"Node: key: {self.key}, val: {self.val}, " F"has next: {bool(self.next )}, has prev: {bool(self.prev )}" ) class A ( Generic[T, U] ): """simple docstring""" def __init__( self ): UpperCamelCase_ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase_ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase_ : Dict = self.rear, self.head def __repr__( self ): UpperCamelCase_ : str = ["""DoubleLinkedList"""] UpperCamelCase_ : int = self.head while node.next is not None: rep.append(str(__lowerCAmelCase ) ) UpperCamelCase_ : Union[str, Any] = node.next rep.append(str(self.rear ) ) return ",\n ".join(__lowerCAmelCase ) def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : Any = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None UpperCamelCase_ : str = node UpperCamelCase_ : Tuple = previous UpperCamelCase_ : int = node UpperCamelCase_ : str = self.rear def _UpperCAmelCase ( self , __lowerCAmelCase ): if node.prev is None or node.next is None: return None UpperCamelCase_ : Any = node.next UpperCamelCase_ : Union[str, Any] = node.prev UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : List[str] = None return node class A ( Generic[T, U] ): """simple docstring""" __a : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , __lowerCAmelCase ): UpperCamelCase_ : DoubleLinkedList[T, U] = DoubleLinkedList() UpperCamelCase_ : Optional[Any] = capacity UpperCamelCase_ : int = 0 UpperCamelCase_ : List[str] = 0 UpperCamelCase_ : List[Any] = 0 UpperCamelCase_ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self ): return ( F"CacheInfo(hits={self.hits}, misses={self.miss}, " F"capacity={self.capacity}, current size={self.num_keys})" ) def __contains__( self , __lowerCAmelCase ): return key in self.cache def _UpperCAmelCase ( self , __lowerCAmelCase ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 UpperCamelCase_ : DoubleLinkedListNode[T, U] = self.cache[key] UpperCamelCase_ : int = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(__lowerCAmelCase ) return node.val self.miss += 1 return None def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity UpperCamelCase_ : str = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(__lowerCAmelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 UpperCamelCase_ : Dict = DoubleLinkedListNode(__lowerCAmelCase , __lowerCAmelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value UpperCamelCase_ : str = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list UpperCamelCase_ : Dict = value self.list.add(__lowerCAmelCase ) @classmethod def _UpperCAmelCase ( cls , __lowerCAmelCase = 1_28 ): def cache_decorator_inner(__lowerCAmelCase ) -> Callable[..., U]: def cache_decorator_wrapper(*__lowerCAmelCase ) -> U: if func not in cls.decorator_function_to_instance_map: UpperCamelCase_ : List[Any] = LRUCache(__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: UpperCamelCase_ : Optional[Any] = func(*__lowerCAmelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , __lowerCAmelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(__lowerCAmelCase , """cache_info""" , __lowerCAmelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
720
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests UpperCamelCase ="https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCamelCase =BASE_URL + "/user" # https://github.com/settings/tokens UpperCamelCase =os.environ.get("USER_TOKEN", "") def snake_case ( a_ : str ) -> dict[Any, Any]: """simple docstring""" UpperCamelCase_ : Tuple = { """Authorization""": f"token {auth_token}", """Accept""": """application/vnd.github.v3+json""", } return requests.get(a_ , headers=a_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"{key}: {value}") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
543
0
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __magic_name__ = pd.read_csv("""sample_data.csv""", header=None) __magic_name__ = df.shape[:1][0] # If you're using some other dataset input the target column __magic_name__ = df.iloc[:, 1:2] __magic_name__ = actual_data.values.reshape(len_data, 1) __magic_name__ = MinMaxScaler().fit_transform(actual_data) __magic_name__ = 10 __magic_name__ = 5 __magic_name__ = 20 __magic_name__ = len_data - periods * look_back __magic_name__ = actual_data[:division] __magic_name__ = actual_data[division - look_back :] __magic_name__ , __magic_name__ = [], [] __magic_name__ , __magic_name__ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __magic_name__ = np.array(train_x) __magic_name__ = np.array(test_x) __magic_name__ = np.array([list(i.ravel()) for i in train_y]) __magic_name__ = np.array([list(i.ravel()) for i in test_y]) __magic_name__ = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") __magic_name__ = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) __magic_name__ = model.predict(x_test)
129
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __magic_name__ = 3 def _A ( __lowercase ): """simple docstring""" print("""Generating primitive root of p""" ) while True: lowerCamelCase__ = random.randrange(3 , __lowercase ) if pow(__lowercase , 2 , __lowercase ) == 1: continue if pow(__lowercase , __lowercase , __lowercase ) == 1: continue return g def _A ( __lowercase ): """simple docstring""" print("""Generating prime p...""" ) lowerCamelCase__ = rabin_miller.generate_large_prime(__lowercase ) # select large prime number. lowerCamelCase__ = primitive_root(__lowercase ) # one primitive root on modulo p. lowerCamelCase__ = random.randrange(3 , __lowercase ) # private_key -> have to be greater than 2 for safety. lowerCamelCase__ = cryptomath.find_mod_inverse(pow(__lowercase , __lowercase , __lowercase ) , __lowercase ) lowerCamelCase__ = (key_size, e_a, e_a, p) lowerCamelCase__ = (key_size, d) return public_key, private_key def _A ( __lowercase , __lowercase ): """simple docstring""" if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() lowerCamelCase__ , lowerCamelCase__ = generate_key(__lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , """w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , """w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def _A ( ): """simple docstring""" print("""Making key files...""" ) make_key_files("""elgamal""" , 2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
129
1
'''simple docstring''' def __lowercase ( __SCREAMING_SNAKE_CASE = 100_0000 ) -> int: """simple docstring""" __a = 1 __a = 1 __a = {1: 1} for inputa in range(2 , __SCREAMING_SNAKE_CASE ): __a = 0 __a = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __a = (3 * number) + 1 counter += 1 if inputa not in counters: __a = counter if counter > pre_counter: __a = inputa __a = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
721
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( snake_case__ , unittest.TestCase ): """simple docstring""" a_ :Union[str, Any] =LEDTokenizer a_ :List[Any] =LEDTokenizerFast a_ :Union[str, Any] =True def __a ( self : Dict ): '''simple docstring''' super().setUp() __a = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __a = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __a = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __a = {"""unk_token""": """<unk>"""} __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(SCREAMING_SNAKE_CASE__ ) ) def __a ( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __a ( self : int , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __a ( self : str , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def __a ( self : Dict ): '''simple docstring''' return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def __a ( self : Union[str, Any] ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def __a ( self : Tuple ): '''simple docstring''' __a = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __a = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a = tokenizer(SCREAMING_SNAKE_CASE__ , max_length=len(SCREAMING_SNAKE_CASE__ ) , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __a = batch.input_ids.tolist()[0] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_torch def __a ( self : Dict ): '''simple docstring''' __a = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) self.assertIn("""input_ids""" , SCREAMING_SNAKE_CASE__ ) self.assertIn("""attention_mask""" , SCREAMING_SNAKE_CASE__ ) self.assertNotIn("""labels""" , SCREAMING_SNAKE_CASE__ ) self.assertNotIn("""decoder_attention_mask""" , SCREAMING_SNAKE_CASE__ ) @require_torch def __a ( self : Union[str, Any] ): '''simple docstring''' __a = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a = tokenizer(text_target=SCREAMING_SNAKE_CASE__ , max_length=3_2 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) @require_torch def __a ( self : Any ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a = tokenizer( ["""I am a small frog""" * 1_0_2_4, """I am a small frog"""] , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def __a ( self : Tuple ): '''simple docstring''' __a = ["""A long paragraph for summarization."""] __a = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) __a = tokenizer(text_target=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) __a = inputs["""input_ids"""] __a = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __a ( self : Dict ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a = ["""Summary of the text.""", """Another summary."""] __a = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __a = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) __a = [[0] * len(SCREAMING_SNAKE_CASE__ ) for x in encoded_output["""input_ids"""]] __a = tokenizer.pad(SCREAMING_SNAKE_CASE__ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , SCREAMING_SNAKE_CASE__ ) def __a ( self : List[Any] ): '''simple docstring''' pass def __a ( self : Any ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a = """A, <mask> AllenNLP sentence.""" __a = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) __a = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __a = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __a = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
201
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCamelCase__ : List[str] = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str=None , __UpperCAmelCase : str=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[Any]=None , ) -> Tuple: if attention_mask is None: SCREAMING_SNAKE_CASE_ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: SCREAMING_SNAKE_CASE_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : int=13 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Dict=99 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=4 , _lowerCAmelCase : int=4 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Tuple=32 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Optional[int]=1 , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : Any=0.02 , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = initializer_range def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) SCREAMING_SNAKE_CASE_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) SCREAMING_SNAKE_CASE_ = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) SCREAMING_SNAKE_CASE_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = model_class_name(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.encode(inputs_dict['input_ids'] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) SCREAMING_SNAKE_CASE_ = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) SCREAMING_SNAKE_CASE_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model.decode(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = model_class_name(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.encode(inputs_dict['input_ids'] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) SCREAMING_SNAKE_CASE_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) SCREAMING_SNAKE_CASE_ = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) SCREAMING_SNAKE_CASE_ = input_ids.shape[0] SCREAMING_SNAKE_CASE_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_config_and_data() SCREAMING_SNAKE_CASE_ = FlaxBlenderbotForConditionalGeneration(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = lm_model(input_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) SCREAMING_SNAKE_CASE_ = FlaxBlenderbotForConditionalGeneration(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) SCREAMING_SNAKE_CASE_ = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() SCREAMING_SNAKE_CASE_ = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = FlaxBlenderbotModelTester(self ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) @jax.jit def encode_jitted(_lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : str ): return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE_ = encode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = encode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) SCREAMING_SNAKE_CASE_ = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ): return model.decode( decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE_ = decode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = decode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids SCREAMING_SNAKE_CASE_ = np.ones((1, 1) ) * model.config.eos_token_id SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} SCREAMING_SNAKE_CASE_ = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} SCREAMING_SNAKE_CASE_ = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) SCREAMING_SNAKE_CASE_ = ['Sam'] SCREAMING_SNAKE_CASE_ = tokenizer(_lowerCAmelCase , return_tensors='jax' ) SCREAMING_SNAKE_CASE_ = model.generate(**_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'Sam is a great name. It means "sun" in Gaelic.' SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(_lowerCAmelCase , **_lowerCAmelCase ) assert generated_txt[0].strip() == tgt_text
31
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = "ylacombe/bark-small" _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = "en_speaker_1" _UpperCamelCase = "This is a test string" _UpperCamelCase = "speaker_embeddings_path.json" _UpperCamelCase = "speaker_embeddings" def lowercase ( self , **lowerCamelCase_ ) -> Optional[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCamelCase_ ) def lowercase ( self ) -> Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = BarkProcessor(tokenizer=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) _UpperCamelCase = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _UpperCamelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCamelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _UpperCamelCase = 35 _UpperCamelCase = 2 _UpperCamelCase = 8 _UpperCamelCase = { "semantic_prompt": np.ones(lowerCamelCase_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _UpperCamelCase = processor(text=self.input_string , voice_preset=lowerCamelCase_ ) _UpperCamelCase = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file _UpperCamelCase = os.path.join(self.tmpdirname , "file.npz" ) np.savez(lowerCamelCase_ , **lowerCamelCase_ ) _UpperCamelCase = processor(text=self.input_string , voice_preset=lowerCamelCase_ ) _UpperCamelCase = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub _UpperCamelCase = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = BarkProcessor(tokenizer=lowerCamelCase_ ) _UpperCamelCase = processor(text=self.input_string ) _UpperCamelCase = tokenizer( self.input_string , padding="max_length" , max_length=2_56 , add_special_tokens=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
707
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCAmelCase = imread(r"""digital_image_processing/image_data/lena_small.jpg""") __lowerCAmelCase = cvtColor(img, COLOR_BGR2GRAY) def _lowercase ( ) -> List[str]: """simple docstring""" _UpperCamelCase = cn.convert_to_negative(a__ ) # assert negative_img array for at least one True assert negative_img.any() def _lowercase ( ) -> Union[str, Any]: """simple docstring""" with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(a__ , 1_10 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def _lowercase ( ) -> Any: """simple docstring""" _UpperCamelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _lowercase ( ) -> List[str]: """simple docstring""" _UpperCamelCase = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() _UpperCamelCase = canny.canny(a__ ) # assert canny array for at least one True assert canny_array.any() def _lowercase ( ) -> Tuple: """simple docstring""" assert gg.gaussian_filter(a__ , 5 , sigma=0.9 ).all() def _lowercase ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _UpperCamelCase = conv.img_convolve(a__ , a__ ).astype(a__ ) assert res.any() def _lowercase ( ) -> int: """simple docstring""" assert med.median_filter(a__ , 3 ).any() def _lowercase ( ) -> Tuple: """simple docstring""" _UpperCamelCase , _UpperCamelCase = sob.sobel_filter(a__ ) assert grad.any() and theta.any() def _lowercase ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = sp.make_sepia(a__ , 20 ) assert sepia.all() def _lowercase ( a__ : str = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = bs.Burkes(imread(a__ , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def _lowercase ( a__ : str = "digital_image_processing/image_data/lena_small.jpg" , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = rs.NearestNeighbour(imread(a__ , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def _lowercase ( ) -> Any: """simple docstring""" _UpperCamelCase = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. _UpperCamelCase = imread(a__ , 0 ) # Test for get_neighbors_pixel function() return not None _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = image[x_coordinate][y_coordinate] _UpperCamelCase = lbp.get_neighbors_pixel( a__ , a__ , a__ , a__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _UpperCamelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _UpperCamelCase = lbp.local_binary_value(a__ , a__ , a__ ) assert lbp_image.any()
589
0
"""simple docstring""" import string def __snake_case ( _lowercase ): """simple docstring""" for key in range(len(string.ascii_uppercase ) ): UpperCamelCase = '''''' for symbol in message: if symbol in string.ascii_uppercase: UpperCamelCase = string.ascii_uppercase.find(_lowercase ) UpperCamelCase = num - key if num < 0: UpperCamelCase = num + len(string.ascii_uppercase ) UpperCamelCase = translated + string.ascii_uppercase[num] else: UpperCamelCase = translated + symbol print(f'Decryption using Key #{key}: {translated}' ) def __snake_case ( ): """simple docstring""" UpperCamelCase = input('''Encrypted message: ''' ) UpperCamelCase = message.upper() decrypt(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
34
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ = 1_0_1) -> Tuple: UpperCamelCase = length def __len__( self) -> List[str]: return self.length def __getitem__( self , lowerCamelCase_) -> int: return i class snake_case_ : """simple docstring""" def __call__( self , lowerCamelCase_) -> str: return {"input_ids": torch.tensor(lowerCamelCase_), "labels": torch.tensor(lowerCamelCase_)} class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self) -> List[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase = nn.Linear(1_2_0 , 8_0) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=None) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device), input_ids else: return input_ids class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = F'--output_dir {output_dir}'.split() UpperCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(lowerCamelCase_ , env=self.get_env()) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE_ = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses()[0] logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' f'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE_ = DummyDataset(dataset_length) def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = list(range(len(_lowercase ) ) ) UpperCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} SCREAMING_SNAKE_CASE_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE_ = None
34
1
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCamelCase (_SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a = BertJapaneseTokenizer a = False a = True def lowerCAmelCase_ ( self : Any ) -> Optional[Any]: super().setUp() SCREAMING_SNAKE_CASE__ = [ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", ] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCAmelCase_ ( self : Optional[Any] , _snake_case : int ) -> Tuple: SCREAMING_SNAKE_CASE__ = "こんにちは、世界。 \nこんばんは、世界。" SCREAMING_SNAKE_CASE__ = "こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def lowerCAmelCase_ ( self : Tuple , _snake_case : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.get_input_output_texts(_snake_case ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) SCREAMING_SNAKE_CASE__ = tokenizer.decode(_snake_case , clean_up_tokenization_spaces=_snake_case ) return text, ids def lowerCAmelCase_ ( self : List[Any] ) -> int: pass # TODO add if relevant def lowerCAmelCase_ ( self : Tuple ) -> str: pass # TODO add if relevant def lowerCAmelCase_ ( self : Tuple ) -> List[str]: pass # TODO add if relevant def lowerCAmelCase_ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" ) self.assertListEqual(_snake_case , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowerCAmelCase_ ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab" ) self.assertIsNotNone(_snake_case ) SCREAMING_SNAKE_CASE__ = "こんにちは、世界。\nこんばんは、世界。" SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(_snake_case , "wb" ) as handle: pickle.dump(_snake_case , _snake_case ) with open(_snake_case , "rb" ) as handle: SCREAMING_SNAKE_CASE__ = pickle.load(_snake_case ) SCREAMING_SNAKE_CASE__ = tokenizer_new.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def lowerCAmelCase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = MecabTokenizer(mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def lowerCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: try: SCREAMING_SNAKE_CASE__ = MecabTokenizer(mecab_dic="unidic_lite" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def lowerCAmelCase_ ( self : Optional[Any] ) -> Any: try: SCREAMING_SNAKE_CASE__ = MecabTokenizer(mecab_dic="unidic" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def lowerCAmelCase_ ( self : List[Any] ) -> str: SCREAMING_SNAKE_CASE__ = MecabTokenizer(do_lower_case=_snake_case , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def lowerCAmelCase_ ( self : Dict ) -> str: try: SCREAMING_SNAKE_CASE__ = MecabTokenizer( do_lower_case=_snake_case , normalize_text=_snake_case , mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def lowerCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = MecabTokenizer(normalize_text=_snake_case , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def lowerCAmelCase_ ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi" ) self.assertIsNotNone(_snake_case ) SCREAMING_SNAKE_CASE__ = "こんにちは、世界。\nこんばんは、世界。" SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(_snake_case , "wb" ) as handle: pickle.dump(_snake_case , _snake_case ) with open(_snake_case , "rb" ) as handle: SCREAMING_SNAKE_CASE__ = pickle.load(_snake_case ) SCREAMING_SNAKE_CASE__ = tokenizer_new.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) @require_sudachi def lowerCAmelCase_ ( self : str ) -> str: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def lowerCAmelCase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国", "人", "参政", "権"] ) @require_sudachi def lowerCAmelCase_ ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人", "参政権"] ) @require_sudachi def lowerCAmelCase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人参政権"] ) @require_sudachi def lowerCAmelCase_ ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(do_lower_case=_snake_case , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def lowerCAmelCase_ ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(normalize_text=_snake_case , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def lowerCAmelCase_ ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ = SudachiTokenizer(trim_whitespace=_snake_case , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def lowerCAmelCase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp" ) self.assertIsNotNone(_snake_case ) SCREAMING_SNAKE_CASE__ = "こんにちは、世界。\nこんばんは、世界。" SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(_snake_case , "wb" ) as handle: pickle.dump(_snake_case , _snake_case ) with open(_snake_case , "rb" ) as handle: SCREAMING_SNAKE_CASE__ = pickle.load(_snake_case ) SCREAMING_SNAKE_CASE__ = tokenizer_new.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) @require_jumanpp def lowerCAmelCase_ ( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def lowerCAmelCase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = JumanppTokenizer(do_lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def lowerCAmelCase_ ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ = JumanppTokenizer(normalize_text=_snake_case ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def lowerCAmelCase_ ( self : Any ) -> Dict: SCREAMING_SNAKE_CASE__ = JumanppTokenizer(trim_whitespace=_snake_case ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def lowerCAmelCase_ ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def lowerCAmelCase_ ( self : Any ) -> Dict: SCREAMING_SNAKE_CASE__ = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] SCREAMING_SNAKE_CASE__ = {} for i, token in enumerate(_snake_case ): SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = WordpieceTokenizer(vocab=_snake_case , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こんにちは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは" ) , ["こん", "##ばんは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) , ["こん", "##ばんは", "[UNK]", "こんにちは"] ) def lowerCAmelCase_ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" ) SCREAMING_SNAKE_CASE__ = tokenizer.subword_tokenizer SCREAMING_SNAKE_CASE__ = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" ) self.assertListEqual(_snake_case , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] ) SCREAMING_SNAKE_CASE__ = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" ) self.assertListEqual(_snake_case , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] ) def lowerCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("ありがとう。" , add_special_tokens=_snake_case ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("どういたしまして。" , add_special_tokens=_snake_case ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(_snake_case ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase (_SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a = BertJapaneseTokenizer a = False def lowerCAmelCase_ ( self : Optional[Any] ) -> int: super().setUp() SCREAMING_SNAKE_CASE__ = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCAmelCase_ ( self : Union[str, Any] , **_snake_case : str ) -> Optional[int]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **_snake_case ) def lowerCAmelCase_ ( self : str , _snake_case : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = "こんにちは、世界。 \nこんばんは、世界。" SCREAMING_SNAKE_CASE__ = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def lowerCAmelCase_ ( self : str ) -> Any: pass # TODO add if relevant def lowerCAmelCase_ ( self : Optional[int] ) -> Tuple: pass # TODO add if relevant def lowerCAmelCase_ ( self : Dict ) -> List[str]: pass # TODO add if relevant def lowerCAmelCase_ ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character" ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" ) self.assertListEqual( _snake_case , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowerCAmelCase_ ( self : str ) -> List[str]: SCREAMING_SNAKE_CASE__ = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] SCREAMING_SNAKE_CASE__ = {} for i, token in enumerate(_snake_case ): SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = CharacterTokenizer(vocab=_snake_case , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こ", "ん", "に", "ち", "は"] ) self.assertListEqual(tokenizer.tokenize("こんにちほ" ) , ["こ", "ん", "に", "ち", "[UNK]"] ) def lowerCAmelCase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("ありがとう。" , add_special_tokens=_snake_case ) SCREAMING_SNAKE_CASE__ = tokenizer.encode("どういたしまして。" , add_special_tokens=_snake_case ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(_snake_case ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = "cl-tohoku/bert-base-japanese" SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ = "cl-tohoku/bert-base-japanese" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertTokenizer.from_pretrained(_snake_case ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) SCREAMING_SNAKE_CASE__ = "bert-base-cased" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertJapaneseTokenizer.from_pretrained(_snake_case ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
705
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _A = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
538
0
from __future__ import annotations lowerCAmelCase__ : Union[str, Any] =[ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def a__ ( A__, A__, A__, A__, A__, ): SCREAMING_SNAKE_CASE_ : List[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(A__ ) ) ] # the reference grid SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(A__ ) ) ] # the action grid SCREAMING_SNAKE_CASE_ : Optional[int] = init[0] SCREAMING_SNAKE_CASE_ : List[str] = init[1] SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : List[Any] = g + heuristic[x][y] # cost from starting cell to destination cell SCREAMING_SNAKE_CASE_ : List[str] = [[f, g, x, y]] SCREAMING_SNAKE_CASE_ : Dict = False # flag that is set when search is complete SCREAMING_SNAKE_CASE_ : Tuple = False # flag set if we can't find expand while not found and not resign: if len(A__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() SCREAMING_SNAKE_CASE_ : Any = cell.pop() SCREAMING_SNAKE_CASE_ : Any = next_cell[2] SCREAMING_SNAKE_CASE_ : str = next_cell[3] SCREAMING_SNAKE_CASE_ : Tuple = next_cell[1] if x == goal[0] and y == goal[1]: SCREAMING_SNAKE_CASE_ : Dict = True else: for i in range(len(A__ ) ): # to try out different valid actions SCREAMING_SNAKE_CASE_ : Optional[int] = x + DIRECTIONS[i][0] SCREAMING_SNAKE_CASE_ : List[Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(A__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: SCREAMING_SNAKE_CASE_ : List[Any] = g + cost SCREAMING_SNAKE_CASE_ : List[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : int = i SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : List[str] = goal[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: SCREAMING_SNAKE_CASE_ : Any = x - DIRECTIONS[action[x][y]][0] SCREAMING_SNAKE_CASE_ : int = y - DIRECTIONS[action[x][y]][1] SCREAMING_SNAKE_CASE_ : int = xa SCREAMING_SNAKE_CASE_ : List[Any] = ya invpath.append([x, y] ) SCREAMING_SNAKE_CASE_ : List[Any] = [] for i in range(len(A__ ) ): path.append(invpath[len(A__ ) - 1 - i] ) return path, action if __name__ == "__main__": lowerCAmelCase__ : Union[str, Any] =[ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowerCAmelCase__ : Any =[0, 0] # all coordinates are given in format [y,x] lowerCAmelCase__ : List[str] =[len(grid) - 1, len(grid[0]) - 1] lowerCAmelCase__ : str =1 # the cost map which pushes the path closer to the goal lowerCAmelCase__ : Union[str, Any] =[[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowerCAmelCase__ : List[str] =abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowerCAmelCase__ : List[str] =99 lowerCAmelCase__ ,lowerCAmelCase__ : Any =search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
101
def lowerCamelCase__ ( snake_case_ : Any ) -> List[Any]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def lowerCamelCase__ ( snake_case_ : dict[int, list[int]] ) -> list[tuple[int, int]]: __snake_case = 0 __snake_case = len(snake_case_ ) # No of vertices in graph __snake_case = [0] * n __snake_case = [False] * n def dfs(snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : List[Any] ): __snake_case = True __snake_case = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(snake_case_ , snake_case_ , snake_case_ , id_ ) __snake_case = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge __snake_case = min(low[at] , low[to] ) __snake_case = [] for i in range(snake_case_ ): if not visited[i]: dfs(snake_case_ , -1 , snake_case_ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
592
0
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __lowercase :List[str] = logging.get_logger(__name__) def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : str , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Optional[int]=None ): '''simple docstring''' if "." in tensor_name: SCREAMING_SNAKE_CASE__ : Optional[int] = tensor_name.split("." ) for split in splits[:-1]: SCREAMING_SNAKE_CASE__ : List[Any] = getattr(_lowerCamelCase , _lowerCamelCase ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) SCREAMING_SNAKE_CASE__ : Any = new_module SCREAMING_SNAKE_CASE__ : int = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) SCREAMING_SNAKE_CASE__ : int = tensor_name in module._buffers SCREAMING_SNAKE_CASE__ : Tuple = getattr(_lowerCamelCase , _lowerCamelCase ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False if is_buffer or not is_bitsandbytes_available(): SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : int = False else: SCREAMING_SNAKE_CASE__ : Optional[Any] = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: SCREAMING_SNAKE_CASE__ : Union[str, Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: SCREAMING_SNAKE_CASE__ : Dict = old_value.to(_lowerCamelCase ) elif isinstance(_lowerCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__ : int = value.to("cpu" ) if value.dtype == torch.inta: SCREAMING_SNAKE_CASE__ : List[Any] = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: SCREAMING_SNAKE_CASE__ : Any = torch.tensor(_lowerCamelCase , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _lowerCamelCase ) and fpaa_statistics is None: SCREAMING_SNAKE_CASE__ : Dict = new_value.T SCREAMING_SNAKE_CASE__ : int = old_value.__dict__ if is_abit: SCREAMING_SNAKE_CASE__ : Optional[int] = bnb.nn.IntaParams(_lowerCamelCase , requires_grad=_lowerCamelCase , **_lowerCamelCase ).to(_lowerCamelCase ) elif is_abit: SCREAMING_SNAKE_CASE__ : List[str] = bnb.nn.Paramsabit(_lowerCamelCase , requires_grad=_lowerCamelCase , **_lowerCamelCase ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(_lowerCamelCase ) ) else: if value is None: SCREAMING_SNAKE_CASE__ : List[str] = old_value.to(_lowerCamelCase ) elif isinstance(_lowerCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__ : Optional[Any] = value.to(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ : Any = torch.tensor(_lowerCamelCase , device=_lowerCamelCase ) if is_buffer: SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_value else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = nn.Parameter(_lowerCamelCase , requires_grad=old_value.requires_grad ) SCREAMING_SNAKE_CASE__ : Dict = new_value def UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple=None , _lowerCamelCase : Any=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Union[str, Any]=False ): '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] current_key_name.append(_lowerCamelCase ) if (isinstance(_lowerCamelCase , nn.Linear ) or isinstance(_lowerCamelCase , _lowerCamelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(_lowerCamelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : List[str] = module.weight.shape else: SCREAMING_SNAKE_CASE__ : Any = module.in_features SCREAMING_SNAKE_CASE__ : int = module.out_features if quantization_config.quantization_method() == "llm_int8": SCREAMING_SNAKE_CASE__ : str = bnb.nn.LinearabitLt( _lowerCamelCase , _lowerCamelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) SCREAMING_SNAKE_CASE__ : Tuple = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = bnb.nn.Linearabit( _lowerCamelCase , _lowerCamelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) SCREAMING_SNAKE_CASE__ : str = True # Store the module class in case we need to transpose the weight later SCREAMING_SNAKE_CASE__ : Tuple = type(_lowerCamelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowerCamelCase ) if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE__ : List[str] = _replace_with_bnb_linear( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , has_been_replaced=_lowerCamelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple=None , _lowerCamelCase : int=None , _lowerCamelCase : str=None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert SCREAMING_SNAKE_CASE__ : Any = _replace_with_bnb_linear( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def UpperCAmelCase ( *_lowerCamelCase : Dict , **_lowerCamelCase : List[Any] ): '''simple docstring''' warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , _lowerCamelCase , ) return replace_with_bnb_linear(*_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase ( *_lowerCamelCase : Union[str, Any] , **_lowerCamelCase : Optional[int] ): '''simple docstring''' warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , _lowerCamelCase , ) return set_module_quantized_tensor_to_device(*_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = deepcopy(_lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() SCREAMING_SNAKE_CASE__ : List[str] = find_tied_parameters(_lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = sum(_lowerCamelCase , [] ) SCREAMING_SNAKE_CASE__ : int = len(_lowerCamelCase ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE__ : Optional[int] = not hasattr(_lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE__ : Optional[int] = list(model.named_children() ) SCREAMING_SNAKE_CASE__ : int = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE__ : int = set(_lowerCamelCase ) - set(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = list(set(_lowerCamelCase ) ) + list(_lowerCamelCase ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE__ : Dict = [".weight", ".bias"] SCREAMING_SNAKE_CASE__ : str = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE__ : Any = name.replace(_lowerCamelCase , "" ) filtered_module_names.append(_lowerCamelCase ) return filtered_module_names
714
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int , _lowerCamelCase : Optional[int] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = {} if train_file is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = [train_file] if eval_file is not None: SCREAMING_SNAKE_CASE__ : int = [eval_file] if test_file is not None: SCREAMING_SNAKE_CASE__ : int = [test_file] SCREAMING_SNAKE_CASE__ : Optional[int] = datasets.load_dataset("csv" , data_files=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = list(ds[list(files.keys() )[0]].features.keys() ) SCREAMING_SNAKE_CASE__ : int = features_name.pop(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) SCREAMING_SNAKE_CASE__ : List[str] = {label: i for i, label in enumerate(_lowerCamelCase )} SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.model_input_names SCREAMING_SNAKE_CASE__ : Any = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): SCREAMING_SNAKE_CASE__ : List[Any] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): SCREAMING_SNAKE_CASE__ : Any = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: SCREAMING_SNAKE_CASE__ : Tuple = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE__ : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: SCREAMING_SNAKE_CASE__ : int = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE__ : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: SCREAMING_SNAKE_CASE__ : int = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE__ : Optional[Any] = labelaid[ex[label_name]] yield (d, label) SCREAMING_SNAKE_CASE__ : Tuple = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: SCREAMING_SNAKE_CASE__ : Any = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) SCREAMING_SNAKE_CASE__ : Dict = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: SCREAMING_SNAKE_CASE__ : Dict = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowercase :List[Any] = logging.getLogger(__name__) @dataclass class _a : """simple docstring""" snake_case_ = field(metadata={"help": "Which column contains the label"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the training file"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the development file"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "The path of the test file"} ) snake_case_ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case_ = field( default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class _a : """simple docstring""" snake_case_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=lowercase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case_ = field( default=lowercase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case_ = field(default=lowercase__ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case_ = field( default=lowercase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) SCREAMING_SNAKE_CASE__ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): SCREAMING_SNAKE_CASE__ : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCamelCase : EvalPrediction ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer SCREAMING_SNAKE_CASE__ : str = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE__ : Dict = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) SCREAMING_SNAKE_CASE__ : str = trainer.evaluate() SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(_lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
26
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : int = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class _lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" _lowerCamelCase = '''funnel''' _lowerCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self , _lowercase=3_0_5_2_2 , _lowercase=[4, 4, 4] , _lowercase=None , _lowercase=2 , _lowercase=7_6_8 , _lowercase=1_2 , _lowercase=6_4 , _lowercase=3_0_7_2 , _lowercase="gelu_new" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=None , _lowercase=1E-9 , _lowercase="mean" , _lowercase="relative_shift" , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> List[Any]: '''simple docstring''' snake_case_ : List[str] = vocab_size snake_case_ : Dict = block_sizes snake_case_ : Optional[int] = [1] * len(__UpperCAmelCase ) if block_repeats is None else block_repeats assert len(__UpperCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." snake_case_ : Dict = num_decoder_layers snake_case_ : Tuple = d_model snake_case_ : List[Any] = n_head snake_case_ : Tuple = d_head snake_case_ : Union[str, Any] = d_inner snake_case_ : Optional[Any] = hidden_act snake_case_ : Dict = hidden_dropout snake_case_ : Tuple = attention_dropout snake_case_ : List[str] = activation_dropout snake_case_ : str = initializer_range snake_case_ : Optional[Any] = initializer_std snake_case_ : Dict = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.' snake_case_ : Optional[int] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.' snake_case_ : Optional[Any] = attention_type snake_case_ : List[Any] = separate_cls snake_case_ : List[Any] = truncate_seq snake_case_ : List[str] = pool_q_only super().__init__(**__UpperCAmelCase ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def UpperCAmelCase__ ( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def UpperCAmelCase__ ( self , _lowercase ) -> Tuple: '''simple docstring''' raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
58
def a_ (__A ) -> Dict: """simple docstring""" if not head: return True # split the list to two parts __a , __a : Any = head.next, head while fast and fast.next: __a : Optional[int] = fast.next.next __a : Optional[int] = slow.next __a : Optional[int] = slow.next __a : Tuple = None # Don't forget here! But forget still works! # reverse the second part __a : Any = None while second: __a : int = second.next __a : int = node __a : Union[str, Any] = second __a : Union[str, Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __a : int = node.next __a : Dict = head.next return True def a_ (__A ) -> Union[str, Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) __a : Union[str, Any] = head while fast and fast.next: __a , __a : List[str] = fast.next.next, slow.next # 2. Push the second half into the stack __a : Dict = [slow.val] while slow.next: __a : Optional[Any] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __a : List[str] = cur.next return True def a_ (__A ) -> List[str]: """simple docstring""" if not head or not head.next: return True __a : Optional[int] = {} __a : Optional[int] = 0 while head: if head.val in d: d[head.val].append(__A ) else: __a : Dict = [pos] __a : Dict = head.next pos += 1 __a : Dict = pos - 1 __a : Optional[int] = 0 for v in d.values(): if len(__A ) % 2 != 0: middle += 1 else: __a : Dict = 0 for i in range(0 , len(__A ) ): if v[i] + v[len(__A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
351
0
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Tuple = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) UpperCAmelCase : str = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) UpperCAmelCase : List[Any] = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) UpperCAmelCase : Optional[int] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) UpperCAmelCase : List[Any] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) UpperCAmelCase : Optional[Any] = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) UpperCAmelCase : Any = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) UpperCAmelCase : List[str] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) UpperCAmelCase : Tuple = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) UpperCAmelCase : List[str] = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) UpperCAmelCase : List[str] = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) UpperCAmelCase : Any = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) UpperCAmelCase : str = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) UpperCAmelCase : Dict = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) UpperCAmelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCamelCase (_BaseAutoModelClass ): _lowercase : Optional[Any] = FLAX_MODEL_MAPPING UpperCAmelCase : List[str] = auto_class_update(FlaxAutoModel) class lowerCamelCase (_BaseAutoModelClass ): _lowercase : List[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class lowerCamelCase (_BaseAutoModelClass ): _lowercase : Tuple = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase : List[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class lowerCamelCase (_BaseAutoModelClass ): _lowercase : Dict = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase : Optional[int] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class lowerCamelCase (_BaseAutoModelClass ): _lowercase : List[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase : List[Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class lowerCamelCase (_BaseAutoModelClass ): _lowercase : str = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class lowerCamelCase (_BaseAutoModelClass ): _lowercase : Dict = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class lowerCamelCase (_BaseAutoModelClass ): _lowercase : Any = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class lowerCamelCase (_BaseAutoModelClass ): _lowercase : int = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase : List[str] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class lowerCamelCase (_BaseAutoModelClass ): _lowercase : Optional[int] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase : Optional[int] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class lowerCamelCase (_BaseAutoModelClass ): _lowercase : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase : List[str] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class lowerCamelCase (_BaseAutoModelClass ): _lowercase : Tuple = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase : Optional[Any] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class lowerCamelCase (_BaseAutoModelClass ): _lowercase : Any = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
47
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _a ( lowerCAmelCase_ ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(lowerCAmelCase_ , 0 , lowerCAmelCase_ , args=(lowerCAmelCase_) )[0] def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return math.pow(lowerCAmelCase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
47
1
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version __SCREAMING_SNAKE_CASE = get_logger(__name__) class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = "dummy_data" __UpperCamelCase = "datasets" __UpperCamelCase = False def __init__( self : Any , A__ : str , A__ : str , A__ : Union[Version, str] , A__ : Optional[str] = None , A__ : bool = False , A__ : bool = True , A__ : Optional[List[Callable]] = None , ) -> int: '''simple docstring''' a__ : Tuple = 0 a__ : Any = dataset_name a__ : int = cache_dir a__ : str = use_local_dummy_data a__ : List[str] = config # download_callbacks take a single url as input a__ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root a__ : str = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general a__ : Optional[Any] = str(A__ ) # to be downloaded a__ : Tuple = None a__ : Tuple = None @property def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' if self._dummy_file is None: a__ : Dict = self.download_dummy_data() return self._dummy_file @property def __lowerCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' a__ : int = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) a__ : str = cached_path( A__ , cache_dir=self.cache_dir , extract_compressed_file=A__ , force_extract=A__ ) return os.path.join(A__ , self.dummy_file_name ) @property def __lowerCAmelCase ( self : int ) -> Optional[int]: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' if self._bucket_url is None: a__ : int = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int] , *A__ : int ) -> Union[str, Any]: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested a__ : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned a__ : Union[str, Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(A__ , A__ ): return self.create_dummy_data_dict(A__ , A__ ) elif isinstance(A__ , (list, tuple) ): return self.create_dummy_data_list(A__ , A__ ) else: return self.create_dummy_data_single(A__ , A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Any , *A__ : int ) -> Any: '''simple docstring''' return self.download_and_extract(A__ ) def __lowerCAmelCase ( self : Any , A__ : Optional[int] , A__ : Optional[Any] ) -> int: '''simple docstring''' return self.download_and_extract(A__ ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : int , *A__ : List[Any] , **A__ : str ) -> Optional[Any]: '''simple docstring''' return path def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' return {} def __lowerCAmelCase ( self : int , A__ : Union[str, Any] , A__ : List[str] ) -> Any: '''simple docstring''' a__ : int = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(A__ , A__ ): for single_url in single_urls: download_callback(A__ ) else: a__ : Dict = single_urls download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(A__ , A__ ): a__ : Optional[int] = [os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) for x in single_urls] else: a__ : Optional[Any] = single_urls a__ : Tuple = os.path.join(A__ , urllib.parse.quote_plus(Path(A__ ).name ) ) a__ : List[str] = value # make sure that values are unique if all(isinstance(A__ , A__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique a__ : Optional[int] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __lowerCAmelCase ( self : Dict , A__ : str , A__ : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ : str = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one a__ : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , A__ ) ) for url in data_url ) a__ : Optional[Any] = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): a__ : Dict = [data_url[0]] * len(A__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a__ : Optional[int] = os.path.join(A__ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(A__ ) return dummy_data_list def __lowerCAmelCase ( self : Dict , A__ : Dict , A__ : str ) -> Optional[int]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(A__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a__ : Union[str, Any] = os.path.join(A__ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(A__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' pass def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: '''simple docstring''' pass def __lowerCAmelCase ( self : Any , A__ : Tuple ) -> Any: '''simple docstring''' def _iter_archive_members(A__ : str ): # this preserves the order of the members inside the ZIP archive a__ : Dict = Path(self.dummy_file ).parent a__ : Tuple = path.relative_to(A__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: a__ : Optional[Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(A__ ) a__ : str = Path(A__ ) a__ : Optional[Any] = _iter_archive_members(A__ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(A__ ).as_posix(), file_path.open('''rb''' ) def __lowerCAmelCase ( self : Tuple , A__ : Tuple ) -> Tuple: '''simple docstring''' if not isinstance(A__ , A__ ): a__ : int = [paths] for path in paths: if os.path.isfile(A__ ): if os.path.basename(A__ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(A__ ): if os.path.basename(A__ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(A__ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(A__ , A__ )
688
'''simple docstring''' import inspect import unittest class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def __lowerCAmelCase ( self : int ) -> str: '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps a__ : Optional[int] = inspect.getmembers(A__ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": a__ : int = '''k-diffusion''' elif backend == "invisible_watermark": a__ : int = '''invisible-watermark''' assert backend in deps, F'{backend} is not in the deps table!'
688
1
'''simple docstring''' from __future__ import annotations class snake_case__ : def __init__( self : Union[str, Any] , __a : List[Any] = 0 ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = key def A_ ( self : List[str] , __a : Any , __a : Tuple ) -> list[str]: '''simple docstring''' assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) __snake_case : Dict = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(A__ ) ^ key ) for ch in content] def A_ ( self : List[Any] , __a : Any , __a : int ) -> list[str]: '''simple docstring''' assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) __snake_case : Optional[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(A__ ) ^ key ) for ch in content] def A_ ( self : Union[str, Any] , __a : int , __a : List[Any] = 0 ) -> str: '''simple docstring''' assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) __snake_case : Dict = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned __snake_case : Optional[Any] = '' for ch in content: ans += chr(ord(A__ ) ^ key ) return ans def A_ ( self : Optional[Any] , __a : int , __a : List[Any] = 0 ) -> str: '''simple docstring''' assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) __snake_case : str = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned __snake_case : int = '' for ch in content: ans += chr(ord(A__ ) ^ key ) return ans def A_ ( self : Tuple , __a : int , __a : List[str] = 0 ) -> bool: '''simple docstring''' assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) try: with open(A__ ) as fin, open('encrypt.out' , 'w+' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(A__ , A__ ) ) except OSError: return False return True def A_ ( self : Optional[int] , __a : Dict , __a : Optional[int] ) -> bool: '''simple docstring''' assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) try: with open(A__ ) as fin, open('decrypt.out' , 'w+' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(A__ , A__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
700
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def a_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Any ) -> Dict: # Initialise PyTorch model __snake_case : Tuple = BertConfig.from_json_file(_UpperCAmelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) __snake_case : Optional[int] = BertForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() ,_UpperCAmelCase ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A__ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
124
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowercase_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> int: _A = tempfile.mkdtemp() # fmt: off _A = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _A = dict(zip(UpperCamelCase__, range(len(UpperCamelCase__ ) ) ) ) _A = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _A = {'unk_token': '<unk>'} _A = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) _A = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase__ ) ) _A = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } _A = os.path.join(self.tmpdirname, UpperCamelCase__ ) with open(self.image_processor_file, 'w', encoding='utf-8' ) as fp: json.dump(UpperCamelCase__, UpperCamelCase__ ) def __UpperCAmelCase ( self : Union[str, Any], **UpperCamelCase__ : List[Any] ) -> int: return CLIPTokenizer.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def __UpperCAmelCase ( self : Dict, **UpperCamelCase__ : List[str] ) -> Any: return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def __UpperCAmelCase ( self : Optional[int], **UpperCamelCase__ : List[Any] ) -> str: return CLIPImageProcessor.from_pretrained(self.tmpdirname, **UpperCamelCase__ ) def __UpperCAmelCase ( self : Any ) -> int: shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: _A = [np.random.randint(2_55, size=(3, 30, 4_00), dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(UpperCamelCase__, 0, -1 ) ) for x in image_inputs] return image_inputs def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = self.get_image_processor() _A = CLIPProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) _A = CLIPProcessor.from_pretrained(self.tmpdirname, use_fast=UpperCamelCase__ ) _A = CLIPProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) _A = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer, UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor, UpperCamelCase__ ) def __UpperCAmelCase ( self : Any ) -> Dict: _A = CLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) _A = self.get_image_processor(do_normalize=UpperCamelCase__, padding_value=1.0 ) _A = CLIPProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=UpperCamelCase__, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, UpperCamelCase__ ) def __UpperCAmelCase ( self : str ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = CLIPProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) _A = self.prepare_image_inputs() _A = image_processor(UpperCamelCase__, return_tensors='np' ) _A = processor(images=UpperCamelCase__, return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2 ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: _A = self.get_image_processor() _A = self.get_tokenizer() _A = CLIPProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) _A = 'lower newer' _A = processor(text=UpperCamelCase__ ) _A = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def __UpperCAmelCase ( self : Any ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = CLIPProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) _A = 'lower newer' _A = self.prepare_image_inputs() _A = processor(text=UpperCamelCase__, images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def __UpperCAmelCase ( self : Optional[int] ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = CLIPProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(UpperCamelCase__ ) _A = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__, UpperCamelCase__ ) def __UpperCAmelCase ( self : Dict ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = CLIPProcessor(tokenizer=UpperCamelCase__, image_processor=UpperCamelCase__ ) _A = 'lower newer' _A = self.prepare_image_inputs() _A = processor(text=UpperCamelCase__, images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
107
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "mobilenet_v1" def __init__( self : Optional[int] , __a : List[str]=3 , __a : Union[str, Any]=224 , __a : Tuple=1.0 , __a : List[Any]=8 , __a : Union[str, Any]="relu6" , __a : Dict=True , __a : Tuple=0.9_99 , __a : Dict=0.02 , __a : Any=0.0_01 , **__a : Any , ) -> int: super().__init__(**__a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _UpperCamelCase : Any = num_channels _UpperCamelCase : Optional[Any] = image_size _UpperCamelCase : Optional[Any] = depth_multiplier _UpperCamelCase : int = min_depth _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Union[str, Any] = tf_padding _UpperCamelCase : int = classifier_dropout_prob _UpperCamelCase : Optional[int] = initializer_range _UpperCamelCase : Union[str, Any] = layer_norm_eps class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> float: return 1e-4
624
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> str: """simple docstring""" A__ : Optional[int] = os.path.join(args.tf_model_dir , '''parameters.json''' ) A__ : List[Any] = json.loads(open(_UpperCamelCase ).read() ) if not params: raise ValueError( F"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file." ) if not args.output.endswith('''.pt''' ): A__ : List[Any] = args.output + '''.pt''' A__ : str = OrderedDict() with tf.device('''/CPU:0''' ): A__ : Optional[Any] = tf.train.load_checkpoint(args.tf_model_dir ) A__ : Tuple = reader.get_variable_to_shape_map() for key_name in shapes.keys(): A__ : Dict = reader.get_tensor(_UpperCamelCase ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): A__ : List[str] = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): A__ : int = 8 A__ : Any = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time A__ : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ : Optional[Any] = torch.tensor(_UpperCamelCase ) elif key_name.startswith('''model/moe''' ): A__ : Tuple = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): A__ : Optional[int] = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player A__ : Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ : List[Any] = torch.tensor(_UpperCamelCase ) elif key_name.endswith('''/softmlp/kernel''' ): A__ : List[Any] = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player A__ : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ : Any = torch.tensor(_UpperCamelCase ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): A__ : Tuple = key_name[-9:-7] for i in range(16 ): A__ : List[str] = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) A__ : Union[str, Any] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided A__ : List[Any] = torch.tensor(_UpperCamelCase ) elif key_name.startswith('''model/mlp''' ): A__ : Dict = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): A__ : Dict = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player A__ : Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ : List[str] = torch.tensor(_UpperCamelCase ) elif key_name.endswith('''/p1/bias''' ): A__ : List[Any] = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player A__ : List[Any] = vnp.copy() # same because it is one dimensional A__ : str = torch.tensor(_UpperCamelCase ) elif key_name.endswith('''/p2/kernel''' ): A__ : int = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player A__ : Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ : str = torch.tensor(_UpperCamelCase ) elif key_name.endswith('''/p2/bias''' ): A__ : List[str] = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player A__ : List[Any] = vnp.copy() # same because it is one dimensional A__ : int = torch.tensor(_UpperCamelCase ) elif key_name.startswith('''model/ln''' ): A__ : Optional[Any] = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): A__ : str = '''model.blocks.%d.feed_forward.norm.bias''' % player A__ : Any = vnp.copy() # same because it is one dimensional A__ : Any = torch.tensor(_UpperCamelCase ) elif key_name.endswith('''/g''' ): A__ : int = '''model.blocks.%d.feed_forward.norm.weight''' % player A__ : str = vnp.copy() # same because it is one dimensional A__ : List[Any] = torch.tensor(_UpperCamelCase ) elif key_name.startswith('''model/att''' ): A__ : Optional[Any] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): A__ : int = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum A__ : Dict = state[:, 0, :, :] A__ : int = state[:, 1, :, :] A__ : Optional[int] = state[:, 2, :, :] A__ : Union[str, Any] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A__ : int = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A__ : int = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A__ : int = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player A__ : Dict = torch.tensor(_UpperCamelCase ) A__ : Optional[int] = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player A__ : Dict = torch.tensor(_UpperCamelCase ) A__ : str = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player A__ : Optional[Any] = torch.tensor(_UpperCamelCase ) elif key_name.endswith('''/o/kernel''' ): A__ : Optional[Any] = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player A__ : int = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix A__ : List[str] = torch.tensor(_UpperCamelCase ) elif key_name.startswith('''model/an''' ): A__ : List[str] = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): A__ : Dict = '''model.blocks.%d.self_attn.norm.bias''' % player A__ : List[Any] = vnp.copy() # same because it is one dimensional A__ : int = torch.tensor(_UpperCamelCase ) elif key_name.endswith('''/g''' ): A__ : int = '''model.blocks.%d.self_attn.norm.weight''' % player A__ : Optional[Any] = vnp.copy() # same because it is one dimensional A__ : int = torch.tensor(_UpperCamelCase ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): A__ : str = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] A__ : Optional[Any] = '''model.%s.weight''' % nlayer A__ : List[str] = vnp.copy() # same in embedded A__ : Optional[int] = torch.tensor(_UpperCamelCase ) if key_name.startswith('''model/wte''' ): A__ : List[str] = '''lm_head.weight''' A__ : Optional[int] = vnp.copy() # same in embedded A__ : List[Any] = torch.tensor(_UpperCamelCase ) elif key_name.startswith('''model/wob''' ): A__ : Optional[int] = '''final_logits_bias''' A__ : List[Any] = vnp.copy() # same in embedded A__ : List[str] = state.reshape((1, -1) ) A__ : str = torch.tensor(_UpperCamelCase ) elif key_name == "model/dense/kernel": A__ : int = '''model.last_project.weight''' A__ : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ : List[Any] = torch.tensor(_UpperCamelCase ) elif key_name == "model/dense_1/bias": A__ : Any = '''model.last_project.bias''' A__ : Any = vnp.copy() # same because it is one dimensional A__ : Optional[int] = torch.tensor(_UpperCamelCase ) torch.save(_UpperCamelCase , args.output ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') _SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_tf_gptsan_to_pt(args)
721
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
0
"""simple docstring""" from ...processing_utils import ProcessorMixin class __a ( _lowerCAmelCase ): UpperCamelCase_ : Tuple = '''WhisperFeatureExtractor''' UpperCamelCase_ : Tuple = '''WhisperTokenizer''' def __init__( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple )-> str: """simple docstring""" super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = self.feature_extractor UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=True )-> List[str]: """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=UpperCAmelCase_ , language=UpperCAmelCase_ , no_timestamps=UpperCAmelCase_ ) def __call__( self : List[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[Any] )-> Union[str, Any]: """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase_ , **UpperCAmelCase_ ) UpperCamelCase = kwargs.pop("audio" , UpperCAmelCase_ ) UpperCamelCase = kwargs.pop("sampling_rate" , UpperCAmelCase_ ) UpperCamelCase = kwargs.pop("text" , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: UpperCamelCase = args[0] UpperCamelCase = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCamelCase = self.feature_extractor(UpperCAmelCase_ , *UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None: UpperCamelCase = self.tokenizer(UpperCAmelCase_ , **UpperCAmelCase_ ) if text is None: return inputs elif audio is None: return encodings else: UpperCamelCase = encodings["input_ids"] return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int] )-> Any: """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[str] )-> List[Any]: """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : str="np" )-> str: """simple docstring""" return self.tokenizer.get_prompt_ids(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ )
554
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __a ( _lowerCAmelCase ): @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Dict: """simple docstring""" UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) UpperCamelCase = BertTokenizer.from_pretrained("bert-base-uncased" ) UpperCamelCase = bertabert.config.encoder.vocab_size UpperCamelCase = tokenizer.sep_token_id UpperCamelCase = tokenizer.cls_token_id UpperCamelCase = 128 UpperCamelCase = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) UpperCamelCase = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) UpperCamelCase = train_dataset.select(range(32 ) ) UpperCamelCase = val_dataset.select(range(16 ) ) UpperCamelCase = 4 def _map_to_encoder_decoder_inputs(UpperCAmelCase_ : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase = tokenizer(batch["article"] , padding="max_length" , truncation=UpperCAmelCase_ , max_length=512 ) UpperCamelCase = tokenizer(batch["highlights"] , padding="max_length" , truncation=UpperCAmelCase_ , max_length=128 ) UpperCamelCase = inputs.input_ids UpperCamelCase = inputs.attention_mask UpperCamelCase = outputs.input_ids UpperCamelCase = outputs.input_ids.copy() UpperCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] UpperCamelCase = outputs.attention_mask assert all(len(UpperCAmelCase_ ) == 512 for x in inputs.input_ids ) assert all(len(UpperCAmelCase_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(UpperCAmelCase_ : Any ): UpperCamelCase = pred.label_ids UpperCamelCase = pred.predictions # all unnecessary tokens are removed UpperCamelCase = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) UpperCamelCase = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCAmelCase_ ) )] ) / len(UpperCAmelCase_ ) return {"accuracy": accuracy} # map train dataset UpperCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset UpperCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = SeqaSeqTrainingArguments( output_dir=UpperCAmelCase_ , per_device_train_batch_size=UpperCAmelCase_ , per_device_eval_batch_size=UpperCAmelCase_ , predict_with_generate=UpperCAmelCase_ , evaluation_strategy="steps" , do_train=UpperCAmelCase_ , do_eval=UpperCAmelCase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase = SeqaSeqTrainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , compute_metrics=_compute_metrics , train_dataset=UpperCAmelCase_ , eval_dataset=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , ) # start training trainer.train()
554
1
'''simple docstring''' def UpperCAmelCase_ ( lowercase__ , lowercase__ ): '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ): '''simple docstring''' assert masked_input.count("<mask>" ) == 1 a_ =torch.tensor(tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) ).unsqueeze(0 ) # Batch size 1 a_ =model(lowercase__ )[0] # The last hidden-state is the first element of the output tuple a_ =(input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() a_ =logits[0, masked_index, :] a_ =logits.softmax(dim=0 ) a_ , a_ =prob.topk(k=lowercase__ , dim=0 ) a_ =" ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowercase__ ) )] ) a_ =tokenizer.mask_token a_ =[] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): a_ =predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(lowercase__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(lowercase__ ) , lowercase__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowercase__ , lowercase__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowercase = CamembertTokenizer.from_pretrained('''camembert-base''') lowercase = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() lowercase = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
41
0
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version _snake_case = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(snake_case_ ),version.parse(snake_case_ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowerCAmelCase_ ( snake_case_,snake_case_ = None ): _A : Tuple = f'''\n{hint}''' if hint is not None else """""" # non-versioned check if re.match(r"""^[\w_\-\d]+$""",snake_case_ ): _A , _A , _A : Optional[int] = requirement, None, None else: _A : Any = re.findall(r"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""",snake_case_ ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" f''' got {requirement}''' ) _A , _A : str = match[0] _A : Any = want_full.split(""",""" ) # there could be multiple requirements _A : List[Any] = {} for w in want_range: _A : List[str] = re.findall(r"""^([\s!=<>]{1,2})(.+)""",snake_case_ ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" f''' but got {requirement}''' ) _A , _A : Any = match[0] _A : List[Any] = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": _A : Union[str, Any] = """.""".join([str(snake_case_ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ) return # check if any version is installed try: _A : Union[str, Any] = importlib.metadata.version(snake_case_ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(snake_case_,snake_case_ )
307
from __future__ import annotations import bisect def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0,snake_case_ = -1 ): if hi < 0: _A : Optional[Any] = len(snake_case_ ) while lo < hi: _A : Any = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _A : List[str] = mid + 1 else: _A : Optional[int] = mid return lo def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0,snake_case_ = -1 ): if hi < 0: _A : Any = len(snake_case_ ) while lo < hi: _A : Union[str, Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _A : Tuple = mid + 1 else: _A : Optional[Any] = mid return lo def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0,snake_case_ = -1 ): sorted_collection.insert(bisect_left(snake_case_,snake_case_,snake_case_,snake_case_ ),snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0,snake_case_ = -1 ): sorted_collection.insert(bisect_right(snake_case_,snake_case_,snake_case_,snake_case_ ),snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[Any] = 0 _A : str = len(snake_case_ ) - 1 while left <= right: _A : Dict = left + (right - left) // 2 _A : Dict = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _A : int = midpoint - 1 else: _A : int = midpoint + 1 return None def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : str = bisect.bisect_left(snake_case_,snake_case_ ) if index != len(snake_case_ ) and sorted_collection[index] == item: return index return None def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): if right < left: return None _A : Dict = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(snake_case_,snake_case_,snake_case_,midpoint - 1 ) else: return binary_search_by_recursion(snake_case_,snake_case_,midpoint + 1,snake_case_ ) if __name__ == "__main__": _snake_case = input("Enter numbers separated by comma:\n").strip() _snake_case = sorted(int(item) for item in user_input.split(",")) _snake_case = int(input("Enter a single number to be found in the list:\n")) _snake_case = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
307
1
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : int =logging.get_logger(__name__) def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: lowerCAmelCase_ : str = to_pil_image(lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = pil_image.size lowerCAmelCase_ : Any = pytesseract.image_to_data(lowerCAmelCase_ , lang=lowerCAmelCase_ , output_type='''dict''' , config=lowerCAmelCase_ ) lowerCAmelCase_ : Dict = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowerCAmelCase_ : Dict = [idx for idx, word in enumerate(lowerCAmelCase_ ) if not word.strip()] lowerCAmelCase_ : int = [word for idx, word in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] lowerCAmelCase_ : Tuple = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] lowerCAmelCase_ : List[Any] = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] lowerCAmelCase_ : Optional[int] = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] lowerCAmelCase_ : int = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase_ : str = [] for x, y, w, h in zip(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): lowerCAmelCase_ : str = [x, y, x + w, y + h] actual_boxes.append(lowerCAmelCase_ ) # finally, normalize the bounding boxes lowerCAmelCase_ : Optional[Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ["""pixel_values"""] def __init__( self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = 1 / 2_5_5 , __lowercase = True , __lowercase = None , __lowercase = None , __lowercase = True , __lowercase = None , __lowercase = "" , **__lowercase , ) -> None: super().__init__(**__lowercase ) lowerCAmelCase_ : List[str] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase_ : Any = get_size_dict(__lowercase ) lowerCAmelCase_ : Dict = do_resize lowerCAmelCase_ : Optional[Any] = size lowerCAmelCase_ : Optional[Any] = resample lowerCAmelCase_ : Optional[int] = do_rescale lowerCAmelCase_ : Union[str, Any] = rescale_value lowerCAmelCase_ : List[Any] = do_normalize lowerCAmelCase_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCAmelCase_ : Tuple = apply_ocr lowerCAmelCase_ : Dict = ocr_lang lowerCAmelCase_ : Union[str, Any] = tesseract_config def lowercase_ ( self , __lowercase , __lowercase , __lowercase = PILImageResampling.BILINEAR , __lowercase = None , **__lowercase , ) -> np.ndarray: lowerCAmelCase_ : Union[str, Any] = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowerCAmelCase_ : List[str] = (size['''height'''], size['''width''']) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> np.ndarray: return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> np.ndarray: return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def lowercase_ ( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase=None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ) -> PIL.Image.Image: lowerCAmelCase_ : List[Any] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ : List[str] = size if size is not None else self.size lowerCAmelCase_ : str = get_size_dict(__lowercase ) lowerCAmelCase_ : str = resample if resample is not None else self.resample lowerCAmelCase_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ : Any = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ : Optional[int] = image_std if image_std is not None else self.image_std lowerCAmelCase_ : Optional[Any] = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase_ : Dict = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase_ : int = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase_ : int = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowerCAmelCase_ : List[Any] = [to_numpy_array(__lowercase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Any = [] for image in images: lowerCAmelCase_ : List[str] = apply_tesseract(__lowercase , __lowercase , __lowercase ) words_batch.append(__lowercase ) boxes_batch.append(__lowercase ) if do_resize: lowerCAmelCase_ : Union[str, Any] = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_rescale: lowerCAmelCase_ : List[Any] = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: lowerCAmelCase_ : List[str] = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] lowerCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] lowerCAmelCase_ : Union[str, Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=__lowercase ) if apply_ocr: lowerCAmelCase_ : str = words_batch lowerCAmelCase_ : str = boxes_batch return data
720
from math import sqrt def lowerCAmelCase ( lowerCAmelCase_ )-> bool: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase_ : str = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase_ : List[Any] = False for divisor in range(2 , int(round(sqrt(lowerCAmelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase_ : Any = False break # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'status' must been from type bool" return status def lowerCAmelCase ( lowerCAmelCase_ )-> List[str]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase_ : Optional[Any] = list(range(2 , n + 1 ) ) lowerCAmelCase_ : List[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase_ : Tuple = 0 # filters actual prime numbers. lowerCAmelCase_ : List[str] = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase_ : List[str] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCAmelCase_ ): ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase_ : Union[str, Any] = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase_ : Any = 2 lowerCAmelCase_ : List[str] = number if number == 0 or number == 1: ans.append(lowerCAmelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase_ ): while quotient != 1: if is_prime(lowerCAmelCase_ ) and (quotient % factor == 0): ans.append(lowerCAmelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ : Union[str, Any] = 0 # prime factorization of 'number' lowerCAmelCase_ : Optional[int] = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : Dict = max(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> str: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ : Union[str, Any] = 0 # prime factorization of 'number' lowerCAmelCase_ : int = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : Union[str, Any] = min(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Dict: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 == 0 def lowerCAmelCase ( lowerCAmelCase_ )-> List[str]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 != 0 def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (number > 2) and is_even(lowerCAmelCase_ ) ), "'number' must been an int, even and > 2" lowerCAmelCase_ : Union[str, Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase_ : List[Any] = get_prime_numbers(lowerCAmelCase_ ) lowerCAmelCase_ : Any = len(lowerCAmelCase_ ) # run variable for while-loops. lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : List[Any] = None # exit variable. for break up the loops lowerCAmelCase_ : int = True while i < len_pn and loop: lowerCAmelCase_ : Tuple = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase_ : Union[str, Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (len(lowerCAmelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ : List[str] = 0 while numbera != 0: lowerCAmelCase_ : int = numbera % numbera lowerCAmelCase_ : Union[str, Any] = numbera lowerCAmelCase_ : Tuple = rest # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Any: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ : Dict = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase_ : Tuple = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : str = prime_factorization(lowerCAmelCase_ ) elif numbera == 1 or numbera == 1: lowerCAmelCase_ : List[Any] = [] lowerCAmelCase_ : List[Any] = [] lowerCAmelCase_ : str = max(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase_ : str = 0 lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : Any = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase_ : str = prime_fac_a.count(lowerCAmelCase_ ) lowerCAmelCase_ : List[str] = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(max(lowerCAmelCase_ , lowerCAmelCase_ ) ): ans *= n else: lowerCAmelCase_ : Dict = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase_ : Optional[int] = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Dict: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Optional[int] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase_ ): ans += 1 # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and is_prime( lowerCAmelCase_ ), "'ans' must been a prime number and from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: assert ( is_prime(lowerCAmelCase_ ) and is_prime(lowerCAmelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase_ : str = p_number_a + 1 # jump to the next number lowerCAmelCase_ : Dict = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ans[0] != p_number_a and ans[len(lowerCAmelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[str]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase_ : List[str] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase_ : Tuple = get_divisors(lowerCAmelCase_ ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Any: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase_ : List[str] = gcd(abs(lowerCAmelCase_ ) , abs(lowerCAmelCase_ ) ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase_ : Tuple = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : Optional[Any] = 1 lowerCAmelCase_ : Tuple = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase_ : Any = ans ans += fiba lowerCAmelCase_ : Dict = tmp return ans
619
0
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : int = VideoToVideoSDPipeline A_ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} A_ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} A_ : Tuple = PipelineTesterMixin.required_optional_params - {'latents'} A_ : Dict = False # No `output_type`. A_ : str = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) A = CLIPTextModel(__UpperCamelCase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=0 ) -> Optional[int]: # 3 frames A = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith('mps' ): A = torch.manual_seed(__UpperCamelCase ) else: A = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def __UpperCamelCase ( self : Optional[int] ) -> str: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = VideoToVideoSDPipeline(**__UpperCamelCase ) A = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = self.get_dummy_inputs(__UpperCamelCase ) A = 'np' A = sd_pipe(**__UpperCamelCase ).frames A = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) A = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCamelCase ( self : int ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCamelCase , expected_max_diff=5e-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __UpperCamelCase ( self : Optional[int] ) -> Any: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __UpperCamelCase ( self : str ) -> Any: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: pass def __UpperCamelCase ( self : Any ) -> Any: return super().test_progress_bar() @slow @skip_mps class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> Dict: A = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames A = torch.Generator(device='cpu' ).manual_seed(0 ) A = torch.randn((1, 10, 3, 1_024, 576) , generator=__UpperCamelCase ) A = video.to('cuda' ) A = 'Spiderman is surfing' A = pipe(__UpperCamelCase , video=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=3 , output_type='pt' ).frames A = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
106
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''unispeech''' def __init__( self : str , __A : Tuple=32 , __A : List[str]=768 , __A : Dict=12 , __A : Union[str, Any]=12 , __A : Tuple=3072 , __A : Any="gelu" , __A : int=0.1 , __A : Optional[int]=0.1 , __A : List[Any]=0.1 , __A : Any=0.0 , __A : List[str]=0.0 , __A : int=0.1 , __A : List[Any]=0.1 , __A : List[str]=0.0_2 , __A : List[str]=1e-5 , __A : List[Any]="group" , __A : int="gelu" , __A : Any=(512, 512, 512, 512, 512, 512, 512) , __A : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __A : Tuple=(10, 3, 3, 3, 3, 2, 2) , __A : Optional[int]=False , __A : Any=128 , __A : Union[str, Any]=16 , __A : Optional[Any]=False , __A : str=True , __A : Dict=0.0_5 , __A : Optional[Any]=10 , __A : Dict=2 , __A : int=0.0 , __A : List[str]=10 , __A : str=0 , __A : List[str]=320 , __A : List[Any]=2 , __A : Tuple=0.1 , __A : Optional[int]=100 , __A : Any=256 , __A : Dict=256 , __A : Tuple=0.1 , __A : List[str]="mean" , __A : int=False , __A : List[str]=False , __A : List[Any]=256 , __A : str=80 , __A : Tuple=0 , __A : Tuple=1 , __A : int=2 , __A : Dict=0.5 , **__A : List[Any] , ): super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) __A : Dict = hidden_size __A : Optional[Any] = feat_extract_norm __A : List[Any] = feat_extract_activation __A : str = list(__A ) __A : Optional[Any] = list(__A ) __A : Optional[int] = list(__A ) __A : List[Any] = conv_bias __A : Optional[int] = num_conv_pos_embeddings __A : List[Any] = num_conv_pos_embedding_groups __A : int = len(self.conv_dim ) __A : Optional[Any] = num_hidden_layers __A : List[str] = intermediate_size __A : Union[str, Any] = hidden_act __A : Optional[int] = num_attention_heads __A : Tuple = hidden_dropout __A : Optional[Any] = attention_dropout __A : Union[str, Any] = activation_dropout __A : Dict = feat_proj_dropout __A : Optional[int] = final_dropout __A : Dict = layerdrop __A : Optional[int] = layer_norm_eps __A : Optional[Any] = initializer_range __A : Optional[int] = num_ctc_classes __A : Dict = vocab_size __A : List[str] = do_stable_layer_norm __A : Tuple = use_weighted_layer_sum __A : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Tuple = apply_spec_augment __A : Union[str, Any] = mask_time_prob __A : Optional[Any] = mask_time_length __A : List[Any] = mask_time_min_masks __A : List[Any] = mask_feature_prob __A : Any = mask_feature_length __A : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A : Any = num_codevectors_per_group __A : Tuple = num_codevector_groups __A : List[str] = contrastive_logits_temperature __A : Optional[int] = feat_quantizer_dropout __A : int = num_negatives __A : List[str] = codevector_dim __A : int = proj_codevector_dim __A : Union[str, Any] = diversity_loss_weight # ctc loss __A : List[str] = ctc_loss_reduction __A : Any = ctc_zero_infinity # pretraining loss __A : Union[str, Any] = replace_prob @property def lowerCAmelCase_ ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
17
0
'''simple docstring''' def A_ ( SCREAMING_SNAKE_CASE_ = 1_00 ) ->int: lowercase_ = set() lowercase_ = 0 lowercase_ = n + 1 # maximum limit for a in range(2 , SCREAMING_SNAKE_CASE_ ): for b in range(2 , SCREAMING_SNAKE_CASE_ ): lowercase_ = a**b # calculates the current power collect_powers.add(SCREAMING_SNAKE_CASE_ ) # adds the result to the set return len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
603
'''simple docstring''' def A_ ( SCREAMING_SNAKE_CASE_ ) ->float: return 10 - x * x def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->float: # Bolzano theory in order to find if there is a root between a and b if equation(SCREAMING_SNAKE_CASE_ ) * equation(SCREAMING_SNAKE_CASE_ ) >= 0: raise ValueError("""Wrong space!""" ) lowercase_ = a while (b - a) >= 0.01: # Find middle point lowercase_ = (a + b) / 2 # Check if middle point is root if equation(SCREAMING_SNAKE_CASE_ ) == 0.0: break # Decide the side to repeat the steps if equation(SCREAMING_SNAKE_CASE_ ) * equation(SCREAMING_SNAKE_CASE_ ) < 0: lowercase_ = c else: lowercase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
603
1
"""simple docstring""" import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): lowercase = yaml.safe_load( '''\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n''' ) lowercase = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } lowercase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } lowercase = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) lowercase = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) lowercase = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' lowercase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' lowercase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' lowercase = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' lowercase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' lowercase = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' lowercase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' lowercase = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' lowercase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' lowercase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' lowercase = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' lowercase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' lowercase = '' lowercase = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' lowercase = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' lowercase = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' assert ReadMe.from_string(__A , __A ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCAmelCase ( A : Tuple , A : int ): '''simple docstring''' with pytest.raises(__A , match=re.escape(expected_error.format(path='root' ) ) ): _UpperCAmelCase = ReadMe.from_string(__A , __A ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase ( A : int , A : Any ): '''simple docstring''' with pytest.raises(__A , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(__A , __A ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase ( A : List[str] ): '''simple docstring''' ReadMe.from_string(__A , __A , suppress_parsing_errors=__A ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCAmelCase ( A : str , A : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = Path(__A ) / 'README.md' with open(__A , 'w+' ) as readme_file: readme_file.write(__A ) _UpperCAmelCase = ReadMe.from_readme(__A , __A ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCAmelCase ( A : str , A : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = Path(__A ) / 'README.md' with open(__A , 'w+' ) as readme_file: readme_file.write(__A ) _UpperCAmelCase = expected_error.format(path=__A ) with pytest.raises(__A , match=re.escape(__A ) ): _UpperCAmelCase = ReadMe.from_readme(__A , __A ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase ( A : Dict , A : Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = Path(__A ) / 'README.md' with open(__A , 'w+' ) as readme_file: readme_file.write(__A ) _UpperCAmelCase = expected_error.format(path=__A ) with pytest.raises(__A , match=re.escape(__A ) ): ReadMe.from_readme(__A , __A ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase ( A : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = Path(__A ) / 'README.md' with open(__A , 'w+' ) as readme_file: readme_file.write(__A ) ReadMe.from_readme(__A , __A , suppress_parsing_errors=__A )
573
"""simple docstring""" import argparse import json from tqdm import tqdm def __snake_case ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=__A , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=__A , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=__A , help='where to store parsed gold_data_path file' , ) SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: SCREAMING_SNAKE_CASE : Tuple = json.load(__A ) for dpr_record in tqdm(__A ): SCREAMING_SNAKE_CASE : Tuple = dpr_record['question'] SCREAMING_SNAKE_CASE : Optional[int] = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(__A ) + '\n' ) if __name__ == "__main__": main()
265
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A_ ( a_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE = BertTokenizer _SCREAMING_SNAKE_CASE = BertTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = filter_non_english def _UpperCAmelCase ( self : str ): super().setUp() __a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _UpperCAmelCase ( self : Any , __SCREAMING_SNAKE_CASE : List[str] ): __a = "UNwant\u00E9d,running" __a = "unwanted, running" return input_text, output_text def _UpperCAmelCase ( self : Tuple ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [9, 6, 7, 12, 10, 11] ) def _UpperCAmelCase ( self : List[str] ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = "UNwant\u00E9d,running" __a = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __a = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __a = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __a = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # With lower casing __a = self.get_tokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) __a = self.get_rust_tokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) __a = "UNwant\u00E9d,running" __a = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __a = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __a = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __a = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : int ): __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _UpperCAmelCase ( self : List[str] ): __a = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _UpperCAmelCase ( self : List[str] ): __a = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _UpperCAmelCase ( self : Optional[int] ): __a = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _UpperCAmelCase ( self : List[Any] ): __a = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _UpperCAmelCase ( self : List[Any] ): __a = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _UpperCAmelCase ( self : Optional[int] ): __a = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _UpperCAmelCase ( self : List[Any] ): __a = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _UpperCAmelCase ( self : Optional[int] ): __a = BasicTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _UpperCAmelCase ( self : Any ): __a = BasicTokenizer() __a = "a\n'll !!to?'d of, can't." __a = ["a", "'", "ll", "!", "!", "to", "?", "'", "d", "of", ",", "can", "'", "t", "."] self.assertListEqual(tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Dict ): __a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] __a = {} for i, token in enumerate(__SCREAMING_SNAKE_CASE ): __a = i __a = WordpieceTokenizer(vocab=__SCREAMING_SNAKE_CASE , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _UpperCAmelCase ( self : Any ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _UpperCAmelCase ( self : Tuple ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _UpperCAmelCase ( self : str ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _UpperCAmelCase ( self : int ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def _UpperCAmelCase ( self : str ): __a = self.tokenizer_class.from_pretrained("bert-base-uncased" ) __a = tokenizer.encode("sequence builders" , add_special_tokens=__SCREAMING_SNAKE_CASE ) __a = tokenizer.encode("multi-sequence build" , add_special_tokens=__SCREAMING_SNAKE_CASE ) __a = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) __a = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def _UpperCAmelCase ( self : str ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __a = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" __a = tokenizer_r.encode_plus( __SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , ) __a = tokenizer_r.do_lower_case if hasattr(__SCREAMING_SNAKE_CASE , "do_lower_case" ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _UpperCAmelCase ( self : Union[str, Any] ): __a = ["的", "人", "有"] __a = "".join(__SCREAMING_SNAKE_CASE ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a = True __a = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __a = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __a = tokenizer_p.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __a = tokenizer_r.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __a = tokenizer_r.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) __a = tokenizer_p.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = False __a = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __a = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __a = tokenizer_r.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __a = tokenizer_p.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __a = tokenizer_r.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) __a = tokenizer_p.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(__SCREAMING_SNAKE_CASE ) ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
715
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
525
0
import comet # From: unbabel-comet import torch import datasets SCREAMING_SNAKE_CASE__ : Optional[int] = datasets.logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[str] = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ SCREAMING_SNAKE_CASE__ : List[Any] = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ SCREAMING_SNAKE_CASE__ : Optional[Any] = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def A ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def A ( self , __lowerCAmelCase ): """simple docstring""" if self.config_name == "default": __magic_name__ :str = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: __magic_name__ :Dict = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=False ): """simple docstring""" if gpus is None: __magic_name__ :Optional[Any] = 1 if torch.cuda.is_available() else 0 __magic_name__ :List[Any] = {'''src''': sources, '''mt''': predictions, '''ref''': references} __magic_name__ :List[str] = [dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) for t in zip(*data.values() )] __magic_name__ , __magic_name__ :Optional[Any] = self.scorer.predict(__lowerCAmelCase , gpus=__lowerCAmelCase , progress_bar=__lowerCAmelCase ) return {"mean_score": mean_score, "scores": scores}
0
"""simple docstring""" def UpperCAmelCase_ ( __a : list ): '''simple docstring''' if len(__a ) <= 1: return lst _lowerCamelCase : str = 1 while i < len(__a ): if lst[i - 1] <= lst[i]: i += 1 else: _lowerCamelCase , _lowerCamelCase : Optional[Any] = lst[i], lst[i - 1] i -= 1 if i == 0: _lowerCamelCase : Dict = 1 return lst if __name__ == "__main__": a_ = input("""Enter numbers separated by a comma:\n""").strip() a_ = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
437
0
"""simple docstring""" import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = 'Hello, World!' _UpperCamelCase = 'en_XX' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ): '''simple docstring''' __lowerCamelCase : Tuple =Path('''data_bin''' ) __lowerCamelCase : List[str] =FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowerCamelCase : Union[str, Any] =xmod.model.encoder.sentence_encoder __lowerCamelCase : List[str] =XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowerCamelCase : str =xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[Any] =XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCamelCase : Dict =xmod_sent_encoder.embed_tokens.weight __lowerCamelCase : Optional[Any] =xmod_sent_encoder.embed_positions.weight __lowerCamelCase : Union[str, Any] =torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowerCamelCase : Optional[Any] =xmod_sent_encoder.layernorm_embedding.weight __lowerCamelCase : Any =xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCamelCase : Optional[Any] =model.roberta.encoder.layer[i] __lowerCamelCase : Optional[Any] =xmod_sent_encoder.layers[i] # self attention __lowerCamelCase : int =layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) __lowerCamelCase : Optional[Any] =xmod_layer.self_attn.q_proj.weight __lowerCamelCase : List[Any] =xmod_layer.self_attn.q_proj.bias __lowerCamelCase : str =xmod_layer.self_attn.k_proj.weight __lowerCamelCase : List[Any] =xmod_layer.self_attn.k_proj.bias __lowerCamelCase : Optional[int] =xmod_layer.self_attn.v_proj.weight __lowerCamelCase : List[Any] =xmod_layer.self_attn.v_proj.bias # self-attention output __lowerCamelCase : Optional[Any] =layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) __lowerCamelCase : List[str] =xmod_layer.self_attn.out_proj.weight __lowerCamelCase : Optional[int] =xmod_layer.self_attn.out_proj.bias __lowerCamelCase : int =xmod_layer.self_attn_layer_norm.weight __lowerCamelCase : Union[str, Any] =xmod_layer.self_attn_layer_norm.bias # intermediate __lowerCamelCase : List[Any] =layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) __lowerCamelCase : List[str] =xmod_layer.fca.weight __lowerCamelCase : str =xmod_layer.fca.bias # output __lowerCamelCase : Optional[int] =layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) __lowerCamelCase : Dict =xmod_layer.fca.weight __lowerCamelCase : List[str] =xmod_layer.fca.bias __lowerCamelCase : List[str] =xmod_layer.final_layer_norm.weight __lowerCamelCase : Dict =xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowerCamelCase : List[str] =xmod_layer.adapter_layer_norm.weight __lowerCamelCase : List[str] =xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowerCamelCase : List[str] =bert_output.adapter_modules[lang_code] __lowerCamelCase : Tuple =xmod_layer.adapter_modules[lang_code] __lowerCamelCase : Tuple =from_adapter.fca.weight __lowerCamelCase : Dict =from_adapter.fca.bias __lowerCamelCase : str =from_adapter.fca.weight __lowerCamelCase : int =from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowerCamelCase : Optional[int] =xmod_sent_encoder.layer_norm.weight __lowerCamelCase : Optional[Any] =xmod_sent_encoder.layer_norm.bias if classification_head: __lowerCamelCase : Tuple =xmod.model.classification_heads['''mnli'''].dense.weight __lowerCamelCase : List[Any] =xmod.model.classification_heads['''mnli'''].dense.bias __lowerCamelCase : Any =xmod.model.classification_heads['''mnli'''].out_proj.weight __lowerCamelCase : List[str] =xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head __lowerCamelCase : Optional[int] =xmod.model.encoder.lm_head.dense.weight __lowerCamelCase : Tuple =xmod.model.encoder.lm_head.dense.bias __lowerCamelCase : List[str] =xmod.model.encoder.lm_head.layer_norm.weight __lowerCamelCase : int =xmod.model.encoder.lm_head.layer_norm.bias __lowerCamelCase : str =xmod.model.encoder.lm_head.weight __lowerCamelCase : int =xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCamelCase : Tuple =xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowerCamelCase : int =model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowerCamelCase : Tuple =xmod.model.classification_heads['''mnli'''](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowerCamelCase : str =xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowerCamelCase : Union[str, Any] =torch.max(torch.abs(our_output - their_output ) ).item() print(F'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 __lowerCamelCase : Optional[Any] =torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) _UpperCamelCase = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
715
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _UpperCamelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' _UpperCamelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' _UpperCamelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self :Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def __lowercase ( self :Optional[Any] , __lowercase :List[List[List[str]]] , __lowercase :List[List[str]] , __lowercase :int = 1 , __lowercase :int = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__lowercase , hypotheses=__lowercase , min_len=__lowercase , max_len=__lowercase ) }
363
0
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase : int = random.Random() if is_torch_available(): import torch def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any , _lowerCamelCase : Tuple=1.0 , _lowerCamelCase : int=None , _lowerCamelCase : Optional[Any]=None) -> Optional[Any]: '''simple docstring''' if rng is None: __UpperCamelCase : Any = global_rng __UpperCamelCase : int = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def __init__( self :Union[str, Any] , a :Optional[int] , a :List[str]=7 , a :Union[str, Any]=4_0_0 , a :List[Any]=2_0_0_0 , a :Any=1 , a :int=0.0 , a :Union[str, Any]=1_6_0_0_0 , a :Optional[int]=True , a :Union[str, Any]=True , ) -> int: __UpperCamelCase : Optional[int] = parent __UpperCamelCase : Any = batch_size __UpperCamelCase : int = min_seq_length __UpperCamelCase : Optional[Any] = max_seq_length __UpperCamelCase : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCamelCase : str = feature_size __UpperCamelCase : Any = padding_value __UpperCamelCase : Tuple = sampling_rate __UpperCamelCase : List[str] = return_attention_mask __UpperCamelCase : Tuple = do_normalize def _lowerCamelCase ( self :Optional[Any] ) -> Any: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCamelCase ( self :List[Any] , a :Any=False , a :List[str]=False ) -> List[Any]: def _flatten(a :List[str] ): return list(itertools.chain(*a ) ) if equal_length: __UpperCamelCase : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __UpperCamelCase : Tuple = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCamelCase : Dict = [np.asarray(a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase__ ( __lowercase , unittest.TestCase): '''simple docstring''' _A = ASTFeatureExtractor def _lowerCamelCase ( self :Dict ) -> Any: __UpperCamelCase : List[str] = ASTFeatureExtractionTester(self ) def _lowerCamelCase ( self :Union[str, Any] ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus __UpperCamelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __UpperCamelCase : Optional[Any] = [np.asarray(a ) for speech_input in speech_inputs] # Test not batched input __UpperCamelCase : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values __UpperCamelCase : Dict = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) # Test batched __UpperCamelCase : List[str] = feat_extract(a , padding=a , return_tensors="np" ).input_values __UpperCamelCase : str = feat_extract(a , padding=a , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(a , a ): self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __UpperCamelCase : Optional[int] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] __UpperCamelCase : Optional[Any] = np.asarray(a ) __UpperCamelCase : Tuple = feat_extract(a , return_tensors="np" ).input_values __UpperCamelCase : List[str] = feat_extract(a , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(a , a ): self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) @require_torch def _lowerCamelCase ( self :Dict ) -> Union[str, Any]: import torch __UpperCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase : Optional[Any] = np.random.rand(1_0_0 ).astype(np.floataa ) __UpperCamelCase : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCamelCase : Optional[Any] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __UpperCamelCase : Dict = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _lowerCamelCase ( self :Optional[Any] , a :Optional[int] ) -> Dict: from datasets import load_dataset __UpperCamelCase : Any = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __UpperCamelCase : Tuple = ds.sort("id" ).select(range(a ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def _lowerCamelCase ( self :Union[str, Any] ) -> Tuple: # fmt: off __UpperCamelCase : Optional[int] = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on __UpperCamelCase : List[Any] = self._load_datasamples(1 ) __UpperCamelCase : Any = ASTFeatureExtractor() __UpperCamelCase : Any = feature_extractor(a , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , a , atol=1E-4 ) )
557
from __future__ import annotations lowercase : Dict = tuple[int, int, int] lowercase : List[str] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase lowercase : int = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- lowercase : Optional[int] = 'EGZWVONAHDCLFQMSIPJBYUKXTR' lowercase : Optional[Any] = 'FOBHMDKEXQNRAULPGSJVTYICZW' lowercase : str = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- lowercase : Tuple = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- lowercase : Optional[int] = 'RMDJXFUWGISLHVTCQNKYPBEZOA' lowercase : List[Any] = 'SGLCPQWZHKXAREONTFBVIYJUDM' lowercase : Dict = 'HVSICLTYKQUBXDWAJZOMFGPREN' lowercase : List[Any] = 'RZWQHFMVDBKICJLNTUXAGYPSOE' lowercase : Optional[Any] = 'LFKIJODBEGAMQPXVUHYSTCZRWN' lowercase : Tuple = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : RotorPositionT , _lowerCamelCase : RotorSelectionT , _lowerCamelCase : str) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: '''simple docstring''' if (unique_rotsel := len(set(_lowerCamelCase))) < 3: __UpperCamelCase : Tuple = F'Please use 3 unique rotors (not {unique_rotsel})' raise Exception(_lowerCamelCase) # Checks if rotor positions are valid __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : str = rotpos if not 0 < rotorposa <= len(_lowerCamelCase): __UpperCamelCase : Union[str, Any] = F'First rotor position is not within range of 1..26 ({rotorposa}' raise ValueError(_lowerCamelCase) if not 0 < rotorposa <= len(_lowerCamelCase): __UpperCamelCase : int = F'Second rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(_lowerCamelCase) if not 0 < rotorposa <= len(_lowerCamelCase): __UpperCamelCase : List[Any] = F'Third rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(_lowerCamelCase) # Validates string and returns dict __UpperCamelCase : str = _plugboard(_lowerCamelCase) return rotpos, rotsel, pbdict def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> dict[str, str]: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase): __UpperCamelCase : Union[str, Any] = F'Plugboard setting isn\'t type string ({type(_lowerCamelCase)})' raise TypeError(_lowerCamelCase) elif len(_lowerCamelCase) % 2 != 0: __UpperCamelCase : int = F'Odd number of symbols ({len(_lowerCamelCase)})' raise Exception(_lowerCamelCase) elif pbstring == "": return {} pbstring.replace(" " , "") # Checks if all characters are unique __UpperCamelCase : Optional[int] = set() for i in pbstring: if i not in abc: __UpperCamelCase : Tuple = F'\'{i}\' not in list of symbols' raise Exception(_lowerCamelCase) elif i in tmppbl: __UpperCamelCase : Tuple = F'Duplicate symbol ({i})' raise Exception(_lowerCamelCase) else: tmppbl.add(_lowerCamelCase) del tmppbl # Created the dictionary __UpperCamelCase : Union[str, Any] = {} for j in range(0 , len(_lowerCamelCase) - 1 , 2): __UpperCamelCase : Union[str, Any] = pbstring[j + 1] __UpperCamelCase : str = pbstring[j] return pb def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : RotorPositionT , _lowerCamelCase : RotorSelectionT = (rotora, rotora, rotora) , _lowerCamelCase : str = "" , ) -> str: '''simple docstring''' __UpperCamelCase : List[Any] = text.upper() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = _validator( _lowerCamelCase , _lowerCamelCase , plugb.upper()) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Tuple = rotor_position __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 __UpperCamelCase : List[str] = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: __UpperCamelCase : Dict = plugboard[symbol] # rotor ra -------------------------- __UpperCamelCase : Optional[int] = abc.index(_lowerCamelCase) + rotorposa __UpperCamelCase : List[Any] = rotora[index % len(_lowerCamelCase)] # rotor rb -------------------------- __UpperCamelCase : Dict = abc.index(_lowerCamelCase) + rotorposa __UpperCamelCase : Any = rotora[index % len(_lowerCamelCase)] # rotor rc -------------------------- __UpperCamelCase : str = abc.index(_lowerCamelCase) + rotorposa __UpperCamelCase : Union[str, Any] = rotora[index % len(_lowerCamelCase)] # reflector -------------------------- # this is the reason you don't need another machine to decipher __UpperCamelCase : Union[str, Any] = reflector[symbol] # 2nd rotors __UpperCamelCase : Optional[int] = abc[rotora.index(_lowerCamelCase) - rotorposa] __UpperCamelCase : Optional[Any] = abc[rotora.index(_lowerCamelCase) - rotorposa] __UpperCamelCase : str = abc[rotora.index(_lowerCamelCase) - rotorposa] # 2nd plugboard if symbol in plugboard: __UpperCamelCase : Optional[Any] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_lowerCamelCase): __UpperCamelCase : Any = 0 rotorposa += 1 if rotorposa >= len(_lowerCamelCase): __UpperCamelCase : Tuple = 0 rotorposa += 1 if rotorposa >= len(_lowerCamelCase): __UpperCamelCase : List[str] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_lowerCamelCase) return "".join(_lowerCamelCase) if __name__ == "__main__": lowercase : Optional[Any] = 'This is my Python script that emulates the Enigma machine from WWII.' lowercase : int = (1, 1, 1) lowercase : Optional[Any] = 'pictures' lowercase : Optional[Any] = (rotora, rotora, rotora) lowercase : Optional[Any] = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
557
1
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging _UpperCamelCase : str = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowercase = json.loads(__snake_case ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowercase = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowercase = json.loads(__snake_case ) if not mpi_options.get('sagemaker_mpi_enabled' , __snake_case ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class a ( a_ ): UpperCAmelCase_ : str =field( default="", metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"}, ) def UpperCamelCase_ ( self ): super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , _lowerCamelCase , ) @cached_property def UpperCamelCase_ ( self ): logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: lowercase = torch.device('cpu' ) lowercase = 0 elif is_sagemaker_model_parallel_available(): lowercase = smp.local_rank() lowercase = torch.device('cuda' , _lowerCamelCase ) lowercase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) lowercase = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) lowercase = torch.device('cuda' , self.local_rank ) lowercase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowercase = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowercase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) lowercase = torch.device('cuda' , self.local_rank ) lowercase = 1 if device.type == "cuda": torch.cuda.set_device(_lowerCamelCase ) return device @property def UpperCamelCase_ ( self ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def UpperCamelCase_ ( self ): return not is_sagemaker_model_parallel_available() @property def UpperCamelCase_ ( self ): return False
134
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _UpperCamelCase : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _UpperCamelCase : int = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _UpperCamelCase : Union[str, Any] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } _UpperCamelCase : Any = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } _UpperCamelCase : Any = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } _UpperCamelCase : Union[str, Any] = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } _UpperCamelCase : Tuple = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } _UpperCamelCase : int = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } _UpperCamelCase : Tuple = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class a ( a_ ): UpperCAmelCase_ : str =VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[int] =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Union[str, Any] =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : int =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class a ( a_ ): UpperCAmelCase_ : Union[str, Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Dict =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Optional[int] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) _UpperCamelCase : Tuple = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) _UpperCamelCase : int = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(a_ ) class a : def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): if titles is None and texts is None: return super().__call__( _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) elif titles is None or texts is None: lowercase = titles if texts is None else texts return super().__call__( _lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) lowercase = titles if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [titles] lowercase = texts if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [texts] lowercase = len(_lowerCamelCase ) lowercase = questions if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [questions] * n_passages if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError( F'There should be as many titles than texts but got {len(_lowerCamelCase )} titles and {len(_lowerCamelCase )} texts.' ) lowercase = super().__call__(_lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )['input_ids'] lowercase = super().__call__(_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )['input_ids'] lowercase = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowerCamelCase , _lowerCamelCase ) ] } if return_attention_mask is not False: lowercase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase = attention_mask return self.pad(_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1_6 , _lowerCamelCase = 6_4 , _lowerCamelCase = 4 , ): lowercase = reader_input['input_ids'] lowercase , lowercase , lowercase = reader_output[:3] lowercase = len(_lowerCamelCase ) lowercase = sorted(range(_lowerCamelCase ) , reverse=_lowerCamelCase , key=relevance_logits.__getitem__ ) lowercase = [] for doc_id in sorted_docs: lowercase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase = sequence_ids.index(self.pad_token_id ) else: lowercase = len(_lowerCamelCase ) lowercase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowerCamelCase , top_spans=_lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowerCamelCase , start_index=_lowerCamelCase , end_index=_lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowercase = [] for start_index, start_score in enumerate(_lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] , reverse=_lowerCamelCase ) lowercase = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'Wrong span indices: [{start_index}:{end_index}]' ) lowercase = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'Span is too long: {length} > {max_answer_length}' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a_ ) class a ( a_, a_ ): UpperCAmelCase_ : Union[str, Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : Union[str, Any] =READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[int] =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : List[Any] =READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ : Optional[int] =["input_ids", "attention_mask"]
134
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a ( _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ : Any = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE__ : List[str] = '''BlipImageProcessor''' SCREAMING_SNAKE_CASE__ : Optional[Any] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = False super().__init__(_lowerCAmelCase , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = self.image_processor def __call__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = True , _lowerCAmelCase = None , **_lowerCAmelCase , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: __SCREAMING_SNAKE_CASE: Union[str, Any] = self.tokenizer __SCREAMING_SNAKE_CASE: Any = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) return text_encoding # add pixel_values __SCREAMING_SNAKE_CASE: Tuple = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) if text is not None: __SCREAMING_SNAKE_CASE: Dict = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) else: __SCREAMING_SNAKE_CASE: Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(_lowerCAmelCase ) return encoding_image_processor def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = self.tokenizer.model_input_names __SCREAMING_SNAKE_CASE: Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
202
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "M-CLIP" def __init__( self : Tuple , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=768 , **_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = transformerDimSize SCREAMING_SNAKE_CASE_ = imageDimSize super().__init__(**_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = MCLIPConfig def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : str ): super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = XLMRobertaModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = self.transformer(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_lowerCAmelCase ), embs
31
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a__ ( UpperCamelCase_ ): snake_case__ = ['''image_processor''', '''tokenizer'''] snake_case__ = '''CLIPImageProcessor''' snake_case__ = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self : Optional[int] ,a__ : List[str]=None ,a__ : List[str]=None ,**a__ : str) -> Tuple: """simple docstring""" _lowerCAmelCase:str = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,a__ ,) _lowerCAmelCase:Optional[int] = kwargs.pop('''feature_extractor''') _lowerCAmelCase:int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(a__ ,a__) def __call__( self : Optional[Any] ,a__ : List[Any]=None ,a__ : Any=None ,a__ : Any=None ,**a__ : List[Any]) -> Any: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''') if text is not None: _lowerCAmelCase:List[Any] = self.tokenizer(a__ ,return_tensors=a__ ,**a__) if images is not None: _lowerCAmelCase:int = self.image_processor(a__ ,return_tensors=a__ ,**a__) if text is not None and images is not None: _lowerCAmelCase:List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__) ,tensor_type=a__) def __UpperCamelCase ( self : Optional[int] ,*a__ : int ,**a__ : str) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*a__ ,**a__) def __UpperCamelCase ( self : Dict ,*a__ : Union[str, Any] ,**a__ : List[Any]) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*a__ ,**a__) @property def __UpperCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _lowerCAmelCase:Optional[Any] = self.tokenizer.model_input_names _lowerCAmelCase:Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
439
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
439
1
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ) -> List[Any]: # ===== initialization ===== __lowerCamelCase : Dict = Mock() __lowerCamelCase : Union[str, Any] = conn, Mock() __lowerCamelCase : Dict = iter([1, None] ) __lowerCamelCase : Tuple = lambda UpperCAmelCase_ : next(UpperCAmelCase_ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=UpperCAmelCase_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
13
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCamelCase__ ={ 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None ): # Initialise PyTorch model _SCREAMING_SNAKE_CASE : Dict = XLNetConfig.from_json_file(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _SCREAMING_SNAKE_CASE : Tuple = finetuning_task _SCREAMING_SNAKE_CASE : List[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] _SCREAMING_SNAKE_CASE : Optional[int] = XLNetForSequenceClassification(__lowerCamelCase ) elif "squad" in finetuning_task: _SCREAMING_SNAKE_CASE : Union[str, Any] = finetuning_task _SCREAMING_SNAKE_CASE : Tuple = XLNetForQuestionAnswering(__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = XLNetLMHeadModel(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Save pytorch-model _SCREAMING_SNAKE_CASE : int = os.path.join(__lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = os.path.join(__lowerCamelCase, __lowerCamelCase ) print(f"""Save PyTorch model to {os.path.abspath(__lowerCamelCase )}""" ) torch.save(model.state_dict(), __lowerCamelCase ) print(f"""Save configuration file to {os.path.abspath(__lowerCamelCase )}""" ) with open(__lowerCamelCase, "w", encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) UpperCamelCase__ =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
249
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import _LazyModule _lowerCAmelCase : Any = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys _lowerCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
646
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class lowerCAmelCase ( a ): _lowerCamelCase : Union[str, Any] = """open-llama""" def __init__( self , snake_case__=10_0000 , snake_case__=4096 , snake_case__=1_1008 , snake_case__=32 , snake_case__=32 , snake_case__="silu" , snake_case__=2048 , snake_case__=0.0_2 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=True , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=True , snake_case__=None , **snake_case__ , ): lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = rms_norm_eps lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = kwargs.pop( 'use_memorry_efficient_attention' , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_dropout_prob lowerCAmelCase : Union[str, Any] = use_stable_embedding lowerCAmelCase : Tuple = shared_input_output_embedding lowerCAmelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"got {self.rope_scaling}" ) lowerCAmelCase : List[Any] = self.rope_scaling.get('type' , snake_case__ ) lowerCAmelCase : List[str] = self.rope_scaling.get('factor' , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
646
1
"""simple docstring""" def _A ( _a : int = 1_0_0_0_0_0_0 ): """simple docstring""" A = 1 A = 1 A = {1: 1} for inputa in range(2 , _UpperCAmelCase ): A = 0 A = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: A = (3 * number) + 1 counter += 1 if inputa not in counters: A = counter if counter > pre_counter: A = inputa A = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
617
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case__ ( unittest.TestCase ): def A_ ( self : int , __a : Optional[int] , __a : Union[str, Any] ) -> str: '''simple docstring''' return f'''gaussian_noise_s={seed}_shape={"_".join([str(__a ) for s in shape] )}.npy''' def A_ ( self : Any ) -> List[str]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def A_ ( self : List[Any] , __a : Union[str, Any]=0 , __a : List[str]=(4, 4, 64, 64) , __a : Optional[Any]=False ) -> List[str]: '''simple docstring''' __snake_case : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa __snake_case : List[Any] = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def A_ ( self : Any , __a : Any=False , __a : Dict="CompVis/stable-diffusion-v1-4" ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = jnp.bfloataa if fpaa else jnp.floataa __snake_case : int = 'bf16' if fpaa else None __snake_case , __snake_case : Union[str, Any] = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder='unet' , dtype=__a , revision=__a ) return model, params def A_ ( self : Any , __a : Dict=0 , __a : Dict=(4, 77, 768) , __a : List[str]=False ) -> List[Any]: '''simple docstring''' __snake_case : List[Any] = jnp.bfloataa if fpaa else jnp.floataa __snake_case : Any = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1000, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def A_ ( self : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : Any ) -> Dict: '''simple docstring''' __snake_case , __snake_case : Tuple = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=__a ) __snake_case : Tuple = self.get_latents(__a , fpaa=__a ) __snake_case : int = self.get_encoder_hidden_states(__a , fpaa=__a ) __snake_case : List[str] = model.apply( {'params': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __snake_case : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __snake_case : str = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1000, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def A_ ( self : str , __a : Optional[int] , __a : Union[str, Any] , __a : Tuple ) -> Optional[Any]: '''simple docstring''' __snake_case , __snake_case : int = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=__a ) __snake_case : int = self.get_latents(__a , shape=(4, 4, 96, 96) , fpaa=__a ) __snake_case : Optional[Any] = self.get_encoder_hidden_states(__a , shape=(4, 77, 1024) , fpaa=__a ) __snake_case : List[str] = model.apply( {'params': params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape __snake_case : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __snake_case : int = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
286
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
143
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
143
1
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def __a ( _UpperCamelCase: Any ) -> List[str]: """simple docstring""" _snake_case = tmp_path / "file.csv" _snake_case = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_UpperCamelCase , "w" ) as f: f.write(_UpperCamelCase ) return str(_UpperCamelCase ) @pytest.fixture def __a ( _UpperCamelCase: Dict ) -> Dict: """simple docstring""" _snake_case = tmp_path / "malformed_file.csv" _snake_case = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_UpperCamelCase , "w" ) as f: f.write(_UpperCamelCase ) return str(_UpperCamelCase ) @pytest.fixture def __a ( _UpperCamelCase: Any , _UpperCamelCase: Tuple ) -> Tuple: """simple docstring""" _snake_case = tmp_path / "csv_with_image.csv" _snake_case = textwrap.dedent( F"""\ image {image_file} """ ) with open(_UpperCamelCase , "w" ) as f: f.write(_UpperCamelCase ) return str(_UpperCamelCase ) @pytest.fixture def __a ( _UpperCamelCase: Tuple ) -> Dict: """simple docstring""" _snake_case = tmp_path / "csv_with_label.csv" _snake_case = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_UpperCamelCase , "w" ) as f: f.write(_UpperCamelCase ) return str(_UpperCamelCase ) @pytest.fixture def __a ( _UpperCamelCase: str ) -> Tuple: """simple docstring""" _snake_case = tmp_path / "csv_with_int_list.csv" _snake_case = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_UpperCamelCase , "w" ) as f: f.write(_UpperCamelCase ) return str(_UpperCamelCase ) def __a ( _UpperCamelCase: List[Any] , _UpperCamelCase: str , _UpperCamelCase: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _snake_case = Csv() _snake_case = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_UpperCamelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_UpperCamelCase ) in record.message for record in caplog.records ) @require_pil def __a ( _UpperCamelCase: Optional[Any] ) -> Any: """simple docstring""" with open(_UpperCamelCase , encoding="utf-8" ) as f: _snake_case = f.read().splitlines()[1] _snake_case = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _snake_case = csv._generate_tables([[csv_file_with_image]] ) _snake_case = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _snake_case = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def __a ( _UpperCamelCase: Dict ) -> Optional[Any]: """simple docstring""" with open(_UpperCamelCase , encoding="utf-8" ) as f: _snake_case = f.read().splitlines()[1:] _snake_case = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _snake_case = csv._generate_tables([[csv_file_with_label]] ) _snake_case = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _snake_case = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_UpperCamelCase ) for label in labels] def __a ( _UpperCamelCase: str ) -> Tuple: """simple docstring""" _snake_case = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _UpperCamelCase : [int(_UpperCamelCase ) for i in x.split()]} ) _snake_case = csv._generate_tables([[csv_file_with_int_list]] ) _snake_case = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _snake_case = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
185
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ : int = logging.get_logger(__name__) UpperCamelCase_ : Tuple = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def __a ( _UpperCamelCase: List[Any] ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _snake_case = k.replace(_UpperCamelCase , _UpperCamelCase ) if k.startswith("encoder" ): _snake_case = k.replace(".attn" , ".self_attn" ) _snake_case = k.replace("norm1" , "self_attn_layer_norm" ) _snake_case = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): _snake_case = k.replace("norm1" , "self_attn_layer_norm" ) _snake_case = k.replace("norm2" , "encoder_attn_layer_norm" ) _snake_case = k.replace("norm3" , "final_layer_norm" ) return k def __a ( _UpperCamelCase: Dict ) -> Optional[int]: """simple docstring""" _snake_case = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: _snake_case = sd.pop(_UpperCamelCase ) _snake_case = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd _snake_case = v UpperCamelCase_ : Union[str, Any] = ['''START'''] @torch.no_grad() def __a ( _UpperCamelCase: Any , _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Union[str, Any] ) -> Optional[int]: """simple docstring""" _snake_case = torch.load(_UpperCamelCase , map_location="cpu" ) _snake_case = model["model"] _snake_case = BlenderbotConfig.from_json_file(_UpperCamelCase ) _snake_case = BlenderbotForConditionalGeneration(_UpperCamelCase ) _snake_case = m.model.state_dict().keys() _snake_case = [] _snake_case = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _snake_case = rename_state_dict_key(_UpperCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _snake_case = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_UpperCamelCase ) m.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) m.half() m.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) UpperCamelCase_ : Optional[int] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
185
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
703
'''simple docstring''' def A_ ( snake_case , snake_case ): SCREAMING_SNAKE_CASE:Optional[int] = word.split() def justify(snake_case , snake_case , snake_case ) -> str: SCREAMING_SNAKE_CASE:str = max_width - width SCREAMING_SNAKE_CASE:Dict = len(snake_case ) if len(snake_case ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: SCREAMING_SNAKE_CASE:Optional[int] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] SCREAMING_SNAKE_CASE:List[Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] SCREAMING_SNAKE_CASE:List[Any] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(snake_case ): num_spaces_between_words_list[i] += 1 SCREAMING_SNAKE_CASE:str = [] for i in range(snake_case ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(snake_case ) SCREAMING_SNAKE_CASE:Any = [] SCREAMING_SNAKE_CASE:list[str] = [] SCREAMING_SNAKE_CASE:List[str] = 0 for word in words: if width + len(snake_case ) + len(snake_case ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(snake_case ) width += len(snake_case ) else: # justify the line and add it to result answer.append(justify(snake_case , snake_case , snake_case ) ) # reset new line and new width SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Tuple = [word], len(snake_case ) SCREAMING_SNAKE_CASE:Optional[int] = max_width - width - len(snake_case ) answer.append(" ".join(snake_case ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
465
0
"""simple docstring""" def __lowercase ( snake_case_ : float ,snake_case_ : float ) ->float: '''simple docstring''' if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(snake_case_ ) * abs(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
177
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets a_ = """\ @inproceedings{lin-2004-rouge, title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\", author = \"Lin, Chin-Yew\", booktitle = \"Text Summarization Branches Out\", month = jul, year = \"2004\", address = \"Barcelona, Spain\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W04-1013\", pages = \"74--81\", } """ a_ = """\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge """ a_ = """ Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring, `\"rougeL\"`: Longest common subsequence based scoring. `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric('rouge') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] >>> print(results[\"rouge1\"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results[\"rouge1\"].mid.fmeasure) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=False ): '''simple docstring''' if rouge_types is None: __A : Dict = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] __A : Dict = rouge_scorer.RougeScorer(rouge_types=__lowerCamelCase , use_stemmer=__lowerCamelCase ) if use_aggregator: __A : Dict = scoring.BootstrapAggregator() else: __A : Optional[Any] = [] for ref, pred in zip(__lowerCamelCase , __lowerCamelCase ): __A : List[Any] = scorer.score(__lowerCamelCase , __lowerCamelCase ) if use_aggregator: aggregator.add_scores(__lowerCamelCase ) else: scores.append(__lowerCamelCase ) if use_aggregator: __A : Optional[Any] = aggregator.aggregate() else: __A : List[Any] = {} for key in scores[0]: __A : Tuple = [score[key] for score in scores] return result
177
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'rwkv' lowerCAmelCase_ = {'max_position_embeddings': 'context_length'} def __init__( self : Optional[Any],__A : List[Any]=5_0_2_7_7,__A : Any=1_0_2_4,__A : Optional[int]=4_0_9_6,__A : int=3_2,__A : Optional[int]=None,__A : Optional[int]=None,__A : Tuple=1e-5,__A : Union[str, Any]=0,__A : Tuple=0,__A : Union[str, Any]=6,__A : int=False,__A : str=True,**__A : str,): _lowerCamelCase : str = vocab_size _lowerCamelCase : List[Any] = context_length _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size _lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size _lowerCamelCase : int = layer_norm_epsilon _lowerCamelCase : int = rescale_every _lowerCamelCase : str = use_cache _lowerCamelCase : Dict = bos_token_id _lowerCamelCase : int = eos_token_id super().__init__( tie_word_embeddings=__A,bos_token_id=__A,eos_token_id=__A,**__A )
11
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase_ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase_ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase_ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase_ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase_ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'train' lowerCAmelCase_ = 'dev' class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",): _lowerCamelCase : Tuple = args _lowerCamelCase : List[str] = is_language_sensitive _lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A,__A ): try: _lowerCamelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) _lowerCamelCase : str = mode # Load data features from cache or dataset file _lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1" _lowerCamelCase : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCamelCase : Tuple = cached_features_file + ".lock" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: _lowerCamelCase : int = time.time() _lowerCamelCase : int = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCamelCase : Union[str, Any] = self.old_features["features"] _lowerCamelCase : List[Any] = self.old_features.get("dataset",__A ) _lowerCamelCase : List[Any] = self.old_features.get("examples",__A ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: _lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir ) _lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features( examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,) _lowerCamelCase : List[Any] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Tuple,__A : str ): # Convert to Tensors and build dataset _lowerCamelCase : List[str] = self.features[i] _lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long ) _lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long ) _lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long ) _lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float ) _lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float ) _lowerCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long ) _lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
11
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
292
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
335
0
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =torch.nn.Linear(10 , 10 ) __UpperCamelCase : List[str] =torch.optim.SGD(model.parameters() , 0.1 ) __UpperCamelCase : List[Any] =Accelerator() __UpperCamelCase : Any =accelerator.prepare(lowerCamelCase__ ) try: pickle.loads(pickle.dumps(lowerCamelCase__ ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
154
from __future__ import annotations A_ :Optional[int] = list[tuple[int, int]] A_ :str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A_ :Union[str, Any] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __A : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : List[str] =pos_x __UpperCamelCase : Dict =pos_y __UpperCamelCase : Any =(pos_y, pos_x) __UpperCamelCase : Optional[int] =goal_x __UpperCamelCase : Optional[int] =goal_y __UpperCamelCase : Union[str, Any] =g_cost __UpperCamelCase : Any =parent __UpperCamelCase : List[Any] =self.calculate_heuristic() def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =abs(self.pos_x - self.goal_x ) __UpperCamelCase : Optional[Any] =abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , lowerCamelCase__ ): """simple docstring""" return self.f_cost < other.f_cost class __A : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : str =Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCamelCase__ ) __UpperCamelCase : Any =Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , lowerCamelCase__ ) __UpperCamelCase : str =[self.start] __UpperCamelCase : list[Node] =[] __UpperCamelCase : Dict =False def __lowercase ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __UpperCamelCase : Dict =self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __UpperCamelCase : Any =True return self.retrace_path(lowerCamelCase__ ) self.closed_nodes.append(lowerCamelCase__ ) __UpperCamelCase : Dict =self.get_successors(lowerCamelCase__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCamelCase__ ) else: # retrieve the best current path __UpperCamelCase : List[str] =self.open_nodes.pop(self.open_nodes.index(lowerCamelCase__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCamelCase__ ) else: self.open_nodes.append(lowerCamelCase__ ) if not self.reached: return [self.start.pos] return None def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any =[] for action in delta: __UpperCamelCase : Tuple =parent.pos_x + action[1] __UpperCamelCase : str =parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCamelCase__ , lowerCamelCase__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCamelCase__ , ) ) return successors def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any =node __UpperCamelCase : Any =[] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __UpperCamelCase : List[Any] =current_node.parent path.reverse() return path if __name__ == "__main__": A_ :Optional[Any] = (0, 0) A_ :Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') A_ :List[str] = GreedyBestFirst(init, goal) A_ :int = greedy_bf.search() if path: for pos_x, pos_y in path: A_ :List[Any] = 2 for elem in grid: print(elem)
154
1
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging a__ : Dict =logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =CLIPConfig SCREAMING_SNAKE_CASE_ : str =["CLIPEncoderLayer"] def __init__( self : Tuple , __A : CLIPConfig ): super().__init__(__A ) __UpperCamelCase = CLIPVisionModelWithProjection(config.vision_config ) __UpperCamelCase = nn.Linear(config.vision_config.projection_dim , 1 ) __UpperCamelCase = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def _lowerCamelCase ( self : Optional[int] , __A : Optional[int] , __A : Optional[int] , __A : Any=0.5 , __A : int=0.5 ): __UpperCamelCase = self.vision_model(__A )[0] __UpperCamelCase = self.p_head(__A ) __UpperCamelCase = nsfw_detected.flatten() __UpperCamelCase = nsfw_detected > p_threshold __UpperCamelCase = nsfw_detected.tolist() if any(__A ): logger.warning( 'Potential NSFW content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, nsfw_detected_ in enumerate(__A ): if nsfw_detected_: __UpperCamelCase = np.zeros(images[idx].shape ) __UpperCamelCase = self.w_head(__A ) __UpperCamelCase = watermark_detected.flatten() __UpperCamelCase = watermark_detected > w_threshold __UpperCamelCase = watermark_detected.tolist() if any(__A ): logger.warning( 'Potential watermarked content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, watermark_detected_ in enumerate(__A ): if watermark_detected_: __UpperCamelCase = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
399
'''simple docstring''' def lowercase__ ( ) -> List[str]: """simple docstring""" for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def lowercase__ ( __lowercase : Any ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = 1 __UpperCamelCase = 2 while i * i <= n: __UpperCamelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowercase__ ( ) -> List[Any]: """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(__lowercase ) > 500 ) if __name__ == "__main__": print(solution())
399
1
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__(self , _lowercase , _lowercase=2 , _lowercase=32 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=True , _lowercase=32 , _lowercase=4 , _lowercase=[0, 1, 2, 3] , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=3 , _lowercase=[1, 384, 24, 24] , _lowercase=True , _lowercase=None , ): '''simple docstring''' __a : Optional[Any] = parent __a : List[Any] = batch_size __a : Tuple = image_size __a : Union[str, Any] = patch_size __a : Tuple = num_channels __a : Dict = is_training __a : str = use_labels __a : List[Any] = hidden_size __a : Dict = num_hidden_layers __a : str = backbone_out_indices __a : List[str] = num_attention_heads __a : Dict = intermediate_size __a : Union[str, Any] = hidden_act __a : Any = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : Any = initializer_range __a : Optional[Any] = num_labels __a : Dict = backbone_featmap_shape __a : List[Any] = scope __a : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __a : str = (image_size // patch_size) ** 2 __a : List[Any] = num_patches + 1 def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Optional[Any] = None if self.use_labels: __a : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__(self ): '''simple docstring''' __a : int = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_lowercase , backbone_featmap_shape=self.backbone_featmap_shape , ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : Optional[int] = DPTModel(config=_lowercase ) model.to(_lowercase ) model.eval() __a : Union[str, Any] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : str = self.num_labels __a : Optional[int] = DPTForDepthEstimation(_lowercase ) model.to(_lowercase ) model.eval() __a : int = model(_lowercase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : Dict = self.num_labels __a : List[Any] = DPTForSemanticSegmentation(_lowercase ) model.to(_lowercase ) model.eval() __a : Union[str, Any] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCAmelCase__(self ): '''simple docstring''' __a : str = self.prepare_config_and_inputs() __a , __a , __a : List[str] = config_and_inputs __a : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __snake_case , __snake_case , unittest.TestCase ): _lowerCAmelCase = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () _lowerCAmelCase = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[Any] = DPTModelTester(self ) __a : Optional[int] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def lowerCAmelCase__(self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def lowerCAmelCase__(self ): '''simple docstring''' pass def lowerCAmelCase__(self ): '''simple docstring''' __a , __a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Dict = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def lowerCAmelCase__(self ): '''simple docstring''' __a , __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : str = model_class(_lowercase ) __a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Optional[int] = [*signature.parameters.keys()] __a : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() __a : Any = True if model_class in get_values(_lowercase ): continue __a : List[Any] = model_class(_lowercase ) model.to(_lowercase ) model.train() __a : Optional[Any] = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) __a : str = model(**_lowercase ).loss loss.backward() def lowerCAmelCase__(self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __a , __a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __a : List[str] = False __a : Dict = True if model_class in get_values(_lowercase ) or not model_class.supports_gradient_checkpointing: continue __a : Optional[Any] = model_class(_lowercase ) model.to(_lowercase ) model.gradient_checkpointing_enable() model.train() __a : int = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) __a : Optional[int] = model(**_lowercase ).loss loss.backward() def lowerCAmelCase__(self ): '''simple docstring''' __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() __a : Optional[int] = _config_zero_init(_lowercase ) for model_class in self.all_model_classes: __a : str = model_class(config=_lowercase ) # Skip the check for the backbone __a : str = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __a : List[str] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase__(self ): '''simple docstring''' pass @slow def lowerCAmelCase__(self ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __a : List[str] = DPTModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a , __a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __a : Dict = """add""" with self.assertRaises(_lowercase ): __a : Union[str, Any] = DPTForDepthEstimation(_lowercase ) def __magic_name__ ( ): __a : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) __a : List[str] = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(_lowercase ) __a : Dict = prepare_img() __a : List[Any] = image_processor(images=_lowercase , return_tensors="""pt""" ).to(_lowercase ) # forward pass with torch.no_grad(): __a : Dict = model(**_lowercase ) __a : Tuple = outputs.predicted_depth # verify the predicted depth __a : Dict = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _lowercase ) __a : List[str] = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _lowercase , atol=1e-4 ) )
63
"""simple docstring""" import torch from diffusers import DiffusionPipeline class SCREAMING_SNAKE_CASE__ ( __snake_case ): def __init__(self , _lowercase , _lowercase ): '''simple docstring''' super().__init__() self.register_modules(unet=_lowercase , scheduler=_lowercase ) def __call__(self ): '''simple docstring''' __a : Dict = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) __a : Optional[Any] = 1 __a : List[str] = self.unet(_lowercase , _lowercase ).sample __a : Union[str, Any] = self.scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample __a : Optional[int] = scheduler_output - scheduler_output + torch.ones_like(_lowercase ) return result
63
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCamelCase = logging.get_logger(__name__) class __UpperCAmelCase (_A , _A ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = 'maskformer-swin' _UpperCamelCase : int = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , snake_case_=224 , snake_case_=4 , snake_case_=3 , snake_case_=96 , snake_case_=[2, 2, 6, 2] , snake_case_=[3, 6, 12, 24] , snake_case_=7 , snake_case_=4.0 , snake_case_=True , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_="gelu" , snake_case_=False , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=None , snake_case_=None , **snake_case_ , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) A__ : List[Any] = image_size A__ : Optional[Any] = patch_size A__ : List[str] = num_channels A__ : Optional[int] = embed_dim A__ : Any = depths A__ : Optional[int] = len(UpperCamelCase__ ) A__ : List[Any] = num_heads A__ : Any = window_size A__ : Union[str, Any] = mlp_ratio A__ : Dict = qkv_bias A__ : List[str] = hidden_dropout_prob A__ : List[str] = attention_probs_dropout_prob A__ : Tuple = drop_path_rate A__ : List[str] = hidden_act A__ : Optional[Any] = use_absolute_embeddings A__ : List[Any] = layer_norm_eps A__ : Union[str, Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A__ : Optional[int] = int(embed_dim * 2 ** (len(UpperCamelCase__ ) - 1) ) A__ : Union[str, Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(UpperCamelCase__ ) + 1 )] A__ , A__ : List[Any] = get_aligned_output_features_output_indices( out_features=UpperCamelCase__ , out_indices=UpperCamelCase__ , stage_names=self.stage_names )
363
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __snake_case : Optional[Any] = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowercase_ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=1_6 , UpperCamelCase__=1_3 , UpperCamelCase__=7 , UpperCamelCase__=1_4 , UpperCamelCase__=1_0 , UpperCamelCase__=1_9 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=True , UpperCamelCase__=1_6 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=[1, 2, 3, 4, 5] , UpperCamelCase__=2_5 , UpperCamelCase__=5 , ) -> Tuple: """simple docstring""" UpperCAmelCase_ = d_model UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = prediction_length UpperCAmelCase_ = context_length UpperCAmelCase_ = cardinality UpperCAmelCase_ = num_time_features UpperCAmelCase_ = lags_sequence UpperCAmelCase_ = embedding_dimension UpperCAmelCase_ = is_training UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = context_length UpperCAmelCase_ = prediction_length + label_length UpperCAmelCase_ = label_length UpperCAmelCase_ = moving_average UpperCAmelCase_ = autocorrelation_factor def lowerCamelCase_ ( self ) -> List[Any]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> Any: """simple docstring""" UpperCAmelCase_ = config.context_length + max(config.lags_sequence ) UpperCAmelCase_ = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) UpperCAmelCase_ = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) UpperCAmelCase_ = floats_tensor([self.batch_size, _past_length] ) UpperCAmelCase_ = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs UpperCAmelCase_ = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) UpperCAmelCase_ = floats_tensor([self.batch_size, config.prediction_length] ) UpperCAmelCase_ = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def lowerCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = self.prepare_autoformer_inputs_dict(UpperCamelCase__ ) return config, inputs_dict def lowerCamelCase_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: """simple docstring""" UpperCAmelCase_ = AutoformerModel(config=UpperCamelCase__ ).to(UpperCamelCase__ ).eval() UpperCAmelCase_ = model(**UpperCamelCase__ ) UpperCAmelCase_ = outputs.encoder_last_hidden_state UpperCAmelCase_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = model.get_encoder() encoder.save_pretrained(UpperCamelCase__ ) UpperCAmelCase_ = AutoformerEncoder.from_pretrained(UpperCamelCase__ ).to(UpperCamelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = model.create_network_inputs(**UpperCamelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) UpperCAmelCase_ = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) UpperCAmelCase_ = encoder(inputs_embeds=UpperCamelCase__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) UpperCAmelCase_ = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) UpperCAmelCase_ = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) UpperCAmelCase_ = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) UpperCAmelCase_ = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = model.get_decoder() decoder.save_pretrained(UpperCamelCase__ ) UpperCAmelCase_ = AutoformerDecoder.from_pretrained(UpperCamelCase__ ).to(UpperCamelCase__ ) UpperCAmelCase_ = decoder( trend=UpperCamelCase__ , inputs_embeds=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowercase_ ( _A , _A , unittest.TestCase ): a_ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () a_ = (AutoformerForPrediction,) if is_torch_available() else () a_ = {"""feature-extraction""": AutoformerModel} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowerCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase_ = AutoformerModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = model_class.from_pretrained(UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) self.assertEqual(info["missing_keys"] , [] ) def lowerCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCamelCase__ ) @unittest.skip(reason="Model has no tokens embeddings" ) def lowerCamelCase_ ( self ) -> Any: """simple docstring""" pass def lowerCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase_ = inspect.signature(getattr(UpperCamelCase__ , "forward" ) ) # The main input is the name of the argument after `self` UpperCAmelCase_ = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(UpperCamelCase__ ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(UpperCamelCase__ )] , UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True UpperCAmelCase_ = getattr(self.model_tester , "seq_length" , UpperCamelCase__ ) UpperCAmelCase_ = getattr(self.model_tester , "decoder_seq_length" , UpperCamelCase__ ) UpperCAmelCase_ = getattr(self.model_tester , "encoder_seq_length" , UpperCamelCase__ ) UpperCAmelCase_ = getattr(self.model_tester , "d_model" , UpperCamelCase__ ) UpperCAmelCase_ = getattr(self.model_tester , "num_attention_heads" , UpperCamelCase__ ) UpperCAmelCase_ = d_model // num_attention_heads for model_class in self.all_model_classes: UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = True UpperCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) UpperCAmelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ = True UpperCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) UpperCAmelCase_ = outputs.encoder_attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) UpperCAmelCase_ = len(UpperCamelCase__ ) UpperCAmelCase_ = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # decoder attentions UpperCAmelCase_ = outputs.decoder_attentions self.assertIsInstance(UpperCamelCase__ , (list, tuple) ) self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions UpperCAmelCase_ = outputs.cross_attentions self.assertIsInstance(UpperCamelCase__ , (list, tuple) ) self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 2 , len(UpperCamelCase__ ) ) UpperCAmelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCamelCase_ ( self ) -> str: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCamelCase__ ( A_="train-batch.pt" ): UpperCAmelCase_ = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=A_ , repo_type="dataset" ) UpperCAmelCase_ = torch.load(A_ , map_location=A_ ) return batch @require_torch @slow class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase_ = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(UpperCamelCase__ ) UpperCAmelCase_ = prepare_batch() with torch.no_grad(): UpperCAmelCase_ = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] UpperCAmelCase_ = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCAmelCase_ = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) def lowerCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(UpperCamelCase__ ) UpperCAmelCase_ = prepare_batch("val-batch.pt" ) with torch.no_grad(): UpperCAmelCase_ = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state UpperCAmelCase_ = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCAmelCase_ = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) def lowerCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase_ = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(UpperCamelCase__ ) UpperCAmelCase_ = prepare_batch("val-batch.pt" ) with torch.no_grad(): UpperCAmelCase_ = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) UpperCAmelCase_ = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , UpperCamelCase__ ) UpperCAmelCase_ = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=UpperCamelCase__ ) UpperCAmelCase_ = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCamelCase__ , rtol=1e-1 ) )
660
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class A_ ( unittest.TestCase , __lowercase ): '''simple docstring''' def snake_case__ ( self) -> Any: """simple docstring""" _UpperCAmelCase : List[Any] = load_tool('''text-classification''') self.tool.setup() _UpperCAmelCase : List[Any] = load_tool('''text-classification''' , remote=lowercase_) def snake_case__ ( self) -> Any: """simple docstring""" _UpperCAmelCase : List[Any] = self.tool('''That\'s quite cool''' , ['''positive''', '''negative''']) self.assertEqual(lowercase_ , '''positive''') def snake_case__ ( self) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = self.remote_tool('''That\'s quite cool''' , ['''positive''', '''negative''']) self.assertEqual(lowercase_ , '''positive''') def snake_case__ ( self) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = self.tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative''']) self.assertEqual(lowercase_ , '''positive''') def snake_case__ ( self) -> Any: """simple docstring""" _UpperCAmelCase : Dict = self.remote_tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative''']) self.assertEqual(lowercase_ , '''positive''')
716
import os from collections.abc import Iterator def _lowerCamelCase ( __A : str = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(__A ): _UpperCAmelCase : List[Any] = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__A )[1] in (".py", ".ipynb"): yield os.path.join(__A , __A ).lstrip('''./''' ) def _lowerCamelCase ( __A : Dict ) -> List[Any]: return f'''{i * ' '}*''' if i else "\n##" def _lowerCamelCase ( __A : str , __A : str ) -> str: _UpperCAmelCase : int = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__A ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(__A )} {new_part.replace('_' , ' ' ).title()}''' ) return new_path def _lowerCamelCase ( __A : str = "." ) -> None: _UpperCAmelCase : List[str] = '''''' for filepath in sorted(good_file_paths(__A ) ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = os.path.split(__A ) if filepath != old_path: _UpperCAmelCase : Optional[int] = print_path(__A , __A ) _UpperCAmelCase : Dict = (filepath.count(os.sep ) + 1) if filepath else 0 _UpperCAmelCase : Union[str, Any] = f'''{filepath}/{filename}'''.replace(''' ''' , '''%20''' ) _UpperCAmelCase : List[Any] = os.path.splitext(filename.replace('''_''' , ''' ''' ).title() )[0] print(f'''{md_prefix(__A )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('.')
186
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase ( metaclass=_UpperCAmelCase ): _SCREAMING_SNAKE_CASE = ['keras_nlp'] def __init__( self , *lowercase , **lowercase ) -> Dict: requires_backends(self , ["""keras_nlp"""] )
532
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) lowerCAmelCase = str(bin(SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" lowerCAmelCase = str(bin(SCREAMING_SNAKE_CASE ) )[2:] lowerCAmelCase = max(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE ) , b_binary.zfill(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
532
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType UpperCamelCase_ = None UpperCamelCase_ = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image UpperCamelCase_ = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class snake_case_ : '''simple docstring''' __UpperCamelCase = True __UpperCamelCase = None # Automatically constructed __UpperCamelCase = "PIL.Image.Image" __UpperCamelCase = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) __UpperCamelCase = field(default='Image', init=UpperCAmelCase__, repr=UpperCAmelCase__ ) def __call__( self ) -> Tuple: return self.pa_type def __UpperCAmelCase ( self, A_ ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(A_, A_ ): UpperCAmelCase__ =np.array(A_ ) if isinstance(A_, A_ ): return {"path": value, "bytes": None} elif isinstance(A_, A_ ): return {"path": None, "bytes": value} elif isinstance(A_, np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(A_ ) elif isinstance(A_, PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(A_ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f"""An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.""" ) def __UpperCAmelCase ( self, A_, A_=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: UpperCAmelCase__ ={} UpperCAmelCase__ =value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of \'path\' or \'bytes\' but both are None in {value}.""" ) else: if is_local_path(A_ ): UpperCAmelCase__ =PIL.Image.open(A_ ) else: UpperCAmelCase__ =path.split("::" )[-1] try: UpperCAmelCase__ =string_to_dict(A_, config.HUB_DATASETS_URL )["""repo_id"""] UpperCAmelCase__ =token_per_repo_id.get(A_ ) except ValueError: UpperCAmelCase__ =None with xopen(A_, "rb", use_auth_token=A_ ) as f: UpperCAmelCase__ =BytesIO(f.read() ) UpperCAmelCase__ =PIL.Image.open(bytes_ ) else: UpperCAmelCase__ =PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __UpperCAmelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def __UpperCAmelCase ( self, A_ ) -> pa.StructArray: if pa.types.is_string(storage.type ): UpperCAmelCase__ =pa.array([None] * len(A_ ), type=pa.binary() ) UpperCAmelCase__ =pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase__ =pa.array([None] * len(A_ ), type=pa.string() ) UpperCAmelCase__ =pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCAmelCase__ =storage.field("bytes" ) else: UpperCAmelCase__ =pa.array([None] * len(A_ ), type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCAmelCase__ =storage.field("path" ) else: UpperCAmelCase__ =pa.array([None] * len(A_ ), type=pa.string() ) UpperCAmelCase__ =pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCAmelCase__ =pa.array( [encode_np_array(np.array(A_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) UpperCAmelCase__ =pa.array([None] * len(A_ ), type=pa.string() ) UpperCAmelCase__ =pa.StructArray.from_arrays( [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(A_, self.pa_type ) def __UpperCAmelCase ( self, A_ ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(A_ ): with xopen(A_, "rb" ) as f: UpperCAmelCase__ =f.read() return bytes_ UpperCAmelCase__ =pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) UpperCAmelCase__ =pa.array( [os.path.basename(A_ ) if path is not None else None for path in storage.field("path" ).to_pylist()], type=pa.string(), ) UpperCAmelCase__ =pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(A_, self.pa_type ) def _UpperCAmelCase ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCAmelCase__ =list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ =BytesIO() if image.format in list_image_compression_formats(): UpperCAmelCase__ =image.format else: UpperCAmelCase__ ="""PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(A , format=A ) return buffer.getvalue() def _UpperCAmelCase ( A ): '''simple docstring''' if hasattr(A , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(A )} def _UpperCAmelCase ( A ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) UpperCAmelCase__ =array.dtype UpperCAmelCase__ =dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER UpperCAmelCase__ =dtype.kind UpperCAmelCase__ =dtype.itemsize UpperCAmelCase__ =None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCAmelCase__ =np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCAmelCase__ =dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCAmelCase__ =dtype_byteorder + dtype_kind + str(A ) UpperCAmelCase__ =np.dtype(A ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) UpperCAmelCase__ =PIL.Image.fromarray(array.astype(A ) ) return {"path": None, "bytes": image_to_bytes(A )} def _UpperCAmelCase ( A ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: UpperCAmelCase__ =first_non_null_value(A ) if isinstance(A , A ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(A , np.ndarray ): UpperCAmelCase__ =no_op_if_value_is_null(A ) return [obj_to_image_dict_func(A ) for obj in objs] elif isinstance(A , PIL.Image.Image ): UpperCAmelCase__ =no_op_if_value_is_null(A ) return [obj_to_image_dict_func(A ) for obj in objs] else: return objs else: return objs
714
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ =torch.load(A , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase__ =torch.load(A , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase__ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(A ) UpperCAmelCase__ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase__ =sd.pop(A ) UpperCAmelCase__ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase__ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase__ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase__ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase__ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase__ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =torch.split(A , depth // 3 , dim=0 ) UpperCAmelCase__ =q UpperCAmelCase__ =k UpperCAmelCase__ =v del sd[key] return sd @torch.no_grad() def _UpperCAmelCase ( A , A , A=None ): '''simple docstring''' UpperCAmelCase__ =load_checkpoint(A ) if config is not None: UpperCAmelCase__ =OPTConfig.from_pretrained(A ) else: UpperCAmelCase__ =OPTConfig() UpperCAmelCase__ =OPTModel(A ).half().eval() model.load_state_dict(A ) # Check results Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCamelCase_ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
510
0
import requests lowerCAmelCase__ : str ='https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=' def a__ ( A__ ): # fetching a list of articles in json format SCREAMING_SNAKE_CASE_ : Any = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'], 1 ): print(F'''{i}.) {article['title']}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
101
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class SCREAMING_SNAKE_CASE_ ( snake_case ): __a : List[str] = '''poolformer''' def __init__( self , lowercase=3 , lowercase=1_6 , lowercase=1_6 , lowercase=3 , lowercase=4.0 , lowercase=[2, 2, 6, 2] , lowercase=[6_4, 1_2_8, 3_2_0, 5_1_2] , lowercase=[7, 3, 3, 3] , lowercase=[4, 2, 2, 2] , lowercase=[2, 1, 1, 1] , lowercase=4 , lowercase=0.0 , lowercase="gelu" , lowercase=True , lowercase=1e-5 , lowercase=0.0_2 , **lowercase , ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = num_channels __SCREAMING_SNAKE_CASE : Dict = patch_size __SCREAMING_SNAKE_CASE : int = stride __SCREAMING_SNAKE_CASE : Optional[Any] = padding __SCREAMING_SNAKE_CASE : str = pool_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_sizes __SCREAMING_SNAKE_CASE : Optional[Any] = mlp_ratio __SCREAMING_SNAKE_CASE : List[str] = depths __SCREAMING_SNAKE_CASE : Union[str, Any] = patch_sizes __SCREAMING_SNAKE_CASE : Optional[Any] = strides __SCREAMING_SNAKE_CASE : Optional[Any] = num_encoder_blocks __SCREAMING_SNAKE_CASE : Any = drop_path_rate __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE : Optional[Any] = use_layer_scale __SCREAMING_SNAKE_CASE : List[Any] = layer_scale_init_value __SCREAMING_SNAKE_CASE : Optional[int] = initializer_range super().__init__(**lowercase ) class SCREAMING_SNAKE_CASE_ ( snake_case ): __a : Union[str, Any] = version.parse('''1.11''' ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ) -> float: '''simple docstring''' return 2e-3
158
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''LayoutLMv2ImageProcessor''' UpperCamelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : List[str] , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , **UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Any =kwargs.pop('''feature_extractor''' ) lowercase : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Tuple =self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase : Optional[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : List[str] =features['''words'''] lowercase : Optional[Any] =self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values lowercase : List[str] =features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str =self.get_overflowing_images(UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Dict =images return encoded_inputs def A__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: '''simple docstring''' lowercase : str =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}' ) return images_with_overflow def A__ ( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def A__ ( self : int ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Dict ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
1
"""simple docstring""" def lowerCAmelCase__ ( __magic_name__ = 6_0_0_8_5_1_4_7_5_1_4_3 ) ->int: try: __lowercase = int(__magic_name__ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) __lowercase = 1 __lowercase = 2 while i * i <= n: while n % i == 0: __lowercase = i n //= i i += 1 if n > 1: __lowercase = n return int(__magic_name__ ) if __name__ == "__main__": print(F"{solution() = }")
118
"""simple docstring""" import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __a ( __a ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(_lowerCamelCase , "neck_hidden_sizes" ) ) self.parent.assertTrue(hasattr(_lowerCamelCase , "num_attention_heads" ) ) class __a : '''simple docstring''' def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=640 , _lowerCamelCase=4 , _lowerCamelCase="silu" , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.02 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=10 , _lowerCamelCase=None , ) -> Tuple: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = last_hidden_size __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = conv_kernel_size __lowercase = output_stride __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = classifier_dropout_prob __lowercase = use_labels __lowercase = is_training __lowercase = num_labels __lowercase = initializer_range __lowercase = scope def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' __lowercase = MobileViTModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' __lowercase = self.num_labels __lowercase = MobileViTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase = self.num_labels __lowercase = MobileViTForSemanticSegmentation(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __a ( __a , __a , unittest.TestCase ): '''simple docstring''' _lowerCamelCase : str = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) _lowerCamelCase : Optional[int] = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCamelCase : Tuple = False _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Any = False _lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = MobileViTModelTester(self ) __lowercase = MobileViTConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason="MobileViT does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViT does not output attentions" ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): __lowercase = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) __lowercase = outputs.hidden_states __lowercase = 5 self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowercase = 2 for i in range(len(_lowerCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = MobileViTModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def lowerCAmelCase__ ( ) ->List[Any]: __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(_lowerCamelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCamelCase , return_tensors="pt" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCamelCase ) # verify the logits __lowercase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) __lowercase = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowercase = model.to(_lowerCamelCase ) __lowercase = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCamelCase , return_tensors="pt" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCamelCase ) __lowercase = outputs.logits # verify the logits __lowercase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _lowerCamelCase ) __lowercase = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowercase = model.to(_lowerCamelCase ) __lowercase = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCamelCase , return_tensors="pt" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCamelCase ) __lowercase = outputs.logits.detach().cpu() __lowercase = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase , target_sizes=[(50, 60)] ) __lowercase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _lowerCamelCase ) __lowercase = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase ) __lowercase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _lowerCamelCase )
118
1
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __a = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase__ ( _lowercase ): '''simple docstring''' warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , __lowerCAmelCase , ) if isinstance(__lowerCAmelCase , torch.Tensor ): return image elif isinstance(__lowerCAmelCase , PIL.Image.Image ): UpperCAmelCase_ : Optional[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase_ : List[Any] = image[0].size UpperCAmelCase_ : Dict = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCAmelCase_ : int = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCAmelCase_ : Dict = np.concatenate(__lowerCAmelCase , axis=0 ) UpperCAmelCase_ : Tuple = np.array(__lowerCAmelCase ).astype(np.floataa ) / 255.0 UpperCAmelCase_ : List[Any] = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase_ : Dict = 2.0 * image - 1.0 UpperCAmelCase_ : Dict = torch.from_numpy(__lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase_ : Union[str, Any] = torch.cat(__lowerCAmelCase , dim=0 ) return image def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if isinstance(__lowerCAmelCase , torch.Tensor ): return mask elif isinstance(__lowerCAmelCase , PIL.Image.Image ): UpperCAmelCase_ : Optional[Any] = [mask] if isinstance(mask[0] , PIL.Image.Image ): UpperCAmelCase_ : Union[str, Any] = mask[0].size UpperCAmelCase_ : List[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase_ : Dict = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] UpperCAmelCase_ : int = np.concatenate(__lowerCAmelCase , axis=0 ) UpperCAmelCase_ : List[Any] = mask.astype(np.floataa ) / 255.0 UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : List[str] = torch.from_numpy(__lowerCAmelCase ) elif isinstance(mask[0] , torch.Tensor ): UpperCAmelCase_ : Optional[Any] = torch.cat(__lowerCAmelCase , dim=0 ) return mask class __a( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = 42 lowerCAmelCase = 42 def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: super().__init__() self.register_modules(unet=_a ,scheduler=_a ) @torch.no_grad() def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = 250 ,_SCREAMING_SNAKE_CASE = 0.0 ,_SCREAMING_SNAKE_CASE = 10 ,_SCREAMING_SNAKE_CASE = 10 ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = "pil" ,_SCREAMING_SNAKE_CASE = True ,) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase_ : str = image UpperCAmelCase_ : List[Any] = _preprocess_image(_a ) UpperCAmelCase_ : int = original_image.to(device=self.device ,dtype=self.unet.dtype ) UpperCAmelCase_ : Optional[int] = _preprocess_mask(_a ) UpperCAmelCase_ : Optional[Any] = mask_image.to(device=self.device ,dtype=self.unet.dtype ) UpperCAmelCase_ : Optional[int] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(_a ,_a ) and len(_a ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_a )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCAmelCase_ : int = original_image.shape UpperCAmelCase_ : List[str] = randn_tensor(_a ,generator=_a ,device=self.device ,dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_a ,_a ,_a ,self.device ) UpperCAmelCase_ : Dict = eta UpperCAmelCase_ : Dict = self.scheduler.timesteps[0] + 1 UpperCAmelCase_ : Union[str, Any] = generator[0] if isinstance(_a ,_a ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCAmelCase_ : Tuple = self.unet(_a ,_a ).sample # compute previous image: x_t -> x_t-1 UpperCAmelCase_ : Tuple = self.scheduler.step(_a ,_a ,_a ,_a ,_a ,_a ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCAmelCase_ : List[Any] = self.scheduler.undo_step(_a ,_a ,_a ) UpperCAmelCase_ : int = t UpperCAmelCase_ : int = (image / 2 + 0.5).clamp(0 ,1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": UpperCAmelCase_ : Tuple = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
712
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if digit_amount > 0: return round(number - int(_lowercase ) , _lowercase ) return number - int(_lowercase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
300
0
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ , streaming=SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) A__ = field A__ = path_or_paths if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else {self.split: path_or_paths} A__ = Json( cache_dir=SCREAMING_SNAKE_CASE__ , data_files=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , field=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def snake_case__ ( self ) -> Any: # Build iterable dataset if self.streaming: A__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A__ = None A__ = None A__ = None A__ = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE__ , download_mode=SCREAMING_SNAKE_CASE__ , verification_mode=SCREAMING_SNAKE_CASE__ , base_path=SCREAMING_SNAKE_CASE__ , num_proc=self.num_proc , ) A__ = self.builder.as_dataset( split=self.split , verification_mode=SCREAMING_SNAKE_CASE__ , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) A__ = dataset A__ = path_or_buf A__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A__ = num_proc A__ = "utf-8" A__ = to_json_kwargs def snake_case__ ( self ) -> int: A__ = self.to_json_kwargs.pop("path_or_buf" , SCREAMING_SNAKE_CASE__ ) A__ = self.to_json_kwargs.pop("orient" , "records" ) A__ = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) A__ = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) A__ = self.to_json_kwargs.pop("compression" , SCREAMING_SNAKE_CASE__ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=SCREAMING_SNAKE_CASE__ ) as buffer: A__ = self._write(file_obj=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" " was passed. Please provide a local path instead." ) A__ = self._write( file_obj=self.path_or_buf , orient=SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ , **self.to_json_kwargs ) return written def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> List[Any]: A__ , A__ , A__ , A__ , A__ = args A__ = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE__ , offset + self.batch_size ) , indices=self.dataset._indices , ) A__ = batch.to_pandas().to_json( path_or_buf=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) -> int: A__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): A__ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(SCREAMING_SNAKE_CASE__ ) else: A__ , A__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(SCREAMING_SNAKE_CASE__ ) return written
104
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> Dict: A__ = ["a", "b", "c"] # Defaults to last layer if both are None A__ , A__ = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [2] ) # Out indices set to match out features A__ , A__ = get_aligned_output_features_output_indices(["a", "c"] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["a", "c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [0, 2] ) # Out features set to match out indices A__ , A__ = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ , [0, 2] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["a", "c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [0, 2] ) # Out features selected from negative indices A__ , A__ = get_aligned_output_features_output_indices(SCREAMING_SNAKE_CASE__ , [-3, -1] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , ["a", "c"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , [-3, -1] ) def snake_case__ ( self ) -> Dict: # Stage names must be set with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , SCREAMING_SNAKE_CASE__ ) # Out features must be a list with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] ) # Out features must be a subset of stage names with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] ) # Out indices must be a list or tuple with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(SCREAMING_SNAKE_CASE__ , 0 , ["a", "b"] ) # Out indices must be a subset of stage names with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(SCREAMING_SNAKE_CASE__ , (0, 1) , ["a"] ) # Out features and out indices must be the same length with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] ) # Out features should match out indices with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] ) # Out features and out indices should be in order with self.assertRaises(SCREAMING_SNAKE_CASE__ ): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] ) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] ) def snake_case__ ( self ) -> List[Any]: A__ = BackboneMixin() A__ = ["a", "b", "c"] A__ = ["a", "c"] A__ = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly A__ = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"] ) self.assertEqual(backbone.out_indices , [0, 1] ) A__ = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [-3, -1] )
104
1
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , **_lowerCAmelCase , ) -> Optional[int]: super().__init__(features=_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = Sql( cache_dir=_lowerCAmelCase , features=_lowerCAmelCase , sql=_lowerCAmelCase , con=_lowerCAmelCase , **_lowerCAmelCase , ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None self.builder.download_and_prepare( download_config=_lowerCAmelCase , download_mode=_lowerCAmelCase , verification_mode=_lowerCAmelCase , base_path=_lowerCAmelCase , ) # Build dataset for splits _lowerCAmelCase = self.builder.as_dataset( split="train" , verification_mode=_lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> Optional[Any]: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) _lowerCAmelCase = dataset _lowerCAmelCase = name _lowerCAmelCase = con _lowerCAmelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _lowerCAmelCase = num_proc _lowerCAmelCase = to_sql_kwargs def _snake_case ( self ) -> int: _lowerCAmelCase = self.to_sql_kwargs.pop("sql" , _lowerCAmelCase ) _lowerCAmelCase = self.to_sql_kwargs.pop("con" , _lowerCAmelCase ) _lowerCAmelCase = self.to_sql_kwargs.pop("index" , _lowerCAmelCase ) _lowerCAmelCase = self._write(index=_lowerCAmelCase , **self.to_sql_kwargs ) return written def _snake_case ( self , _lowerCAmelCase ) -> Any: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = args _lowerCAmelCase = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs _lowerCAmelCase = query_table( table=self.dataset.data , key=slice(_lowerCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) _lowerCAmelCase = batch.to_pandas() _lowerCAmelCase = df.to_sql(self.name , self.con , index=_lowerCAmelCase , **_lowerCAmelCase ) return num_rows or len(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , **_lowerCAmelCase ) -> int: _lowerCAmelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: _lowerCAmelCase , _lowerCAmelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _lowerCAmelCase , _lowerCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
489
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = "T5Config" def __a(SCREAMING_SNAKE_CASE_ : jnp.array , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = jnp.zeros_like(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) _lowerCAmelCase = shifted_input_ids.at[:, 0].set(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = jnp.where(shifted_input_ids == -100 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return shifted_input_ids class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = "mt5" __lowerCamelCase : Any = MTaConfig class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = "mt5" __lowerCamelCase : Dict = MTaConfig class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Optional[Any] = "mt5" __lowerCamelCase : str = MTaConfig
489
1
"""simple docstring""" import argparse import importlib from pathlib import Path # Test all the extensions added in the setup __UpperCAmelCase =[ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def __a ( A ) -> Dict: '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") __UpperCAmelCase =parser.parse_args() if args.check_lib: __UpperCAmelCase =importlib.import_module("""transformers""") __UpperCAmelCase =Path(transformers_module.__file__).parent else: __UpperCAmelCase =Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
337
from __future__ import annotations import numpy as np def UpperCamelCase_( _A :list[float] )-> Optional[Any]: return np.maximum(0 , _A ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
551
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''gpt_neox''' def __init__( self , lowerCamelCase__=50_432 , lowerCamelCase__=6_144 , lowerCamelCase__=44 , lowerCamelCase__=64 , lowerCamelCase__=24_576 , lowerCamelCase__="gelu" , lowerCamelCase__=0.25 , lowerCamelCase__=10_000 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__=2_048 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , lowerCamelCase__=True , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = rotary_pct __lowerCamelCase = rotary_emb_base __lowerCamelCase = attention_dropout __lowerCamelCase = hidden_dropout __lowerCamelCase = classifier_dropout __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = use_cache __lowerCamelCase = tie_word_embeddings __lowerCamelCase = use_parallel_residual __lowerCamelCase = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def lowercase_ ( self ) -> Any: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"""got {self.rope_scaling}""" ) __lowerCamelCase = self.rope_scaling.get('type' , lowerCamelCase__ ) __lowerCamelCase = self.rope_scaling.get('factor' , lowerCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
700
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: __lowerCamelCase = F"""The input value of [n={number}] has to be > 0""" raise ValueError(UpperCamelCase__ ) else: __lowerCamelCase = sylvester(number - 1 ) __lowerCamelCase = num - 1 __lowerCamelCase = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
167
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging SCREAMING_SNAKE_CASE_ : Optional[Any] = '''\ ''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' SCREAMING_SNAKE_CASE_ : List[str] = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def UpperCAmelCase ( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : int = 16 , __lowerCamelCase : bool = True , __lowerCamelCase : Union[str, Any]=None ) -> List[str]: '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowercase = 'cuda' else: __lowercase = 'cuda' if torch.cuda.is_available() else 'cpu' __lowercase = AutoModelForCausalLM.from_pretrained(__lowerCamelCase ) __lowercase = model.to(__lowerCamelCase ) __lowercase = AutoTokenizer.from_pretrained(__lowerCamelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowercase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__lowerCamelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowercase = model.config.max_length - 1 else: __lowercase = model.config.max_length __lowercase = tokenizer( __lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors='pt' , return_attention_mask=__lowerCamelCase , ).to(__lowerCamelCase ) __lowercase = encodings['input_ids'] __lowercase = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowercase = [] __lowercase = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 , len(__lowerCamelCase ) , __lowerCamelCase ) ): __lowercase = min(start_index + batch_size , len(__lowerCamelCase ) ) __lowercase = encoded_texts[start_index:end_index] __lowercase = attn_masks[start_index:end_index] if add_start_token: __lowercase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__lowerCamelCase ) __lowercase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) __lowercase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(__lowerCamelCase ), attn_mask] , dim=1 ) __lowercase = encoded_batch with torch.no_grad(): __lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase ).logits __lowercase = out_logits[..., :-1, :].contiguous() __lowercase = labels[..., 1:].contiguous() __lowercase = attn_mask[..., 1:].contiguous() __lowercase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , __lowerCamelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__lowerCamelCase )}
375
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> list[tuple[int, int]]: __lowercase , __lowercase = position __lowercase = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __lowercase = [] for position in positions: __lowercase , __lowercase = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(snake_case ) return permissible_positions def SCREAMING_SNAKE_CASE ( snake_case ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> bool: if is_complete(snake_case ): return True for position in get_valid_pos(snake_case , len(snake_case ) ): __lowercase , __lowercase = position if board[y][x] == 0: __lowercase = curr + 1 if open_knight_tour_helper(snake_case , snake_case , curr + 1 ): return True __lowercase = 0 return False def SCREAMING_SNAKE_CASE ( snake_case ) -> list[list[int]]: __lowercase = [[0 for i in range(snake_case )] for j in range(snake_case )] for i in range(snake_case ): for j in range(snake_case ): __lowercase = 1 if open_knight_tour_helper(snake_case , (i, j) , 1 ): return board __lowercase = 0 __lowercase = F"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
375
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __lowerCamelCase = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __lowerCamelCase = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode('utf-8').split() ) __lowerCamelCase = '|'.join(sys.argv[1:]) __lowerCamelCase = re.compile(RF'''^({joined_dirs}).*?\.py$''') __lowerCamelCase = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
307
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase ): lowercase = ['''input_features''', '''is_longer'''] def __init__( self , lowercase=64 , lowercase=48_000 , lowercase=480 , lowercase=10 , lowercase=1_024 , lowercase=0.0 , lowercase=False , lowercase = 0 , lowercase = 14_000 , lowercase = None , lowercase = "fusion" , lowercase = "repeatpad" , **lowercase , ) -> str: super().__init__( feature_size=lowercase , sampling_rate=lowercase , padding_value=lowercase , return_attention_mask=lowercase , **lowercase , ) _a : int = top_db _a : Union[str, Any] = truncation _a : Optional[int] = padding _a : List[Any] = fft_window_size _a : str = (fft_window_size >> 1) + 1 _a : Optional[Any] = hop_length _a : Tuple = max_length_s _a : Optional[Any] = max_length_s * sampling_rate _a : Dict = sampling_rate _a : int = frequency_min _a : Union[str, Any] = frequency_max _a : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowercase , min_frequency=lowercase , max_frequency=lowercase , sampling_rate=lowercase , norm=lowercase , mel_scale='''htk''' , ) _a : int = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowercase , min_frequency=lowercase , max_frequency=lowercase , sampling_rate=lowercase , norm='''slaney''' , mel_scale='''slaney''' , ) def snake_case__( self ) -> Dict[str, Any]: _a : int = copy.deepcopy(self.__dict__ ) _a : str = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def snake_case__( self , lowercase , lowercase = None ) -> np.ndarray: _a : List[str] = spectrogram( lowercase , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowercase , log_mel='''dB''' , ) return log_mel_spectrogram.T def snake_case__( self , lowercase , lowercase , lowercase ) -> Union[str, Any]: _a : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _a : Optional[int] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _a : str = [0] # randomly choose index for each part _a : str = np.random.choice(ranges[0] ) _a : Optional[int] = np.random.choice(ranges[1] ) _a : Tuple = np.random.choice(ranges[2] ) _a : Optional[int] = mel[idx_front : idx_front + chunk_frames, :] _a : List[Any] = mel[idx_middle : idx_middle + chunk_frames, :] _a : Tuple = mel[idx_back : idx_back + chunk_frames, :] _a : List[str] = torch.tensor(mel[None, None, :] ) _a : str = torch.nn.functional.interpolate( lowercase , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=lowercase ) _a : Dict = mel_shrink[0][0].numpy() _a : Any = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def snake_case__( self , lowercase , lowercase , lowercase , lowercase ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": _a : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _a : List[Any] = len(lowercase ) - max_length _a : Union[str, Any] = np.random.randint(0 , overflow + 1 ) _a : Optional[int] = waveform[idx : idx + max_length] _a : Optional[int] = self._np_extract_fbank_features(lowercase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _a : str = self._np_extract_fbank_features(lowercase , self.mel_filters ) _a : Any = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _a : str = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _a : Dict = np.stack([mel, mel, mel, mel] , axis=0 ) _a : Tuple = False else: _a : List[str] = self._random_mel_fusion(lowercase , lowercase , lowercase ) _a : Tuple = True else: raise NotImplementedError(F'data_truncating {truncation} not implemented' ) else: _a : Optional[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _a : Tuple = int(max_length / len(lowercase ) ) _a : str = np.stack(np.tile(lowercase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _a : int = int(max_length / len(lowercase ) ) _a : Optional[Any] = np.stack(np.tile(lowercase , lowercase ) ) _a : str = np.pad(lowercase , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": _a : List[Any] = self._np_extract_fbank_features(lowercase , self.mel_filters ) _a : int = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _a : Optional[int] = self._np_extract_fbank_features(lowercase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , **lowercase , ) -> BatchFeature: _a : str = truncation if truncation is not None else self.truncation _a : Any = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) _a : List[str] = isinstance(lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) _a : Dict = is_batched_numpy or ( isinstance(lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _a : List[str] = [np.asarray(lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowercase , np.ndarray ): _a : Any = np.asarray(lowercase , dtype=np.floataa ) elif isinstance(lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _a : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _a : int = [np.asarray(lowercase )] # convert to mel spectrogram, truncate and pad if needed. _a : Union[str, Any] = [ self._get_input_mel(lowercase , max_length if max_length else self.nb_max_samples , lowercase , lowercase ) for waveform in raw_speech ] _a : Tuple = [] _a : int = [] for mel, longer in padded_inputs: input_mel.append(lowercase ) is_longer.append(lowercase ) if truncation == "fusion" and sum(lowercase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _a : str = np.random.randint(0 , len(lowercase ) ) _a : Optional[int] = True if isinstance(input_mel[0] , lowercase ): _a : Union[str, Any] = [np.asarray(lowercase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _a : Dict = [[longer] for longer in is_longer] _a : int = {'''input_features''': input_mel, '''is_longer''': is_longer} _a : str = BatchFeature(lowercase ) if return_tensors is not None: _a : Dict = input_features.convert_to_tensors(lowercase ) return input_features
307
1
"""simple docstring""" import requests def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :Dict ) -> Any: a_ : int = {'''Content-Type''': '''application/json'''} a_ : Tuple = requests.post(__UpperCAmelCase , json={"text": message_body} , headers=__UpperCAmelCase ) if response.status_code != 200: a_ : int = ( '''Request to slack returned an error ''' F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(__UpperCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
473
'''simple docstring''' import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __lowerCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__ ( _lowerCAmelCase ): A = "token-classification" def __init__( self : Tuple , UpperCamelCase_ : Tuple ) -> Dict: """simple docstring""" if type(UpperCamelCase_ ) == dict: lowerCamelCase_ : Tuple = Namespace(**UpperCamelCase_ ) lowerCamelCase_ : Any = import_module('''tasks''' ) try: lowerCamelCase_ : Any = getattr(UpperCamelCase_ , hparams.task_type ) lowerCamelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) lowerCamelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) lowerCamelCase_ : Optional[Any] = CrossEntropyLoss().ignore_index super().__init__(UpperCamelCase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Dict , **UpperCamelCase_ : List[str] ) -> Dict: """simple docstring""" return self.model(**UpperCamelCase_ ) def __UpperCamelCase ( self : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ : Dict = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": lowerCamelCase_ : str = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCamelCase_ : List[str] = self(**UpperCamelCase_ ) lowerCamelCase_ : int = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : str = self.hparams for mode in ["train", "dev", "test"]: lowerCamelCase_ : List[Any] = self._feature_file(UpperCamelCase_ ) if os.path.exists(UpperCamelCase_ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , UpperCamelCase_ ) lowerCamelCase_ : Dict = torch.load(UpperCamelCase_ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) lowerCamelCase_ : Optional[int] = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCamelCase_ ) lowerCamelCase_ : int = self.token_classification_task.convert_examples_to_features( UpperCamelCase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCamelCase_ , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , UpperCamelCase_ ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCamelCase ( self : str , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : bool = False ) -> DataLoader: """simple docstring""" lowerCamelCase_ : Dict = self._feature_file(UpperCamelCase_ ) logger.info('''Loading features from cached file %s''' , UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = torch.load(UpperCamelCase_ ) lowerCamelCase_ : List[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowerCamelCase_ : Union[str, Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowerCamelCase_ : Optional[int] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowerCamelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowerCamelCase_ : Optional[Any] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , batch_size=UpperCamelCase_ ) def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str ) -> Any: """simple docstring""" """Compute validation""" "" lowerCamelCase_ : Optional[Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": lowerCamelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCamelCase_ : List[Any] = self(**UpperCamelCase_ ) lowerCamelCase_ , lowerCamelCase_ : List[Any] = outputs[:2] lowerCamelCase_ : List[Any] = logits.detach().cpu().numpy() lowerCamelCase_ : str = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : str ) -> Tuple: """simple docstring""" lowerCamelCase_ : Tuple = torch.stack([x['''val_loss'''] for x in outputs] ).mean() lowerCamelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) lowerCamelCase_ : Optional[Any] = np.argmax(UpperCamelCase_ , axis=2 ) lowerCamelCase_ : List[str] = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) lowerCamelCase_ : List[str] = dict(enumerate(self.labels ) ) lowerCamelCase_ : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowerCamelCase_ : str = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowerCamelCase_ : Optional[Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(UpperCamelCase_ , UpperCamelCase_ ), '''precision''': precision_score(UpperCamelCase_ , UpperCamelCase_ ), '''recall''': recall_score(UpperCamelCase_ , UpperCamelCase_ ), '''f1''': fa_score(UpperCamelCase_ , UpperCamelCase_ ), } lowerCamelCase_ : Union[str, Any] = dict(results.items() ) lowerCamelCase_ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Optional[Any] , UpperCamelCase_ : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any = self._eval_end(UpperCamelCase_ ) lowerCamelCase_ : Tuple = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : Dict , UpperCamelCase_ : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = self._eval_end(UpperCamelCase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowerCamelCase_ : Optional[int] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" BaseTransformer.add_model_specific_args(UpperCamelCase_ , UpperCamelCase_ ) parser.add_argument( '''--task_type''' , default='''NER''' , type=UpperCamelCase_ , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=UpperCamelCase_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=UpperCamelCase_ , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=UpperCamelCase_ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __lowerCamelCase : Optional[int] = NERTransformer.add_model_specific_args(parser, os.getcwd()) __lowerCamelCase : Any = parser.parse_args() __lowerCamelCase : List[Any] = NERTransformer(args) __lowerCamelCase : Any = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __lowerCamelCase : Any = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) __lowerCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
501
0
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCAmelCase : Dict = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase : Optional[int] = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" UpperCAmelCase : Tuple = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCamelCase_ (__lowerCAmelCase ) -> Any: '''simple docstring''' def remove_articles(__lowerCAmelCase ): lowercase_ = re.compile(R"""\b(a|an|the)\b""" , re.UNICODE ) return re.sub(__lowerCAmelCase , """ """ , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase ): lowercase_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def UpperCamelCase_ (__lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def UpperCamelCase_ (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [any(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for ref in refs ) for pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase )] return (sum(__lowerCAmelCase ) / len(__lowerCAmelCase )) * 1_00 def UpperCamelCase_ (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = [rgram for rgrams in rgramslist for rgram in rgrams] lowercase_ = Counter(__lowerCAmelCase ) lowercase_ = Counter(__lowerCAmelCase ) lowercase_ = Counter() for sgram, scount in sgramcounter.items(): lowercase_ = scount * numref lowercase_ = Counter(__lowerCAmelCase ) lowercase_ = Counter() for cgram, ccount in cgramcounter.items(): lowercase_ = ccount * numref # KEEP lowercase_ = sgramcounter_rep & cgramcounter_rep lowercase_ = keepgramcounter_rep & rgramcounter lowercase_ = sgramcounter_rep & rgramcounter lowercase_ = 0 lowercase_ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase_ = 1 lowercase_ = 1 if len(__lowerCAmelCase ) > 0: lowercase_ = keeptmpscorea / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) lowercase_ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) lowercase_ = 0 if keepscore_precision > 0 or keepscore_recall > 0: lowercase_ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION lowercase_ = sgramcounter_rep - cgramcounter_rep lowercase_ = delgramcounter_rep - rgramcounter lowercase_ = sgramcounter_rep - rgramcounter lowercase_ = 0 lowercase_ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase_ = 1 if len(__lowerCAmelCase ) > 0: lowercase_ = deltmpscorea / len(__lowerCAmelCase ) # ADDITION lowercase_ = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) lowercase_ = set(__lowerCAmelCase ) & set(__lowerCAmelCase ) lowercase_ = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) lowercase_ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase_ = 1 lowercase_ = 1 if len(__lowerCAmelCase ) > 0: lowercase_ = addtmpscore / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: lowercase_ = addtmpscore / len(__lowerCAmelCase ) lowercase_ = 0 if addscore_precision > 0 or addscore_recall > 0: lowercase_ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCamelCase_ (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = len(__lowerCAmelCase ) lowercase_ = ssent.split(""" """ ) lowercase_ = csent.split(""" """ ) lowercase_ = [] lowercase_ = [] lowercase_ = [] lowercase_ = [] lowercase_ = [] lowercase_ = [] lowercase_ = [] lowercase_ = [] lowercase_ = [] lowercase_ = [] for rsent in rsents: lowercase_ = rsent.split(""" """ ) lowercase_ = [] lowercase_ = [] lowercase_ = [] ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: lowercase_ = ragrams[i] + """ """ + ragrams[i + 1] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: lowercase_ = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: lowercase_ = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3] ragrams.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: lowercase_ = sagrams[i] + """ """ + sagrams[i + 1] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: lowercase_ = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: lowercase_ = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3] sagrams.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: lowercase_ = cagrams[i] + """ """ + cagrams[i + 1] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: lowercase_ = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: lowercase_ = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3] cagrams.append(__lowerCAmelCase ) ((lowercase_) , (lowercase_) , (lowercase_)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((lowercase_) , (lowercase_) , (lowercase_)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((lowercase_) , (lowercase_) , (lowercase_)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((lowercase_) , (lowercase_) , (lowercase_)) = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase_ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 lowercase_ = sum([delascore, delascore, delascore, delascore] ) / 4 lowercase_ = sum([addascore, addascore, addascore, addascore] ) / 4 lowercase_ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCamelCase_ (__lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = "13a" , __lowerCAmelCase = True ) -> str: '''simple docstring''' if lowercase: lowercase_ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: lowercase_ = sacrebleu.metrics.bleu._get_tokenizer(__lowerCAmelCase )()(__lowerCAmelCase ) else: lowercase_ = sacrebleu.TOKENIZERS[tokenizer]()(__lowerCAmelCase ) elif tokenizer == "moses": lowercase_ = sacremoses.MosesTokenizer().tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase , escape=__lowerCAmelCase ) elif tokenizer == "penn": lowercase_ = sacremoses.MosesTokenizer().penn_tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase ) else: lowercase_ = sentence if not return_str: lowercase_ = normalized_sent.split() return normalized_sent def UpperCamelCase_ (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' if not (len(__lowerCAmelCase ) == len(__lowerCAmelCase ) == len(__lowerCAmelCase )): raise ValueError("""Sources length must match predictions and references lengths.""" ) lowercase_ = 0 for src, pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): sari_score += SARIsent(normalize(__lowerCAmelCase ) , normalize(__lowerCAmelCase ) , [normalize(__lowerCAmelCase ) for sent in refs] ) lowercase_ = sari_score / len(__lowerCAmelCase ) return 1_00 * sari_score def UpperCamelCase_ (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="exp" , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , ) -> int: '''simple docstring''' lowercase_ = len(references[0] ) if any(len(__lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase_ = [[refs[i] for refs in references] for i in range(__lowerCAmelCase )] lowercase_ = sacrebleu.corpus_bleu( __lowerCAmelCase , __lowerCAmelCase , smooth_method=__lowerCAmelCase , smooth_value=__lowerCAmelCase , force=__lowerCAmelCase , lowercase=__lowerCAmelCase , use_effective_order=__lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence"""), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""") , id="""references"""), }) , codebase_urls=[ """https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""", """https://github.com/cocoxu/simplification/blob/master/SARI.py""", """https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""", """https://github.com/mjpost/sacreBLEU""", ] , reference_urls=[ """https://www.aclweb.org/anthology/Q16-1029.pdf""", """https://github.com/mjpost/sacreBLEU""", """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = {} result.update({"""sari""": compute_sari(sources=lowerCAmelCase_ , predictions=lowerCAmelCase_ , references=lowerCAmelCase_)}) result.update({"""sacrebleu""": compute_sacrebleu(predictions=lowerCAmelCase_ , references=lowerCAmelCase_)}) result.update({"""exact""": compute_em(predictions=lowerCAmelCase_ , references=lowerCAmelCase_)}) return result
700
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int]=1_3 , lowerCAmelCase_ : Union[str, Any]=7 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Dict=9_9 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Tuple=5 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : List[str]=3_7 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : List[str]=5_1_2 , lowerCAmelCase_ : Union[str, Any]=1_6 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="None" , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=None , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = relative_attention lowercase_ = position_biased_input lowercase_ = pos_att_type lowercase_ = scope def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = None if self.use_input_mask: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase_ = ids_tensor([self.batch_size] , self.num_choices) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : int): """simple docstring""" return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Dict): """simple docstring""" self.parent.assertListEqual(list(result.loss.size()) , []) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = DebertaVaModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_)[0] lowercase_ = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_)[0] lowercase_ = model(lowerCAmelCase_)[0] self.parent.assertListEqual(list(sequence_output.size()) , [self.batch_size, self.seq_length, self.hidden_size]) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = DebertaVaForMaskedLM(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = self.num_labels lowercase_ = DebertaVaForSequenceClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertListEqual(list(result.logits.size()) , [self.batch_size, self.num_labels]) self.check_loss_output(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = self.num_labels lowercase_ = DebertaVaForTokenClassification(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = DebertaVaForQuestionAnswering(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = DebertaVaForMultipleChoice(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase_ = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = DebertaVaModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCAmelCase_) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DebertaVaModel.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""") def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" pass @slow def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""") lowercase_ = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]]) lowercase_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_)[0] # compare the actual values for a slice. lowercase_ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase_ , atol=1E-4) , F'''{output[:, 1:4, 1:4]}''')
100
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __magic_name__ : str = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __magic_name__ : Union[str, Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = state_dict.pop(SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = val def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase : Tuple = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCamelCase : Optional[int] = value else: UpperCamelCase : Any = value return new_state_dict def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): UpperCamelCase : Tuple = """""" if is_panoptic: UpperCamelCase : Any = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase : Optional[int] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase : int = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase : Any = in_proj_weight[:256, :] UpperCamelCase : str = in_proj_bias[:256] UpperCamelCase : int = in_proj_weight[256:512, :] UpperCamelCase : Dict = in_proj_bias[256:512] UpperCamelCase : str = in_proj_weight[-256:, :] UpperCamelCase : str = in_proj_bias[-256:] def UpperCamelCase (): UpperCamelCase : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase : Union[str, Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : int = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCamelCase : Tuple = """resnet101""" if "dc5" in model_name: UpperCamelCase : List[str] = True UpperCamelCase : Optional[int] = """panoptic""" in model_name if is_panoptic: UpperCamelCase : int = 250 else: UpperCamelCase : Tuple = 91 UpperCamelCase : Optional[int] = """huggingface/label-files""" UpperCamelCase : Optional[int] = """coco-detection-id2label.json""" UpperCamelCase : Tuple = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase : Union[str, Any] = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase : Union[str, Any] = idalabel UpperCamelCase : Tuple = {v: k for k, v in idalabel.items()} # load image processor UpperCamelCase : Dict = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCamelCase : Union[str, Any] = ConditionalDetrImageProcessor(format=SCREAMING_SNAKE_CASE ) # prepare image UpperCamelCase : Optional[int] = prepare_img() UpperCamelCase : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) UpperCamelCase : List[Any] = encoding["""pixel_values"""] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCamelCase : List[str] = torch.hub.load("""DeppMeng/ConditionalDETR""" , SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ).eval() UpperCamelCase : str = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCamelCase : Union[str, Any] = """conditional_detr.""" + src rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = rename_backbone_keys(SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(SCREAMING_SNAKE_CASE , is_panoptic=SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase : List[Any] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCamelCase : Optional[int] = state_dict.pop(SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCamelCase : Optional[int] = state_dict.pop(SCREAMING_SNAKE_CASE ) UpperCamelCase : str = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCamelCase : Any = state_dict.pop(SCREAMING_SNAKE_CASE ) UpperCamelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCamelCase : List[Any] = state_dict.pop(SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = val # finally, create HuggingFace model and load state dict UpperCamelCase : Dict = ConditionalDetrForSegmentation(SCREAMING_SNAKE_CASE ) if is_panoptic else ConditionalDetrForObjectDetection(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() model.push_to_hub(repo_id=SCREAMING_SNAKE_CASE , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCamelCase : Dict = conditional_detr(SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __magic_name__ : List[str] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __magic_name__ : str = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
102
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __magic_name__ : Dict = logging.getLogger(__name__) @dataclass class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : Optional[float] = field( default=0.0 , metadata={"""help""": """The label smoothing epsilon to apply (if not zero)."""} ) __lowerCAmelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to SortishSamler or not."""} ) __lowerCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) __lowerCAmelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """whether to use adafactor"""} ) __lowerCAmelCase : Optional[float] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Encoder layer dropout probability. Goes into model.config."""} ) __lowerCAmelCase : Optional[float] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Decoder layer dropout probability. Goes into model.config."""} ) __lowerCAmelCase : Optional[float] = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Dropout probability. Goes into model.config."""} ) __lowerCAmelCase : Optional[float] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Attention dropout probability. Goes into model.config."""} ) __lowerCAmelCase : Optional[str] = field( default="""linear""" , metadata={"""help""": f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
102
1
'''simple docstring''' import numpy as np class __a : def __init__( self : List[str] , lowercase__ : Optional[Any]=None , lowercase__ : Dict=None , lowercase__ : List[str]=None , lowercase__ : Any=None , lowercase__ : Tuple=None) ->Dict: """simple docstring""" self.set_matricies(red=_a , green=_a , blue=_a , red_edge=_a , nir=_a) def _UpperCAmelCase ( self : Union[str, Any] , lowercase__ : List[str]=None , lowercase__ : Union[str, Any]=None , lowercase__ : Tuple=None , lowercase__ : Tuple=None , lowercase__ : List[str]=None) ->Optional[Any]: """simple docstring""" if red is not None: _lowercase = red if green is not None: _lowercase = green if blue is not None: _lowercase = blue if red_edge is not None: _lowercase = red_edge if nir is not None: _lowercase = nir return True def _UpperCAmelCase ( self : Tuple , lowercase__ : Union[str, Any]="" , lowercase__ : Union[str, Any]=None , lowercase__ : Tuple=None , lowercase__ : str=None , lowercase__ : Union[str, Any]=None , lowercase__ : List[Any]=None) ->Optional[Any]: """simple docstring""" self.set_matricies(red=_a , green=_a , blue=_a , red_edge=_a , nir=_a) _lowercase = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""") return False def _UpperCAmelCase ( self : Optional[int]) ->Optional[int]: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def _UpperCAmelCase ( self : str) ->List[Any]: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _UpperCAmelCase ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def _UpperCAmelCase ( self : Tuple) ->int: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _UpperCAmelCase ( self : List[str]) ->List[str]: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def _UpperCAmelCase ( self : List[str]) ->List[str]: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def _UpperCAmelCase ( self : Optional[Any]) ->Dict: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def _UpperCAmelCase ( self : Optional[int]) ->List[Any]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def _UpperCAmelCase ( self : List[Any]) ->Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _UpperCAmelCase ( self : str) ->Optional[Any]: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _UpperCAmelCase ( self : List[str]) ->Optional[Any]: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _UpperCAmelCase ( self : int) ->Optional[Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _UpperCAmelCase ( self : Any , lowercase__ : int=0.08 , lowercase__ : int=1.22 , lowercase__ : str=0.03) ->List[str]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _UpperCAmelCase ( self : Any) ->Optional[Any]: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _UpperCAmelCase ( self : Union[str, Any]) ->List[str]: """simple docstring""" return (self.nir / self.green) - 1 def _UpperCAmelCase ( self : Union[str, Any]) ->Tuple: """simple docstring""" return (self.nir / self.redEdge) - 1 def _UpperCAmelCase ( self : Any) ->List[Any]: """simple docstring""" return (self.red - self.blue) / self.red def _UpperCAmelCase ( self : str) ->str: """simple docstring""" _lowercase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def _UpperCAmelCase ( self : List[str]) ->Tuple: """simple docstring""" return self.nir - self.green def _UpperCAmelCase ( self : List[str]) ->Optional[Any]: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _UpperCAmelCase ( self : List[str]) ->int: """simple docstring""" _lowercase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def _UpperCAmelCase ( self : int , lowercase__ : int=0.16) ->str: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def _UpperCAmelCase ( self : str , lowercase__ : List[Any]=0.5) ->Optional[Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _UpperCAmelCase ( self : List[str]) ->List[Any]: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def _UpperCAmelCase ( self : str , lowercase__ : List[Any]=None , lowercase__ : Tuple=None) ->Optional[int]: """simple docstring""" return (self.nir - b) / (a * self.red) def _UpperCAmelCase ( self : List[Any]) ->Dict: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _UpperCAmelCase ( self : Optional[int]) ->Optional[Any]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def _UpperCAmelCase ( self : Dict) ->int: """simple docstring""" return self.nir / self.red def _UpperCAmelCase ( self : Optional[int]) ->Dict: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def _UpperCAmelCase ( self : List[Any]) ->Optional[int]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _UpperCAmelCase ( self : Optional[int]) ->List[str]: """simple docstring""" return self.green / (self.nir + self.red + self.green) def _UpperCAmelCase ( self : Dict) ->Tuple: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def _UpperCAmelCase ( self : str) ->Optional[int]: """simple docstring""" return self.red / (self.nir + self.red + self.green) def _UpperCAmelCase ( self : Tuple) ->str: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def _UpperCAmelCase ( self : Optional[int]) ->List[Any]: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def _UpperCAmelCase ( self : List[str]) ->Any: """simple docstring""" _lowercase = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) _lowercase = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def _UpperCAmelCase ( self : str) ->List[Any]: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _UpperCAmelCase ( self : List[str]) ->Dict: """simple docstring""" return self.nir / self.red def _UpperCAmelCase ( self : Optional[Any]) ->Optional[int]: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def _UpperCAmelCase ( self : List[str]) ->Union[str, Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
712
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _lowerCamelCase = logging.get_logger(__name__) @dataclass class __a : __SCREAMING_SNAKE_CASE : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __SCREAMING_SNAKE_CASE : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __SCREAMING_SNAKE_CASE : int = field( default=1_2_8 ,metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } ,) __SCREAMING_SNAKE_CASE : bool = field( default=_snake_case ,metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _UpperCAmelCase ( self : int) ->Tuple: """simple docstring""" _lowercase = self.task_name.lower() class __a ( _snake_case ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 'train' __SCREAMING_SNAKE_CASE : Tuple = 'dev' __SCREAMING_SNAKE_CASE : List[str] = 'test' class __a ( _snake_case ): __SCREAMING_SNAKE_CASE : GlueDataTrainingArguments __SCREAMING_SNAKE_CASE : str __SCREAMING_SNAKE_CASE : List[InputFeatures] def __init__( self : Tuple , lowercase__ : GlueDataTrainingArguments , lowercase__ : PreTrainedTokenizerBase , lowercase__ : Optional[int] = None , lowercase__ : Union[str, Split] = Split.train , lowercase__ : Optional[str] = None , ) ->str: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , lowercase__ , ) _lowercase = args _lowercase = glue_processors[args.task_name]() _lowercase = glue_output_modes[args.task_name] if isinstance(lowercase__ , lowercase__): try: _lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""") # Load data features from cache or dataset file _lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) _lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _lowercase , _lowercase = label_list[2], label_list[1] _lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowercase = cached_features_file + """.lock""" with FileLock(lowercase__): if os.path.exists(lowercase__) and not args.overwrite_cache: _lowercase = time.time() _lowercase = torch.load(lowercase__) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""") if mode == Split.dev: _lowercase = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: _lowercase = self.processor.get_test_examples(args.data_dir) else: _lowercase = self.processor.get_train_examples(args.data_dir) if limit_length is not None: _lowercase = examples[:limit_length] _lowercase = glue_convert_examples_to_features( lowercase__ , lowercase__ , max_length=args.max_seq_length , label_list=lowercase__ , output_mode=self.output_mode , ) _lowercase = time.time() torch.save(self.features , lowercase__) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""") def __len__( self : str) ->List[Any]: """simple docstring""" return len(self.features) def __getitem__( self : Optional[Any] , lowercase__ : List[Any]) ->InputFeatures: """simple docstring""" return self.features[i] def _UpperCAmelCase ( self : Union[str, Any]) ->List[Any]: """simple docstring""" return self.label_list
572
0
from collections.abc import Callable import numpy as np def lowerCAmelCase__ ( _a : Optional[Any] , _a : str , _a : Dict , _a : Optional[int] , _a : Any ): snake_case_ : Tuple = int(np.ceil((x_end - xa) / step_size ) ) snake_case_ : List[str] = np.zeros((n + 1,) ) snake_case_ : Optional[int] = ya snake_case_ : List[str] = xa for k in range(SCREAMING_SNAKE_CASE_ ): snake_case_ : str = y[k] + step_size * ode_func(SCREAMING_SNAKE_CASE_ , y[k] ) snake_case_ : int = y[k] + ( (step_size / 2) * (ode_func(SCREAMING_SNAKE_CASE_ , y[k] ) + ode_func(x + step_size , SCREAMING_SNAKE_CASE_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
568
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[int] ='▁' SCREAMING_SNAKE_CASE__ : Optional[Any] ={'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} SCREAMING_SNAKE_CASE__ : Any ={ 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } SCREAMING_SNAKE_CASE__ : Optional[int] ={'vinai/bartpho-syllable': 1024} class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , _lowercase , _lowercase , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase="<mask>" , _lowercase = None , **_lowercase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase : List[str] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token _lowerCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) _lowerCamelCase : Optional[int] = vocab_file _lowerCamelCase : Union[str, Any] = monolingual_vocab_file _lowerCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowercase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _lowerCamelCase : Optional[Any] = {} _lowerCamelCase : Any = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_lowercase ) not in self.fairseq_tokens_to_ids: _lowerCamelCase : int = cnt cnt += 1 with open(_lowercase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): _lowerCamelCase : List[Any] = line.strip().split()[0] _lowerCamelCase : Dict = len(self.fairseq_tokens_to_ids ) if str(_lowercase ) not in self.fairseq_tokens_to_ids: _lowerCamelCase : Dict = len(self.fairseq_tokens_to_ids ) _lowerCamelCase : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[str]: _lowerCamelCase : int = self.__dict__.copy() _lowerCamelCase : Optional[Any] = None _lowerCamelCase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowercase ) -> Optional[int]: _lowerCamelCase : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowerCamelCase : Optional[Any] = {} _lowerCamelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def a__ ( self , _lowercase , _lowercase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase : Optional[Any] = [self.cls_token_id] _lowerCamelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self , _lowercase , _lowercase = None , _lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1, 1] + ([0] * len(_lowercase )) + [1] def a__ ( self , _lowercase , _lowercase = None ) -> List[int]: _lowerCamelCase : Optional[Any] = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__ ( self ) -> Optional[int]: return len(self.fairseq_ids_to_tokens ) def a__ ( self ) -> List[str]: _lowerCamelCase : Union[str, Any] = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ ( self , _lowercase ) -> List[str]: return self.sp_model.encode(_lowercase , out_type=_lowercase ) def a__ ( self , _lowercase ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def a__ ( self , _lowercase ) -> List[Any]: return self.fairseq_ids_to_tokens[index] def a__ ( self , _lowercase ) -> Tuple: _lowerCamelCase : List[Any] = ''''''.join(_lowercase ).replace(_lowercase , ''' ''' ).strip() return out_string def a__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: if not os.path.isdir(_lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCamelCase : Tuple = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : Dict = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , '''wb''' ) as fi: _lowerCamelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowercase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _lowercase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , _lowercase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_lowercase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(_lowercase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
434
0
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a__ ( self , _a=0 ) -> List[str]: _A : Dict = np.random.RandomState(_a ) _A : Any = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def a__ ( self ) -> Optional[int]: _A : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_a ) _A : int = self.get_dummy_inputs() _A : int = pipe(**_a ).images _A : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : Any = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> List[str]: _A : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : List[str] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_a ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[int] = self.get_dummy_inputs() _A : Tuple = pipe(**_a ).images _A : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : List[Any] = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> List[str]: _A : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _A : Tuple = self.get_dummy_inputs() _A : Any = pipe(**_a ).images _A : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : Optional[int] = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> Union[str, Any]: _A : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : Optional[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[int] = self.get_dummy_inputs() _A : int = pipe(**_a ).images _A : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : Any = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> Tuple: _A : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : Optional[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _A : Any = self.get_dummy_inputs() _A : int = pipe(**_a ).images _A : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : Tuple = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> str: _A : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _A : int = self.get_dummy_inputs() _A : int = pipe(**_a ).images _A : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : Optional[int] = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> Dict: _A : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_a ) _A : str = self.get_dummy_inputs() _A : List[str] = 3 * [inputs["""prompt"""]] # forward _A : Any = pipe(**_a ) _A : Any = output.images[0, -3:, -3:, -1] _A : Optional[int] = self.get_dummy_inputs() _A : Optional[Any] = 3 * [inputs.pop("""prompt""" )] _A : Dict = pipe.tokenizer( _a , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_a , return_tensors="""np""" , ) _A : Union[str, Any] = text_inputs["""input_ids"""] _A : Union[str, Any] = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] _A : int = prompt_embeds # forward _A : Dict = pipe(**_a ) _A : Optional[Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def a__ ( self ) -> List[str]: _A : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[int] = self.get_dummy_inputs() _A : Dict = 3 * ["""this is a negative prompt"""] _A : List[Any] = negative_prompt _A : int = 3 * [inputs["""prompt"""]] # forward _A : str = pipe(**_a ) _A : Dict = output.images[0, -3:, -3:, -1] _A : Optional[int] = self.get_dummy_inputs() _A : List[Any] = 3 * [inputs.pop("""prompt""" )] _A : Tuple = [] for p in [prompt, negative_prompt]: _A : str = pipe.tokenizer( _a , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_a , return_tensors="""np""" , ) _A : Union[str, Any] = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) _A , _A : List[Any] = embeds # forward _A : Tuple = pipe(**_a ) _A : Optional[Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> List[str]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self ) -> Dict: _A : Any = ort.SessionOptions() _A : int = False return options def a__ ( self ) -> List[Any]: # using the PNDM scheduler by default _A : str = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = """A painting of a squirrel eating a burger""" np.random.seed(0 ) _A : Union[str, Any] = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) _A : Union[str, Any] = output.images _A : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A : int = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ ( self ) -> Union[str, Any]: _A : Optional[int] = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) _A : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_a , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_a ) _A : Optional[int] = """open neural network exchange""" _A : Optional[Any] = np.random.RandomState(0 ) _A : Any = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_a , output_type="""np""" ) _A : Dict = output.images _A : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A : Union[str, Any] = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ ( self ) -> List[str]: _A : str = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) _A : str = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_a , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_a ) _A : str = """open neural network exchange""" _A : int = np.random.RandomState(0 ) _A : Union[str, Any] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_a , output_type="""np""" ) _A : List[Any] = output.images _A : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A : Union[str, Any] = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ ( self ) -> int: _A : List[Any] = 0 def test_callback_fn(_a , _a , _a ) -> None: _A : List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) _A : Optional[int] = latents[0, -3:, -3:, -1] _A : str = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) _A : Union[str, Any] = latents[0, -3:, -3:, -1] _A : Tuple = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 _A : List[Any] = False _A : Any = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = """Andromeda galaxy in a bottle""" _A : Optional[int] = np.random.RandomState(0 ) pipe( prompt=_a , num_inference_steps=5 , guidance_scale=7.5 , generator=_a , callback=_a , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def a__ ( self ) -> Union[str, Any]: _A : Dict = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_a , _a ) assert pipe.safety_checker is None _A : Dict = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_a ) _A : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(_a ) # sanity check that the pipeline still works assert pipe.safety_checker is None _A : Union[str, Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
54
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( snake_case_ ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case_,snake_case_ ) -> bool: _A : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _A : Optional[int] = mean( int(is_in_circle(uniform(-1.0,1.0 ),uniform(-1.0,1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. _A : List[str] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0.0,snake_case_ = 1.0,): return mean( function_to_integrate(uniform(snake_case_,snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = 1.0 ): def identity_function(snake_case_ ) -> float: return x _A : Any = area_under_curve_estimator( snake_case_,snake_case_,snake_case_,snake_case_ ) _A : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def lowerCAmelCase_ ( snake_case_ ): def function_to_integrate(snake_case_ ) -> float: return sqrt(4.0 - x * x ) _A : Optional[int] = area_under_curve_estimator( snake_case_,snake_case_,0.0,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
"""simple docstring""" from __future__ import annotations def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->list[list[int]]: """simple docstring""" __lowercase : int = [] create_all_state(1, _lowerCamelCase, _lowerCamelCase, [], _lowerCamelCase ) return result def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, ) ->None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCamelCase, total_number - level + 2 ): current_list.append(_lowerCamelCase ) create_all_state(i + 1, _lowerCamelCase, level - 1, _lowerCamelCase, _lowerCamelCase ) current_list.pop() def snake_case__ ( _lowerCamelCase ) ->None: """simple docstring""" for i in total_list: print(*_lowerCamelCase ) if __name__ == "__main__": __A : Any = 4 __A : Union[str, Any] = 2 __A : Union[str, Any] = generate_all_combinations(n, k) print_all_state(total_list)
575
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ : str = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( snake_case ) -> Tuple: __lowercase = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) __lowercase = re.match(r'^mobilenet_v1_([^_]*)_([^_]*)$' , snake_case ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_001 __lowercase = 'imagenet-1k-id2label.json' __lowercase = 'huggingface/label-files' __lowercase = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) __lowercase = {int(snake_case ) + 1: v for k, v in idalabel.items()} __lowercase = 'background' __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( ) -> List[Any]: __lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case=False ) -> Union[str, Any]: __lowercase = get_mobilenet_va_config(snake_case ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(snake_case ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(snake_case , snake_case , snake_case ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 32} , ) __lowercase = image_processor(images=prepare_img() , return_tensors='pt' ) __lowercase = model(**snake_case ) __lowercase = outputs.logits assert logits.shape == (1, 1_001) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , snake_case , atol=1E-4 ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case ) if push_to_hub: print('Pushing to the hub...' ) __lowercase = 'google/' + model_name image_processor.push_to_hub(snake_case ) model.push_to_hub(snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) SCREAMING_SNAKE_CASE_ : int = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
375
0
"""simple docstring""" import datasets from .evaluate import evaluate _UpperCamelCase : List[Any] = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' _UpperCamelCase : List[str] = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' _UpperCamelCase : List[Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def UpperCamelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': {'id': datasets.Value('string' ), 'prediction_text': datasets.Value('string' )}, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowercase = {prediction['id']: prediction['prediction_text'] for prediction in predictions} lowercase = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] lowercase = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
134
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class a ( unittest.TestCase ): def UpperCamelCase_ ( self ): lowercase = tempfile.mkdtemp() lowercase = BlipImageProcessor() lowercase = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) lowercase = BlipaProcessor(_lowerCamelCase , _lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self , **_lowerCamelCase ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).tokenizer def UpperCamelCase_ ( self , **_lowerCamelCase ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).image_processor def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowercase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): lowercase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowercase = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) lowercase = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipaProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase = self.prepare_image_inputs() lowercase = image_processor(_lowerCamelCase , return_tensors='np' ) lowercase = processor(images=_lowerCamelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase_ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipaProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase = 'lower newer' lowercase = processor(text=_lowerCamelCase ) lowercase = tokenizer(_lowerCamelCase , return_token_type_ids=_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipaProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase = 'lower newer' lowercase = self.prepare_image_inputs() lowercase = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def UpperCamelCase_ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipaProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(_lowerCamelCase ) lowercase = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = BlipaProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowercase = 'lower newer' lowercase = self.prepare_image_inputs() lowercase = processor(text=_lowerCamelCase , images=_lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
134
1
from typing import Union import fire import torch from tqdm import tqdm def _UpperCAmelCase ( UpperCAmelCase : str , UpperCAmelCase : str = "cpu" , UpperCAmelCase : Union[str, None] = None ): """simple docstring""" __lowerCamelCase : List[str] = torch.load(UpperCAmelCase , map_location=UpperCAmelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(UpperCAmelCase , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) __lowerCamelCase : Any = v.half() if save_path is None: # overwrite src_path __lowerCamelCase : Union[str, Any] = src_path torch.save(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": fire.Fire(convert)
519
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class _UpperCamelCase ( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCamelCase : float , _lowerCamelCase : Callable , _lowerCamelCase : int , _lowerCamelCase : float = 1.0 , _lowerCamelCase : str = None , ): '''simple docstring''' super().__init__() __lowerCamelCase : Dict = initial_learning_rate __lowerCamelCase : Any = warmup_steps __lowerCamelCase : Optional[int] = power __lowerCamelCase : str = decay_schedule_fn __lowerCamelCase : Union[str, Any] = name def __call__( self : List[str] , _lowerCamelCase : int ): '''simple docstring''' with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCamelCase : Dict = tf.cast(_lowerCamelCase , tf.floataa ) __lowerCamelCase : Optional[Any] = tf.cast(self.warmup_steps , tf.floataa ) __lowerCamelCase : List[str] = global_step_float / warmup_steps_float __lowerCamelCase : List[str] = self.initial_learning_rate * tf.math.pow(_lowerCamelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_lowerCamelCase , ) def _snake_case ( self : Any ): '''simple docstring''' return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _UpperCAmelCase ( UpperCAmelCase : float , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : float = 0.0 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.9_9_9 , UpperCAmelCase : float = 1e-8 , UpperCAmelCase : Optional[float] = None , UpperCAmelCase : Optional[float] = None , UpperCAmelCase : float = 0.0 , UpperCAmelCase : float = 1.0 , UpperCAmelCase : Optional[List[str]] = None , ): """simple docstring""" __lowerCamelCase : str = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase , ) if num_warmup_steps: __lowerCamelCase : str = WarmUp( initial_learning_rate=UpperCAmelCase , decay_schedule_fn=UpperCAmelCase , warmup_steps=UpperCAmelCase , ) if weight_decay_rate > 0.0: __lowerCamelCase : List[Any] = AdamWeightDecay( learning_rate=UpperCAmelCase , weight_decay_rate=UpperCAmelCase , beta_a=UpperCAmelCase , beta_a=UpperCAmelCase , epsilon=UpperCAmelCase , clipnorm=UpperCAmelCase , global_clipnorm=UpperCAmelCase , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=UpperCAmelCase , ) else: __lowerCamelCase : Optional[int] = tf.keras.optimizers.Adam( learning_rate=UpperCAmelCase , beta_a=UpperCAmelCase , beta_a=UpperCAmelCase , epsilon=UpperCAmelCase , clipnorm=UpperCAmelCase , global_clipnorm=UpperCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : Tuple , _lowerCamelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , _lowerCamelCase : float = 0.9 , _lowerCamelCase : float = 0.999 , _lowerCamelCase : float = 1E-7 , _lowerCamelCase : bool = False , _lowerCamelCase : float = 0.0 , _lowerCamelCase : Optional[List[str]] = None , _lowerCamelCase : Optional[List[str]] = None , _lowerCamelCase : str = "AdamWeightDecay" , **_lowerCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = weight_decay_rate __lowerCamelCase : Tuple = include_in_weight_decay __lowerCamelCase : Optional[Any] = exclude_from_weight_decay @classmethod def _snake_case ( cls : Union[str, Any] , _lowerCamelCase : List[Any] ): '''simple docstring''' __lowerCamelCase : Optional[Any] = {"""WarmUp""": WarmUp} return super(_lowerCamelCase , cls ).from_config(_lowerCamelCase , custom_objects=_lowerCamelCase ) def _snake_case ( self : str , _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] ): '''simple docstring''' super(_lowerCamelCase , self )._prepare_local(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Optional[Any] = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def _snake_case ( self : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple ): '''simple docstring''' __lowerCamelCase : Optional[Any] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def _snake_case ( self : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : str=None , **_lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Union[str, Any] = list(zip(*_lowerCamelCase ) ) return super(_lowerCamelCase , self ).apply_gradients(zip(_lowerCamelCase , _lowerCamelCase ) , name=_lowerCamelCase , **_lowerCamelCase ) def _snake_case ( self : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] ): '''simple docstring''' if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCamelCase : Union[str, Any] = apply_state or {} __lowerCamelCase : Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCamelCase : List[str] = self._fallback_apply_state(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Dict = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _snake_case ( self : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Dict=None ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , _lowerCamelCase ) __lowerCamelCase : Dict = self._decay_weights_op(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with tf.control_dependencies([decay] ): return super(_lowerCamelCase , self )._resource_apply_dense(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def _snake_case ( self : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple=None ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : int = self._get_lr(var.device , var.dtype.base_dtype , _lowerCamelCase ) __lowerCamelCase : str = self._decay_weights_op(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with tf.control_dependencies([decay] ): return super(_lowerCamelCase , self )._resource_apply_sparse(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : int = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def _snake_case ( self : Dict , _lowerCamelCase : List[str] ): '''simple docstring''' if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_lowerCamelCase , _lowerCamelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_lowerCamelCase , _lowerCamelCase ) is not None: return False return True class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : Union[str, Any] ): '''simple docstring''' __lowerCamelCase : Optional[int] = [] __lowerCamelCase : int = None @property def _snake_case ( self : Tuple ): '''simple docstring''' if self._accum_steps is None: __lowerCamelCase : Any = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_lowerCamelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _snake_case ( self : Any ): '''simple docstring''' if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : List[str] , _lowerCamelCase : List[str] ): '''simple docstring''' if not self._gradients: __lowerCamelCase : List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_lowerCamelCase ) , trainable=_lowerCamelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_lowerCamelCase ) != len(self._gradients ): raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(_lowerCamelCase )}""" ) for accum_gradient, gradient in zip(self._gradients , _lowerCamelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_lowerCamelCase ) self._accum_steps.assign_add(1 ) def _snake_case ( self : Any ): '''simple docstring''' if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_lowerCamelCase ) )
519
1
import heapq as hq import math from collections.abc import Iterator class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = str(id_ ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = [] UpperCAmelCase_ = {} # {vertex:distance} def __lt__( self , lowerCAmelCase ): return self.key < other.key def __repr__( self ): return self.id def A__ ( self , lowerCAmelCase ): self.neighbors.append(lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = weight def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list: UpperCAmelCase_ = [] for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = graph[:] while q: UpperCAmelCase_ = min(__SCREAMING_SNAKE_CASE ) q.remove(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Iterator[tuple]: for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = list(__SCREAMING_SNAKE_CASE ) hq.heapify(__SCREAMING_SNAKE_CASE ) while h: UpperCAmelCase_ = hq.heappop(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] hq.heapify(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def snake_case__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
23
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = 0 while number > 0: UpperCAmelCase_ = number % 10 sum_of_digits += last_digit UpperCAmelCase_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def snake_case__ ( __SCREAMING_SNAKE_CASE = 100 ) -> int: UpperCAmelCase_ = factorial(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = split_and_add(__SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
23
1
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor A__: Union[str, Any] = random.Random() def lowerCAmelCase_ ( A_ ,A_=1.0 ,A_=None ,A_=None): if rng is None: UpperCamelCase__: Any = global_rng UpperCamelCase__: int = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch @require_torchaudio class _a ( unittest.TestCase): """simple docstring""" def __init__( self: str , __lowerCamelCase: Dict , __lowerCamelCase: Optional[int]=7 , __lowerCamelCase: int=400 , __lowerCamelCase: Optional[Any]=2000 , __lowerCamelCase: Tuple=24 , __lowerCamelCase: Dict=24 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=1_6000 , __lowerCamelCase: int=True , __lowerCamelCase: List[str]=True , ): '''simple docstring''' UpperCamelCase__: Any = parent UpperCamelCase__: Optional[Any] = batch_size UpperCamelCase__: List[Any] = min_seq_length UpperCamelCase__: int = max_seq_length UpperCamelCase__: Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__: Dict = feature_size UpperCamelCase__: Optional[Any] = num_mel_bins UpperCamelCase__: List[Any] = padding_value UpperCamelCase__: List[Any] = sampling_rate UpperCamelCase__: Dict = return_attention_mask UpperCamelCase__: List[str] = do_normalize def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase_ ( self: Dict , __lowerCamelCase: Optional[int]=False , __lowerCamelCase: Any=False ): '''simple docstring''' def _flatten(__lowerCamelCase: Union[str, Any] ): return list(itertools.chain(*__lowerCamelCase ) ) if equal_length: UpperCamelCase__: Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__: List[str] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase__: List[Any] = [np.asarray(__lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _a ( UpperCamelCase__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = SpeechaTextFeatureExtractor if is_speech_available() else None def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' UpperCamelCase__: int = SpeechaTextFeatureExtractionTester(self ) def UpperCAmelCase_ ( self: Tuple , __lowerCamelCase: Optional[Any] ): '''simple docstring''' self.assertTrue(np.all(np.mean(__lowerCamelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowerCamelCase , axis=0 ) - 1 ) < 1e-3 ) ) def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__: Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase__: Union[str, Any] = [np.asarray(__lowerCamelCase ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__: Optional[Any] = feature_extractor(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__: Dict = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features UpperCamelCase__: Any = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) # Test batched UpperCamelCase__: Dict = feature_extractor(__lowerCamelCase , return_tensors="np" ).input_features UpperCamelCase__: List[Any] = feature_extractor(__lowerCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__: Optional[int] = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__: List[Any] = np.asarray(__lowerCamelCase ) UpperCamelCase__: str = feature_extractor(__lowerCamelCase , return_tensors="np" ).input_features UpperCamelCase__: Dict = feature_extractor(__lowerCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__: List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase__: str = ["longest", "max_length", "do_not_pad"] UpperCamelCase__: List[str] = [None, 16, None] for max_length, padding in zip(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase__: Optional[int] = feature_extractor( __lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_attention_mask=__lowerCamelCase ) UpperCamelCase__: Optional[int] = inputs.input_features UpperCamelCase__: int = inputs.attention_mask UpperCamelCase__: Optional[Any] = [np.sum(__lowerCamelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__: List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase__: Dict = ["longest", "max_length", "do_not_pad"] UpperCamelCase__: Tuple = [None, 16, None] for max_length, padding in zip(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase__: List[str] = feature_extractor( __lowerCamelCase , max_length=__lowerCamelCase , padding=__lowerCamelCase , return_tensors="np" , return_attention_mask=__lowerCamelCase ) UpperCamelCase__: Union[str, Any] = inputs.input_features UpperCamelCase__: Any = inputs.attention_mask UpperCamelCase__: str = [np.sum(__lowerCamelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__: int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase__: str = feature_extractor( __lowerCamelCase , padding="max_length" , max_length=4 , truncation=__lowerCamelCase , return_tensors="np" , return_attention_mask=__lowerCamelCase , ) UpperCamelCase__: str = inputs.input_features UpperCamelCase__: str = inputs.attention_mask UpperCamelCase__: Dict = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' UpperCamelCase__: int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__: int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase__: Dict = feature_extractor( __lowerCamelCase , padding="longest" , max_length=4 , truncation=__lowerCamelCase , return_tensors="np" , return_attention_mask=__lowerCamelCase , ) UpperCamelCase__: Tuple = inputs.input_features UpperCamelCase__: Any = inputs.attention_mask UpperCamelCase__: str = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) UpperCamelCase__: List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase__: Any = feature_extractor( __lowerCamelCase , padding="longest" , max_length=16 , truncation=__lowerCamelCase , return_tensors="np" , return_attention_mask=__lowerCamelCase , ) UpperCamelCase__: Dict = inputs.input_features UpperCamelCase__: Tuple = inputs.attention_mask UpperCamelCase__: Dict = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' import torch UpperCamelCase__: Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__: int = np.random.rand(100 , 32 ).astype(np.floataa ) UpperCamelCase__: Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__: Optional[int] = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__: Optional[Any] = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase_ ( self: Optional[Any] , __lowerCamelCase: Dict ): '''simple docstring''' from datasets import load_dataset UpperCamelCase__: Any = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCamelCase__: str = ds.sort("id" ).select(range(__lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: Any = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on UpperCamelCase__: Tuple = self._load_datasamples(1 ) UpperCamelCase__: Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__: Optional[Any] = feature_extractor(__lowerCamelCase , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , __lowerCamelCase , atol=1e-4 ) )
380
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__: str = logging.get_logger(__name__) A__: Union[str, Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = """deformable_detr""" UpperCamelCase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self: Dict , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=None , __lowerCamelCase: Tuple=3 , __lowerCamelCase: Union[str, Any]=300 , __lowerCamelCase: Optional[Any]=1024 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: Optional[int]=1024 , __lowerCamelCase: List[str]=8 , __lowerCamelCase: Any=6 , __lowerCamelCase: Tuple=1024 , __lowerCamelCase: List[str]=8 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: List[str]="relu" , __lowerCamelCase: Tuple=256 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Optional[Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Any=0.02 , __lowerCamelCase: int=1.0 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: str=False , __lowerCamelCase: Any="sine" , __lowerCamelCase: Optional[Any]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: int=4 , __lowerCamelCase: int=4 , __lowerCamelCase: Any=4 , __lowerCamelCase: Any=False , __lowerCamelCase: List[str]=300 , __lowerCamelCase: Dict=False , __lowerCamelCase: str=1 , __lowerCamelCase: int=5 , __lowerCamelCase: str=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Tuple=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Optional[Any]=2 , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: Dict=0.25 , __lowerCamelCase: Dict=False , **__lowerCamelCase: str , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCamelCase__: Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase__: Tuple = backbone_config.get("model_type" ) UpperCamelCase__: Optional[int] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__: Tuple = config_class.from_dict(__lowerCamelCase ) UpperCamelCase__: Dict = use_timm_backbone UpperCamelCase__: Any = backbone_config UpperCamelCase__: Optional[int] = num_channels UpperCamelCase__: int = num_queries UpperCamelCase__: List[str] = max_position_embeddings UpperCamelCase__: Dict = d_model UpperCamelCase__: List[Any] = encoder_ffn_dim UpperCamelCase__: Union[str, Any] = encoder_layers UpperCamelCase__: Tuple = encoder_attention_heads UpperCamelCase__: Tuple = decoder_ffn_dim UpperCamelCase__: Optional[int] = decoder_layers UpperCamelCase__: int = decoder_attention_heads UpperCamelCase__: Optional[Any] = dropout UpperCamelCase__: List[str] = attention_dropout UpperCamelCase__: List[Any] = activation_dropout UpperCamelCase__: List[Any] = activation_function UpperCamelCase__: Union[str, Any] = init_std UpperCamelCase__: List[str] = init_xavier_std UpperCamelCase__: Optional[Any] = encoder_layerdrop UpperCamelCase__: List[str] = auxiliary_loss UpperCamelCase__: Optional[int] = position_embedding_type UpperCamelCase__: Optional[Any] = backbone UpperCamelCase__: Any = use_pretrained_backbone UpperCamelCase__: Union[str, Any] = dilation # deformable attributes UpperCamelCase__: Union[str, Any] = num_feature_levels UpperCamelCase__: Optional[Any] = encoder_n_points UpperCamelCase__: Tuple = decoder_n_points UpperCamelCase__: Any = two_stage UpperCamelCase__: Optional[int] = two_stage_num_proposals UpperCamelCase__: str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher UpperCamelCase__: Any = class_cost UpperCamelCase__: str = bbox_cost UpperCamelCase__: List[str] = giou_cost # Loss coefficients UpperCamelCase__: Optional[Any] = mask_loss_coefficient UpperCamelCase__: List[Any] = dice_loss_coefficient UpperCamelCase__: Optional[Any] = bbox_loss_coefficient UpperCamelCase__: List[Any] = giou_loss_coefficient UpperCamelCase__: Dict = eos_coefficient UpperCamelCase__: List[Any] = focal_alpha UpperCamelCase__: Dict = disable_custom_kernels super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase_ ( self: Any ): '''simple docstring''' return self.d_model def UpperCAmelCase_ ( self: int ): '''simple docstring''' UpperCamelCase__: Optional[int] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase__: Tuple = self.backbone_config.to_dict() UpperCamelCase__: Optional[int] = self.__class__.model_type return output
380
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def lowerCAmelCase ( UpperCamelCase__ : float , UpperCamelCase__ : float ): """simple docstring""" if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
654
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
1
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration a : Dict = pytest.mark.integration a : Optional[int] = {"""comet"""} a : List[str] = importlib.util.find_spec("""fairseq""") is not None a : Optional[Any] = {"""code_eval"""} a : Dict = os.name == """nt""" a : Dict = {"""bertscore""", """frugalscore""", """perplexity"""} a : Any = importlib.util.find_spec("""transformers""") is not None def lowercase__(A ) ->int: """simple docstring""" @wraps(A ) def wrapper(self , A ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , A ) return wrapper def lowercase__(A ) ->Any: """simple docstring""" @wraps(A ) def wrapper(self , A ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , A ) return wrapper def lowercase__(A ) ->int: """simple docstring""" @wraps(A ) def wrapper(self , A ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , A ) return wrapper def lowercase__() ->Dict: """simple docstring""" lowercase__ : int= [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @local class __UpperCAmelCase( parameterized.TestCase ): """simple docstring""" __lowerCamelCase = {} __lowerCamelCase = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' lowercase__ : Dict= "[...]" lowercase__ : Tuple= importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , snake_case__ ) ).module_path ) lowercase__ : Optional[Any]= datasets.load.import_main_class(metric_module.__name__ , dataset=snake_case__ ) # check parameters lowercase__ : List[Any]= inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(snake_case__ , metric_module.__name__ ): with self.use_local_metrics(): try: lowercase__ : Union[str, Any]= doctest.testmod(snake_case__ , verbose=snake_case__ , raise_on_error=snake_case__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' lowercase__ : Optional[int]= "[...]" lowercase__ : Dict= importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , snake_case__ ) ).module_path ) # run doctest with self.use_local_metrics(): lowercase__ : Optional[Any]= doctest.testmod(snake_case__ , verbose=snake_case__ , raise_on_error=snake_case__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def UpperCAmelCase_ ( self , snake_case__ , snake_case__ ): '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](snake_case__ ): yield else: yield @contextmanager def UpperCAmelCase_ ( self ): '''simple docstring''' def load_local_metric(snake_case__ , *snake_case__ , **snake_case__ ): return load_metric(os.path.join("metrics" , snake_case__ ) , *snake_case__ , **snake_case__ ) with patch("datasets.load_metric" ) as mock_load_metric: lowercase__ : Tuple= load_local_metric yield @classmethod def UpperCAmelCase_ ( cls , snake_case__ ): '''simple docstring''' def wrapper(snake_case__ ): lowercase__ : Union[str, Any]= contextmanager(snake_case__ ) lowercase__ : Union[str, Any]= patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def lowercase__(A ) ->Optional[int]: """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: lowercase__ : int= MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def lowercase__(A ) ->str: """simple docstring""" import torch def bert_cos_score_idf(A , A , *A , **A ): return torch.tensor([[1.0, 1.0, 1.0]] * len(A ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: lowercase__ : str= bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def lowercase__(A ) ->Optional[int]: """simple docstring""" def load_from_checkpoint(A ): class __UpperCAmelCase: """simple docstring""" def UpperCAmelCase_ ( self , snake_case__ , *snake_case__ , **snake_case__ ): '''simple docstring''' assert len(snake_case__ ) == 2 lowercase__ : Any= [0.19, 0.92] return scores, sum(snake_case__ ) / len(snake_case__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: lowercase__ : Union[str, Any]= None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: lowercase__ : Tuple= load_from_checkpoint yield def lowercase__() ->Optional[Any]: """simple docstring""" lowercase__ : Any= load_metric(os.path.join("metrics" , "seqeval" ) ) lowercase__ : Optional[int]= "ERROR" lowercase__ : Optional[Any]= f'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(A , match=re.escape(A ) ): metric.compute(predictions=[] , references=[] , scheme=A )
218
"""simple docstring""" from __future__ import annotations from math import pi def lowercase__(A , A , A ) ->dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
218
1
import math def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE = 1 / 12_345 ): '''simple docstring''' __UpperCamelCase :Any = 0 __UpperCamelCase :Optional[int] = 0 __UpperCamelCase :Tuple = 3 while True: __UpperCamelCase :Dict = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[int] = int(SCREAMING_SNAKE_CASE ) total_partitions += 1 if check_partition_perfect(SCREAMING_SNAKE_CASE ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(SCREAMING_SNAKE_CASE ) integer += 1 if __name__ == "__main__": print(F'{solution() = }')
701
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return 1 if input_a == input_a else 0 def lowerCamelCase ( ): '''simple docstring''' assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
452
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : int=32 * 4 , UpperCAmelCase_ : str=32 * 6 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=32 , ): SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : Union[str, Any] = use_auxiliary_loss SCREAMING_SNAKE_CASE : Tuple = num_queries SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : Any = min_size SCREAMING_SNAKE_CASE : Union[str, Any] = max_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE : Tuple = mask_feature_size def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase_ ) > 0.5 ).float() SCREAMING_SNAKE_CASE : Optional[Any] = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase_ ) > 0.5).long() SCREAMING_SNAKE_CASE : List[str] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _A ( self : Any ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def _A ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = output.encoder_hidden_states SCREAMING_SNAKE_CASE : List[Any] = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCAmelCase_ ) , config.decoder_config.decoder_layers ) def _A ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str]=False ): with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = MaskFormerModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(pixel_values=UpperCAmelCase_ , pixel_mask=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Optional[int] = MaskFormerForInstanceSegmentation(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() def comm_check_on_output(UpperCAmelCase_ : int ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(pixel_values=UpperCAmelCase_ , pixel_mask=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(UpperCAmelCase_ ) comm_check_on_output(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model( pixel_values=UpperCAmelCase_ , pixel_mask=UpperCAmelCase_ , mask_labels=UpperCAmelCase_ , class_labels=UpperCAmelCase_ ) comm_check_on_output(UpperCAmelCase_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCamelCase_ : List[str] = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCamelCase_ : int = False UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : int = False UpperCamelCase_ : Optional[Any] = False def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Any = MaskFormerModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ ) def _A ( self : List[str] ): self.config_tester.run_common_tests() def _A ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase_ , **UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase_ ) @unittest.skip(reason="MaskFormer does not use inputs_embeds" ) def _A ( self : List[str] ): pass @unittest.skip(reason="MaskFormer does not have a get_input_embeddings method" ) def _A ( self : Optional[int] ): pass @unittest.skip(reason="MaskFormer is not a generative model" ) def _A ( self : List[str] ): pass @unittest.skip(reason="MaskFormer does not use token embeddings" ) def _A ( self : Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip( reason="MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _A ( self : List[Any] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _A ( self : Tuple ): pass def _A ( self : Any ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) @slow def _A ( self : List[Any] ): for model_name in ["facebook/maskformer-swin-small-coco"]: SCREAMING_SNAKE_CASE : Any = MaskFormerModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : List[str] = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE : Any = { "pixel_values": torch.randn((2, 3, *size) , device=UpperCAmelCase_ ), "mask_labels": torch.randn((2, 10, *size) , device=UpperCAmelCase_ ), "class_labels": torch.zeros(2 , 10 , device=UpperCAmelCase_ ).long(), } SCREAMING_SNAKE_CASE : Tuple = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = model(**UpperCAmelCase_ ) self.assertTrue(outputs.loss is not None ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase_ , **UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(UpperCAmelCase_ ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = model(**UpperCAmelCase_ , output_attentions=UpperCAmelCase_ ) self.assertTrue(outputs.attentions is not None ) def _A ( self : Tuple ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss SCREAMING_SNAKE_CASE : str = self.all_model_classes[1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Dict = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() SCREAMING_SNAKE_CASE : Dict = model(UpperCAmelCase_ , mask_labels=UpperCAmelCase_ , class_labels=UpperCAmelCase_ ).loss loss.backward() def _A ( self : Optional[Any] ): # only MaskFormerForInstanceSegmentation has the loss SCREAMING_SNAKE_CASE : str = self.all_model_classes[1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Optional[int] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() SCREAMING_SNAKE_CASE : Tuple = model(UpperCAmelCase_ , mask_labels=UpperCAmelCase_ , class_labels=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't SCREAMING_SNAKE_CASE : List[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE : List[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case = 1e-4 def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _A ( self : Tuple ): return ( MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco" ) if is_vision_available() else None ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco" ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = self.default_image_processor SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase_ , (1, 3, 800, 1088) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(UpperCAmelCase_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : int = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(UpperCAmelCase_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(UpperCAmelCase_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(UpperCAmelCase_ ) .eval() ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : List[str] = prepare_img() SCREAMING_SNAKE_CASE : List[str] = image_processor(UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase_ , (1, 3, 800, 1088) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**UpperCAmelCase_ ) # masks_queries_logits SCREAMING_SNAKE_CASE : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) SCREAMING_SNAKE_CASE : Optional[int] = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(UpperCAmelCase_ ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) # class_queries_logits SCREAMING_SNAKE_CASE : int = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [ [1.6_512E00, -5.2_572E00, -3.3_519E00], [3.6_169E-02, -5.9_025E00, -2.9_313E00], [1.0_766E-04, -7.7_630E00, -5.1_263E00], ] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) def _A ( self : int ): SCREAMING_SNAKE_CASE : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff" ) .to(UpperCAmelCase_ ) .eval() ) SCREAMING_SNAKE_CASE : int = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCAmelCase_ , (1, 3, 800, 1088) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**UpperCAmelCase_ ) # masks_queries_logits SCREAMING_SNAKE_CASE : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) SCREAMING_SNAKE_CASE : Dict = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(UpperCAmelCase_ ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) # class_queries_logits SCREAMING_SNAKE_CASE : str = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase_ , atol=UpperCAmelCase_ ) ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(UpperCAmelCase_ ) .eval() ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) SCREAMING_SNAKE_CASE : Dict = inputs["pixel_values"].to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [el.to(UpperCAmelCase_ ) for el in inputs["mask_labels"]] SCREAMING_SNAKE_CASE : Optional[int] = [el.to(UpperCAmelCase_ ) for el in inputs["class_labels"]] with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(**UpperCAmelCase_ ) self.assertTrue(outputs.loss is not None )
62
def a (lowerCAmelCase__ ): __a = False while is_sorted is False: # Until all the indices are traversed keep looping __a = True for i in range(0 , len(lowerCAmelCase__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __a , __a = input_list[i + 1], input_list[i] # swapping if elements not in order __a = False for i in range(1 , len(lowerCAmelCase__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __a , __a = input_list[i + 1], input_list[i] # swapping if elements not in order __a = False return input_list if __name__ == "__main__": print('Enter list to be sorted') SCREAMING_SNAKE_CASE = [int(x) for x in input().split()] # inputing elements of the list in one line SCREAMING_SNAKE_CASE = odd_even_sort(input_list) print('The sorted list is') print(sorted_list)
99
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE : str = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
441
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class UpperCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , UpperCamelCase_ = 101 ): lowercase_ :Tuple = length def __len__( self ): return self.length def __getitem__( self , UpperCamelCase_ ): return i class UpperCamelCase : '''simple docstring''' def __call__( self , UpperCamelCase_ ): return {"input_ids": torch.tensor(UpperCamelCase_ ), "labels": torch.tensor(UpperCamelCase_ )} class UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() # Add some (unused) params otherwise DDP will complain. lowercase_ :List[Any] = nn.Linear(120 , 80 ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class UpperCamelCase ( lowercase__ ): '''simple docstring''' @require_torch_neuroncore def UpperCamelCase ( self ): lowercase_ :int = f"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() lowercase_ :List[str] = self.get_auto_remove_tmp_dir() lowercase_ :List[str] = f"--output_dir {output_dir}".split() lowercase_ :Any = ['''torchrun'''] + distributed_args + args execute_subprocess_async(UpperCamelCase_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class UpperCamelCase ( lowercase__ ): '''simple docstring''' @require_torch_multi_gpu def UpperCamelCase ( self ): lowercase_ :Any = f"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() lowercase_ :str = self.get_auto_remove_tmp_dir() lowercase_ :List[str] = f"--output_dir {output_dir}".split() lowercase_ :Dict = ['''torchrun'''] + distributed_args + args execute_subprocess_async(UpperCamelCase_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser((TrainingArguments,)) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args_into_dataclasses()[0] logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " f"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: SCREAMING_SNAKE_CASE : Dict = DummyDataset(dataset_length) def UpperCamelCase ( _a ) -> Dict: '''simple docstring''' lowercase_ :Optional[Any] = list(range(len(_a ) ) ) lowercase_ :Optional[Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" ) return {"success": success} SCREAMING_SNAKE_CASE : Optional[Any] = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) SCREAMING_SNAKE_CASE : Any = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE : Optional[int] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE : Union[str, Any] = 2 SCREAMING_SNAKE_CASE : Any = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) SCREAMING_SNAKE_CASE : List[str] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) SCREAMING_SNAKE_CASE : Optional[int] = None
441
1
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = AudioLDMPipeline lowerCAmelCase : str = TEXT_TO_AUDIO_PARAMS lowerCAmelCase : Union[str, Any] = TEXT_TO_AUDIO_BATCH_PARAMS lowerCAmelCase : List[str] = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=(32, 64) ,class_embed_type='''simple_projection''' ,projection_class_embeddings_input_dim=32 ,class_embeddings_concat=_snake_case ,) lowercase__ : List[str] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) torch.manual_seed(0 ) lowercase__ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=1 ,out_channels=1 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = ClapTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,projection_dim=32 ,) lowercase__ : List[str] = ClapTextModelWithProjection(_snake_case ) lowercase__ : int = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' ,model_max_length=77 ) lowercase__ : Union[str, Any] = SpeechTaHifiGanConfig( model_in_dim=8 ,sampling_rate=16_000 ,upsample_initial_channel=16 ,upsample_rates=[2, 2] ,upsample_kernel_sizes=[4, 4] ,resblock_kernel_sizes=[3, 7] ,resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] ,normalize_before=_snake_case ,) lowercase__ : Any = SpeechTaHifiGan(_snake_case ) lowercase__ : List[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Any ,_snake_case : Dict=0 ) -> List[str]: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : List[Any] = torch.manual_seed(_snake_case ) else: lowercase__ : Optional[Any] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : Dict = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def UpperCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" lowercase__ : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : List[str] = self.get_dummy_components() lowercase__ : str = AudioLDMPipeline(**_snake_case ) lowercase__ : Union[str, Any] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : List[str] = self.get_dummy_inputs(_snake_case ) lowercase__ : Any = audioldm_pipe(**_snake_case ) lowercase__ : Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 256 lowercase__ : str = audio[:10] lowercase__ : Dict = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ : Tuple = self.get_dummy_components() lowercase__ : List[Any] = AudioLDMPipeline(**_snake_case ) lowercase__ : int = audioldm_pipe.to(_snake_case ) lowercase__ : Optional[Any] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[int] = self.get_dummy_inputs(_snake_case ) lowercase__ : Optional[Any] = 3 * [inputs['''prompt''']] # forward lowercase__ : Optional[Any] = audioldm_pipe(**_snake_case ) lowercase__ : Optional[Any] = output.audios[0] lowercase__ : List[Any] = self.get_dummy_inputs(_snake_case ) lowercase__ : Dict = 3 * [inputs.pop('''prompt''' )] lowercase__ : int = audioldm_pipe.tokenizer( _snake_case ,padding='''max_length''' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=_snake_case ,return_tensors='''pt''' ,) lowercase__ : Dict = text_inputs['''input_ids'''].to(_snake_case ) lowercase__ : List[str] = audioldm_pipe.text_encoder( _snake_case ,) lowercase__ : Tuple = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase__ : Dict = F.normalize(_snake_case ,dim=-1 ) lowercase__ : Dict = prompt_embeds # forward lowercase__ : Tuple = audioldm_pipe(**_snake_case ) lowercase__ : Dict = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = self.get_dummy_components() lowercase__ : List[str] = AudioLDMPipeline(**_snake_case ) lowercase__ : List[str] = audioldm_pipe.to(_snake_case ) lowercase__ : Optional[int] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : List[Any] = self.get_dummy_inputs(_snake_case ) lowercase__ : Tuple = 3 * ['''this is a negative prompt'''] lowercase__ : Tuple = negative_prompt lowercase__ : Any = 3 * [inputs['''prompt''']] # forward lowercase__ : Optional[Any] = audioldm_pipe(**_snake_case ) lowercase__ : str = output.audios[0] lowercase__ : Optional[Any] = self.get_dummy_inputs(_snake_case ) lowercase__ : Union[str, Any] = 3 * [inputs.pop('''prompt''' )] lowercase__ : str = [] for p in [prompt, negative_prompt]: lowercase__ : Any = audioldm_pipe.tokenizer( _snake_case ,padding='''max_length''' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=_snake_case ,return_tensors='''pt''' ,) lowercase__ : List[Any] = text_inputs['''input_ids'''].to(_snake_case ) lowercase__ : Dict = audioldm_pipe.text_encoder( _snake_case ,) lowercase__ : Any = text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase__ : Dict = F.normalize(_snake_case ,dim=-1 ) embeds.append(_snake_case ) lowercase__ , lowercase__ : Dict = embeds # forward lowercase__ : Optional[Any] = audioldm_pipe(**_snake_case ) lowercase__ : Union[str, Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" lowercase__ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : List[str] = self.get_dummy_components() lowercase__ : List[Any] = PNDMScheduler(skip_prk_steps=_snake_case ) lowercase__ : str = AudioLDMPipeline(**_snake_case ) lowercase__ : Optional[Any] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[Any] = self.get_dummy_inputs(_snake_case ) lowercase__ : List[Any] = '''egg cracking''' lowercase__ : Union[str, Any] = audioldm_pipe(**_snake_case ,negative_prompt=_snake_case ) lowercase__ : Tuple = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 256 lowercase__ : List[str] = audio[:10] lowercase__ : Dict = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : Optional[Any] = self.get_dummy_components() lowercase__ : str = PNDMScheduler(skip_prk_steps=_snake_case ) lowercase__ : Optional[int] = AudioLDMPipeline(**_snake_case ) lowercase__ : int = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Any = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) lowercase__ : Dict = audioldm_pipe(_snake_case ,num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowercase__ : List[str] = 2 lowercase__ : int = audioldm_pipe([prompt] * batch_size ,num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt lowercase__ : Optional[Any] = 2 lowercase__ : List[Any] = audioldm_pipe(_snake_case ,num_inference_steps=2 ,num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts lowercase__ : Any = 2 lowercase__ : Optional[int] = audioldm_pipe( [prompt] * batch_size ,num_inference_steps=2 ,num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : Any = self.get_dummy_components() lowercase__ : Union[str, Any] = AudioLDMPipeline(**_snake_case ) lowercase__ : int = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Dict = audioldm_pipe.vocoder.config.sampling_rate lowercase__ : List[Any] = self.get_dummy_inputs(_snake_case ) lowercase__ : str = audioldm_pipe(audio_length_in_s=0.016 ,**_snake_case ) lowercase__ : Union[str, Any] = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.016 lowercase__ : List[str] = audioldm_pipe(audio_length_in_s=0.032 ,**_snake_case ) lowercase__ : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.032 def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = self.get_dummy_components() lowercase__ : List[Any] = AudioLDMPipeline(**_snake_case ) lowercase__ : int = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : str = ['''hey'''] lowercase__ : Union[str, Any] = audioldm_pipe(_snake_case ,num_inference_steps=1 ) lowercase__ : Tuple = output.audios.shape assert audio_shape == (1, 256) lowercase__ : List[str] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowercase__ : List[Any] = SpeechTaHifiGan(_snake_case ).to(_snake_case ) lowercase__ : Dict = audioldm_pipe(_snake_case ,num_inference_steps=1 ) lowercase__ : int = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def UpperCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_snake_case ) def UpperCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=_snake_case ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_snake_case ) @slow class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Any ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Optional[Any] ,_snake_case : str ,_snake_case : Union[str, Any]="cpu" ,_snake_case : Optional[int]=torch.floataa ,_snake_case : Optional[int]=0 ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : List[Any] = np.random.RandomState(_snake_case ).standard_normal((1, 8, 128, 16) ) lowercase__ : List[Any] = torch.from_numpy(_snake_case ).to(device=_snake_case ,dtype=_snake_case ) lowercase__ : int = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def UpperCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowercase__ : int = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowercase__ : str = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[int] = self.get_inputs(_snake_case ) lowercase__ : Union[str, Any] = 25 lowercase__ : int = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 81_920 lowercase__ : List[Any] = audio[77_230:77_240] lowercase__ : Tuple = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) lowercase__ : Tuple = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ : Union[str, Any] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowercase__ : int = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowercase__ : List[Any] = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Union[str, Any] = self.get_inputs(_snake_case ) lowercase__ : Any = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 81_920 lowercase__ : int = audio[27_780:27_790] lowercase__ : Tuple = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) lowercase__ : Dict = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
560
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Any: lowercase__ : Optional[Any] = checkpoint lowercase__ : List[str] = {} lowercase__ : Any = vae_state_dict['''encoder.conv_in.weight'''] lowercase__ : Any = vae_state_dict['''encoder.conv_in.bias'''] lowercase__ : str = vae_state_dict['''encoder.conv_out.weight'''] lowercase__ : List[str] = vae_state_dict['''encoder.conv_out.bias'''] lowercase__ : List[str] = vae_state_dict['''encoder.norm_out.weight'''] lowercase__ : Optional[int] = vae_state_dict['''encoder.norm_out.bias'''] lowercase__ : List[str] = vae_state_dict['''decoder.conv_in.weight'''] lowercase__ : int = vae_state_dict['''decoder.conv_in.bias'''] lowercase__ : Union[str, Any] = vae_state_dict['''decoder.conv_out.weight'''] lowercase__ : Optional[int] = vae_state_dict['''decoder.conv_out.bias'''] lowercase__ : str = vae_state_dict['''decoder.norm_out.weight'''] lowercase__ : Union[str, Any] = vae_state_dict['''decoder.norm_out.bias'''] lowercase__ : Optional[int] = vae_state_dict['''quant_conv.weight'''] lowercase__ : Union[str, Any] = vae_state_dict['''quant_conv.bias'''] lowercase__ : str = vae_state_dict['''post_quant_conv.weight'''] lowercase__ : Optional[int] = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only lowercase__ : str = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) lowercase__ : Optional[Any] = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(__lowerCamelCase ) } # Retrieves the keys for the decoder up blocks only lowercase__ : Any = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) lowercase__ : List[str] = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(__lowerCamelCase ) } for i in range(__lowerCamelCase ): lowercase__ : str = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: lowercase__ : Any = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) lowercase__ : List[Any] = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) lowercase__ : int = renew_vae_resnet_paths(__lowerCamelCase ) lowercase__ : str = {'''old''': f"""down.{i}.block""", '''new''': f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) lowercase__ : Union[str, Any] = [key for key in vae_state_dict if '''encoder.mid.block''' in key] lowercase__ : Tuple = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowercase__ : str = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] lowercase__ : Optional[Any] = renew_vae_resnet_paths(__lowerCamelCase ) lowercase__ : Tuple = {'''old''': f"""mid.block_{i}""", '''new''': f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) lowercase__ : Dict = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] lowercase__ : Union[str, Any] = renew_vae_attention_paths(__lowerCamelCase ) lowercase__ : Dict = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) conv_attn_to_linear(__lowerCamelCase ) for i in range(__lowerCamelCase ): lowercase__ : int = num_up_blocks - 1 - i lowercase__ : int = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: lowercase__ : Optional[int] = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] lowercase__ : List[str] = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] lowercase__ : Optional[int] = renew_vae_resnet_paths(__lowerCamelCase ) lowercase__ : List[str] = {'''old''': f"""up.{block_id}.block""", '''new''': f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) lowercase__ : List[str] = [key for key in vae_state_dict if '''decoder.mid.block''' in key] lowercase__ : Dict = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowercase__ : int = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] lowercase__ : Dict = renew_vae_resnet_paths(__lowerCamelCase ) lowercase__ : str = {'''old''': f"""mid.block_{i}""", '''new''': f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) lowercase__ : Dict = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] lowercase__ : Tuple = renew_vae_attention_paths(__lowerCamelCase ) lowercase__ : Any = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , additional_replacements=[meta_path] , config=__lowerCamelCase ) conv_attn_to_linear(__lowerCamelCase ) return new_checkpoint def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , ) -> Optional[Any]: # Only support V1 lowercase__ : List[Any] = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) lowercase__ : List[str] = io.BytesIO(r.content ) lowercase__ : Union[str, Any] = OmegaConf.load(__lowerCamelCase ) lowercase__ : int = 5_12 lowercase__ : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open lowercase__ : int = {} with safe_open(__lowerCamelCase , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): lowercase__ : Optional[int] = f.get_tensor(__lowerCamelCase ) else: lowercase__ : Tuple = torch.load(__lowerCamelCase , map_location=__lowerCamelCase )['''state_dict'''] # Convert the VAE model. lowercase__ : Optional[int] = create_vae_diffusers_config(__lowerCamelCase , image_size=__lowerCamelCase ) lowercase__ : Tuple = custom_convert_ldm_vae_checkpoint(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Dict = AutoencoderKL(**__lowerCamelCase ) vae.load_state_dict(__lowerCamelCase ) vae.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') lowerCAmelCase_ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
560
1
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCAmelCase__ = pd.read_csv("sample_data.csv", header=None) UpperCAmelCase__ = df.shape[:1][0] # If you're using some other dataset input the target column UpperCAmelCase__ = df.iloc[:, 1:2] UpperCAmelCase__ = actual_data.values.reshape(len_data, 1) UpperCAmelCase__ = MinMaxScaler().fit_transform(actual_data) UpperCAmelCase__ = 10 UpperCAmelCase__ = 5 UpperCAmelCase__ = 20 UpperCAmelCase__ = len_data - periods * look_back UpperCAmelCase__ = actual_data[:division] UpperCAmelCase__ = actual_data[division - look_back :] UpperCAmelCase__ , UpperCAmelCase__ = [], [] UpperCAmelCase__ , UpperCAmelCase__ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCAmelCase__ = np.array(train_x) UpperCAmelCase__ = np.array(test_x) UpperCAmelCase__ = np.array([list(i.ravel()) for i in train_y]) UpperCAmelCase__ = np.array([list(i.ravel()) for i in test_y]) UpperCAmelCase__ = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") UpperCAmelCase__ = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCAmelCase__ = model.predict(x_test)
713
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = CycleDiffusionPipeline UpperCamelCase_ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } UpperCamelCase_ : int = PipelineTesterMixin.required_optional_params - {'latents'} UpperCamelCase_ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) UpperCamelCase_ : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self : int ) -> Dict: """simple docstring""" torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , num_train_timesteps=1_000 , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __lowercase = CLIPTextModel(lowerCamelCase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase_ ( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : List[str]=0 ) -> Any: """simple docstring""" __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __lowercase = image / 2 + 0.5 if str(lowerCamelCase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowerCamelCase__ ) else: __lowercase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowercase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = CycleDiffusionPipeline(**lowerCamelCase__ ) __lowercase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowercase = self.get_dummy_inputs(lowerCamelCase__ ) __lowercase = pipe(**lowerCamelCase__ ) __lowercase = output.images __lowercase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowercase = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = self.get_dummy_components() for name, module in components.items(): if hasattr(lowerCamelCase__ , '''half''' ): __lowercase = module.half() __lowercase = CycleDiffusionPipeline(**lowerCamelCase__ ) __lowercase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowercase = self.get_dummy_inputs(lowerCamelCase__ ) __lowercase = pipe(**lowerCamelCase__ ) __lowercase = output.images __lowercase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowercase = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase_ ( self : str ) -> int: """simple docstring""" return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def UpperCAmelCase_ ( self : int ) -> Optional[int]: """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __lowercase = init_image.resize((512, 512) ) __lowercase = '''CompVis/stable-diffusion-v1-4''' __lowercase = DDIMScheduler.from_pretrained(lowerCamelCase__ , subfolder='''scheduler''' ) __lowercase = CycleDiffusionPipeline.from_pretrained( lowerCamelCase__ , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() __lowercase = '''A black colored car''' __lowercase = '''A blue colored car''' __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=lowerCamelCase__ , source_prompt=lowerCamelCase__ , image=lowerCamelCase__ , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCamelCase__ , output_type='''np''' , ) __lowercase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def UpperCAmelCase_ ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __lowercase = init_image.resize((512, 512) ) __lowercase = '''CompVis/stable-diffusion-v1-4''' __lowercase = DDIMScheduler.from_pretrained(lowerCamelCase__ , subfolder='''scheduler''' ) __lowercase = CycleDiffusionPipeline.from_pretrained(lowerCamelCase__ , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() __lowercase = '''A black colored car''' __lowercase = '''A blue colored car''' __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=lowerCamelCase__ , source_prompt=lowerCamelCase__ , image=lowerCamelCase__ , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCamelCase__ , output_type='''np''' , ) __lowercase = output.images assert np.abs(image - expected_image ).max() < 2e-2
362
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) _a : str = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _a : Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Any ): UpperCAmelCase = {} with open(__snake_case , 'r' ) as file: for line_number, line in enumerate(__snake_case ): UpperCAmelCase = line.strip() if line: UpperCAmelCase = line.split() UpperCAmelCase = line_number UpperCAmelCase = words[0] UpperCAmelCase = value return result def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str ): for attribute in key.split('.' ): UpperCAmelCase = getattr(__snake_case , __snake_case ) UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__snake_case ): UpperCAmelCase = PARAM_MAPPING[full_name.split('.' )[-1]] UpperCAmelCase = 'param' if weight_type is not None and weight_type != "param": UpperCAmelCase = getattr(__snake_case , __snake_case ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase = hf_pointer for attribute in hf_param_name.split('.' ): UpperCAmelCase = getattr(__snake_case , __snake_case ) UpperCAmelCase = shape_pointer.shape # let's reduce dimension UpperCAmelCase = value[0] else: UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase = value elif weight_type == "weight_g": UpperCAmelCase = value elif weight_type == "weight_v": UpperCAmelCase = value elif weight_type == "bias": UpperCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): UpperCAmelCase = getattr(__snake_case , __snake_case ) UpperCAmelCase = value else: UpperCAmelCase = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ): UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__snake_case ): UpperCAmelCase = PARAM_MAPPING[full_name.split('.' )[-1]] UpperCAmelCase = 'param' if weight_type is not None and weight_type != "param": UpperCAmelCase = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase = '.'.join([key, hf_param_name] ) else: UpperCAmelCase = key UpperCAmelCase = value if 'lm_head' in full_key else value[0] _a : List[str] = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : int=None ): UpperCAmelCase = False for key, mapped_key in MAPPING.items(): UpperCAmelCase = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCAmelCase = True if "*" in mapped_key: UpperCAmelCase = name.split(__snake_case )[0].split('.' )[-2] UpperCAmelCase = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: UpperCAmelCase = 'weight_g' elif "weight_v" in name: UpperCAmelCase = 'weight_v' elif "bias" in name: UpperCAmelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase = 'weight' else: UpperCAmelCase = None if hf_dict is not None: rename_dict(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) else: set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) return is_used return is_used def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): UpperCAmelCase = [] UpperCAmelCase = fairseq_model.state_dict() UpperCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) UpperCAmelCase = True else: UpperCAmelCase = load_wavaveca_layer(__snake_case , __snake_case , __snake_case ) if not is_used: unused_weights.append(__snake_case ) logger.warning(f'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ): UpperCAmelCase = full_name.split('conv_layers.' )[-1] UpperCAmelCase = name.split('.' ) UpperCAmelCase = int(items[0] ) UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : Union[str, Any]=False ): if config_path is not None: UpperCAmelCase = WavaVecaConfig.from_pretrained(__snake_case ) else: UpperCAmelCase = WavaVecaConfig() if is_seq_class: UpperCAmelCase = read_txt_into_dict(__snake_case ) UpperCAmelCase = idalabel UpperCAmelCase = WavaVecaForSequenceClassification(__snake_case ) UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) feature_extractor.save_pretrained(__snake_case ) elif is_finetuned: if dict_path: UpperCAmelCase = Dictionary.load(__snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase = target_dict.pad_index UpperCAmelCase = target_dict.bos_index UpperCAmelCase = target_dict.eos_index UpperCAmelCase = len(target_dict.symbols ) UpperCAmelCase = os.path.join(__snake_case , 'vocab.json' ) if not os.path.isdir(__snake_case ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__snake_case ) ) return os.makedirs(__snake_case , exist_ok=__snake_case ) UpperCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase = 0 UpperCAmelCase = 1 with open(__snake_case , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__snake_case , __snake_case ) UpperCAmelCase = WavaVecaCTCTokenizer( __snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__snake_case , ) UpperCAmelCase = True if config.feat_extract_norm == 'layer' else False UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) UpperCAmelCase = WavaVecaProcessor(feature_extractor=__snake_case , tokenizer=__snake_case ) processor.save_pretrained(__snake_case ) UpperCAmelCase = WavaVecaForCTC(__snake_case ) else: UpperCAmelCase = WavaVecaForPreTraining(__snake_case ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCAmelCase = argparse.Namespace(task='audio_pretraining' ) UpperCAmelCase = fairseq.tasks.setup_task(__snake_case ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__snake_case ) UpperCAmelCase = model[0].eval() recursively_load_weights(__snake_case , __snake_case , not is_finetuned ) hf_wavavec.save_pretrained(__snake_case ) if __name__ == "__main__": _a : Tuple = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _a : Tuple = parser.parse_args() _a : Any = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
447
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _A ( __snake_case :Dict ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = VideoMAEConfig() set_architecture_configs(__snake_case , __snake_case ) if "finetuned" not in model_name: __SCREAMING_SNAKE_CASE = False if "finetuned" in model_name: __SCREAMING_SNAKE_CASE = "huggingface/label-files" if "kinetics" in model_name: __SCREAMING_SNAKE_CASE = 400 __SCREAMING_SNAKE_CASE = "kinetics400-id2label.json" elif "ssv2" in model_name: __SCREAMING_SNAKE_CASE = 174 __SCREAMING_SNAKE_CASE = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned." ) __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type="dataset" ) , "r" ) ) __SCREAMING_SNAKE_CASE = {int(__snake_case ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def _A ( __snake_case :Dict , __snake_case :Optional[Any] ) -> List[Any]: """simple docstring""" if "small" in model_name: __SCREAMING_SNAKE_CASE = 384 __SCREAMING_SNAKE_CASE = 1536 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = 192 __SCREAMING_SNAKE_CASE = 768 elif "large" in model_name: __SCREAMING_SNAKE_CASE = 1024 __SCREAMING_SNAKE_CASE = 4096 __SCREAMING_SNAKE_CASE = 24 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 8 __SCREAMING_SNAKE_CASE = 512 __SCREAMING_SNAKE_CASE = 2048 elif "huge" in model_name: __SCREAMING_SNAKE_CASE = 1280 __SCREAMING_SNAKE_CASE = 5120 __SCREAMING_SNAKE_CASE = 32 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 8 __SCREAMING_SNAKE_CASE = 640 __SCREAMING_SNAKE_CASE = 2560 elif "base" not in model_name: raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" ) def _A ( __snake_case :List[Any] ) -> Optional[int]: """simple docstring""" if "encoder." in name: __SCREAMING_SNAKE_CASE = name.replace("encoder." , "" ) if "cls_token" in name: __SCREAMING_SNAKE_CASE = name.replace("cls_token" , "videomae.embeddings.cls_token" ) if "decoder_pos_embed" in name: __SCREAMING_SNAKE_CASE = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: __SCREAMING_SNAKE_CASE = name.replace("pos_embed" , "videomae.embeddings.position_embeddings" ) if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("patch_embed.proj" , "videomae.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __SCREAMING_SNAKE_CASE = name.replace("patch_embed.norm" , "videomae.embeddings.norm" ) if "decoder.blocks" in name: __SCREAMING_SNAKE_CASE = name.replace("decoder.blocks" , "decoder.decoder_layers" ) if "blocks" in name: __SCREAMING_SNAKE_CASE = name.replace("blocks" , "videomae.encoder.layer" ) if "attn.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "bias" not in name: __SCREAMING_SNAKE_CASE = name.replace("attn" , "attention.self" ) if "attn" in name: __SCREAMING_SNAKE_CASE = name.replace("attn" , "attention.attention" ) if "norm1" in name: __SCREAMING_SNAKE_CASE = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __SCREAMING_SNAKE_CASE = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: __SCREAMING_SNAKE_CASE = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: __SCREAMING_SNAKE_CASE = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: __SCREAMING_SNAKE_CASE = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __SCREAMING_SNAKE_CASE = name.replace("norm.weight" , "videomae.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __SCREAMING_SNAKE_CASE = name.replace("norm.bias" , "videomae.layernorm.bias" ) if "head" in name and "decoder" not in name: __SCREAMING_SNAKE_CASE = name.replace("head" , "classifier" ) return name def _A ( __snake_case :Union[str, Any] , __snake_case :Optional[int] ) -> Optional[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = orig_state_dict.pop(__snake_case ) if key.startswith("encoder." ): __SCREAMING_SNAKE_CASE = key.replace("encoder." , "" ) if "qkv" in key: __SCREAMING_SNAKE_CASE = key.split("." ) if key.startswith("decoder.blocks" ): __SCREAMING_SNAKE_CASE = config.decoder_hidden_size __SCREAMING_SNAKE_CASE = int(key_split[2] ) __SCREAMING_SNAKE_CASE = "decoder.decoder_layers." if "weight" in key: __SCREAMING_SNAKE_CASE = val[:dim, :] __SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE = val[-dim:, :] else: __SCREAMING_SNAKE_CASE = config.hidden_size __SCREAMING_SNAKE_CASE = int(key_split[1] ) __SCREAMING_SNAKE_CASE = "videomae.encoder.layer." if "weight" in key: __SCREAMING_SNAKE_CASE = val[:dim, :] __SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE = val[-dim:, :] else: __SCREAMING_SNAKE_CASE = val return orig_state_dict def _A ( ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) __SCREAMING_SNAKE_CASE = np.load(__snake_case ) return list(__snake_case ) def _A ( __snake_case :Optional[int] , __snake_case :List[str] , __snake_case :Union[str, Any] , __snake_case :Optional[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = get_videomae_config(__snake_case ) if "finetuned" in model_name: __SCREAMING_SNAKE_CASE = VideoMAEForVideoClassification(__snake_case ) else: __SCREAMING_SNAKE_CASE = VideoMAEForPreTraining(__snake_case ) # download original checkpoint, hosted on Google Drive __SCREAMING_SNAKE_CASE = "pytorch_model.bin" gdown.cached_download(__snake_case , __snake_case , quiet=__snake_case ) __SCREAMING_SNAKE_CASE = torch.load(__snake_case , map_location="cpu" ) if "model" in files: __SCREAMING_SNAKE_CASE = files["model"] else: __SCREAMING_SNAKE_CASE = files["module"] __SCREAMING_SNAKE_CASE = convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) model.eval() # verify model on basic input __SCREAMING_SNAKE_CASE = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __SCREAMING_SNAKE_CASE = prepare_video() __SCREAMING_SNAKE_CASE = image_processor(__snake_case , return_tensors="pt" ) if "finetuned" not in model_name: __SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) __SCREAMING_SNAKE_CASE = torch.load(__snake_case ) __SCREAMING_SNAKE_CASE = model(**__snake_case ) __SCREAMING_SNAKE_CASE = outputs.logits __SCREAMING_SNAKE_CASE = [ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __SCREAMING_SNAKE_CASE = torch.Size([1, 400] ) __SCREAMING_SNAKE_CASE = torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] ) elif model_name == "videomae-small-finetuned-ssv2": __SCREAMING_SNAKE_CASE = torch.Size([1, 174] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] ) elif model_name == "videomae-base": __SCREAMING_SNAKE_CASE = torch.Size([1, 1408, 1536] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] ) elif model_name == "videomae-base-short": __SCREAMING_SNAKE_CASE = torch.Size([1, 1408, 1536] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ) # we verified the loss both for normalized and unnormalized targets for this one __SCREAMING_SNAKE_CASE = torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] ) elif model_name == "videomae-large": __SCREAMING_SNAKE_CASE = torch.Size([1, 1408, 1536] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] ) elif model_name == "videomae-large-finetuned-kinetics": __SCREAMING_SNAKE_CASE = torch.Size([1, 400] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] ) elif model_name == "videomae-huge-finetuned-kinetics": __SCREAMING_SNAKE_CASE = torch.Size([1, 400] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] ) elif model_name == "videomae-base-short-finetuned-kinetics": __SCREAMING_SNAKE_CASE = torch.Size([1, 400] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] ) elif model_name == "videomae-base-finetuned-kinetics": __SCREAMING_SNAKE_CASE = torch.Size([1, 400] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ) elif model_name == "videomae-base-short-ssv2": __SCREAMING_SNAKE_CASE = torch.Size([1, 1408, 1536] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __SCREAMING_SNAKE_CASE = torch.Size([1, 174] ) __SCREAMING_SNAKE_CASE = torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] ) elif model_name == "videomae-base-ssv2": __SCREAMING_SNAKE_CASE = torch.Size([1, 1408, 1536] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] ) elif model_name == "videomae-base-finetuned-ssv2": __SCREAMING_SNAKE_CASE = torch.Size([1, 174] ) __SCREAMING_SNAKE_CASE = torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __snake_case , atol=1e-4 ) else: print("Logits:" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __snake_case , atol=1e-4 ) print("Logits ok!" ) # verify loss, if applicable if model_name == "videomae-base-short": __SCREAMING_SNAKE_CASE = outputs.loss assert torch.allclose(__snake_case , __snake_case , atol=1e-4 ) print("Loss ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) model.save_pretrained(__snake_case ) if push_to_hub: print("Pushing to the hub..." ) model.push_to_hub(__snake_case , organization="nielsr" ) if __name__ == "__main__": _snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : Optional[int] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
693
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( a_ ): _A : Union[str, Any] = ['image_processor', 'tokenizer'] _A : Dict = 'AutoImageProcessor' _A : int = 'AutoTokenizer' def __init__( self , snake_case__ , snake_case__ ) -> Optional[int]: """simple docstring""" super().__init__(snake_case__ , snake_case__ ) UpperCAmelCase = self.image_processor def __call__( self , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ) -> str: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCAmelCase = self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if images is not None: UpperCAmelCase = self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ ) def UpperCamelCase_ ( self , *snake_case__ , **snake_case__ ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self , *snake_case__ , **snake_case__ ) -> Optional[int]: """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
705
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class UpperCamelCase_ : def UpperCamelCase_ ( self ) -> Any: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_001 , beta_end=0.02 , thresholding=snake_case__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase_ ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) UpperCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.414 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_001 , beta_end=0.02 , thresholding=snake_case__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_001 , beta_end=0.02 , ) torch.manual_seed(0 ) UpperCAmelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) UpperCAmelCase = inputs["""prompt"""] UpperCAmelCase = inputs["""generator"""] UpperCAmelCase = inputs["""num_inference_steps"""] UpperCAmelCase = inputs["""output_type"""] if "image" in inputs: UpperCAmelCase = inputs["""image"""] else: UpperCAmelCase = None if "mask_image" in inputs: UpperCAmelCase = inputs["""mask_image"""] else: UpperCAmelCase = None if "original_image" in inputs: UpperCAmelCase = inputs["""original_image"""] else: UpperCAmelCase = None UpperCAmelCase , UpperCAmelCase = pipe.encode_prompt(snake_case__ ) # inputs with prompt converted to embeddings UpperCAmelCase = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase = pipe(**snake_case__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(snake_case__ ) UpperCAmelCase = self.pipeline_class.from_pretrained(snake_case__ ) pipe_loaded.to(snake_case__ ) pipe_loaded.set_progress_bar_config(disable=snake_case__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(snake_case__ , snake_case__ ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) UpperCAmelCase = inputs["""generator"""] UpperCAmelCase = inputs["""num_inference_steps"""] UpperCAmelCase = inputs["""output_type"""] # inputs with prompt converted to embeddings UpperCAmelCase = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: UpperCAmelCase = image if mask_image is not None: UpperCAmelCase = mask_image if original_image is not None: UpperCAmelCase = original_image UpperCAmelCase = pipe_loaded(**snake_case__ )[0] UpperCAmelCase = np.abs(to_np(snake_case__ ) - to_np(snake_case__ ) ).max() self.assertLess(snake_case__ , 1e-4 ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) UpperCAmelCase = pipe(**snake_case__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(snake_case__ ) UpperCAmelCase = self.pipeline_class.from_pretrained(snake_case__ ) pipe_loaded.to(snake_case__ ) pipe_loaded.set_progress_bar_config(disable=snake_case__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) UpperCAmelCase = pipe_loaded(**snake_case__ )[0] UpperCAmelCase = np.abs(to_np(snake_case__ ) - to_np(snake_case__ ) ).max() self.assertLess(snake_case__ , 1e-4 )
378
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Dict = logging.get_logger(__name__) __lowercase : int = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __lowercase ( __lowerCamelCase ): lowerCamelCase : Any = """biogpt""" def __init__(self , A=4_2_3_8_4 , A=1_0_2_4 , A=2_4 , A=1_6 , A=4_0_9_6 , A="gelu" , A=0.1 , A=0.1 , A=1_0_2_4 , A=0.02 , A=1E-12 , A=True , A=True , A=0.0 , A=0.0 , A=1 , A=0 , A=2 , **A , ): lowerCamelCase_ : Optional[Any] = vocab_size lowerCamelCase_ : Tuple = max_position_embeddings lowerCamelCase_ : int = hidden_size lowerCamelCase_ : List[str] = num_hidden_layers lowerCamelCase_ : Tuple = num_attention_heads lowerCamelCase_ : List[str] = intermediate_size lowerCamelCase_ : Any = hidden_act lowerCamelCase_ : Dict = hidden_dropout_prob lowerCamelCase_ : int = attention_probs_dropout_prob lowerCamelCase_ : Dict = initializer_range lowerCamelCase_ : str = layer_norm_eps lowerCamelCase_ : str = scale_embedding lowerCamelCase_ : int = use_cache lowerCamelCase_ : List[Any] = layerdrop lowerCamelCase_ : Optional[Any] = activation_dropout super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A )
422
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCAmelCase ( __lowerCamelCase ): a__: jnp.ndarray a__: jnp.ndarray class UpperCAmelCase ( nn.Module ): a__: int a__: Tuple[int] = (16, 32, 96, 2_56) a__: jnp.dtype = jnp.floataa def _lowerCAmelCase ( self : List[Any] ): lowercase : str = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase : Union[str, Any] = [] for i in range(len(self.block_out_channels ) - 1 ): lowercase : List[Any] = self.block_out_channels[i] lowercase : int = self.block_out_channels[i + 1] lowercase : List[Any] = nn.Conv( lowerCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowerCAmelCase ) lowercase : int = nn.Conv( lowerCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowerCAmelCase ) lowercase : List[Any] = blocks lowercase : Optional[Any] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Optional[Any] , lowerCAmelCase : List[Any] ): lowercase : Union[str, Any] = self.conv_in(lowerCAmelCase ) lowercase : Tuple = nn.silu(lowerCAmelCase ) for block in self.blocks: lowercase : Optional[int] = block(lowerCAmelCase ) lowercase : Optional[int] = nn.silu(lowerCAmelCase ) lowercase : Tuple = self.conv_out(lowerCAmelCase ) return embedding @flax_register_to_config class UpperCAmelCase ( nn.Module , __lowerCamelCase , __lowerCamelCase ): a__: int = 32 a__: int = 4 a__: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) a__: Union[bool, Tuple[bool]] = False a__: Tuple[int] = (3_20, 6_40, 12_80, 12_80) a__: int = 2 a__: Union[int, Tuple[int]] = 8 a__: Optional[Union[int, Tuple[int]]] = None a__: int = 12_80 a__: float = 0.0 a__: bool = False a__: jnp.dtype = jnp.floataa a__: bool = True a__: int = 0 a__: str = "rgb" a__: Tuple[int] = (16, 32, 96, 2_56) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase : jax.random.KeyArray ): # init input tensors lowercase : str = (1, self.in_channels, self.sample_size, self.sample_size) lowercase : Optional[Any] = jnp.zeros(lowerCAmelCase , dtype=jnp.floataa ) lowercase : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) lowercase : int = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowercase : Union[str, Any] = (1, 3, self.sample_size * 8, self.sample_size * 8) lowercase : Optional[Any] = jnp.zeros(lowerCAmelCase , dtype=jnp.floataa ) lowercase , lowercase : List[str] = jax.random.split(lowerCAmelCase ) lowercase : Tuple = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )["params"] def _lowerCAmelCase ( self : str ): lowercase : Optional[int] = self.block_out_channels lowercase : Any = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowercase : Dict = self.num_attention_heads or self.attention_head_dim # input lowercase : List[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowercase : Any = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowercase : int = FlaxTimestepEmbedding(lowerCAmelCase , dtype=self.dtype ) lowercase : str = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowercase : Tuple = self.only_cross_attention if isinstance(lowerCAmelCase , lowerCAmelCase ): lowercase : Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCAmelCase , lowerCAmelCase ): lowercase : Optional[int] = (num_attention_heads,) * len(self.down_block_types ) # down lowercase : List[str] = [] lowercase : List[Any] = [] lowercase : List[str] = block_out_channels[0] lowercase : int = nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): lowercase : List[Any] = output_channel lowercase : str = block_out_channels[i] lowercase : Any = i == len(lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowercase : List[str] = FlaxCrossAttnDownBlockaD( in_channels=lowerCAmelCase , out_channels=lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowercase : Optional[int] = FlaxDownBlockaD( in_channels=lowerCAmelCase , out_channels=lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowerCAmelCase ) for _ in range(self.layers_per_block ): lowercase : List[Any] = nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCAmelCase ) if not is_final_block: lowercase : Dict = nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCAmelCase ) lowercase : Optional[Any] = down_blocks lowercase : List[str] = controlnet_down_blocks # mid lowercase : int = block_out_channels[-1] lowercase : int = FlaxUNetMidBlockaDCrossAttn( in_channels=lowerCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowercase : Optional[int] = nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : float = 1.0 , lowerCAmelCase : bool = True , lowerCAmelCase : bool = False , ): lowercase : List[Any] = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowercase : int = jnp.flip(lowerCAmelCase , axis=1 ) # 1. time if not isinstance(lowerCAmelCase , jnp.ndarray ): lowercase : Optional[int] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: lowercase : Dict = timesteps.astype(dtype=jnp.floataa ) lowercase : str = jnp.expand_dims(lowerCAmelCase , 0 ) lowercase : Union[str, Any] = self.time_proj(lowerCAmelCase ) lowercase : str = self.time_embedding(lowerCAmelCase ) # 2. pre-process lowercase : Tuple = jnp.transpose(lowerCAmelCase , (0, 2, 3, 1) ) lowercase : Union[str, Any] = self.conv_in(lowerCAmelCase ) lowercase : Any = jnp.transpose(lowerCAmelCase , (0, 2, 3, 1) ) lowercase : Any = self.controlnet_cond_embedding(lowerCAmelCase ) sample += controlnet_cond # 3. down lowercase : Optional[Any] = (sample,) for down_block in self.down_blocks: if isinstance(lowerCAmelCase , lowerCAmelCase ): lowercase , lowercase : str = down_block(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , deterministic=not train ) else: lowercase , lowercase : str = down_block(lowerCAmelCase , lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowercase : str = self.mid_block(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , deterministic=not train ) # 5. contronet blocks lowercase : str = () for down_block_res_sample, controlnet_block in zip(lowerCAmelCase , self.controlnet_down_blocks ): lowercase : int = controlnet_block(lowerCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) lowercase : Dict = controlnet_down_block_res_samples lowercase : int = self.controlnet_mid_block(lowerCAmelCase ) # 6. scaling lowercase : Optional[int] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowerCAmelCase , mid_block_res_sample=lowerCAmelCase )
583
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class a__ ( lowerCAmelCase_ ): @staticmethod @abstractmethod def UpperCAmelCase( lowerCamelCase_ : ArgumentParser ): raise NotImplementedError() @abstractmethod def UpperCAmelCase( self : Optional[int] ): raise NotImplementedError()
478
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __lowerCamelCase = logging.getLogger(__name__) class a__ ( lowerCAmelCase_ ): lowerCamelCase__: str = """summarization""" lowerCamelCase__: List[str] = ["""loss"""] lowerCamelCase__: List[str] = ROUGE_KEYS lowerCamelCase__: Union[str, Any] = """rouge2""" def __init__( self : Union[str, Any] , lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[str] ): if hparams.sortish_sampler and hparams.gpus > 1: a_ : Any = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(lowerCamelCase_ , num_labels=lowerCamelCase_ , mode=self.mode , **lowerCamelCase_ ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) a_ : Any = Path(self.output_dir ) / """metrics.json""" a_ : Tuple = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) a_ : Dict = 0 a_ : Optional[Any] = defaultdict(lowerCamelCase_ ) a_ : str = self.config.model_type a_ : Union[str, Any] = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size a_ : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } a_ : int = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } a_ : List[str] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} a_ : Optional[Any] = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) a_ : int = get_git_info()["""repo_sha"""] a_ : Union[str, Any] = hparams.num_workers a_ : Tuple = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowerCamelCase_ ): a_ : Dict = self.tokenizer.lang_code_to_id[hparams.tgt_lang] a_ : List[str] = self.decoder_start_token_id a_ : Union[str, Any] = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) a_ : Union[str, Any] = False a_ : Any = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: a_ : Union[str, Any] = self.hparams.eval_max_gen_length else: a_ : Optional[Any] = self.model.config.max_length a_ : Optional[int] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCAmelCase( self : List[Any] , lowerCamelCase_ : Dict[str, torch.Tensor] ): a_ : Optional[Any] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(lowerCamelCase_ , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) a_ : List[Any] = True return readable_batch def UpperCAmelCase( self : Union[str, Any] , lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): return self.model(lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase( self : Tuple , lowerCamelCase_ : List[int] ): a_ : str = self.tokenizer.batch_decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) return lmap(str.strip , lowerCamelCase_ ) def UpperCAmelCase( self : Optional[int] , lowerCamelCase_ : dict ): a_ : int = self.tokenizer.pad_token_id a_ , a_ : Optional[int] = batch["""input_ids"""], batch["""attention_mask"""] a_ : Optional[Any] = batch["""labels"""] if isinstance(self.model , lowerCamelCase_ ): a_ : List[Any] = self.model._shift_right(lowerCamelCase_ ) else: a_ : Dict = shift_tokens_right(lowerCamelCase_ , lowerCamelCase_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero a_ : int = decoder_input_ids self.save_readable_batch(lowerCamelCase_ ) a_ : str = self(lowerCamelCase_ , attention_mask=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ , use_cache=lowerCamelCase_ ) a_ : int = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id a_ : Any = nn.CrossEntropyLoss(ignore_index=lowerCamelCase_ ) assert lm_logits.shape[-1] == self.vocab_size a_ : Union[str, Any] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: a_ : int = nn.functional.log_softmax(lowerCamelCase_ , dim=-1 ) a_ , a_ : str = label_smoothed_nll_loss( lowerCamelCase_ , lowerCamelCase_ , self.hparams.label_smoothing , ignore_index=lowerCamelCase_ ) return (loss,) @property def UpperCAmelCase( self : Union[str, Any] ): return self.tokenizer.pad_token_id def UpperCAmelCase( self : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] ): a_ : Dict = self._step(lowerCamelCase_ ) a_ : Optional[int] = dict(zip(self.loss_names , lowerCamelCase_ ) ) # tokens per batch a_ : str = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() a_ : Optional[int] = batch["""input_ids"""].shape[0] a_ : int = batch["""input_ids"""].eq(self.pad ).sum() a_ : str = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCAmelCase( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ): return self._generative_step(lowerCamelCase_ ) def UpperCAmelCase( self : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int]="val" ): self.step_count += 1 a_ : Optional[Any] = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} a_ : Tuple = losses["""loss"""] a_ : Optional[int] = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } a_ : List[Any] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) a_ : torch.FloatTensor = torch.tensor(lowerCamelCase_ ).type_as(lowerCamelCase_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCamelCase_ ) a_ : str = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} a_ : Union[str, Any] = self.step_count self.metrics[prefix].append(lowerCamelCase_ ) # callback writes this to self.metrics_save_path a_ : List[str] = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def UpperCAmelCase( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): return calculate_rouge(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : int , lowerCamelCase_ : dict ): a_ : Dict = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') a_ : Any = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=lowerCamelCase_ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) a_ : Optional[int] = (time.time() - ta) / batch["""input_ids"""].shape[0] a_ : List[str] = self.ids_to_clean_text(lowerCamelCase_ ) a_ : List[str] = self.ids_to_clean_text(batch["""labels"""] ) a_ : Tuple = self._step(lowerCamelCase_ ) a_ : List[str] = dict(zip(self.loss_names , lowerCamelCase_ ) ) a_ : Dict = self.calc_generative_metrics(lowerCamelCase_ , lowerCamelCase_ ) a_ : Optional[int] = np.mean(lmap(lowerCamelCase_ , lowerCamelCase_ ) ) base_metrics.update(gen_time=lowerCamelCase_ , gen_len=lowerCamelCase_ , preds=lowerCamelCase_ , target=lowerCamelCase_ , **lowerCamelCase_ ) return base_metrics def UpperCAmelCase( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ): return self._generative_step(lowerCamelCase_ ) def UpperCAmelCase( self : str , lowerCamelCase_ : Any ): return self.validation_epoch_end(lowerCamelCase_ , prefix="""test""" ) def UpperCAmelCase( self : Any , lowerCamelCase_ : Any ): a_ : List[str] = self.n_obs[type_path] a_ : Dict = self.target_lens[type_path] a_ : Optional[Any] = self.dataset_class( self.tokenizer , type_path=lowerCamelCase_ , n_obs=lowerCamelCase_ , max_target_length=lowerCamelCase_ , **self.dataset_kwargs , ) return dataset def UpperCAmelCase( self : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : bool = False ): a_ : List[str] = self.get_dataset(lowerCamelCase_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": a_ : List[str] = dataset.make_sortish_sampler(lowerCamelCase_ , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=dataset.collate_fn , shuffle=lowerCamelCase_ , num_workers=self.num_workers , sampler=lowerCamelCase_ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": a_ : int = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=dataset.collate_fn , shuffle=lowerCamelCase_ , num_workers=self.num_workers , sampler=lowerCamelCase_ , ) def UpperCAmelCase( self : Any ): a_ : int = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=lowerCamelCase_ ) return dataloader def UpperCAmelCase( self : Dict ): return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def UpperCAmelCase( self : List[Any] ): return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCAmelCase( lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ): BaseTransformer.add_model_specific_args(lowerCamelCase_ , lowerCamelCase_ ) add_generic_args(lowerCamelCase_ , lowerCamelCase_ ) parser.add_argument( """--max_source_length""" , default=1_0_2_4 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=5_6 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=1_4_2 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=1_4_2 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=lowerCamelCase_ ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=lowerCamelCase_ ) parser.add_argument("""--max_tokens_per_batch""" , type=lowerCamelCase_ , default=lowerCamelCase_ ) parser.add_argument("""--logger_name""" , type=lowerCamelCase_ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=lowerCamelCase_ , default=-1 , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=lowerCamelCase_ , default=5_0_0 , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=lowerCamelCase_ , default=-1 , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=lowerCamelCase_ , default="""summarization""" , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=lowerCamelCase_ , default=0.0 , required=lowerCamelCase_ ) parser.add_argument("""--src_lang""" , type=lowerCamelCase_ , default="""""" , required=lowerCamelCase_ ) parser.add_argument("""--tgt_lang""" , type=lowerCamelCase_ , default="""""" , required=lowerCamelCase_ ) parser.add_argument("""--eval_beams""" , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ ) parser.add_argument( """--val_metric""" , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=lowerCamelCase_ , default=lowerCamelCase_ , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=lowerCamelCase_ , default=1 , required=lowerCamelCase_ , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=lowerCamelCase_ , default=-1 , required=lowerCamelCase_ , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class a__ ( lowerCAmelCase_ ): lowerCamelCase__: List[Any] = """translation""" lowerCamelCase__: int = ["""loss"""] lowerCamelCase__: List[str] = ["""bleu"""] lowerCamelCase__: Optional[Any] = """bleu""" def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Tuple ): super().__init__(lowerCamelCase_ , **lowerCamelCase_ ) a_ : Union[str, Any] = hparams.src_lang a_ : Optional[int] = hparams.tgt_lang def UpperCAmelCase( self : Optional[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ): return calculate_bleu(lowerCamelCase_ , lowerCamelCase_ ) def _a ( __UpperCamelCase , __UpperCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__UpperCamelCase ) check_output_dir(__UpperCamelCase , expected_items=3 ) if model is None: if "summarization" in args.task: a_ : SummarizationModule = SummarizationModule(__UpperCamelCase ) else: a_ : SummarizationModule = TranslationModule(__UpperCamelCase ) a_ : Dict = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): a_ : Union[str, Any] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger a_ : Optional[int] = os.environ.get("""WANDB_PROJECT""" , __UpperCamelCase ) a_ : str = WandbLogger(name=model.output_dir.name , project=__UpperCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger a_ : Optional[int] = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: a_ : Any = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: a_ : str = False a_ : Tuple = args.val_metric == """loss""" a_ : pl.Trainer = generic_train( __UpperCamelCase , __UpperCamelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __UpperCamelCase ) , early_stopping_callback=__UpperCamelCase , logger=__UpperCamelCase , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model a_ : Union[str, Any] = """""" a_ : int = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=__UpperCamelCase ) ) if checkpoints: a_ : Tuple = checkpoints[-1] a_ : Tuple = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() __lowerCamelCase = pl.Trainer.add_argparse_args(parser) __lowerCamelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __lowerCamelCase = parser.parse_args() main(args)
478
1
__SCREAMING_SNAKE_CASE = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) __SCREAMING_SNAKE_CASE = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Any ,lowerCAmelCase_ : Any ,lowerCAmelCase_ : Optional[Any] ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =from_type.lower().strip('s' ) SCREAMING_SNAKE_CASE_ : int =to_type.lower().strip('s' ) SCREAMING_SNAKE_CASE_ : Any =UNIT_SYMBOL.get(lowerCAmelCase_ ,lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : str =UNIT_SYMBOL.get(lowerCAmelCase_ ,lowerCAmelCase_ ) if from_sanitized not in METRIC_CONVERSION: SCREAMING_SNAKE_CASE_ : Optional[int] =( F"""Invalid \'from_type\' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(lowerCAmelCase_ )}""" ) raise ValueError(lowerCAmelCase_ ) if to_sanitized not in METRIC_CONVERSION: SCREAMING_SNAKE_CASE_ : Dict =( F"""Invalid \'to_type\' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(lowerCAmelCase_ )}""" ) raise ValueError(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =METRIC_CONVERSION[from_sanitized] SCREAMING_SNAKE_CASE_ : str =METRIC_CONVERSION[to_sanitized] SCREAMING_SNAKE_CASE_ : Tuple =1 if from_exponent > to_exponent: SCREAMING_SNAKE_CASE_ : Union[str, Any] =from_exponent - to_exponent else: SCREAMING_SNAKE_CASE_ : Dict =-(to_exponent - from_exponent) return value * pow(10 ,lowerCAmelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
220
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCamelCase_ : int = 16 lowerCamelCase_ : str = 32 def A__ ( lowerCamelCase ) -> int: return int(x / 2**20 ) class _UpperCamelCase : '''simple docstring''' def __enter__( self : int ): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero UpperCamelCase_: str = torch.cuda.memory_allocated() return self def __exit__( self : List[Any] , *snake_case_ : Union[str, Any] ): gc.collect() torch.cuda.empty_cache() UpperCamelCase_: List[str] = torch.cuda.memory_allocated() UpperCamelCase_: int = torch.cuda.max_memory_allocated() UpperCamelCase_: Optional[int] = bamb(self.end - self.begin ) UpperCamelCase_: Tuple = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def A__ ( lowerCamelCase , lowerCamelCase = 16 , lowerCamelCase = "bert-base-cased" , lowerCamelCase = 3_20 , lowerCamelCase = 1_60 , ) -> Dict: UpperCamelCase_: str = AutoTokenizer.from_pretrained(lowerCamelCase ) UpperCamelCase_: List[str] = load_dataset( """glue""" , """mrpc""" , split={"""train""": F'''train[:{n_train}]''', """validation""": F'''validation[:{n_val}]'''} ) def tokenize_function(lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_: Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase , max_length=lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase_: Dict = datasets.map( lowerCamelCase , batched=lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_: int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. UpperCamelCase_: List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) UpperCamelCase_: Optional[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) return train_dataloader, eval_dataloader def A__ ( lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialize accelerator UpperCamelCase_: Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_: str = config["""lr"""] UpperCamelCase_: Any = int(config["""num_epochs"""] ) UpperCamelCase_: Tuple = int(config["""seed"""] ) UpperCamelCase_: Dict = int(config["""batch_size"""] ) UpperCamelCase_: Dict = args.model_name_or_path set_seed(lowerCamelCase ) UpperCamelCase_, UpperCamelCase_: int = get_dataloaders(lowerCamelCase , lowerCamelCase , lowerCamelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_: Any = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase , return_dict=lowerCamelCase ) # Instantiate optimizer UpperCamelCase_: Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase_: List[Any] = optimizer_cls(params=model.parameters() , lr=lowerCamelCase ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase_: Any = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCamelCase_: List[Any] = 1 UpperCamelCase_: Optional[int] = (len(lowerCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase_: List[Any] = get_linear_schedule_with_warmup( optimizer=lowerCamelCase , num_warmup_steps=0 , num_training_steps=lowerCamelCase , ) else: UpperCamelCase_: Dict = DummyScheduler(lowerCamelCase , total_num_steps=lowerCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: str = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # We need to keep track of how many total steps we have iterated over UpperCamelCase_: str = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase_: Dict = 0 # Now we train the model UpperCamelCase_: Dict = {} for epoch in range(lowerCamelCase , lowerCamelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowerCamelCase ): UpperCamelCase_: Union[str, Any] = model(**lowerCamelCase ) UpperCamelCase_: str = outputs.loss UpperCamelCase_: List[str] = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) UpperCamelCase_: Optional[Any] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(lowerCamelCase , lowerCamelCase ) def A__ ( ) -> Optional[Any]: UpperCamelCase_: Any = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowerCamelCase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCamelCase , ) parser.add_argument( """--output_dir""" , type=lowerCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=lowerCamelCase , default=lowerCamelCase , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=lowerCamelCase , default=3_20 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=lowerCamelCase , default=1_60 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCamelCase , default=1 , help="""Number of train epochs.""" , ) UpperCamelCase_: Optional[int] = parser.parse_args() UpperCamelCase_: Union[str, Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": main()
548
0
'''simple docstring''' from __future__ import annotations def _lowerCamelCase ( lowercase : list[float] , lowercase : Optional[int] ) -> Any: print(F'Vertex\tShortest Distance from vertex {src}' ) for i, d in enumerate(lowercase ): print(F'{i}\t\t{d}' ) def _lowerCamelCase ( lowercase : list[dict[str, int]] , lowercase : list[float] , lowercase : int ) -> Any: for j in range(lowercase ): _a , _a , _a = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def _lowerCamelCase ( lowercase : list[dict[str, int]] , lowercase : int , lowercase : int , lowercase : int ) -> list[float]: _a = [float("inf" )] * vertex_count _a = 0.0 for _ in range(vertex_count - 1 ): for j in range(lowercase ): _a , _a , _a = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: _a = distance[u] + w _a = check_negative_cycle(lowercase , lowercase , lowercase ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ : Union[str, Any] = int(input('Enter number of vertices: ').strip()) lowerCAmelCase_ : Optional[Any] = int(input('Enter number of edges: ').strip()) lowerCAmelCase_ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('Edge ', i + 1) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = ( int(x) for x in input('Enter source, destination, weight: ').strip().split(' ') ) lowerCAmelCase_ : Optional[int] = {'src': src, 'dst': dest, 'weight': weight} lowerCAmelCase_ : Dict = int(input('\nEnter shortest path source:').strip()) lowerCAmelCase_ : Optional[Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
521
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='vision-encoder-decoder' __a =True def __init__( self : Optional[int] , **__a : Any ): super().__init__(**__a ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'A configuraton of type {self.model_type} cannot be instantiated because ' f'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' ) _a = kwargs.pop("encoder" ) _a = encoder_config.pop("model_type" ) _a = kwargs.pop("decoder" ) _a = decoder_config.pop("model_type" ) _a = AutoConfig.for_model(__a , **__a ) _a = AutoConfig.for_model(__a , **__a ) _a = True @classmethod def UpperCamelCase__ ( cls : int , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Any ): logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) _a = True _a = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__a ) def UpperCamelCase__ ( self : int ): _a = copy.deepcopy(self.__dict__ ) _a = self.encoder.to_dict() _a = self.decoder.to_dict() _a = self.__class__.model_type return output class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =version.parse('1.11' ) @property def UpperCamelCase__ ( self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase__ ( self : List[str] ): return 1e-4 @property def UpperCamelCase__ ( self : List[Any] ): return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" @property def UpperCamelCase__ ( self : Optional[Any] ): _a = OrderedDict() _a = {0: "batch", 1: "past_decoder_sequence + sequence"} _a = {0: "batch", 1: "past_decoder_sequence + sequence"} _a = {0: "batch", 1: "encoder_sequence"} return common_inputs def UpperCamelCase__ ( self : List[str] , __a : "PreTrainedTokenizerBase" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , ): import torch _a = OrderedDict() _a = super().generate_dummy_inputs( __a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a ) _a , _a = dummy_input["input_ids"].shape _a = (batch, encoder_sequence, self._config.encoder_hidden_size) _a = dummy_input.pop("input_ids" ) _a = dummy_input.pop("attention_mask" ) _a = torch.zeros(__a ) return common_inputs class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" @property def UpperCamelCase__ ( self : int ): pass def UpperCamelCase__ ( self : List[str] , __a : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(__a ) def UpperCamelCase__ ( self : Any , __a : PretrainedConfig , __a : PretrainedConfig , __a : str = "default" ): _a = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__a , __a )
521
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowercase : def __init__( self : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any]=13 , _UpperCamelCase : List[Any]=7 , _UpperCamelCase : int=True , _UpperCamelCase : int=True , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Optional[int]=99 , _UpperCamelCase : Dict=32 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Optional[int]=4 , _UpperCamelCase : Union[str, Any]=37 , _UpperCamelCase : Optional[Any]="gelu" , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : int=512 , _UpperCamelCase : str=16 , _UpperCamelCase : Any=2 , _UpperCamelCase : Union[str, Any]=0.0_2 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=4 , _UpperCamelCase : str=None , _UpperCamelCase : Any=0 , ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = projection_dim def __snake_case( self : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) SCREAMING_SNAKE_CASE = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = TFDPRContextEncoder(config=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , token_type_ids=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __snake_case( self : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = TFDPRQuestionEncoder(config=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , token_type_ids=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __snake_case( self : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = TFDPRReader(config=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def __snake_case( self : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {"input_ids": input_ids} return config, inputs_dict @require_tf class lowercase ( a , a , unittest.TestCase ): lowercase__ : str = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowercase__ : Dict = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} lowercase__ : int = False lowercase__ : str = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : List[str] = False def __snake_case( self : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = TFDPRModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def __snake_case( self : Tuple ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __snake_case( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*_UpperCamelCase ) def __snake_case( self : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*_UpperCamelCase ) def __snake_case( self : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*_UpperCamelCase ) @slow def __snake_case( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFDPRContextEncoder.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFDPRContextEncoder.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFDPRQuestionEncoder.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFDPRReader.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_tf class lowercase ( unittest.TestCase ): @slow def __snake_case( self : int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) SCREAMING_SNAKE_CASE = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] SCREAMING_SNAKE_CASE = model(_UpperCamelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. SCREAMING_SNAKE_CASE = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
403
class lowercase : # Public class to implement a graph def __init__( self : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[bool]] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = row SCREAMING_SNAKE_CASE = col SCREAMING_SNAKE_CASE = graph def __snake_case( self : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[bool]] ) -> bool: '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __snake_case( self : Dict , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[bool]] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order SCREAMING_SNAKE_CASE = [-1, 0, 1, -1, 1, -1, 0, 1] SCREAMING_SNAKE_CASE = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _UpperCamelCase ) def __snake_case( self : Any ) -> int: # And finally, count all islands. '''simple docstring''' SCREAMING_SNAKE_CASE = [[False for j in range(self.COL )] for i in range(self.ROW )] SCREAMING_SNAKE_CASE = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) count += 1 return count
403
1
"""simple docstring""" def _snake_case ( snake_case__ : Tuple , snake_case__ : List[Any] ): A = 0 A = len(snake_case__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(snake_case__ ): return None A = sorted_collection[point] if current_item == item: return point else: if point < left: A = left A = point elif point > right: A = right A = point else: if item < current_item: A = point - 1 else: A = point + 1 return None def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ): # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(snake_case__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) elif point > right: return interpolation_search_by_recursion(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( snake_case__ , snake_case__ , snake_case__ , point - 1 ) else: return interpolation_search_by_recursion( snake_case__ , snake_case__ , point + 1 , snake_case__ ) def _snake_case ( snake_case__ : Dict ): if collection != sorted(snake_case__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys _lowercase = 0 if debug == 1: _lowercase = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') _lowercase = 67 _lowercase = interpolation_search(collection, target) if result is not None: print(F"""{target} found at positions: {result}""") else: print('''Not found''')
715
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') _lowercase = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() _lowercase = '''|'''.join(sys.argv[1:]) _lowercase = re.compile(rF"""^({joined_dirs}).*?\.py$""") _lowercase = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
22
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :List[Any] = "naver-clova-ix/donut-base-finetuned-docvqa" A :Union[str, Any] = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) A :Union[str, Any] = "document_qa" A :Optional[int] = AutoProcessor A :List[Any] = VisionEncoderDecoderModel A :Tuple = ["image", "text"] A :Tuple = ["text"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Optional[int] = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" a__ : int = task_prompt.replace("{user_input}" , __UpperCAmelCase ) a__ : Union[str, Any] = self.pre_processor.tokenizer( __UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors="pt" ).input_ids a__ : Dict = self.pre_processor(__UpperCAmelCase , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _A ( self , __UpperCAmelCase ): """simple docstring""" return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__UpperCAmelCase , ).sequences def _A ( self , __UpperCAmelCase ): """simple docstring""" a__ : Dict = self.pre_processor.batch_decode(__UpperCAmelCase )[0] a__ : List[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) a__ : Union[str, Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) a__ : Union[str, Any] = re.sub(R"<.*?>" , "" , __UpperCAmelCase , count=1 ).strip() # remove first task start token a__ : str = self.pre_processor.tokenajson(__UpperCAmelCase ) return sequence["answer"]
191
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""", """Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""", """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""", """Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""", """Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""", """Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""", """Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""", """Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""", """Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""", """Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""", """Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""", """Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""", } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :str = "codegen" A :Tuple = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , __UpperCAmelCase=5_0400 , __UpperCAmelCase=2048 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=True , __UpperCAmelCase=5_0256 , __UpperCAmelCase=5_0256 , __UpperCAmelCase=False , **__UpperCAmelCase , ): """simple docstring""" a__ : Dict = vocab_size a__ : int = n_ctx a__ : str = n_positions a__ : Union[str, Any] = n_embd a__ : Union[str, Any] = n_layer a__ : Optional[int] = n_head a__ : Dict = n_inner a__ : Optional[Any] = rotary_dim a__ : str = activation_function a__ : List[Any] = resid_pdrop a__ : str = embd_pdrop a__ : List[str] = attn_pdrop a__ : str = layer_norm_epsilon a__ : Any = initializer_range a__ : List[str] = use_cache a__ : Tuple = bos_token_id a__ : List[Any] = eos_token_id super().__init__( bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ): """simple docstring""" super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , "pad_token_id" , __UpperCAmelCase ): # TODO: how to do that better? a__ : Union[str, Any] = 0 @property def _A ( self ): """simple docstring""" a__ : Optional[Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction="inputs" ) a__ : Any = {0: "batch", 1: "past_sequence + sequence"} else: a__ : List[Any] = {0: "batch", 1: "sequence"} return common_inputs @property def _A ( self ): """simple docstring""" return self._config.n_layer @property def _A ( self ): """simple docstring""" return self._config.n_head def _A ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ): """simple docstring""" a__ : Dict = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() a__ : Union[str, Any] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch a__ , a__ : Union[str, Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values a__ : Any = seqlen + 2 a__ : str = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) a__ : str = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] a__ : Union[str, Any] = common_inputs["attention_mask"] if self.use_past: a__ : str = ordered_inputs["attention_mask"].dtype a__ : Union[str, Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _A ( self ): """simple docstring""" return 13
191
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def lowerCamelCase ( lowerCamelCase : Dict): A_ : List[str] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: A_ : Union[str, Any] = [144, 192, 240] A_ : int = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: A_ : List[str] = [96, 120, 144] A_ : Any = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: A_ : Any = [64, 80, 96] A_ : List[str] = [16, 16, 24, 48, 64, 80, 320] A_ : Any = 0.05 A_ : List[Any] = 2.0 if mobilevit_name.startswith("""deeplabv3_"""): A_ : int = 512 A_ : Optional[int] = 16 A_ : List[Any] = 21 A_ : List[str] = """pascal-voc-id2label.json""" else: A_ : str = 1000 A_ : Any = """imagenet-1k-id2label.json""" A_ : Any = """huggingface/label-files""" A_ : List[str] = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""") , """r""")) A_ : str = {int(lowerCamelCase): v for k, v in idalabel.items()} A_ : Any = idalabel A_ : List[str] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int=False): for i in range(1 , 6): if F'layer_{i}.' in name: A_ : Tuple = name.replace(F'layer_{i}.' , F'encoder.layer.{i - 1}.') if "conv_1." in name: A_ : Union[str, Any] = name.replace("""conv_1.""" , """conv_stem.""") if ".block." in name: A_ : Optional[Any] = name.replace(""".block.""" , """.""") if "exp_1x1" in name: A_ : Union[str, Any] = name.replace("""exp_1x1""" , """expand_1x1""") if "red_1x1" in name: A_ : int = name.replace("""red_1x1""" , """reduce_1x1""") if ".local_rep.conv_3x3." in name: A_ : List[str] = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""") if ".local_rep.conv_1x1." in name: A_ : Optional[int] = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""") if ".norm." in name: A_ : Tuple = name.replace(""".norm.""" , """.normalization.""") if ".conv." in name: A_ : List[Any] = name.replace(""".conv.""" , """.convolution.""") if ".conv_proj." in name: A_ : str = name.replace(""".conv_proj.""" , """.conv_projection.""") for i in range(0 , 2): for j in range(0 , 4): if F'.{i}.{j}.' in name: A_ : Tuple = name.replace(F'.{i}.{j}.' , F'.{i}.layer.{j}.') for i in range(2 , 6): for j in range(0 , 4): if F'.{i}.{j}.' in name: A_ : Dict = name.replace(F'.{i}.{j}.' , F'.{i}.') if "expand_1x1" in name: A_ : Union[str, Any] = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""") if "conv_3x3" in name: A_ : str = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""") if "reduce_1x1" in name: A_ : Union[str, Any] = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""") for i in range(2 , 5): if F'.global_rep.{i}.weight' in name: A_ : List[Any] = name.replace(F'.global_rep.{i}.weight' , """.layernorm.weight""") if F'.global_rep.{i}.bias' in name: A_ : Optional[int] = name.replace(F'.global_rep.{i}.bias' , """.layernorm.bias""") if ".global_rep." in name: A_ : Optional[Any] = name.replace(""".global_rep.""" , """.transformer.""") if ".pre_norm_mha.0." in name: A_ : int = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""") if ".pre_norm_mha.1.out_proj." in name: A_ : Dict = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""") if ".pre_norm_ffn.0." in name: A_ : Dict = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""") if ".pre_norm_ffn.1." in name: A_ : Any = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""") if ".pre_norm_ffn.4." in name: A_ : Union[str, Any] = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""") if ".transformer." in name: A_ : Any = name.replace(""".transformer.""" , """.transformer.layer.""") if ".aspp_layer." in name: A_ : int = name.replace(""".aspp_layer.""" , """.""") if ".aspp_pool." in name: A_ : Tuple = name.replace(""".aspp_pool.""" , """.""") if "seg_head." in name: A_ : Optional[int] = name.replace("""seg_head.""" , """segmentation_head.""") if "segmentation_head.classifier.classifier." in name: A_ : List[str] = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""") if "classifier.fc." in name: A_ : str = name.replace("""classifier.fc.""" , """classifier.""") elif (not base_model) and ("segmentation_head." not in name): A_ : str = """mobilevit.""" + name return name def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int]=False): if base_model: A_ : Dict = """""" else: A_ : Any = """mobilevit.""" for key in orig_state_dict.copy().keys(): A_ : List[Any] = orig_state_dict.pop(lowerCamelCase) if key[:8] == "encoder.": A_ : int = key[8:] if "qkv" in key: A_ : Any = key.split(""".""") A_ : str = int(key_split[0][6:]) - 1 A_ : int = int(key_split[3]) A_ : Optional[Any] = model.get_submodule(F'{model_prefix}encoder.layer.{layer_num}') A_ : Tuple = layer.transformer.layer[transformer_num].attention.attention.all_head_size A_ : Optional[Any] = ( F'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.' ) if "weight" in key: A_ : Dict = val[:dim, :] A_ : Optional[int] = val[dim : dim * 2, :] A_ : List[Any] = val[-dim:, :] else: A_ : Optional[Any] = val[:dim] A_ : List[Any] = val[dim : dim * 2] A_ : Any = val[-dim:] else: A_ : List[str] = val return orig_state_dict def lowerCamelCase ( ): A_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Dict = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase).raw) return im @torch.no_grad() def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : int=False): A_ : Optional[Any] = get_mobilevit_config(lowerCamelCase) # load original state_dict A_ : List[Any] = torch.load(lowerCamelCase , map_location="""cpu""") # load 🤗 model if mobilevit_name.startswith("""deeplabv3_"""): A_ : List[str] = MobileViTForSemanticSegmentation(lowerCamelCase).eval() else: A_ : str = MobileViTForImageClassification(lowerCamelCase).eval() A_ : str = convert_state_dict(lowerCamelCase , lowerCamelCase) model.load_state_dict(lowerCamelCase) # Check outputs on an image, prepared by MobileViTImageProcessor A_ : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32) A_ : Any = image_processor(images=prepare_img() , return_tensors="""pt""") A_ : List[Any] = model(**lowerCamelCase) A_ : Dict = outputs.logits if mobilevit_name.startswith("""deeplabv3_"""): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": A_ : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xs": A_ : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ]) elif mobilevit_name == "deeplabv3_mobilevit_xxs": A_ : Tuple = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ]) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}') assert torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-4) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": A_ : Tuple = torch.tensor([-0.9866, 0.2392, -1.1241]) elif mobilevit_name == "mobilevit_xs": A_ : Any = torch.tensor([-2.4761, -0.9399, -1.9587]) elif mobilevit_name == "mobilevit_xxs": A_ : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653]) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}') assert torch.allclose(logits[0, :3] , lowerCamelCase , atol=1E-4) Path(lowerCamelCase).mkdir(exist_ok=lowerCamelCase) print(F'Saving model {mobilevit_name} to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase) print(F'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase) if push_to_hub: A_ : str = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""") A_ : Union[str, Any] = model_mapping[mobilevit_name] image_processor.push_to_hub(lowerCamelCase , organization="""apple""") model.push_to_hub(lowerCamelCase , organization="""apple""") if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __magic_name__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
27
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( lowerCamelCase : dict , lowerCamelCase : str): A_ , A_ : List[Any] = set(lowerCamelCase), [start] while stack: A_ : Optional[Any] = stack.pop() explored.add(lowerCamelCase) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v]): if adj not in explored: stack.append(lowerCamelCase) return explored __magic_name__ = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
27
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : List[Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] =['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str =['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] =[ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[str] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
428
import functools def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = len(lowerCAmelCase__ ) lowercase = len(lowerCAmelCase__ ) @functools.cache def min_distance(lowerCAmelCase__ ,lowerCAmelCase__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowercase = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 ,lowerCAmelCase__ ) ,1 + min_distance(lowerCAmelCase__ ,indexa + 1 ) ,diff + min_distance(indexa + 1 ,indexa + 1 ) ,) return min_distance(0 ,0 ) if __name__ == "__main__": import doctest doctest.testmod()
428
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( _lowerCamelCase ): a = (PNDMScheduler,) a = (("num_inference_steps", 50),) def _lowerCamelCase ( self , **a__ ): A_ : int = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**UpperCamelCase_ ) return config def _lowerCamelCase ( self , a__=0 , **a__ ): A_ : Any = dict(self.forward_default_kwargs ) A_ : Dict = kwargs.pop("""num_inference_steps""" , UpperCamelCase_ ) A_ : str = self.dummy_sample A_ : Optional[Any] = 0.1 * sample A_ : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ : List[Any] = self.get_scheduler_config(**UpperCamelCase_ ) A_ : Tuple = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals A_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_ ) A_ : int = scheduler_class.from_pretrained(UpperCamelCase_ ) new_scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals A_ : Any = dummy_past_residuals[:] A_ : Any = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample A_ : Dict = new_scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" A_ : List[str] = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample A_ : int = new_scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self , a__=0 , **a__ ): A_ : str = dict(self.forward_default_kwargs ) A_ : Optional[Any] = kwargs.pop("""num_inference_steps""" , UpperCamelCase_ ) A_ : int = self.dummy_sample A_ : int = 0.1 * sample A_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ : Optional[int] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) A_ : Union[str, Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_ ) A_ : List[Any] = scheduler_class.from_pretrained(UpperCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) A_ : Optional[int] = dummy_past_residuals[:] A_ : str = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample A_ : str = new_scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" A_ : Any = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample A_ : List[str] = new_scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self , **a__ ): A_ : Dict = self.scheduler_classes[0] A_ : Optional[int] = self.get_scheduler_config(**UpperCamelCase_ ) A_ : Dict = scheduler_class(**UpperCamelCase_ ) A_ : Optional[Any] = 10 A_ : Optional[Any] = self.dummy_model() A_ : Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase_ ) for i, t in enumerate(scheduler.prk_timesteps ): A_ : str = model(UpperCamelCase_ , UpperCamelCase_ ) A_ : Union[str, Any] = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): A_ : Any = model(UpperCamelCase_ , UpperCamelCase_ ) A_ : List[Any] = scheduler.step_plms(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample return sample def _lowerCamelCase ( self ): A_ : List[Any] = dict(self.forward_default_kwargs ) A_ : Optional[int] = kwargs.pop("""num_inference_steps""" , UpperCamelCase_ ) for scheduler_class in self.scheduler_classes: A_ : str = self.get_scheduler_config() A_ : Tuple = scheduler_class(**UpperCamelCase_ ) A_ : Any = self.dummy_sample A_ : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase_ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase_ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase_ , """set_timesteps""" ): A_ : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ : Optional[Any] = dummy_past_residuals[:] A_ : Dict = scheduler.step_prk(UpperCamelCase_ , 0 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample A_ : int = scheduler.step_prk(UpperCamelCase_ , 1 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ : Optional[int] = scheduler.step_plms(UpperCamelCase_ , 0 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample A_ : Union[str, Any] = scheduler.step_plms(UpperCamelCase_ , 1 , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowerCamelCase ( self ): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def _lowerCamelCase ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCamelCase_ ) A_ : str = self.scheduler_classes[0] A_ : str = self.get_scheduler_config(steps_offset=1 ) A_ : List[str] = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def _lowerCamelCase ( self ): for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def _lowerCamelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def _lowerCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def _lowerCamelCase ( self ): for t in [1, 5, 10]: self.check_over_forward(time_step=UpperCamelCase_ ) def _lowerCamelCase ( self ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase_ ) def _lowerCamelCase ( self ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 A_ : Dict = 27 for scheduler_class in self.scheduler_classes: A_ : Optional[Any] = self.dummy_sample A_ : int = 0.1 * sample A_ : Dict = self.get_scheduler_config() A_ : str = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): A_ : int = scheduler.step_prk(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample def _lowerCamelCase ( self ): with self.assertRaises(UpperCamelCase_ ): A_ : Tuple = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : Optional[Any] = scheduler_class(**UpperCamelCase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _lowerCamelCase ( self ): A_ : Any = self.full_loop() A_ : Tuple = torch.sum(torch.abs(UpperCamelCase_ ) ) A_ : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def _lowerCamelCase ( self ): A_ : List[Any] = self.full_loop(prediction_type="""v_prediction""" ) A_ : Any = torch.sum(torch.abs(UpperCamelCase_ ) ) A_ : List[Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def _lowerCamelCase ( self ): # We specify different beta, so that the first alpha is 0.99 A_ : str = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.01 ) A_ : Tuple = torch.sum(torch.abs(UpperCamelCase_ ) ) A_ : List[str] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def _lowerCamelCase ( self ): # We specify different beta, so that the first alpha is 0.99 A_ : Dict = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.01 ) A_ : Optional[int] = torch.sum(torch.abs(UpperCamelCase_ ) ) A_ : Tuple = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
710
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } _lowerCAmelCase = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models A_ : Tuple = """lm_head""" A_ : int = getattr(_lowerCAmelCase ,_lowerCAmelCase ) if weight_type is not None: A_ : List[str] = getattr(_lowerCAmelCase ,_lowerCAmelCase ).shape else: A_ : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": A_ : Union[str, Any] = value elif weight_type == "weight_g": A_ : Any = value elif weight_type == "weight_v": A_ : Tuple = value elif weight_type == "bias": A_ : List[Any] = value else: A_ : int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Dict = [] A_ : List[Any] = fairseq_model.state_dict() A_ : Any = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): A_ : Any = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,hf_model.config.feat_extract_norm == """group""" ,) A_ : int = True else: for key, mapped_key in MAPPING.items(): A_ : Any = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: A_ : Dict = True if "*" in mapped_key: A_ : Any = name.split(_lowerCAmelCase )[0].split(""".""" )[-2] A_ : Optional[int] = mapped_key.replace("""*""" ,_lowerCAmelCase ) if "weight_g" in name: A_ : Tuple = """weight_g""" elif "weight_v" in name: A_ : Optional[int] = """weight_v""" elif "bias" in name: A_ : List[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj A_ : Optional[int] = """weight""" else: A_ : Dict = None set_recursively(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Union[str, Any] = full_name.split("""conv_layers.""" )[-1] A_ : Union[str, Any] = name.split(""".""" ) A_ : List[str] = int(items[0] ) A_ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) A_ : List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) A_ : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) A_ : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) A_ : Tuple = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=True ): '''simple docstring''' if config_path is not None: A_ : Optional[int] = UniSpeechConfig.from_pretrained(_lowerCAmelCase ) else: A_ : List[str] = UniSpeechConfig() if is_finetuned: if dict_path: A_ : str = Dictionary.load_from_json(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A_ : List[Any] = target_dict.pad_index A_ : str = target_dict.bos_index A_ : Optional[Any] = target_dict.eos_index A_ : Optional[int] = len(target_dict.symbols ) A_ : str = os.path.join(_lowerCAmelCase ,"""vocab.json""" ) if not os.path.isdir(_lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase ,exist_ok=_lowerCAmelCase ) A_ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched A_ : Dict = 4_2 A_ : Optional[Any] = 4_3 with open(_lowerCAmelCase ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(_lowerCAmelCase ,_lowerCAmelCase ) A_ : Tuple = WavaVecaPhonemeCTCTokenizer( _lowerCAmelCase ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=_lowerCAmelCase ,) A_ : Any = True if config.feat_extract_norm == """layer""" else False A_ : List[str] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=1_6_0_0_0 ,padding_value=0 ,do_normalize=_lowerCAmelCase ,return_attention_mask=_lowerCAmelCase ,) A_ : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCAmelCase ,tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) A_ : int = UniSpeechForCTC(_lowerCAmelCase ) else: A_ : str = UniSpeechForPreTraining(_lowerCAmelCase ) if is_finetuned: A_ , A_ , A_ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: A_ , A_ , A_ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A_ : List[str] = model[0].eval() recursively_load_weights(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) hf_unispeech.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _lowerCAmelCase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
481
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCAmelCase__ : Dict =['bert-base-uncased', 'bert-base-cased'] lowerCAmelCase__ : Optional[int] ='hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class __lowercase (tf.keras.Model ): """simple docstring""" def __init__( self , lowerCAmelCase__ ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : Any = tokenizer SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = TFAutoModel.from_config(lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.tokenizer(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.bert(**lowerCAmelCase__ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ BertTokenizer.from_pretrained(lowerCAmelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false SCREAMING_SNAKE_CASE_ : str = [TFBertTokenizer.from_pretrained(lowerCAmelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(lowerCAmelCase__ , use_fast_bert_tokenizer=lowerCAmelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) SCREAMING_SNAKE_CASE_ : List[str] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] SCREAMING_SNAKE_CASE_ : int = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase__ ( self ): """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(lowerCAmelCase__ , return_tensors='tf' , padding='longest' ) SCREAMING_SNAKE_CASE_ : List[str] = tf_tokenizer(lowerCAmelCase__ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE_ : str = tf_tokenizer(self.paired_sentences ) SCREAMING_SNAKE_CASE_ : Tuple = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE_ : Any = tf.function(lowerCAmelCase__ ) for test_inputs in (self.test_sentences, self.paired_sentences): SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = compiled_tokenizer(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = tf_tokenizer(lowerCAmelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE_ : Tuple = ModelToSave(tokenizer=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = tf.convert_to_tensor(self.test_sentences ) SCREAMING_SNAKE_CASE_ : List[Any] = model(lowerCAmelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE_ : Dict = Path(lowerCAmelCase__ ) / 'saved.model' model.save(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = tf.keras.models.load_model(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = loaded_model(lowerCAmelCase__ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
101
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __SCREAMING_SNAKE_CASE : str = { '''distilbert-base-uncased''': 5_1_2, '''distilbert-base-uncased-distilled-squad''': 5_1_2, '''distilbert-base-cased''': 5_1_2, '''distilbert-base-cased-distilled-squad''': 5_1_2, '''distilbert-base-german-cased''': 5_1_2, '''distilbert-base-multilingual-cased''': 5_1_2, } __SCREAMING_SNAKE_CASE : str = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : List[Any] = VOCAB_FILES_NAMES lowercase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : str = PRETRAINED_INIT_CONFIGURATION lowercase__ : int = ['input_ids', 'attention_mask'] lowercase__ : Tuple = DistilBertTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__="[UNK]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="[PAD]" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase__ ) != tokenize_chinese_chars ): _lowerCamelCase = getattr(lowerCamelCase__ , normalizer_state.pop('''type''' ) ) _lowerCamelCase = do_lower_case _lowerCamelCase = strip_accents _lowerCamelCase = tokenize_chinese_chars _lowerCamelCase = normalizer_class(**lowerCamelCase__ ) _lowerCamelCase = do_lower_case def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=None ): _lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
661
0
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' snake_case__ : Tuple = MODEL_FOR_MASKED_LM_MAPPING snake_case__ : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def a_ ( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a_ ( self ): __SCREAMING_SNAKE_CASE : Dict = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" ) __SCREAMING_SNAKE_CASE : List[str] = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {"sequence": "My name is grouped", "score": 2.1e-05, "token": 38015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1e-05, "token": 25506, "token_str": " accuser"}, ] , ) __SCREAMING_SNAKE_CASE : str = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ { "sequence": "The largest city in France is grouped", "score": 2.1e-05, "token": 38015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1e-05, "token": 25506, "token_str": " accuser", }, ] , ) __SCREAMING_SNAKE_CASE : List[str] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2e-05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9e-05, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def a_ ( self ): __SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" ) __SCREAMING_SNAKE_CASE : str = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {"sequence": "My name is Maul", "score": 2.2e-05, "token": 35676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"}, ] , ) __SCREAMING_SNAKE_CASE : Tuple = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ { "sequence": "The largest city in France is Maul", "score": 2.2e-05, "token": 35676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"}, ] , ) __SCREAMING_SNAKE_CASE : int = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {"sequence": "My name is Patrick", "score": 2.1e-05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2e-05, "token": 2941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"}, ] , ) __SCREAMING_SNAKE_CASE : Tuple = unmasker("My name is <mask> <mask>" , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ [ { "score": 2.2e-05, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2e-05, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def a_ ( self ): __SCREAMING_SNAKE_CASE : List[str] = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" ) # convert model to fp16 pipe.model.half() __SCREAMING_SNAKE_CASE : str = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(a__ , a__ ) @slow @require_torch def a_ ( self ): __SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" ) self.run_large_test(a__ ) @slow @require_tf def a_ ( self ): __SCREAMING_SNAKE_CASE : Any = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" ) self.run_large_test(a__ ) def a_ ( self , a__ ): __SCREAMING_SNAKE_CASE : Dict = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(a__ ) , [ {"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.007, "token": 1573, "token_str": " Chris"}, ] , ) __SCREAMING_SNAKE_CASE : Any = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(a__ ) , [ { "sequence": "The largest city in France is Paris", "score": 0.251, "token": 2201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.214, "token": 12790, "token_str": " Lyon", }, ] , ) __SCREAMING_SNAKE_CASE : Optional[Any] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(a__ ) , [ {"sequence": "My name is Patrick", "score": 0.005, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.000, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.000, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" ) __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : str = None self.run_pipeline_test(a__ , [] ) @require_tf def a_ ( self ): __SCREAMING_SNAKE_CASE : int = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" ) __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : Any = None self.run_pipeline_test(a__ , [] ) def a_ ( self , a__ , a__ , a__ ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) __SCREAMING_SNAKE_CASE : List[Any] = FillMaskPipeline(model=a__ , tokenizer=a__ ) __SCREAMING_SNAKE_CASE : int = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def a_ ( self , a__ , a__ ): __SCREAMING_SNAKE_CASE : List[str] = fill_masker.tokenizer __SCREAMING_SNAKE_CASE : str = fill_masker.model __SCREAMING_SNAKE_CASE : Optional[Any] = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( a__ , [ {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, ] , ) __SCREAMING_SNAKE_CASE : str = fill_masker([f'This is a {tokenizer.mask_token}'] ) self.assertEqual( a__ , [ {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, ] , ) __SCREAMING_SNAKE_CASE : str = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( a__ , [ [ {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, ], [ {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, ], ] , ) with self.assertRaises(a__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(a__ ): fill_masker("This is" ) self.run_test_top_k(a__ , a__ ) self.run_test_targets(a__ , a__ ) self.run_test_top_k_targets(a__ , a__ ) self.fill_mask_with_duplicate_targets_and_top_k(a__ , a__ ) self.fill_mask_with_multiple_masks(a__ , a__ ) def a_ ( self , a__ , a__ ): __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.get_vocab() __SCREAMING_SNAKE_CASE : Dict = sorted(vocab.keys() )[:2] # Pipeline argument __SCREAMING_SNAKE_CASE : Any = FillMaskPipeline(model=a__ , tokenizer=a__ , targets=a__ ) __SCREAMING_SNAKE_CASE : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( a__ , [ {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, ] , ) __SCREAMING_SNAKE_CASE : Any = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , a__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(a__ ) ) # Call argument __SCREAMING_SNAKE_CASE : Any = FillMaskPipeline(model=a__ , tokenizer=a__ ) __SCREAMING_SNAKE_CASE : int = fill_masker(f'This is a {tokenizer.mask_token}' , targets=a__ ) self.assertEqual( a__ , [ {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, ] , ) __SCREAMING_SNAKE_CASE : Optional[Any] = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , a__ ) __SCREAMING_SNAKE_CASE : List[str] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(a__ ) ) # Score equivalence __SCREAMING_SNAKE_CASE : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=a__ ) __SCREAMING_SNAKE_CASE : Any = [top_mask["token_str"] for top_mask in outputs] __SCREAMING_SNAKE_CASE : Dict = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(a__ ) == set(a__ ): __SCREAMING_SNAKE_CASE : List[str] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=a__ ) __SCREAMING_SNAKE_CASE : Any = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) ) # Raises with invalid with self.assertRaises(a__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(a__ ): __SCREAMING_SNAKE_CASE : List[Any] = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""] ) with self.assertRaises(a__ ): __SCREAMING_SNAKE_CASE : str = fill_masker(f'This is a {tokenizer.mask_token}' , targets="" ) def a_ ( self , a__ , a__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = FillMaskPipeline(model=a__ , tokenizer=a__ , top_k=2 ) __SCREAMING_SNAKE_CASE : Any = fill_masker(f'This is a {tokenizer.mask_token}' ) self.assertEqual( a__ , [ {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, ] , ) __SCREAMING_SNAKE_CASE : str = FillMaskPipeline(model=a__ , tokenizer=a__ ) __SCREAMING_SNAKE_CASE : Tuple = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( a__ , [ {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, ] , ) self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) ) def a_ ( self , a__ , a__ ): __SCREAMING_SNAKE_CASE : List[str] = tokenizer.get_vocab() __SCREAMING_SNAKE_CASE : Any = FillMaskPipeline(model=a__ , tokenizer=a__ ) # top_k=2, ntargets=3 __SCREAMING_SNAKE_CASE : Optional[Any] = sorted(vocab.keys() )[:3] __SCREAMING_SNAKE_CASE : Optional[int] = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=a__ ) # If we use the most probably targets, and filter differently, we should still # have the same results __SCREAMING_SNAKE_CASE : Optional[int] = [el["token_str"] for el in sorted(a__ , key=lambda a__ : x["score"] , reverse=a__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(a__ ).issubset(a__ ): __SCREAMING_SNAKE_CASE : int = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=a__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) ) def a_ ( self , a__ , a__ ): __SCREAMING_SNAKE_CASE : List[str] = FillMaskPipeline(model=a__ , tokenizer=a__ ) __SCREAMING_SNAKE_CASE : str = tokenizer.get_vocab() # String duplicates + id duplicates __SCREAMING_SNAKE_CASE : Any = sorted(vocab.keys() )[:3] __SCREAMING_SNAKE_CASE : Union[str, Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] __SCREAMING_SNAKE_CASE : Any = fill_masker(f'My name is {tokenizer.mask_token}' , targets=a__ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(a__ ) , 3 ) def a_ ( self , a__ , a__ ): __SCREAMING_SNAKE_CASE : Optional[int] = FillMaskPipeline(model=a__ , tokenizer=a__ ) __SCREAMING_SNAKE_CASE : List[str] = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( a__ , [ [ {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, ], [ {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, ], [ {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, {"sequence": ANY(a__ ), "score": ANY(a__ ), "token": ANY(a__ ), "token_str": ANY(a__ )}, ], ] , )
564
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowercase = logging.get_logger(__name__) lowercase = '''T5Config''' class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Optional[int] = '''mt5''' snake_case__ : Dict = MTaConfig class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : List[str] = '''mt5''' snake_case__ : List[str] = MTaConfig class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Optional[int] = '''mt5''' snake_case__ : Union[str, Any] = MTaConfig
564
1
"""simple docstring""" def __magic_name__ ( _lowerCamelCase: int, _lowerCamelCase: int ) -> int: '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def __magic_name__ ( ) -> None: '''simple docstring''' assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
535
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __lowerCamelCase :int = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] __lowerCamelCase :List[Any] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] __lowerCamelCase :List[Any] = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) __lowerCamelCase :Any = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) __lowerCamelCase :Any = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def snake_case ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple ) -> Optional[int]: for tf_name, hf_name in patterns: lowerCamelCase : int = k.replace(UpperCamelCase__ , UpperCamelCase__ ) return k def snake_case ( UpperCamelCase__ : dict , UpperCamelCase__ : dict ) -> BigBirdPegasusForConditionalGeneration: lowerCamelCase : Tuple = BigBirdPegasusConfig(**UpperCamelCase__ ) lowerCamelCase : Optional[Any] = BigBirdPegasusForConditionalGeneration(UpperCamelCase__ ) lowerCamelCase : List[Any] = torch_model.state_dict() lowerCamelCase : Union[str, Any] = {} # separating decoder weights lowerCamelCase : str = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} lowerCamelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): lowerCamelCase : int = [k.endswith(UpperCamelCase__ ) for ending in KEYS_TO_IGNORE] if any(UpperCamelCase__ ): continue lowerCamelCase : Optional[int] = DECODER_PATTERNS lowerCamelCase : Union[str, Any] = rename_state_dict_key(UpperCamelCase__ , UpperCamelCase__ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): lowerCamelCase : Optional[int] = v.T lowerCamelCase : Tuple = torch.from_numpy(UpperCamelCase__ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): lowerCamelCase : List[Any] = [k.endswith(UpperCamelCase__ ) for ending in KEYS_TO_IGNORE] if any(UpperCamelCase__ ): continue lowerCamelCase : List[str] = REMAINING_PATTERNS lowerCamelCase : Optional[Any] = rename_state_dict_key(UpperCamelCase__ , UpperCamelCase__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): lowerCamelCase : Optional[Any] = v.T lowerCamelCase : List[str] = torch.from_numpy(UpperCamelCase__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' lowerCamelCase : List[Any] = mapping["""model.embed_positions.weight"""] lowerCamelCase : Tuple = mapping.pop("""model.embed_positions.weight""" ) lowerCamelCase , lowerCamelCase : Dict = torch_model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) lowerCamelCase : int = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def snake_case ( UpperCamelCase__ : Optional[int] ) -> Dict: lowerCamelCase : str = tf.train.list_variables(UpperCamelCase__ ) lowerCamelCase : str = {} lowerCamelCase : Dict = ["""global_step"""] for name, shape in tqdm(UpperCamelCase__ , desc="""converting tf checkpoint to dict""" ): lowerCamelCase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue lowerCamelCase : Union[str, Any] = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : str = array return tf_weights def snake_case ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : dict ) -> Optional[int]: lowerCamelCase : List[Any] = get_tf_weights_as_numpy(UpperCamelCase__ ) lowerCamelCase : List[str] = convert_bigbird_pegasus(UpperCamelCase__ , UpperCamelCase__ ) torch_model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCamelCase :int = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') __lowerCamelCase :List[Any] = parser.parse_args() __lowerCamelCase :Tuple = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
222
0
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __A = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' __A = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' __A = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def __A ( self: int ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def __A ( self: str , __A: List[Any] , __A: List[str] ) -> Any: _A = 0.0 for i, j in zip(__A , __A ): n_correct += 1.0 if math_equivalence.is_equiv(__A , __A ) else 0.0 _A = n_correct / len(__A ) return { "accuracy": accuracy, }
711
def __A ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: _A = mf_knapsack(i - 1 , _lowercase , _lowercase , _lowercase ) else: _A = max( mf_knapsack(i - 1 , _lowercase , _lowercase , _lowercase ) , mf_knapsack(i - 1 , _lowercase , _lowercase , j - wt[i - 1] ) + val[i - 1] , ) _A = val return f[i][j] def __A ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: _A = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: _A = dp[i - 1][w_] return dp[n][w_], dp def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' if not (isinstance(_lowercase , (list, tuple) ) and isinstance(_lowercase , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) _A = len(_lowercase ) if num_items != len(_lowercase ): _A = ( '''The number of weights must be the same as the number of values.\n''' f"""But got {num_items} weights and {len(_lowercase )} values""" ) raise ValueError(_lowercase ) for i in range(_lowercase ): if not isinstance(wt[i] , _lowercase ): _A = ( '''All weights must be integers but got weight of ''' f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(_lowercase ) _A ,_A = knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) _A = set() _construct_solution(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) return optimal_val, example_optional_set def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_lowercase , _lowercase , i - 1 , _lowercase , _lowercase ) else: optimal_set.add(_lowercase ) _construct_solution(_lowercase , _lowercase , i - 1 , j - wt[i - 1] , _lowercase ) if __name__ == "__main__": __A = [3, 2, 4, 4] __A = [4, 3, 2, 3] __A = 4 __A = 6 __A = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] __A , __A = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 __A , __A = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
62
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class snake_case_ ( unittest.TestCase ): def __init__( self : Dict , _snake_case : List[str] , _snake_case : Dict=7 , _snake_case : List[str]=3 , _snake_case : List[Any]=30 , _snake_case : List[str]=400 , _snake_case : Optional[Any]=True , _snake_case : List[Any]=None , _snake_case : str=0.9 , _snake_case : Dict=None , _snake_case : Tuple=True , _snake_case : Union[str, Any]=[0.5, 0.5, 0.5] , _snake_case : Optional[int]=[0.5, 0.5, 0.5] , )->Optional[int]: '''simple docstring''' __lowerCAmelCase : int = size if size is not None else {"""shortest_edge""": 30} __lowerCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} __lowerCAmelCase : Tuple = parent __lowerCAmelCase : Dict = batch_size __lowerCAmelCase : Any = num_channels __lowerCAmelCase : Tuple = min_resolution __lowerCAmelCase : int = max_resolution __lowerCAmelCase : Union[str, Any] = do_resize_and_center_crop __lowerCAmelCase : Optional[Any] = size __lowerCAmelCase : int = crop_pct __lowerCAmelCase : int = crop_size __lowerCAmelCase : Tuple = do_normalize __lowerCAmelCase : Optional[Any] = image_mean __lowerCAmelCase : int = image_std def UpperCAmelCase__ ( self : Optional[Any] )->Dict: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class snake_case_ ( UpperCAmelCase_ ,unittest.TestCase ): A_ = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Dict )->List[str]: '''simple docstring''' __lowerCAmelCase : List[Any] = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Tuple )->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : List[Any] )->int: '''simple docstring''' __lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """crop_pct""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) ) def UpperCAmelCase__ ( self : str )->Any: '''simple docstring''' __lowerCAmelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) __lowerCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def UpperCAmelCase__ ( self : Dict )->int: '''simple docstring''' pass def UpperCAmelCase__ ( self : Any )->Tuple: '''simple docstring''' __lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input __lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : Optional[Any] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase__ ( self : List[Any] )->Optional[int]: '''simple docstring''' __lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input __lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : int = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase__ ( self : Union[str, Any] )->Tuple: '''simple docstring''' __lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input __lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : Optional[Any] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
504
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ : Dict = logging.get_logger(__name__) set_seed(770) SCREAMING_SNAKE_CASE_ : List[Any] = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } SCREAMING_SNAKE_CASE_ : Optional[Any] = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } SCREAMING_SNAKE_CASE_ : List[str] = os.path.dirname(os.path.abspath(__file__)) SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(os.path.expanduser('''~'''), '''.cache''') SCREAMING_SNAKE_CASE_ : Any = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def SCREAMING_SNAKE_CASE ( snake_case , snake_case=False ) -> Union[str, Any]: __lowercase = model_type if use_small: key += "_small" return os.path.join(snake_case , REMOTE_MODEL_PATHS[key]['file_name'] ) def SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> List[str]: os.makedirs(snake_case , exist_ok=snake_case ) hf_hub_download(repo_id=snake_case , filename=snake_case , local_dir=snake_case ) def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case=False , snake_case="text" ) -> List[Any]: if model_type == "text": __lowercase = BarkSemanticModel __lowercase = BarkSemanticConfig __lowercase = BarkSemanticGenerationConfig elif model_type == "coarse": __lowercase = BarkCoarseModel __lowercase = BarkCoarseConfig __lowercase = BarkCoarseGenerationConfig elif model_type == "fine": __lowercase = BarkFineModel __lowercase = BarkFineConfig __lowercase = BarkFineGenerationConfig else: raise NotImplementedError() __lowercase = F"{model_type}_small" if use_small else model_type __lowercase = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(snake_case ): logger.info(F"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info['repo_id'] , model_info['file_name'] ) __lowercase = torch.load(snake_case , map_location=snake_case ) # this is a hack __lowercase = checkpoint['model_args'] if "input_vocab_size" not in model_args: __lowercase = model_args['vocab_size'] __lowercase = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __lowercase = model_args.pop('n_head' ) __lowercase = model_args.pop('n_embd' ) __lowercase = model_args.pop('n_layer' ) __lowercase = ConfigClass(**checkpoint['model_args'] ) __lowercase = ModelClass(config=snake_case ) __lowercase = GenerationConfigClass() __lowercase = model_generation_config __lowercase = checkpoint['model'] # fixup checkpoint __lowercase = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(snake_case ): # replace part of the key with corresponding layer name in HF implementation __lowercase = k[len(snake_case ) :] for old_layer_name in new_layer_name_dict: __lowercase = new_k.replace(snake_case , new_layer_name_dict[old_layer_name] ) __lowercase = state_dict.pop(snake_case ) __lowercase = set(state_dict.keys() ) - set(model.state_dict().keys() ) __lowercase = {k for k in extra_keys if not k.endswith('.attn.bias' )} __lowercase = set(model.state_dict().keys() ) - set(state_dict.keys() ) __lowercase = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(snake_case ) != 0: raise ValueError(F"extra keys found: {extra_keys}" ) if len(snake_case ) != 0: raise ValueError(F"missing keys: {missing_keys}" ) model.load_state_dict(snake_case , strict=snake_case ) __lowercase = model.num_parameters(exclude_embeddings=snake_case ) __lowercase = checkpoint['best_val_loss'].item() logger.info(F"model loaded: {round(n_params/1E6 , 1 )}M params, {round(snake_case , 3 )} loss" ) model.eval() model.to(snake_case ) del checkpoint, state_dict return model def SCREAMING_SNAKE_CASE ( snake_case , snake_case=False , snake_case="text" ) -> Tuple: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __lowercase = 'cpu' # do conversion on cpu __lowercase = _get_ckpt_path(snake_case , use_small=snake_case ) __lowercase = _load_model(snake_case , snake_case , model_type=snake_case , use_small=snake_case ) # load bark initial model __lowercase = _bark_load_model(snake_case , 'cpu' , model_type=snake_case , use_small=snake_case ) if model_type == "text": __lowercase = bark_model['model'] if model.num_parameters(exclude_embeddings=snake_case ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model __lowercase = 5 __lowercase = 10 if model_type in ["text", "coarse"]: __lowercase = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) __lowercase = bark_model(snake_case )[0] __lowercase = model(snake_case ) # take last logits __lowercase = output_new_model_total.logits[:, [-1], :] else: __lowercase = 3 __lowercase = 8 __lowercase = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __lowercase = model(snake_case , snake_case ) __lowercase = bark_model(snake_case , snake_case ) __lowercase = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('initial and new outputs are not equal' ) Path(snake_case ).mkdir(exist_ok=snake_case ) model.save_pretrained(snake_case ) def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> List[str]: __lowercase = os.path.join(snake_case , snake_case ) __lowercase = BarkSemanticConfig.from_pretrained(os.path.join(snake_case , 'config.json' ) ) __lowercase = BarkCoarseConfig.from_pretrained(os.path.join(snake_case , 'config.json' ) ) __lowercase = BarkFineConfig.from_pretrained(os.path.join(snake_case , 'config.json' ) ) __lowercase = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) __lowercase = BarkSemanticModel.from_pretrained(snake_case ) __lowercase = BarkCoarseModel.from_pretrained(snake_case ) __lowercase = BarkFineModel.from_pretrained(snake_case ) __lowercase = EncodecModel.from_pretrained('facebook/encodec_24khz' ) __lowercase = BarkConfig.from_sub_model_configs( snake_case , snake_case , snake_case , snake_case ) __lowercase = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __lowercase = BarkModel(snake_case ) __lowercase = semantic __lowercase = coarseAcoustic __lowercase = fineAcoustic __lowercase = codec __lowercase = bark_generation_config Path(snake_case ).mkdir(exist_ok=snake_case ) bark.save_pretrained(snake_case , repo_id=snake_case , push_to_hub=snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
375
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCamelCase = 16 _UpperCamelCase = 32 def _a ( _snake_case , _snake_case = 16 ): """simple docstring""" UpperCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCAmelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_snake_case ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_snake_case , max_length=_snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( _snake_case , batched=_snake_case , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_snake_case ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( _snake_case , padding="""longest""" , max_length=_snake_case , pad_to_multiple_of=_snake_case , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=_snake_case , collate_fn=_snake_case , batch_size=_snake_case ) UpperCAmelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=_snake_case , collate_fn=_snake_case , batch_size=_snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _UpperCamelCase = mocked_dataloaders # noqa: F811 def _a ( _snake_case , _snake_case ): """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _snake_case ) == "1": UpperCAmelCase = 2 # New Code # UpperCAmelCase = int(args.gradient_accumulation_steps ) UpperCAmelCase = int(args.local_sgd_steps ) # Initialize accelerator UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_snake_case ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config["""lr"""] UpperCAmelCase = int(config["""num_epochs"""] ) UpperCAmelCase = int(config["""seed"""] ) UpperCAmelCase = int(config["""batch_size"""] ) UpperCAmelCase = evaluate.load("""glue""" , """mrpc""" ) set_seed(_snake_case ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(_snake_case , _snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=_snake_case ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=_snake_case , num_warmup_steps=100 , num_training_steps=(len(_snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) # Now we train the model for epoch in range(_snake_case ): model.train() with LocalSGD( accelerator=_snake_case , model=_snake_case , local_sgd_steps=_snake_case , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_snake_case ): UpperCAmelCase = model(**_snake_case ) UpperCAmelCase = output.loss accelerator.backward(_snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**_snake_case ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_snake_case , references=_snake_case , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _snake_case ) def _a ( ): """simple docstring""" UpperCAmelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_snake_case , default=_snake_case , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=_snake_case , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=_snake_case , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_snake_case , _snake_case ) if __name__ == "__main__": main()
717
"""simple docstring""" def _a ( _snake_case = 10 , _snake_case = 22 ): """simple docstring""" UpperCAmelCase = range(1 , _snake_case ) UpperCAmelCase = range(1 , _snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
74
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase_ ) return image @property def __lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def __lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowerCAmelCase_ ) @property def __lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" def extract(*lowerCAmelCase_ : str , **lowerCAmelCase_ : List[Any] ): class A : def __init__( self : Dict ) -> int: """simple docstring""" _a = torch.ones([0] ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : List[Any] ) -> Optional[Any]: """simple docstring""" self.pixel_values.to(lowerCAmelCase_ ) return self return Out() return extract def __lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" _a = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk _a = StableDiffusionPipeline( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=self.dummy_extractor , ) _a = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = '''A painting of a squirrel eating a burger''' _a = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) _a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) _a = output.images _a = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) _a = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=lowerCAmelCase_ , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _a = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk _a = StableDiffusionPipeline( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=self.dummy_extractor , ) _a = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = '''A painting of a squirrel eating a burger''' _a = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) _a = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) _a = output.images _a = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) _a = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=lowerCAmelCase_ , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _a = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=lowerCAmelCase_ ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) assert isinstance(pipe.scheduler , lowerCAmelCase_ ) assert pipe.safety_checker is None _a = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) _a = StableDiffusionPipeline.from_pretrained(lowerCAmelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _a = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = StableDiffusionPipeline( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=self.dummy_extractor , ) _a = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = '''A painting of a squirrel eating a burger''' _a = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" _a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCAmelCase_ ) _a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _a = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) _a = 40_03_66_03_46 _a = 7 # without safety guidance (sld_guidance_scale = 0) _a = torch.manual_seed(lowerCAmelCase_ ) _a = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _a = output.images _a = image[0, -3:, -3:, -1] _a = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _a = torch.manual_seed(lowerCAmelCase_ ) _a = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _a = output.images _a = image[0, -3:, -3:, -1] _a = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCAmelCase_ ) _a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _a = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = '''padme amidala taking a bath artwork, safe for work, no nudity''' _a = 27_34_97_17_55 _a = 7 _a = torch.manual_seed(lowerCAmelCase_ ) _a = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _a = output.images _a = image[0, -3:, -3:, -1] _a = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _a = torch.manual_seed(lowerCAmelCase_ ) _a = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _a = output.images _a = image[0, -3:, -3:, -1] _a = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" _a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) _a = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) _a = 10_44_35_52_34 _a = 12 _a = torch.manual_seed(lowerCAmelCase_ ) _a = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) _a = output.images _a = image[0, -3:, -3:, -1] _a = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _a = torch.manual_seed(lowerCAmelCase_ ) _a = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , num_inference_steps=50 , output_type='''np''' , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _a = output.images _a = image[0, -3:, -3:, -1] _a = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
22
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase ="""▁""" __UpperCAmelCase =get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowercase__ : str = BertGenerationTokenizer lowercase__ : int = False lowercase__ : Optional[Any] = True def lowercase_ ( self ): '''simple docstring''' super().setUp() A__ = BertGenerationTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self ): '''simple docstring''' A__ = "<s>" A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(UpperCamelCase__ ) , 10_02 ) def lowercase_ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def lowercase_ ( self ): '''simple docstring''' A__ = BertGenerationTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) A__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCamelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [2_85, 46, 10, 1_70, 3_82] , ) A__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) A__ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) A__ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def lowercase_ ( self ): '''simple docstring''' return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def lowercase_ ( self ): '''simple docstring''' A__ = "Hello World!" A__ = [1_85_36, 22_60, 1_01] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def lowercase_ ( self ): '''simple docstring''' A__ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) A__ = [ 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, ] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @require_torch @slow def lowercase_ ( self ): '''simple docstring''' import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence A__ = list(self.big_tokenizer.get_vocab().keys() )[:10] A__ = " ".join(UpperCamelCase__ ) A__ = self.big_tokenizer.encode_plus(UpperCamelCase__ , return_tensors="pt" , return_token_type_ids=UpperCamelCase__ ) A__ = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=UpperCamelCase__ ) A__ = BertGenerationConfig() A__ = BertGenerationEncoder(UpperCamelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCamelCase__ ) model(**UpperCamelCase__ ) @slow def lowercase_ ( self ): '''simple docstring''' A__ = {"input_ids": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
337
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : Dict = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : List[Any] = { '''nielsr/canine-s''': 20_48, } # Unicode defines 1,114,112 total “codepoints” snake_case_ : int = 1_11_41_12 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py snake_case_ : Tuple = 0 snake_case_ : List[str] = 0xE_000 snake_case_ : Tuple = 0xE_001 snake_case_ : Union[str, Any] = 0xE_002 snake_case_ : Optional[int] = 0xE_003 snake_case_ : Tuple = 0xE_004 # Maps special codepoints to human-readable names. snake_case_ : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. snake_case_ : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class A__ ( a_ ): UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] , _a : int=chr(lowercase_ ) , _a : Optional[Any]=chr(lowercase_ ) , _a : Union[str, Any]=chr(lowercase_ ) , _a : Tuple=chr(lowercase_ ) , _a : str=chr(lowercase_ ) , _a : Optional[Any]=chr(lowercase_ ) , _a : Union[str, Any]=False , _a : int=2048 , **_a : Union[str, Any] , ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else bos_token _SCREAMING_SNAKE_CASE =AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else eos_token _SCREAMING_SNAKE_CASE =AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else sep_token _SCREAMING_SNAKE_CASE =AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else cls_token _SCREAMING_SNAKE_CASE =AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _SCREAMING_SNAKE_CASE =AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , model_max_length=lowercase_ , **lowercase_ , ) # Creates a mapping for looking up the IDs of special symbols. _SCREAMING_SNAKE_CASE ={} for codepoint, name in SPECIAL_CODEPOINTS.items(): _SCREAMING_SNAKE_CASE =codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _SCREAMING_SNAKE_CASE ={ codepoint: name for name, codepoint in self._special_codepoints.items() } _SCREAMING_SNAKE_CASE =UNICODE_VOCAB_SIZE _SCREAMING_SNAKE_CASE =len(self._special_codepoints ) @property def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return self._unicode_vocab_size def __UpperCamelCase ( self : Any , _a : str ) -> List[str]: """simple docstring""" return list(lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] , _a : str ) -> Dict: """simple docstring""" try: return ord(lowercase_ ) except TypeError: raise ValueError(f"invalid token: \'{token}\'" ) def __UpperCamelCase ( self : Any , _a : int ) -> List[Any]: """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowercase_ ) except TypeError: raise ValueError(f"invalid id: {index}" ) def __UpperCamelCase ( self : int , _a : Optional[int] ) -> Optional[Any]: """simple docstring""" return "".join(lowercase_ ) def __UpperCamelCase ( self : Any , _a : List[int] , _a : Optional[List[int]] = None ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =[self.sep_token_id] _SCREAMING_SNAKE_CASE =[self.cls_token_id] _SCREAMING_SNAKE_CASE =cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __UpperCamelCase ( self : List[str] , _a : List[int] , _a : Optional[List[int]] = None , _a : bool = False ) -> List[str]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) _SCREAMING_SNAKE_CASE =[1] + ([0] * len(lowercase_ )) + [1] if token_ids_a is not None: result += ([0] * len(lowercase_ )) + [1] return result def __UpperCamelCase ( self : Dict , _a : List[int] , _a : Optional[List[int]] = None ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =[self.sep_token_id] _SCREAMING_SNAKE_CASE =[self.cls_token_id] _SCREAMING_SNAKE_CASE =len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def __UpperCamelCase ( self : List[Any] , _a : str , _a : Optional[str] = None ) -> List[Any]: """simple docstring""" return ()
691
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "Salesforce/blip-image-captioning-base" lowercase__ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) lowercase__ = "image_captioner" lowercase__ = AutoModelForVisionaSeq lowercase__ = ["image"] lowercase__ = ["text"] def __init__( self : int ,*lowercase_ : int ,**lowercase_ : List[str] ): requires_backends(self ,['''vision'''] ) super().__init__(*lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : List[str] ,lowercase_ : "Image" ): return self.pre_processor(images=lowercase_ ,return_tensors='''pt''' ) def __lowerCAmelCase ( self : List[Any] ,lowercase_ : Any ): return self.model.generate(**lowercase_ ) def __lowerCAmelCase ( self : Dict ,lowercase_ : Union[str, Any] ): return self.pre_processor.batch_decode(lowercase_ ,skip_special_tokens=lowercase_ )[0].strip()
450
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __A = logging.get_logger(__name__) __A = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart __A = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } __A = { 'facebook/bart-base': 1_0_2_4, 'facebook/bart-large': 1_0_2_4, 'facebook/bart-large-mnli': 1_0_2_4, 'facebook/bart-large-cnn': 1_0_2_4, 'facebook/bart-large-xsum': 1_0_2_4, 'yjernite/bart_eli5': 1_0_2_4, } class a_ ( lowerCAmelCase__ ): _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["input_ids", "attention_mask"] _snake_case = BartTokenizer def __init__(self , __a=None , __a=None , __a=None , __a="replace" , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a=False , __a=True , **__a , ) -> Any: """simple docstring""" super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , errors=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __snake_case : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , _SCREAMING_SNAKE_CASE) != add_prefix_space: __snake_case : Union[str, Any] = getattr(_SCREAMING_SNAKE_CASE , pre_tok_state.pop('type')) __snake_case : Tuple = add_prefix_space __snake_case : List[str] = pre_tok_class(**_SCREAMING_SNAKE_CASE) __snake_case : Optional[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Union[str, Any] = 'post_processor' __snake_case : Union[str, Any] = getattr(self.backend_tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) if tokenizer_component_instance: __snake_case : Optional[Any] = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Any = tuple(state['sep']) if "cls" in state: __snake_case : Any = tuple(state['cls']) __snake_case : List[Any] = False if state.get('add_prefix_space' , _SCREAMING_SNAKE_CASE) != add_prefix_space: __snake_case : int = add_prefix_space __snake_case : Dict = True if state.get('trim_offsets' , _SCREAMING_SNAKE_CASE) != trim_offsets: __snake_case : Dict = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : Any = getattr(_SCREAMING_SNAKE_CASE , state.pop('type')) __snake_case : Optional[int] = component_class(**_SCREAMING_SNAKE_CASE) setattr(self.backend_tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) @property def SCREAMING_SNAKE_CASE__ (self) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def SCREAMING_SNAKE_CASE__ (self , __a) -> Tuple: """simple docstring""" __snake_case : List[str] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) else value __snake_case : Tuple = value def SCREAMING_SNAKE_CASE__ (self , *__a , **__a) -> BatchEncoding: """simple docstring""" __snake_case : List[Any] = kwargs.get('is_split_into_words' , _SCREAMING_SNAKE_CASE) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self , *__a , **__a) -> BatchEncoding: """simple docstring""" __snake_case : List[str] = kwargs.get('is_split_into_words' , _SCREAMING_SNAKE_CASE) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.') return super()._encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self , __a , __a = None) -> Tuple[str]: """simple docstring""" __snake_case : str = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE) return tuple(_SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self , __a , __a=None) -> str: """simple docstring""" __snake_case : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ (self , __a , __a = None) -> List[int]: """simple docstring""" __snake_case : Dict = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
708
'''simple docstring''' import math class a_ : def __init__(self , __a=0) -> Any: # a graph with Node 0,1,...,N-1 """simple docstring""" __snake_case : List[str] = n __snake_case : Tuple = [ [math.inf for j in range(0 , __a)] for i in range(0 , __a) ] # adjacency matrix for weight __snake_case : Union[str, Any] = [ [math.inf for j in range(0 , __a)] for i in range(0 , __a) ] # dp[i][j] stores minimum distance from i to j def SCREAMING_SNAKE_CASE__ (self , __a , __a , __a) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = w def SCREAMING_SNAKE_CASE__ (self) -> Tuple: """simple docstring""" for k in range(0 , self.n): for i in range(0 , self.n): for j in range(0 , self.n): __snake_case : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j]) def SCREAMING_SNAKE_CASE__ (self , __a , __a) -> Optional[int]: """simple docstring""" return self.dp[u][v] if __name__ == "__main__": __A = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
61
0
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCamelCase_ = object() # For specifying empty leaf dict `{}` lowerCamelCase_ = object() def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Dict = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(A__ ) - len(A__ ) + 1 ): UpperCAmelCase_ : str = [x.match(A__ ) for x, y in zip(A__ ,ks[i:] )] if matches and all(A__ ): return True return False def snake_case ( A__ ): def replace(A__ ,A__ ): for rule, replacement in rules: if _match(A__ ,A__ ): return replacement return val return replace def snake_case ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" ,A__ )), (("transformer", "wte", "embedding"), P("mp" ,A__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(A__ ,"mp" )), (("attention", "out_proj", "kernel"), P("mp" ,A__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(A__ ,"mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" ,A__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def snake_case ( A__ ): UpperCAmelCase_ : Union[str, Any] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(A__ ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(A__ )} UpperCAmelCase_ : Dict = {k: replace(A__ ,A__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(A__ ) )
95
from manim import * class __SCREAMING_SNAKE_CASE ( _a ): def _lowerCamelCase ( self ): UpperCamelCase__ = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase__ = Rectangle(height=0.25 , width=0.25 ) UpperCamelCase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase__ = [mem.copy() for i in range(6 )] UpperCamelCase__ = [mem.copy() for i in range(6 )] UpperCamelCase__ = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCamelCase__ = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCamelCase__ = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCamelCase__ = Text("""CPU""" , font_size=24 ) UpperCamelCase__ = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCAmelCase ) UpperCamelCase__ = [mem.copy() for i in range(4 )] UpperCamelCase__ = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCamelCase__ = Text("""GPU""" , font_size=24 ) UpperCamelCase__ = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCAmelCase ) UpperCamelCase__ = [mem.copy() for i in range(6 )] UpperCamelCase__ = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCamelCase__ = Text("""Model""" , font_size=24 ) UpperCamelCase__ = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCAmelCase ) UpperCamelCase__ = [] UpperCamelCase__ = [] UpperCamelCase__ = [] for i, rect in enumerate(__lowerCAmelCase ): rect.set_stroke(__lowerCAmelCase ) UpperCamelCase__ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__lowerCAmelCase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__lowerCAmelCase , buff=0.0 ) self.add(__lowerCAmelCase ) model_cpu_arr.append(__lowerCAmelCase ) self.add(*__lowerCAmelCase , *__lowerCAmelCase , *__lowerCAmelCase ) UpperCamelCase__ = [mem.copy() for i in range(6 )] UpperCamelCase__ = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCamelCase__ = Text("""Loaded Checkpoint""" , font_size=24 ) UpperCamelCase__ = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) checkpoint.move_to([3, 0.5, 0] ) self.add(__lowerCAmelCase ) UpperCamelCase__ = [] UpperCamelCase__ = [] for i, rect in enumerate(__lowerCAmelCase ): UpperCamelCase__ = fill.copy().set_fill(__lowerCAmelCase , opacity=0.7 ) target.move_to(__lowerCAmelCase ) ckpt_arr.append(__lowerCAmelCase ) UpperCamelCase__ = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__lowerCAmelCase ) self.add(*__lowerCAmelCase , *__lowerCAmelCase ) UpperCamelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase__ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__lowerCAmelCase ) UpperCamelCase__ = MarkupText( f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) UpperCamelCase__ = [meta_mem.copy() for i in range(6 )] UpperCamelCase__ = [meta_mem.copy() for i in range(6 )] UpperCamelCase__ = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCamelCase__ = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCamelCase__ = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) UpperCamelCase__ = Text("""Disk""" , font_size=24 ) UpperCamelCase__ = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__lowerCAmelCase , run_time=3 ) , Write(__lowerCAmelCase , run_time=1 ) , Create(__lowerCAmelCase , run_time=1 ) ) UpperCamelCase__ = [] for i, rect in enumerate(__lowerCAmelCase ): UpperCamelCase__ = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__lowerCAmelCase , run_time=1.5 ) ) self.play(*__lowerCAmelCase ) self.play(FadeOut(__lowerCAmelCase ) ) UpperCamelCase__ = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase , run_time=3 ) ) self.play( FadeOut(__lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase , *__lowerCAmelCase ) , ) self.wait()
619
0
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1_6_0_0_0 ) -> int: """simple docstring""" _UpperCamelCase = int(round(sample_rate * max_length ) ) if len(lowerCAmelCase ) <= sample_length: return wav _UpperCamelCase = randint(0 , len(lowerCAmelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class lowerCAmelCase__ : UpperCamelCase_ : Optional[str] = field(default=__lowercase , metadata={"help": "Name of a dataset from the datasets package"} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "A file containing the training audio paths and labels."} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "A file containing the validation audio paths and labels."} ) UpperCamelCase_ : str = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) UpperCamelCase_ : str = field( default="validation" , metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) UpperCamelCase_ : str = field( default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , ) UpperCamelCase_ : str = field( default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) UpperCamelCase_ : Optional[int] = field( default=__lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) UpperCamelCase_ : Optional[int] = field( default=__lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) UpperCamelCase_ : float = field( default=20 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , ) @dataclass class lowerCAmelCase__ : UpperCamelCase_ : str = field( default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) UpperCamelCase_ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Name or path of preprocessor config."} ) UpperCamelCase_ : bool = field( default=__lowercase , metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) UpperCamelCase_ : bool = field( default=__lowercase , metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) UpperCamelCase_ : bool = field( default=__lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) UpperCamelCase_ : Optional[bool] = field( default=__lowercase , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCamelCase_ : bool = field( default=__lowercase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , a , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def __A() -> int: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowerCAmelCase , lowerCAmelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCamelCase = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase ) transformers.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. _UpperCamelCase = DatasetDict() _UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--audio_column_name` to the correct audio column - one of """ F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--label_column_name` to the correct text column - one of """ F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _UpperCamelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _UpperCamelCase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _UpperCamelCase = feature_extractor.model_input_names[0] def train_transforms(lowerCAmelCase ): _UpperCamelCase = [] for audio in batch[data_args.audio_column_name]: _UpperCamelCase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowerCAmelCase ) _UpperCamelCase = feature_extractor(lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) _UpperCamelCase = {model_input_name: inputs.get(lowerCAmelCase )} _UpperCamelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowerCAmelCase ): _UpperCamelCase = [audio["""array"""] for audio in batch[data_args.audio_column_name]] _UpperCamelCase = feature_extractor(lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) _UpperCamelCase = {model_input_name: inputs.get(lowerCAmelCase )} _UpperCamelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCamelCase = raw_datasets["""train"""].features[data_args.label_column_name].names _UpperCamelCase , _UpperCamelCase = {}, {} for i, label in enumerate(lowerCAmelCase ): _UpperCamelCase = str(lowerCAmelCase ) _UpperCamelCase = label # Load the accuracy metric from the datasets package _UpperCamelCase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase ): _UpperCamelCase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowerCAmelCase , references=eval_pred.label_ids ) _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase ) , labelaid=lowerCAmelCase , idalabel=lowerCAmelCase , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCamelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _UpperCamelCase = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowerCAmelCase , output_all_columns=lowerCAmelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: _UpperCamelCase = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowerCAmelCase , output_all_columns=lowerCAmelCase ) # Initialize our trainer _UpperCamelCase = Trainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowerCAmelCase , tokenizer=lowerCAmelCase , ) # Training if training_args.do_train: _UpperCamelCase = None if training_args.resume_from_checkpoint is not None: _UpperCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCamelCase = last_checkpoint _UpperCamelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCamelCase = trainer.evaluate() trainer.log_metrics("""eval""" , lowerCAmelCase ) trainer.save_metrics("""eval""" , lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCamelCase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase ) else: trainer.create_model_card(**lowerCAmelCase ) if __name__ == "__main__": main()
721
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): UpperCamelCase_ : List[Any] = StableDiffusionInpaintPipeline UpperCamelCase_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCamelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase_ : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase_ : int = frozenset([] ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a , ) _UpperCamelCase = PNDMScheduler(skip_prk_steps=a ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) _UpperCamelCase = CLIPTextModel(a ) _UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _UpperCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A_ ( self , a , a=0 ) -> List[Any]: '''simple docstring''' _UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(a ) ).convert("""RGB""" ).resize((64, 64) ) _UpperCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(a ).startswith("""mps""" ): _UpperCamelCase = torch.manual_seed(a ) else: _UpperCamelCase = torch.Generator(device=a ).manual_seed(a ) _UpperCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionInpaintPipeline(**a ) _UpperCamelCase = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) _UpperCamelCase = self.get_dummy_inputs(a ) _UpperCamelCase = sd_pipe(**a ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A_ ( self ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def A_ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(a , safety_checker=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="""np""" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9e-3 def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( a , torch_dtype=torch.floataa , safety_checker=a , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="""np""" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def A_ ( self ) -> Dict: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = PNDMScheduler.from_pretrained(a , subfolder="""scheduler""" ) _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( a , safety_checker=a , scheduler=a , torch_dtype=torch.floataa , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , num_inference_steps=2 , output_type="""np""" , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
202
0