code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __UpperCAmelCase = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def _snake_case ( A , A=None , A=None , A=None ) -> Union[str, Any]: lowerCAmelCase__ = True while ask_again: lowerCAmelCase__ = input(A ) try: if default is not None and len(A ) == 0: return default return convert_value(A ) if convert_value is not None else result except Exception: if error_message is not None: print(A ) def _snake_case ( A , A=[] , A=None , A=0 ) -> List[Any]: lowerCAmelCase__ = BulletMenu(A , A ) lowerCAmelCase__ = menu.run(default_choice=A ) return convert_value(A ) if convert_value is not None else result def _snake_case ( A ) -> Tuple: lowerCAmelCase__ = int(A ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def _snake_case ( A ) -> Union[str, Any]: lowerCAmelCase__ = int(A ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def _snake_case ( A ) -> str: lowerCAmelCase__ = int(A ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _snake_case ( A ) -> Tuple: lowerCAmelCase__ = int(A ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def _snake_case ( A ) -> Union[str, Any]: lowerCAmelCase__ = int(A ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def _snake_case ( A ) -> List[str]: return {"yes": True, "no": False}[value.lower()] class a__ ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: lowerCAmelCase__ = super()._format_usage(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
90
'''simple docstring''' from collections import defaultdict from math import gcd def __UpperCamelCase ( lowercase__ : int = 1_50_00_00 ): '''simple docstring''' __lowercase =defaultdict(lowercase__ ) __lowercase =2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1, lowercase__, 2 ): if gcd(lowercase__, lowercase__ ) > 1: continue __lowercase =2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowercase__, limit + 1, lowercase__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
119
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class __snake_case ( __lowerCAmelCase ): a__ = """deit""" def __init__( self , lowercase=7_68 , lowercase=12 , lowercase=12 , lowercase=30_72 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1e-12 , lowercase=2_24 , lowercase=16 , lowercase=3 , lowercase=True , lowercase=16 , **lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**lowercase) a__: Optional[int] = hidden_size a__: List[Any] = num_hidden_layers a__: Optional[Any] = num_attention_heads a__: Union[str, Any] = intermediate_size a__: Optional[Any] = hidden_act a__: Optional[Any] = hidden_dropout_prob a__: List[Any] = attention_probs_dropout_prob a__: List[str] = initializer_range a__: Optional[int] = layer_norm_eps a__: Dict = image_size a__: Dict = patch_size a__: List[Any] = num_channels a__: Optional[Any] = qkv_bias a__: List[Any] = encoder_stride class __snake_case ( __lowerCAmelCase ): a__ = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def lowerCamelCase_ ( self) -> float: '''simple docstring''' return 1e-4
217
"""simple docstring""" class __snake_case : def __init__( self , lowercase) -> Optional[Any]: '''simple docstring''' a__: int = n a__: int = [None] * self.n a__: List[str] = 0 # index of the first element a__: Any = 0 a__: Any = 0 def __len__( self) -> int: '''simple docstring''' return self.size def lowerCamelCase_ ( self) -> bool: '''simple docstring''' return self.size == 0 def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowerCamelCase_ ( self , lowercase) -> Union[str, Any]: '''simple docstring''' if self.size >= self.n: raise Exception('QUEUE IS FULL') a__: Tuple = data a__: Dict = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase_ ( self) -> str: '''simple docstring''' if self.size == 0: raise Exception('UNDERFLOW') a__: str = self.array[self.front] a__: Any = None a__: Optional[Any] = (self.front + 1) % self.n self.size -= 1 return temp
217
1
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__(self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=18 , __magic_name__=30 , __magic_name__=400 , __magic_name__=True , __magic_name__=None , __magic_name__=True , ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = size if size is not None else {'''height''': 18, '''width''': 18} snake_case_ : Dict = parent snake_case_ : int = batch_size snake_case_ : List[Any] = num_channels snake_case_ : Tuple = image_size snake_case_ : Optional[Any] = min_resolution snake_case_ : Optional[int] = max_resolution snake_case_ : Optional[Any] = do_resize snake_case_ : str = size snake_case_ : int = do_normalize def lowerCamelCase (self ) -> List[str]: '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __lowerCAmelCase ( A__, unittest.TestCase ): lowerCamelCase_ : int = ImageGPTImageProcessor if is_vision_available() else None def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = ImageGPTImageProcessingTester(self ) @property def lowerCamelCase (self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''clusters''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) snake_case_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) snake_case_ : Dict = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowerCamelCase , obj[key] ) ) else: self.assertEqual(obj[key] , __lowerCamelCase ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : Union[str, Any] = os.path.join(__lowerCamelCase , '''image_processor.json''' ) image_processor_first.to_json_file(__lowerCamelCase ) snake_case_ : int = self.image_processing_class.from_json_file(__lowerCamelCase ).to_dict() snake_case_ : Dict = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowerCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __lowerCamelCase ) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(__lowerCamelCase ) snake_case_ : Optional[Any] = self.image_processing_class.from_pretrained(__lowerCamelCase ).to_dict() snake_case_ : Optional[int] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowerCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __lowerCamelCase ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' pass def lowerCamelCase_ ( ) -> Tuple: """simple docstring""" snake_case_ : Any = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) snake_case_ : int = Image.open(dataset[4]['''file'''] ) snake_case_ : Dict = Image.open(dataset[5]['''file'''] ) snake_case_ : Tuple = [imagea, imagea] return images @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : int = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) snake_case_ : List[str] = prepare_images() # test non-batched snake_case_ : List[Any] = image_processing(images[0] , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) snake_case_ : List[str] = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , __lowerCamelCase ) # test batched snake_case_ : List[str] = image_processing(__lowerCamelCase , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) snake_case_ : Optional[int] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , __lowerCamelCase )
60
_SCREAMING_SNAKE_CASE : List[str] = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} _SCREAMING_SNAKE_CASE : str = ['''a''', '''b''', '''c''', '''d''', '''e'''] def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = start # add current to visited visited.append(_A ) SCREAMING_SNAKE_CASE__ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: SCREAMING_SNAKE_CASE__ = topological_sort(_A , _A , _A ) # if all neighbors visited add current to sort sort.append(_A ) # if all vertices haven't been visited select a new one to visit if len(_A ) != len(_A ): for vertice in vertices: if vertice not in visited: SCREAMING_SNAKE_CASE__ = topological_sort(_A , _A , _A ) # return sort return sort if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Any = topological_sort('''a''', [], []) print(sort)
493
0
'''simple docstring''' import os import pytest from attr import dataclass lowercase : Optional[int] = 'us-east-1' # defaults region @dataclass class A : __magic_name__ = 42 __magic_name__ = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' __magic_name__ = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 16, '''per_device_eval_batch_size''': 16, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 500, '''save_steps''': 5500, } __magic_name__ = {**hyperparameters, '''max_steps''': 1000} @property def __lowerCAmelCase ( self ) -> str: """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __lowerCAmelCase ( self ) -> str: """simple docstring""" return F'{self.framework}-transfromers-test' @property def __lowerCAmelCase ( self ) -> str: """simple docstring""" return F'./tests/sagemaker/scripts/{self.framework}' @property def __lowerCAmelCase ( self ) -> str: """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='''class''' ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : List[str] = SageMakerTestEnvironment(framework=request.cls.framework )
343
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ = 50 ): '''simple docstring''' A : Any = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
343
1
'''simple docstring''' from collections.abc import Sequence def snake_case_ (UpperCamelCase : Sequence[int] | None = None ): '''simple docstring''' if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) _a = nums[0] for i in range(1 , len(UpperCamelCase ) ): _a = nums[i] _a = max(UpperCamelCase , ans + num , UpperCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _snake_case : List[str] = int(input('Enter number of elements : ').strip()) _snake_case : Union[str, Any] = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
22
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCamelCase = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
459
0
"""simple docstring""" from __future__ import annotations class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: lowercase__ : Dict = text, pattern lowercase__ : Optional[Any] = len(UpperCamelCase__ ), len(UpperCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def UpperCAmelCase__( self , lowerCamelCase__ ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCAmelCase__( self ) -> List[Any]: # searches pattern in text and returns index positions lowercase__ : Any = [] for i in range(self.textLen - self.patLen + 1 ): lowercase__ : Any = self.mismatch_in_text(UpperCamelCase__ ) if mismatch_index == -1: positions.append(UpperCamelCase__ ) else: lowercase__ : Optional[int] = self.match_in_pattern(self.text[mismatch_index] ) lowercase__ : Optional[int] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __snake_case = 'ABAABA' __snake_case = 'AB' __snake_case = BoyerMooreSearch(text, pattern) __snake_case = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
709
"""simple docstring""" # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys __snake_case = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
128
0
from __future__ import annotations from collections import deque class __magic_name__ : '''simple docstring''' def __init__( self: Optional[Any] , _lowerCamelCase: list[str] ): SCREAMING_SNAKE_CASE_ = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(_lowerCamelCase ) self.set_fail_transitions() def _A ( self: Tuple , _lowerCamelCase: int , _lowerCamelCase: str ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _A ( self: int , _lowerCamelCase: str ): SCREAMING_SNAKE_CASE_ = 0 for character in keyword: SCREAMING_SNAKE_CASE_ = self.find_next_state(_lowerCamelCase , _lowerCamelCase ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) SCREAMING_SNAKE_CASE_ = len(self.adlist ) - 1 else: SCREAMING_SNAKE_CASE_ = next_state self.adlist[current_state]["output"].append(_lowerCamelCase ) def _A ( self: str ): SCREAMING_SNAKE_CASE_ = deque() for node in self.adlist[0]["next_states"]: q.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = 0 while q: SCREAMING_SNAKE_CASE_ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.adlist[r]['''fail_state'''] while ( self.find_next_state(_lowerCamelCase , self.adlist[child]['''value'''] ) is None and state != 0 ): SCREAMING_SNAKE_CASE_ = self.adlist[state]['''fail_state'''] SCREAMING_SNAKE_CASE_ = self.find_next_state( _lowerCamelCase , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def _A ( self: List[Any] , _lowerCamelCase: str ): SCREAMING_SNAKE_CASE_ = {} # returns a dict with keywords and list of its occurrences SCREAMING_SNAKE_CASE_ = 0 for i in range(len(_lowerCamelCase ) ): while ( self.find_next_state(_lowerCamelCase , string[i] ) is None and current_state != 0 ): SCREAMING_SNAKE_CASE_ = self.adlist[current_state]['''fail_state'''] SCREAMING_SNAKE_CASE_ = self.find_next_state(_lowerCamelCase , string[i] ) if next_state is None: SCREAMING_SNAKE_CASE_ = 0 else: SCREAMING_SNAKE_CASE_ = next_state for key in self.adlist[current_state]["output"]: if key not in result: SCREAMING_SNAKE_CASE_ = [] result[key].append(i - len(_lowerCamelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
234
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE_ = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } SCREAMING_SNAKE_CASE_ = F"{src_lang}-{tgt_lang}" SCREAMING_SNAKE_CASE_ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = os.path.join(_lowerCAmelCase , '''README.md''' ) print(F"Generating {path}" ) with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(_lowerCAmelCase ) # make sure we are under the root of the project __SCREAMING_SNAKE_CASE =Path(__file__).resolve().parent.parent.parent __SCREAMING_SNAKE_CASE =repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE =model_name.split("""-""") __SCREAMING_SNAKE_CASE =model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
234
1
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowerCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase_ : lowerCamelCase_ = field( default=UpperCamelCase__ , metadata={"help": "Model type selected in the list: " + ", ".join(UpperCamelCase__ )} ) lowerCamelCase_ = field( default=UpperCamelCase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) lowerCamelCase_ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase_ = field( default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) lowerCamelCase_ = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) lowerCamelCase_ = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) lowerCamelCase_ = field( default=UpperCamelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCamelCase_ = field( default=UpperCamelCase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) lowerCamelCase_ = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lowerCamelCase_ = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lowerCamelCase_ = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) lowerCamelCase_ = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "train" lowerCamelCase_ = "dev" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 def __init__( self :Dict , __A :SquadDataTrainingArguments , __A :PreTrainedTokenizer , __A :Optional[int] = None , __A :Union[str, Split] = Split.train , __A :Optional[bool] = False , __A :Optional[str] = None , __A :Optional[str] = "pt" , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = args SCREAMING_SNAKE_CASE__ = is_language_sensitive SCREAMING_SNAKE_CASE__ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__A , __A ): try: SCREAMING_SNAKE_CASE__ = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) SCREAMING_SNAKE_CASE__ = mode # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ = """v2""" if args.version_2_with_negative else """v1""" SCREAMING_SNAKE_CASE__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ = cached_features_file + """.lock""" with FileLock(__A ): if os.path.exists(__A ) and not args.overwrite_cache: SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = torch.load(__A ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. SCREAMING_SNAKE_CASE__ = self.old_features["""features"""] SCREAMING_SNAKE_CASE__ = self.old_features.get("""dataset""" , __A ) SCREAMING_SNAKE_CASE__ = self.old_features.get("""examples""" , __A ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' """ future run""" ) else: if mode == Split.dev: SCREAMING_SNAKE_CASE__ = self.processor.get_dev_examples(args.data_dir ) else: SCREAMING_SNAKE_CASE__ = self.processor.get_train_examples(args.data_dir ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = squad_convert_examples_to_features( examples=self.examples , tokenizer=__A , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__A , ) SCREAMING_SNAKE_CASE__ = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , __A , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self :int ) -> Union[str, Any]: """simple docstring""" return len(self.features ) def __getitem__( self :Any , __A :Dict ) -> Dict[str, torch.Tensor]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.features[i] SCREAMING_SNAKE_CASE__ = torch.tensor(feature.input_ids , dtype=torch.long ) SCREAMING_SNAKE_CASE__ = torch.tensor(feature.attention_mask , dtype=torch.long ) SCREAMING_SNAKE_CASE__ = torch.tensor(feature.token_type_ids , dtype=torch.long ) SCREAMING_SNAKE_CASE__ = torch.tensor(feature.cls_index , dtype=torch.long ) SCREAMING_SNAKE_CASE__ = torch.tensor(feature.p_mask , dtype=torch.float ) SCREAMING_SNAKE_CASE__ = torch.tensor(feature.is_impossible , dtype=torch.float ) SCREAMING_SNAKE_CASE__ = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: SCREAMING_SNAKE_CASE__ = torch.tensor(feature.start_position , dtype=torch.long ) SCREAMING_SNAKE_CASE__ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
703
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :List[Any] , *__A :Tuple , **__A :Dict ) -> None: """simple docstring""" warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __A , ) super().__init__(*__A , **__A )
59
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[Any] = logging.get_logger(__name__) class lowercase(_lowercase ): __snake_case: Optional[Any] = 'timm_backbone' def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) a__ = backbone a__ = num_channels a__ = features_only a__ = use_pretrained_backbone a__ = True a__ = out_indices if out_indices is not None else (-1,)
273
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument a : int = { '/attention/': '/0/SelfAttention/', '/self_attention/': '/0/SelfAttention/', '/encoder_decoder_attention/': '/1/EncDecAttention/', 'value': 'v', 'query': 'q', 'key': 'k', 'out': 'o', 'pre_self_attention_layer_norm': '0/layer_norm', 'pre_cross_attention_layer_norm': '1/layer_norm', 'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong 'token_embedder': 'shared', 'encoder_norm': 'final_layer_norm', 'decoder_norm': 'final_layer_norm', 'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight', 'router/router_weights/w/': 'router/classifier/', 'roer/roer_weights/w/': 'router/classifier/', 'logits_dense': 'lm_head', } def __magic_name__ ( UpperCamelCase : List[Any] ) -> Union[str, Any]: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model a__ = list(s_dict.keys() ) for key in keys: a__ = r'.*/layers_(\d+)' a__ = key if re.match(UpperCamelCase , UpperCamelCase ): a__ = re.sub(r'layers_(\d+)' , r'block/\1/layer' , UpperCamelCase ) a__ = r'(encoder|decoder)\/' if re.match(UpperCamelCase , UpperCamelCase ): a__ = re.match(UpperCamelCase , UpperCamelCase ).groups() if groups[0] == "encoder": a__ = re.sub(r'/mlp/' , r'/1/mlp/' , UpperCamelCase ) a__ = re.sub(r'/pre_mlp_layer_norm/' , r'/1/layer_norm/' , UpperCamelCase ) elif groups[0] == "decoder": a__ = re.sub(r'/mlp/' , r'/2/mlp/' , UpperCamelCase ) a__ = re.sub(r'/pre_mlp_layer_norm/' , r'/2/layer_norm/' , UpperCamelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: a__ = new_key.replace(UpperCamelCase , UpperCamelCase ) print(f'{key} -> {new_key}' ) a__ = s_dict.pop(UpperCamelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: a__ = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: a__ = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: a__ = s_dict[key].shape[0] a__ = s_dict[key] for idx in range(UpperCamelCase ): a__ = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(UpperCamelCase ) return s_dict a : List[str] = { 'NUM_ENCODER_LAYERS': 'num_layers', 'NUM_DECODER_LAYERS': 'num_decoder_layers', 'NUM_HEADS': 'num_heads', 'HEAD_DIM': 'd_kv', 'EMBED_DIM': 'd_model', 'MLP_DIM': 'd_ff', 'NUM_SELECTED_EXPERTS': 'num_selected_experts', 'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers', 'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers', 'dense.MlpBlock.activations': 'feed_forward_proj', } def __magic_name__ ( UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] ) -> Optional[int]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCamelCase , 'r' ) as f: a__ = f.read() a__ = re.findall(r'(.*) = ([0-9.]*)' , UpperCamelCase ) a__ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": a__ = float(UpperCamelCase ) if '.' in value else int(UpperCamelCase ) a__ = re.findall(r'(.*activations) = \(\'(.*)\',\)' , UpperCamelCase )[0] a__ = str(activation[1] ) a__ = num_experts a__ = SwitchTransformersConfig(**UpperCamelCase ) return config def __magic_name__ ( UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : List[str]="./" , UpperCamelCase : Any=8 ) -> Union[str, Any]: # Initialise PyTorch model print(f'Loading flax weights from : {flax_checkpoint_path}' ) a__ = checkpoints.load_tax_checkpoint(UpperCamelCase ) if gin_file is not None: a__ = convert_gin_to_config(UpperCamelCase , UpperCamelCase ) else: a__ = SwitchTransformersConfig.from_pretrained(UpperCamelCase ) a__ = SwitchTransformersForConditionalGeneration(UpperCamelCase ) a__ = flax_params['target'] a__ = flatten_dict(UpperCamelCase , sep='/' ) a__ = rename_keys(UpperCamelCase ) a__ = unflatten_dict(UpperCamelCase , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCamelCase , UpperCamelCase ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the' ' model architecture. If not provided, a `gin_file` has to be provided.' ), ) parser.add_argument( '--gin_file', default=None, type=str, required=False, help='Path to the gin config file. If not provided, a `config_file` has to be passed ', ) parser.add_argument( '--config_name', default=None, type=str, required=False, help='Config name of SwitchTransformers model.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output pytorch model.' ) parser.add_argument('--num_experts', default=8, type=int, required=False, help='Number of experts') a : List[str] = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
273
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _UpperCamelCase (a__ :int = 3 ): """simple docstring""" if isinstance(a__ , a__ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(a__ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) UpperCamelCase__ = QuantumRegister(a__ , """qr""" ) UpperCamelCase__ = ClassicalRegister(a__ , """cr""" ) UpperCamelCase__ = QuantumCircuit(a__ , a__ ) UpperCamelCase__ = number_of_qubits for i in range(a__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(a__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , a__ , a__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(a__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(a__ , a__ ) # simulate with 10000 shots UpperCamelCase__ = Aer.get_backend("""qasm_simulator""" ) UpperCamelCase__ = execute(a__ , a__ , shots=1_0000 ) return job.result().get_counts(a__ ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
710
import argparse import datetime def _UpperCamelCase (a__ :str ): """simple docstring""" UpperCamelCase__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } UpperCamelCase__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(a__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month UpperCamelCase__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) UpperCamelCase__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day UpperCamelCase__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator UpperCamelCase__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year UpperCamelCase__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation UpperCamelCase__ = datetime.date(int(a__ ) , int(a__ ) , int(a__ ) ) # Start math if m <= 2: UpperCamelCase__ = y - 1 UpperCamelCase__ = m + 12 # maths var UpperCamelCase__ = int(str(a__ )[:2] ) UpperCamelCase__ = int(str(a__ )[2:] ) UpperCamelCase__ = int(2.6 * m - 5.39 ) UpperCamelCase__ = int(c / 4 ) UpperCamelCase__ = int(k / 4 ) UpperCamelCase__ = int(d + k ) UpperCamelCase__ = int(t + u + v + x ) UpperCamelCase__ = int(z - (2 * c) ) UpperCamelCase__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response UpperCamelCase__ = f"""Your date {date_input}, is a {days[str(a__ )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) UpperCamelCase__ = parser.parse_args() zeller(args.date_input)
548
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = KandinskyVaaPriorPipeline SCREAMING_SNAKE_CASE__ : Dict = ['prompt'] SCREAMING_SNAKE_CASE__ : Optional[int] = ['prompt', 'negative_prompt'] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE__ : str = False @property def A_ ( self ): '''simple docstring''' return 3_2 @property def A_ ( self ): '''simple docstring''' return 3_2 @property def A_ ( self ): '''simple docstring''' return self.time_input_dim @property def A_ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def A_ ( self ): '''simple docstring''' return 1_0_0 @property def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def A_ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(lowerCamelCase__ ) @property def A_ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } UpperCAmelCase : str = PriorTransformer(**lowerCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 UpperCAmelCase : str = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def A_ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : List[str] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) UpperCAmelCase : Optional[Any] = CLIPVisionModelWithProjection(lowerCamelCase__ ) return model @property def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=lowerCamelCase__ , do_normalize=lowerCamelCase__ , do_resize=lowerCamelCase__ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self.dummy_prior UpperCAmelCase : List[Any] = self.dummy_image_encoder UpperCAmelCase : Optional[Any] = self.dummy_text_encoder UpperCAmelCase : Optional[int] = self.dummy_tokenizer UpperCAmelCase : Optional[int] = self.dummy_image_processor UpperCAmelCase : int = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=lowerCamelCase__ , clip_sample_range=10.0 , ) UpperCAmelCase : str = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def A_ ( self , snake_case , snake_case=0 ): '''simple docstring''' if str(lowerCamelCase__ ).startswith("mps" ): UpperCAmelCase : Optional[int] = torch.manual_seed(lowerCamelCase__ ) else: UpperCAmelCase : Union[str, Any] = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) UpperCAmelCase : Any = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = "cpu" UpperCAmelCase : Union[str, Any] = self.get_dummy_components() UpperCAmelCase : List[str] = self.pipeline_class(**lowerCamelCase__ ) UpperCAmelCase : Dict = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase : List[Any] = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) UpperCAmelCase : List[Any] = output.image_embeds UpperCAmelCase : Optional[Any] = pipe( **self.get_dummy_inputs(lowerCamelCase__ ) , return_dict=lowerCamelCase__ , )[0] UpperCAmelCase : Tuple = image[0, -1_0:] UpperCAmelCase : int = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) UpperCAmelCase : Optional[Any] = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[Any] = torch_device == "cpu" UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Dict = False self._test_inference_batch_single_identical( test_max_difference=lowerCamelCase__ , relax_max_difference=lowerCamelCase__ , test_mean_pixel_difference=lowerCamelCase__ , ) @skip_mps def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = torch_device == "cpu" UpperCAmelCase : Optional[int] = False self._test_attention_slicing_forward_pass( test_max_difference=lowerCamelCase__ , test_mean_pixel_difference=lowerCamelCase__ , )
679
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): '''simple docstring''' try: A_ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A_ = default else: # KEY is set, convert it to True or False. try: A_ = strtobool(SCREAMING_SNAKE_CASE ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value __lowercase = parse_flag_from_env("""RUN_SLOW""", default=False) __lowercase = parse_flag_from_env("""RUN_REMOTE""", default=False) __lowercase = parse_flag_from_env("""RUN_LOCAL""", default=True) __lowercase = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression __lowercase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") __lowercase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") __lowercase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio __lowercase = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam __lowercase = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility __lowercase = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows __lowercase = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' try: import faiss # noqa except ImportError: A_ = unittest.skip('''test requires faiss''' )(SCREAMING_SNAKE_CASE ) return test_case def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' try: import regex # noqa except ImportError: A_ = unittest.skip('''test requires regex''' )(SCREAMING_SNAKE_CASE ) return test_case def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: A_ = unittest.skip('''test requires elasticsearch''' )(SCREAMING_SNAKE_CASE ) return test_case def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: A_ = unittest.skip('''test requires sqlalchemy''' )(SCREAMING_SNAKE_CASE ) return test_case def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not config.TORCH_AVAILABLE: A_ = unittest.skip('''test requires PyTorch''' )(SCREAMING_SNAKE_CASE ) return test_case def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not config.TF_AVAILABLE: A_ = unittest.skip('''test requires TensorFlow''' )(SCREAMING_SNAKE_CASE ) return test_case def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not config.JAX_AVAILABLE: A_ = unittest.skip('''test requires JAX''' )(SCREAMING_SNAKE_CASE ) return test_case def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not config.PIL_AVAILABLE: A_ = unittest.skip('''test requires Pillow''' )(SCREAMING_SNAKE_CASE ) return test_case def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(SCREAMING_SNAKE_CASE ) else: return test_case def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(SCREAMING_SNAKE_CASE ) else: return test_case def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(SCREAMING_SNAKE_CASE ) else: return test_case def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def _require_spacy_model(SCREAMING_SNAKE_CASE ): try: import spacy # noqa F401 spacy.load(SCREAMING_SNAKE_CASE ) except ImportError: return unittest.skip('''test requires spacy''' )(SCREAMING_SNAKE_CASE ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(SCREAMING_SNAKE_CASE ) )(SCREAMING_SNAKE_CASE ) else: return test_case return _require_spacy_model def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(SCREAMING_SNAKE_CASE ) else: return test_case def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(SCREAMING_SNAKE_CASE ) else: return test_case def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: A_ = unittest.skip('''test is slow''' )(SCREAMING_SNAKE_CASE ) return test_case def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: A_ = unittest.skip('''test is local''' )(SCREAMING_SNAKE_CASE ) return test_case def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: A_ = unittest.skip('''test is packaged''' )(SCREAMING_SNAKE_CASE ) return test_case def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: A_ = unittest.skip('''test requires remote''' )(SCREAMING_SNAKE_CASE ) return test_case def _lowerCamelCase ( *SCREAMING_SNAKE_CASE ): '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(SCREAMING_SNAKE_CASE ) and name.startswith('''test''' ): for decorator in decorators: A_ = decorator(SCREAMING_SNAKE_CASE ) setattr(cls , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return cls return decorate class _lowercase ( __lowerCamelCase ): pass class _lowercase ( __lowerCamelCase ): _lowercase : Dict = 0 _lowercase : Any = 1 _lowercase : Tuple = 2 @contextmanager def _lowerCamelCase ( SCREAMING_SNAKE_CASE=OfflineSimulationMode.CONNECTION_FAILS , SCREAMING_SNAKE_CASE=1E-16 ): '''simple docstring''' A_ = requests.Session().request def timeout_request(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): # Change the url to an invalid url so that the connection hangs A_ = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) A_ = timeout try: return online_request(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier A_ = url A_ = e.args[0] A_ = (max_retry_error.args[0].replace('''10.255.255.1''' , f"OfflineMock[{url}]" ),) A_ = (max_retry_error,) raise def raise_connection_error(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): raise requests.ConnectionError('''Offline mode is enabled.''' , request=SCREAMING_SNAKE_CASE ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , SCREAMING_SNAKE_CASE ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , SCREAMING_SNAKE_CASE ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , SCREAMING_SNAKE_CASE ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def _lowerCamelCase ( *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = str(Path().resolve() ) with tempfile.TemporaryDirectory(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) as tmp_dir: try: os.chdir(SCREAMING_SNAKE_CASE ) yield finally: os.chdir(SCREAMING_SNAKE_CASE ) @contextmanager def _lowerCamelCase ( ): '''simple docstring''' import gc gc.collect() A_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _lowerCamelCase ( ): '''simple docstring''' import gc gc.collect() A_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return deepcopy(SCREAMING_SNAKE_CASE ).integers(0 , 100 , 10 ).tolist() == deepcopy(SCREAMING_SNAKE_CASE ).integers(0 , 100 , 10 ).tolist() def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): try: return func(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) except HTTPError as err: if str(SCREAMING_SNAKE_CASE ).startswith('''500''' ) or str(SCREAMING_SNAKE_CASE ).startswith('''502''' ): pytest.xfail(str(SCREAMING_SNAKE_CASE ) ) raise err return decorator.decorator(_wrapper , SCREAMING_SNAKE_CASE ) class _lowercase : def __init__( self : Any , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : Dict ) -> Any: """simple docstring""" A_ = returncode A_ = stdout A_ = stderr async def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' while True: A_ = await stream.readline() if line: callback(SCREAMING_SNAKE_CASE ) else: break async def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ): '''simple docstring''' if echo: print('''\nRunning: ''' , ''' '''.join(SCREAMING_SNAKE_CASE ) ) A_ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=SCREAMING_SNAKE_CASE , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=SCREAMING_SNAKE_CASE , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A_ = [] A_ = [] def tee(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="" ): A_ = line.decode('''utf-8''' ).rstrip() sink.append(SCREAMING_SNAKE_CASE ) if not quiet: print(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , file=SCREAMING_SNAKE_CASE ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda SCREAMING_SNAKE_CASE : tee(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , sys.stdout , label='''stdout:''' ) ), _read_stream(p.stderr , lambda SCREAMING_SNAKE_CASE : tee(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , sys.stderr , label='''stderr:''' ) ), ] , timeout=SCREAMING_SNAKE_CASE , ) return _RunOutput(await p.wait() , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=180 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True ): '''simple docstring''' A_ = asyncio.get_event_loop() A_ = loop.run_until_complete( _stream_subprocess(SCREAMING_SNAKE_CASE , env=SCREAMING_SNAKE_CASE , stdin=SCREAMING_SNAKE_CASE , timeout=SCREAMING_SNAKE_CASE , quiet=SCREAMING_SNAKE_CASE , echo=SCREAMING_SNAKE_CASE ) ) A_ = ''' '''.join(SCREAMING_SNAKE_CASE ) if result.returncode > 0: A_ = '''\n'''.join(result.stderr ) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"'{cmd_str}' produced no output." ) return result def _lowerCamelCase ( ): '''simple docstring''' A_ = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' ) A_ = re.sub(R'''^gw''' , '''''' , SCREAMING_SNAKE_CASE , 0 , re.M ) return int(SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( ): '''simple docstring''' A_ = 29500 A_ = pytest_xdist_worker_id() return port + uniq_delta
203
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __lowerCAmelCase : int =logging.get_logger(__name__) __lowerCAmelCase : Optional[int] ={'vocab_file': 'vocab.txt'} __lowerCAmelCase : Dict ={ 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __lowerCAmelCase : int ={ 'YituTech/conv-bert-base': 5_1_2, 'YituTech/conv-bert-medium-small': 5_1_2, 'YituTech/conv-bert-small': 5_1_2, } __lowerCAmelCase : List[Any] ={ 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[Any] = ConvBertTokenizer def __init__( self :str , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :str=True , lowerCAmelCase__ :Optional[Any]="[UNK]" , lowerCAmelCase__ :Optional[int]="[SEP]" , lowerCAmelCase__ :Union[str, Any]="[PAD]" , lowerCAmelCase__ :Any="[CLS]" , lowerCAmelCase__ :List[str]="[MASK]" , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :int=None , **lowerCAmelCase__ :int , ) -> Dict: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE : int = getattr(lowerCAmelCase__ , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : Tuple = do_lower_case __SCREAMING_SNAKE_CASE : List[Any] = strip_accents __SCREAMING_SNAKE_CASE : Optional[int] = tokenize_chinese_chars __SCREAMING_SNAKE_CASE : Dict = normalizer_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case def __magic_name__( self :List[str] , lowerCAmelCase__ :Any , lowerCAmelCase__ :int=None ) -> List[Any]: __SCREAMING_SNAKE_CASE : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__( self :str , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : str = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
702
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = (EulerDiscreteScheduler,) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 10 def __magic_name__( self :Dict , **lowerCAmelCase__ :Any ) -> int: __SCREAMING_SNAKE_CASE : List[str] = { '''num_train_timesteps''': 1_100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCAmelCase__ ) return config def __magic_name__( self :str ) -> Optional[Any]: for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def __magic_name__( self :str ) -> List[str]: for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def __magic_name__( self :Dict ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def __magic_name__( self :Dict ) -> int: __SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : Dict = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_model() __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __SCREAMING_SNAKE_CASE : Any = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __SCREAMING_SNAKE_CASE : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample __SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def __magic_name__( self :Union[str, Any] ) -> int: __SCREAMING_SNAKE_CASE : Tuple = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) __SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __SCREAMING_SNAKE_CASE : Dict = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = output.prev_sample __SCREAMING_SNAKE_CASE : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3 def __magic_name__( self :Optional[int] ) -> List[str]: __SCREAMING_SNAKE_CASE : Any = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = self.dummy_model() __SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: __SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample __SCREAMING_SNAKE_CASE : Dict = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def __magic_name__( self :List[Any] ) -> int: __SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __SCREAMING_SNAKE_CASE : List[str] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: __SCREAMING_SNAKE_CASE : Any = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = output.prev_sample __SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1E-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1E-3
260
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _A = 16 _A = 32 def A_ ( __SCREAMING_SNAKE_CASE : Accelerator , __SCREAMING_SNAKE_CASE : int = 16 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __SCREAMING_SNAKE_CASE : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__SCREAMING_SNAKE_CASE : Dict ): # max_length=None => use the model max length (it's actually the default) __SCREAMING_SNAKE_CASE : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE : Dict = datasets.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __SCREAMING_SNAKE_CASE : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__SCREAMING_SNAKE_CASE : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __SCREAMING_SNAKE_CASE : Union[str, Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __SCREAMING_SNAKE_CASE : Dict = 16 elif accelerator.mixed_precision != "no": __SCREAMING_SNAKE_CASE : List[Any] = 8 else: __SCREAMING_SNAKE_CASE : List[Any] = None return tokenizer.pad( __SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) # Instantiate dataloaders. __SCREAMING_SNAKE_CASE : Any = DataLoader( tokenized_datasets['''train'''] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : int = DataLoader( tokenized_datasets['''validation'''] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _A = mocked_dataloaders # noqa: F811 def A_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __SCREAMING_SNAKE_CASE ) == "1": __SCREAMING_SNAKE_CASE : int = 2 # New Code # __SCREAMING_SNAKE_CASE : Tuple = int(args.gradient_accumulation_steps ) # Initialize accelerator __SCREAMING_SNAKE_CASE : Optional[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__SCREAMING_SNAKE_CASE ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __SCREAMING_SNAKE_CASE : Tuple = config['''lr'''] __SCREAMING_SNAKE_CASE : Any = int(config['''num_epochs'''] ) __SCREAMING_SNAKE_CASE : int = int(config['''seed'''] ) __SCREAMING_SNAKE_CASE : Optional[Any] = int(config['''batch_size'''] ) __SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) set_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = get_dataloaders(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __SCREAMING_SNAKE_CASE : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer __SCREAMING_SNAKE_CASE : List[str] = AdamW(params=model.parameters() , lr=__SCREAMING_SNAKE_CASE ) # Instantiate scheduler __SCREAMING_SNAKE_CASE : str = get_linear_schedule_with_warmup( optimizer=__SCREAMING_SNAKE_CASE , num_warmup_steps=1_00 , num_training_steps=(len(__SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(__SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE : Dict = model(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Optional[Any] = output.loss accelerator.backward(__SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Tuple = model(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __SCREAMING_SNAKE_CASE ) def A_ ( ) -> List[str]: __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=__SCREAMING_SNAKE_CASE , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() __SCREAMING_SNAKE_CASE : Optional[int] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
158
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A = { """configuration_graphormer""": ["""GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GraphormerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """GraphormerForGraphClassification""", """GraphormerModel""", """GraphormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
158
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _lowerCAmelCase ( unittest.TestCase ): def __a ( self , _UpperCamelCase ) -> Tuple: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): lowerCAmelCase_ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_UpperCAmelCase ) def __a ( self ) -> str: lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> int: lowerCAmelCase_ = '''sgugger/tiny-distilbert-classification''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , only_pretrain_model=_UpperCAmelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , torchscript=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def __a ( self ) -> str: lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , fpaa=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> Tuple: lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase ) # set architectures equal to `None` lowerCAmelCase_ = None lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> Tuple: lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can\'t do half precision" ) def __a ( self ) -> Dict: lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_UpperCAmelCase , multi_process=_UpperCAmelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __a ( self ) -> Dict: lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = '''sshleifer/tinier_bart''' lowerCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = '''sshleifer/tinier_bart''' lowerCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __a ( self ) -> Any: lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , save_to_csv=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_UpperCAmelCase , "inf_time.csv" ) , train_memory_csv_file=os.path.join(_UpperCAmelCase , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(_UpperCAmelCase , "inf_mem.csv" ) , train_time_csv_file=os.path.join(_UpperCAmelCase , "train_time.csv" ) , env_info_csv_file=os.path.join(_UpperCAmelCase , "env.csv" ) , multi_process=_UpperCAmelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_UpperCAmelCase , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCAmelCase , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCAmelCase , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCAmelCase , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCAmelCase , "env.csv" ) ).exists() ) def __a ( self ) -> int: lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_UpperCamelCase ): self.assertTrue(hasattr(_UpperCAmelCase , "sequential" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "cumulative" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "current" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_UpperCAmelCase , "log.txt" ) , log_print=_UpperCAmelCase , trace_memory_line_by_line=_UpperCAmelCase , multi_process=_UpperCAmelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_UpperCAmelCase ) lowerCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_UpperCAmelCase , "log.txt" ) ).exists() )
713
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _A = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _lowerCAmelCase ( nn.Module ): def __init__( self , _UpperCamelCase ) -> Optional[Any]: super().__init__() lowerCAmelCase_ = torchvision.models.resnetaaa(pretrained=_UpperCamelCase ) lowerCAmelCase_ = list(model.children() )[:-2] lowerCAmelCase_ = nn.Sequential(*_UpperCamelCase ) lowerCAmelCase_ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def __a ( self , _UpperCamelCase ) -> Dict: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 lowerCAmelCase_ = self.pool(self.model(_UpperCamelCase ) ) lowerCAmelCase_ = torch.flatten(_UpperCamelCase , start_dim=2 ) lowerCAmelCase_ = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: lowerCAmelCase_ = [json.loads(_UpperCamelCase ) for l in open(_UpperCamelCase )] lowerCAmelCase_ = os.path.dirname(_UpperCamelCase ) lowerCAmelCase_ = tokenizer lowerCAmelCase_ = labels lowerCAmelCase_ = len(_UpperCamelCase ) lowerCAmelCase_ = max_seq_length lowerCAmelCase_ = transforms def __len__( self ) -> Any: return len(self.data ) def __getitem__( self , _UpperCamelCase ) -> Any: lowerCAmelCase_ = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=_UpperCamelCase ) ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = sentence[0], sentence[1:-1], sentence[-1] lowerCAmelCase_ = sentence[: self.max_seq_length] lowerCAmelCase_ = torch.zeros(self.n_classes ) lowerCAmelCase_ = 1 lowerCAmelCase_ = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) lowerCAmelCase_ = self.transforms(_UpperCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def __a ( self ) -> str: lowerCAmelCase_ = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def lowerCamelCase__ ( __lowerCAmelCase : List[str] ): """simple docstring""" lowerCAmelCase_ = [len(row["sentence"] ) for row in batch] lowerCAmelCase_ , lowerCAmelCase_ = len(__lowerCAmelCase ), max(__lowerCAmelCase ) lowerCAmelCase_ = torch.zeros(__lowerCAmelCase , __lowerCAmelCase , dtype=torch.long ) lowerCAmelCase_ = torch.zeros(__lowerCAmelCase , __lowerCAmelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__lowerCAmelCase , __lowerCAmelCase ) ): lowerCAmelCase_ = input_row["sentence"] lowerCAmelCase_ = 1 lowerCAmelCase_ = torch.stack([row["image"] for row in batch] ) lowerCAmelCase_ = torch.stack([row["label"] for row in batch] ) lowerCAmelCase_ = torch.stack([row["image_start_token"] for row in batch] ) lowerCAmelCase_ = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase__ ( ): """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase__ ( ): """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
279
0
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline __SCREAMING_SNAKE_CASE = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": __SCREAMING_SNAKE_CASE = 'hopper-medium-v2' __SCREAMING_SNAKE_CASE = gym.make(env_name) __SCREAMING_SNAKE_CASE = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) __SCREAMING_SNAKE_CASE = env.reset() __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 10_00 __SCREAMING_SNAKE_CASE = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy __SCREAMING_SNAKE_CASE = pipeline(obs, planning_horizon=32) # execute action in environment __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = env.step(denorm_actions) __SCREAMING_SNAKE_CASE = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" F""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) __SCREAMING_SNAKE_CASE = next_observation except KeyboardInterrupt: pass print(F"""Total reward: {total_reward}""")
553
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self : int ) -> Optional[Any]: lowerCAmelCase :Any = ort.SessionOptions() lowerCAmelCase :Dict = False return options def UpperCAmelCase__ ( self : Tuple ) -> str: lowerCAmelCase :Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) lowerCAmelCase :str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) lowerCAmelCase :List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default lowerCAmelCase :Tuple = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=UpperCAmelCase , feature_extractor=UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase :Optional[Any] = 'A red cat sitting on a park bench' lowerCAmelCase :Optional[Any] = np.random.RandomState(0 ) lowerCAmelCase :Union[str, Any] = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , mask_image=UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=15 , generator=UpperCAmelCase , output_type='np' , ) lowerCAmelCase :Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
553
1
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') _SCREAMING_SNAKE_CASE : Union[str, Any] = F'''https://www.google.com/search?q={query}&num=100''' _SCREAMING_SNAKE_CASE : Dict = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: _SCREAMING_SNAKE_CASE : Optional[int] = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: _SCREAMING_SNAKE_CASE : Dict = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
712
"""simple docstring""" from math import asin, atan, cos, radians, sin, sqrt, tan _SCREAMING_SNAKE_CASE : Dict = 637_8137.0 _SCREAMING_SNAKE_CASE : Any = 635_6752.31_4245 _SCREAMING_SNAKE_CASE : List[Any] = 637_8137 def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float: lowerCamelCase_ = (AXIS_A - AXIS_B) / AXIS_A lowerCamelCase_ = atan((1 - flattening) * tan(radians(_lowerCamelCase ) ) ) lowerCamelCase_ = atan((1 - flattening) * tan(radians(_lowerCamelCase ) ) ) lowerCamelCase_ = radians(_lowerCamelCase ) lowerCamelCase_ = radians(_lowerCamelCase ) # Equation lowerCamelCase_ = sin((phi_a - phi_a) / 2 ) lowerCamelCase_ = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda lowerCamelCase_ = sqrt(sin_sq_phi + (cos(_lowerCamelCase ) * cos(_lowerCamelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
137
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _lowerCamelCase = get_logger(__name__) _lowerCamelCase = r'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class __A : """simple docstring""" @add_start_docstrings(a__) def __call__( self , a__ , a__): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""") class __A : """simple docstring""" @add_start_docstrings(a__) def __call__( self , a__ , a__): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""") class __A ( lowerCamelCase__ ): """simple docstring""" @add_start_docstrings(a__) def __call__( self , a__ , a__ , a__ , **a__): """simple docstring""" for processor in self: _lowerCamelCase : Union[str, Any] = inspect.signature(processor.__call__).parameters if len(a__) > 3: if not all(arg in kwargs for arg in list(function_args.keys())[2:]): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys())} for """ F"""{processor.__class__} are passed to the logits processor.""") _lowerCamelCase : Tuple = processor(a__ , a__ , a__ , **a__) else: _lowerCamelCase : Optional[int] = processor(a__ , a__ , a__) return scores class __A ( lowerCamelCase__ ): """simple docstring""" def __init__( self , a__): """simple docstring""" if not isinstance(a__ , a__) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""") _lowerCamelCase : Tuple = temperature def __call__( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase : Any = scores / self.temperature return scores class __A ( lowerCamelCase__ ): """simple docstring""" def __init__( self , a__ , a__ = -float('''Inf''') , a__ = 1): """simple docstring""" if not isinstance(a__ , a__) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""") if not isinstance(a__ , a__) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""") _lowerCamelCase : int = top_p _lowerCamelCase : Union[str, Any] = filter_value _lowerCamelCase : Optional[Any] = min_tokens_to_keep def __call__( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase, _lowerCamelCase : int = lax.top_k(a__ , scores.shape[-1]) _lowerCamelCase : int = jnp.full_like(a__ , self.filter_value) _lowerCamelCase : Optional[int] = jax.nn.softmax(a__ , axis=-1).cumsum(axis=-1) _lowerCamelCase : List[Any] = cumulative_probs < self.top_p # include the token that is higher than top_p as well _lowerCamelCase : Optional[Any] = jnp.roll(a__ , 1) score_mask |= score_mask.at[:, 0].set(a__) # min tokens to keep _lowerCamelCase : str = score_mask.at[:, : self.min_tokens_to_keep].set(a__) _lowerCamelCase : int = jnp.where(a__ , a__ , a__) _lowerCamelCase : Any = jax.lax.sort_key_val(a__ , a__)[-1] return next_scores class __A ( lowerCamelCase__ ): """simple docstring""" def __init__( self , a__ , a__ = -float('''Inf''') , a__ = 1): """simple docstring""" if not isinstance(a__ , a__) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""") _lowerCamelCase : List[Any] = max(a__ , a__) _lowerCamelCase : Union[str, Any] = filter_value def __call__( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase, _lowerCamelCase : List[Any] = scores.shape _lowerCamelCase : List[Any] = jnp.full(batch_size * vocab_size , self.filter_value) _lowerCamelCase : Union[str, Any] = min(self.top_k , scores.shape[-1]) # Safety check _lowerCamelCase, _lowerCamelCase : int = lax.top_k(a__ , a__) _lowerCamelCase : int = jnp.broadcast_to((jnp.arange(a__) * vocab_size)[:, None] , (batch_size, topk)).flatten() _lowerCamelCase : List[Any] = topk_scores.flatten() _lowerCamelCase : Any = topk_indices.flatten() + shift _lowerCamelCase : str = next_scores_flat.at[topk_indices_flat].set(a__) _lowerCamelCase : Optional[int] = next_scores_flat.reshape(a__ , a__) return next_scores class __A ( lowerCamelCase__ ): """simple docstring""" def __init__( self , a__): """simple docstring""" _lowerCamelCase : Dict = bos_token_id def __call__( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase : List[str] = jnp.full(scores.shape , -float('''inf''')) _lowerCamelCase : Dict = 1 - jnp.bool_(cur_len - 1) _lowerCamelCase : List[str] = jnp.where(a__ , new_scores.at[:, self.bos_token_id].set(0) , a__) return scores class __A ( lowerCamelCase__ ): """simple docstring""" def __init__( self , a__ , a__): """simple docstring""" _lowerCamelCase : List[str] = max_length _lowerCamelCase : Any = eos_token_id def __call__( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase : List[Any] = jnp.full(scores.shape , -float('''inf''')) _lowerCamelCase : Any = 1 - jnp.bool_(cur_len - self.max_length + 1) _lowerCamelCase : List[str] = jnp.where(a__ , new_scores.at[:, self.eos_token_id].set(0) , a__) return scores class __A ( lowerCamelCase__ ): """simple docstring""" def __init__( self , a__ , a__): """simple docstring""" if not isinstance(a__ , a__) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""") if not isinstance(a__ , a__) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""") _lowerCamelCase : List[Any] = min_length _lowerCamelCase : Any = eos_token_id def __call__( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase : Tuple = 1 - jnp.clip(cur_len - self.min_length , 0 , 1) _lowerCamelCase : int = jnp.where(a__ , scores.at[:, self.eos_token_id].set(-float('''inf''')) , a__) return scores class __A ( lowerCamelCase__ ): """simple docstring""" def __init__( self , a__ , a__): """simple docstring""" _lowerCamelCase : int = list(a__) _lowerCamelCase : Union[str, Any] = begin_index def __call__( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase : List[Any] = 1 - jnp.bool_(cur_len - self.begin_index) _lowerCamelCase : Dict = jnp.where(a__ , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''')) , a__) return scores class __A ( lowerCamelCase__ ): """simple docstring""" def __init__( self , a__): """simple docstring""" _lowerCamelCase : Union[str, Any] = list(a__) def __call__( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase : Optional[Any] = scores.at[..., self.suppress_tokens].set(-float('''inf''')) return scores class __A ( lowerCamelCase__ ): """simple docstring""" def __init__( self , a__): """simple docstring""" _lowerCamelCase : List[Any] = dict(a__) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _lowerCamelCase : List[str] = jnp.ones((max(force_token_map.keys()) + 1) , dtype=jnp.intaa) * -1 for index, token in force_token_map.items(): if token is not None: _lowerCamelCase : List[Any] = force_token_array.at[index].set(a__) _lowerCamelCase : Tuple = jnp.intaa(a__) def __call__( self , a__ , a__ , a__): """simple docstring""" def _force_token(a__): _lowerCamelCase : Any = scores.shape[0] _lowerCamelCase : Tuple = self.force_token_array[generation_idx] _lowerCamelCase : Dict = jnp.ones_like(a__ , dtype=scores.dtype) * -float('''inf''') _lowerCamelCase : List[Any] = jnp.zeros((batch_size, 1) , dtype=scores.dtype) _lowerCamelCase : Optional[int] = lax.dynamic_update_slice(a__ , a__ , (0, current_token)) return new_scores _lowerCamelCase : Any = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(a__) , lambda: scores , ) , ) return scores class __A ( lowerCamelCase__ ): """simple docstring""" def __init__( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase : str = generate_config.eos_token_id _lowerCamelCase : List[str] = generate_config.no_timestamps_token_id _lowerCamelCase : str = generate_config.no_timestamps_token_id + 1 _lowerCamelCase : List[Any] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(a__ , '''max_initial_timestamp_index'''): _lowerCamelCase : str = generate_config.max_initial_timestamp_index else: _lowerCamelCase : List[str] = model_config.vocab_size if self.max_initial_timestamp_index is None: _lowerCamelCase : Dict = model_config.vocab_size def __call__( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase : List[Any] = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''')) def handle_pairs(a__ , a__): _lowerCamelCase : Optional[Any] = jnp.where((cur_len - self.begin_index) >= 1 , a__ , a__) _lowerCamelCase : int = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , a__ , ) _lowerCamelCase : Tuple = jnp.where((cur_len - self.begin_index) < 2 , a__ , a__) _lowerCamelCase : int = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , a__ , a__ , ) return jnp.where( a__ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''')) , scores_k.at[: self.eos_token_id].set(-float('''inf''')) , ) , a__ , ) _lowerCamelCase : Any = jax.vmap(a__)(a__ , a__) _lowerCamelCase : Any = jnp.where(cur_len == self.begin_index , a__ , a__) _lowerCamelCase : Any = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , a__ , ) _lowerCamelCase : List[Any] = self.timestamp_begin + self.max_initial_timestamp_index _lowerCamelCase : str = jnp.where( a__ , scores.at[:, last_allowed + 1 :].set(-float('''inf''')) , a__ , ) # if sum of probability over timestamps is above any other token, sample timestamp _lowerCamelCase : str = jax.nn.log_softmax(a__ , axis=-1) def handle_cumulative_probs(a__ , a__): _lowerCamelCase : Any = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1) _lowerCamelCase : str = jnp.max(logprobs_k[: self.timestamp_begin]) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''')) , a__ , ) _lowerCamelCase : List[Any] = jax.vmap(a__)(a__ , a__) return scores
114
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor _lowerCamelCase = logging.get_logger(__name__) class __A ( lowerCamelCase__ ): """simple docstring""" def __init__( self , *a__ , **a__): """simple docstring""" warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , a__ , ) super().__init__(*a__ , **a__)
114
1
'''simple docstring''' # Algorithm for the pigeonhole sorting def UpperCamelCase__ ( __magic_name__ : str ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[Any] = min(_A ) # min() finds the minimum value snake_case__ : Optional[int] = max(_A ) # max() finds the maximum value snake_case__ : Optional[Any] = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size snake_case__ : Optional[int] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_A , _A ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. snake_case__ : List[Any] = 0 for count in range(_A ): while holes[count] > 0: holes[count] -= 1 snake_case__ : Any = count + min_val i += 1 def UpperCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[Any] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_A ) print("""Sorted order is:""" , """ """.join(_A ) ) if __name__ == "__main__": main()
709
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process A_ : Dict = logging.getLogger(__name__) A_ : List[Any] = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) A_ : Union[str, Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __snake_case : '''simple docstring''' lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__SCREAMING_SNAKE_CASE )} , ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) lowerCamelCase__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def __UpperCamelCase ( self ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class __snake_case : '''simple docstring''' lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input training data file (a text file).'''} ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) lowerCamelCase__ = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowerCamelCase__ = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) lowerCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def __UpperCamelCase ( self ): if self.train_file is not None: snake_case__ : Optional[Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: snake_case__ : int = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : List[str] ) -> Optional[int]: '''simple docstring''' with open(__magic_name__ , """r""" , encoding="""utf-8""" ) as f: snake_case__ : Tuple = [json.loads(__magic_name__ ) for line in f.read().splitlines() if (len(__magic_name__ ) > 0 and not line.isspace())] assert len(__magic_name__ ) == len(__magic_name__ ) snake_case__ : Optional[int] = {c: dataset[c] for c in dataset.column_names} snake_case__ : Dict = refs return Dataset.from_dict(__magic_name__ ) def UpperCamelCase__ ( ) -> List[str]: '''simple docstring''' snake_case__ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case__ , snake_case__ , snake_case__ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case__ , snake_case__ , snake_case__ : str = parser.parse_args_into_dataclasses() # Detecting last checkpoint. snake_case__ : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case__ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , __magic_name__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. snake_case__ : Optional[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): snake_case__ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"train[:{data_args.validation_split_percentage}%]" , ) snake_case__ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"train[{data_args.validation_split_percentage}%:]" , ) else: snake_case__ : Optional[int] = {} if data_args.train_file is not None: snake_case__ : Tuple = data_args.train_file if data_args.validation_file is not None: snake_case__ : Optional[int] = data_args.validation_file snake_case__ : str = data_args.train_file.split(""".""" )[-1] if extension == "txt": snake_case__ : Dict = """text""" snake_case__ : Union[str, Any] = load_dataset(__magic_name__ , data_files=__magic_name__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case__ : Optional[int] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: snake_case__ : Any = AutoConfig.from_pretrained(model_args.config_name , **__magic_name__ ) elif model_args.model_name_or_path: snake_case__ : Optional[int] = AutoConfig.from_pretrained(model_args.model_name_or_path , **__magic_name__ ) else: snake_case__ : Tuple = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) snake_case__ : Union[str, Any] = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: snake_case__ : Union[str, Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__magic_name__ ) elif model_args.model_name_or_path: snake_case__ : int = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__magic_name__ ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: snake_case__ : Optional[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) snake_case__ : int = AutoModelForMaskedLM.from_config(__magic_name__ ) model.resize_token_embeddings(len(__magic_name__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: snake_case__ : Dict = datasets["""train"""].column_names else: snake_case__ : Optional[Any] = datasets["""validation"""].column_names snake_case__ : int = """text""" if """text""" in column_names else column_names[0] snake_case__ : str = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(__magic_name__ : Optional[Any] ): # Remove empty lines snake_case__ : Union[str, Any] = [line for line in examples["""text"""] if len(__magic_name__ ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=__magic_name__ , truncation=__magic_name__ , max_length=data_args.max_seq_length ) snake_case__ : Union[str, Any] = datasets.map( __magic_name__ , batched=__magic_name__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: snake_case__ : Optional[int] = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: snake_case__ : Tuple = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer snake_case__ : int = data_args.train_ref_file or data_args.validation_ref_file if has_ref: snake_case__ : Optional[int] = False # Data collator # This one will take care of randomly masking the tokens. snake_case__ : Union[str, Any] = DataCollatorForWholeWordMask(tokenizer=__magic_name__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer snake_case__ : Tuple = Trainer( model=__magic_name__ , args=__magic_name__ , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=__magic_name__ , data_collator=__magic_name__ , ) # Training if training_args.do_train: if last_checkpoint is not None: snake_case__ : Tuple = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): snake_case__ : Union[str, Any] = model_args.model_name_or_path else: snake_case__ : Dict = None snake_case__ : List[str] = trainer.train(resume_from_checkpoint=__magic_name__ ) trainer.save_model() # Saves the tokenizer too for easy upload snake_case__ : Any = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(__magic_name__ , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation snake_case__ : int = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) snake_case__ : int = trainer.evaluate() snake_case__ : int = math.exp(eval_output["""eval_loss"""] ) snake_case__ : Union[str, Any] = perplexity snake_case__ : Dict = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(__magic_name__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) return results def UpperCamelCase__ ( __magic_name__ : Dict ) -> List[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
419
0
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __SCREAMING_SNAKE_CASE = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , __UpperCAmelCase ) if matches: __SCREAMING_SNAKE_CASE = float(matches[1] ) __SCREAMING_SNAKE_CASE = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __SCREAMING_SNAKE_CASE = 1001 __SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" __SCREAMING_SNAKE_CASE = """huggingface/label-files""" __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE = {int(__UpperCAmelCase ) + 1: v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = """background""" __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" __SCREAMING_SNAKE_CASE = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = get_mobilenet_va_config(__UpperCAmelCase ) # Load 🤗 model __SCREAMING_SNAKE_CASE = MobileNetVaForImageClassification(__UpperCAmelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __SCREAMING_SNAKE_CASE = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) __SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE = model(**__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __SCREAMING_SNAKE_CASE = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __SCREAMING_SNAKE_CASE = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __SCREAMING_SNAKE_CASE = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print("""Pushing to the hub...""" ) __SCREAMING_SNAKE_CASE = """google/""" + model_name image_processor.push_to_hub(__UpperCAmelCase ) model.push_to_hub(__UpperCAmelCase ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
109
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a = logging.get_logger(__name__) a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for attribute in key.split(""".""" ): __SCREAMING_SNAKE_CASE = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: __SCREAMING_SNAKE_CASE = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: __SCREAMING_SNAKE_CASE = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": __SCREAMING_SNAKE_CASE = value elif weight_type == "bias": __SCREAMING_SNAKE_CASE = value else: __SCREAMING_SNAKE_CASE = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = fairseq_model.state_dict() __SCREAMING_SNAKE_CASE = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __SCREAMING_SNAKE_CASE = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) __SCREAMING_SNAKE_CASE = True else: for key, mapped_key in MAPPING.items(): __SCREAMING_SNAKE_CASE = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): __SCREAMING_SNAKE_CASE = True if "*" in mapped_key: __SCREAMING_SNAKE_CASE = name.split(__UpperCAmelCase )[0].split(""".""" )[-2] __SCREAMING_SNAKE_CASE = mapped_key.replace("""*""" , __UpperCAmelCase ) if "weight_g" in name: __SCREAMING_SNAKE_CASE = """weight_g""" elif "weight_v" in name: __SCREAMING_SNAKE_CASE = """weight_v""" elif "weight" in name: __SCREAMING_SNAKE_CASE = """weight""" elif "bias" in name: __SCREAMING_SNAKE_CASE = """bias""" else: __SCREAMING_SNAKE_CASE = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = full_name.split("""conv_layers.""" )[-1] __SCREAMING_SNAKE_CASE = name.split(""".""" ) __SCREAMING_SNAKE_CASE = int(items[0] ) __SCREAMING_SNAKE_CASE = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __SCREAMING_SNAKE_CASE = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Tuple: '''simple docstring''' if config_path is not None: __SCREAMING_SNAKE_CASE = HubertConfig.from_pretrained(__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = HubertConfig() if is_finetuned: if dict_path: __SCREAMING_SNAKE_CASE = Dictionary.load(__UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __SCREAMING_SNAKE_CASE = target_dict.pad_index __SCREAMING_SNAKE_CASE = target_dict.bos_index __SCREAMING_SNAKE_CASE = target_dict.eos_index __SCREAMING_SNAKE_CASE = len(target_dict.symbols ) __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , """vocab.json""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__UpperCAmelCase ) ) return os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer( __UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__UpperCAmelCase , ) __SCREAMING_SNAKE_CASE = True if config.feat_extract_norm == """layer""" else False __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) __SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = HubertForCTC(__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = HubertModel(__UpperCAmelCase ) if is_finetuned: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __SCREAMING_SNAKE_CASE = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) hf_wavavec.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) a = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
109
1
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _UpperCAmelCase = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _UpperCAmelCase = get_tests_dir('fixtures/vocab.json') _UpperCAmelCase = get_tests_dir('fixtures') class snake_case_ ( unittest.TestCase ): A_ = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] def UpperCAmelCase__ ( self : Union[str, Any] )->str: '''simple docstring''' __lowerCAmelCase : int = 0 def UpperCAmelCase__ ( self : List[str] )->Tuple: '''simple docstring''' __lowerCAmelCase : int = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : List[Any] )->Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Optional[int] = WavaVecaConfig() __lowerCAmelCase : Tuple = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) __lowerCAmelCase : int = AutoProcessor.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : str )->Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(_snake_case , os.path.join(_snake_case , _snake_case ) ) copyfile(_snake_case , os.path.join(_snake_case , """vocab.json""" ) ) __lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : Optional[Any] )->Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Any = WavaVecaFeatureExtractor() __lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) __lowerCAmelCase : List[Any] = WavaVecaProcessor(_snake_case , _snake_case ) # save in new folder processor.save_pretrained(_snake_case ) # drop `processor_class` in tokenizer with open(os.path.join(_snake_case , _snake_case ) , """r""" ) as f: __lowerCAmelCase : Dict = json.load(_snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(_snake_case , _snake_case ) , """w""" ) as f: f.write(json.dumps(_snake_case ) ) __lowerCAmelCase : List[str] = AutoProcessor.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : Any )->Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Tuple = WavaVecaFeatureExtractor() __lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) __lowerCAmelCase : Union[str, Any] = WavaVecaProcessor(_snake_case , _snake_case ) # save in new folder processor.save_pretrained(_snake_case ) # drop `processor_class` in feature extractor with open(os.path.join(_snake_case , _snake_case ) , """r""" ) as f: __lowerCAmelCase : Any = json.load(_snake_case ) config_dict.pop("""processor_class""" ) with open(os.path.join(_snake_case , _snake_case ) , """w""" ) as f: f.write(json.dumps(_snake_case ) ) __lowerCAmelCase : Optional[Any] = AutoProcessor.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : Optional[int] )->Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : str = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(_snake_case ) # copy relevant files copyfile(_snake_case , os.path.join(_snake_case , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(_snake_case , _snake_case ) , """w""" ) as f: f.write("""{}""" ) __lowerCAmelCase : int = AutoProcessor.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : Optional[Any] )->Dict: '''simple docstring''' with self.assertRaises(_snake_case ): __lowerCAmelCase : List[Any] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_snake_case ): __lowerCAmelCase : str = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_snake_case ) __lowerCAmelCase : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_snake_case ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) __lowerCAmelCase : Union[str, Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) __lowerCAmelCase : Union[str, Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version __lowerCAmelCase : str = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_snake_case , use_fast=_snake_case ) __lowerCAmelCase : str = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def UpperCAmelCase__ ( self : int )->int: '''simple docstring''' try: AutoConfig.register("""custom""" , _snake_case ) AutoFeatureExtractor.register(_snake_case , _snake_case ) AutoTokenizer.register(_snake_case , slow_tokenizer_class=_snake_case ) AutoProcessor.register(_snake_case , _snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_snake_case ): AutoProcessor.register(_snake_case , _snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCAmelCase : Optional[int] = CustomFeatureExtractor.from_pretrained(_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase : Dict = os.path.join(_snake_case , """vocab.txt""" ) with open(_snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) __lowerCAmelCase : Optional[int] = CustomTokenizer(_snake_case ) __lowerCAmelCase : str = CustomProcessor(_snake_case , _snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(_snake_case ) __lowerCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase__ ( self : List[Any] )->int: '''simple docstring''' class snake_case_ ( __lowercase ): A_ = False class snake_case_ ( __lowercase ): A_ = False class snake_case_ ( __lowercase ): A_ = 'AutoFeatureExtractor' A_ = 'AutoTokenizer' A_ = False try: AutoConfig.register("""custom""" , _snake_case ) AutoFeatureExtractor.register(_snake_case , _snake_case ) AutoTokenizer.register(_snake_case , slow_tokenizer_class=_snake_case ) AutoProcessor.register(_snake_case , _snake_case ) # If remote code is not set, the default is to use local classes. __lowerCAmelCase : Any = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. __lowerCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. __lowerCAmelCase : str = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=_snake_case ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase__ ( self : Tuple )->str: '''simple docstring''' __lowerCAmelCase : int = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def UpperCAmelCase__ ( self : Union[str, Any] )->Any: '''simple docstring''' __lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class snake_case_ ( unittest.TestCase ): A_ = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def UpperCAmelCase__ ( cls : str )->Optional[int]: '''simple docstring''' __lowerCAmelCase : int = TOKEN HfFolder.save_token(_snake_case ) @classmethod def UpperCAmelCase__ ( cls : str )->Optional[Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def UpperCAmelCase__ ( self : Dict )->Dict: '''simple docstring''' __lowerCAmelCase : Optional[Any] = WavaVecaProcessor.from_pretrained(_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_snake_case , """test-processor""" ) , push_to_hub=_snake_case , use_auth_token=self._token ) __lowerCAmelCase : str = WavaVecaProcessor.from_pretrained(F'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_snake_case , getattr(new_processor.feature_extractor , _snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def UpperCAmelCase__ ( self : Optional[int] )->int: '''simple docstring''' __lowerCAmelCase : Tuple = WavaVecaProcessor.from_pretrained(_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_snake_case , """test-processor-org""" ) , push_to_hub=_snake_case , use_auth_token=self._token , organization="""valid_org""" , ) __lowerCAmelCase : Optional[Any] = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_snake_case , getattr(new_processor.feature_extractor , _snake_case ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def UpperCAmelCase__ ( self : Tuple )->str: '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() __lowerCAmelCase : int = CustomFeatureExtractor.from_pretrained(_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase : int = os.path.join(_snake_case , """vocab.txt""" ) with open(_snake_case , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) __lowerCAmelCase : Union[str, Any] = CustomTokenizer(_snake_case ) __lowerCAmelCase : List[Any] = CustomProcessor(_snake_case , _snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'''{USER}/test-dynamic-processor''' , token=self._token ) __lowerCAmelCase : str = Repository(_snake_case , clone_from=F'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(_snake_case ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(_snake_case , """tokenizer_config.json""" ) ) as f: __lowerCAmelCase : int = json.load(_snake_case ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(_snake_case , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(_snake_case , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(_snake_case , """custom_processing.py""" ) ) ) repo.push_to_hub() __lowerCAmelCase : Optional[Any] = AutoProcessor.from_pretrained(F'''{USER}/test-dynamic-processor''' , trust_remote_code=_snake_case ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
712
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :str ) -> str: if not (isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) __lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : Dict = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __lowerCAmelCase : List[str] = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __lowerCAmelCase : Tuple = i __lowerCAmelCase : Any = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
240
0
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _UpperCamelCase : '''simple docstring''' def __init__( self , _a , _a=99 , _a=13 , _a=7 , _a=9 , _a=True , _a=True , _a=False , _a=32 , _a=5 , _a=4 , _a=37 , _a=8 , _a=0.1 , _a=0.002 , _a=1 , _a=0 , _a=0 , _a=None , _a=None , ): """simple docstring""" a__ = parent a__ = batch_size a__ = encoder_seq_length a__ = decoder_seq_length # For common tests a__ = self.decoder_seq_length a__ = is_training a__ = use_attention_mask a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = d_ff a__ = relative_attention_num_buckets a__ = dropout_rate a__ = initializer_factor a__ = eos_token_id a__ = pad_token_id a__ = decoder_start_token_id a__ = None a__ = decoder_layers def lowercase__ ( self ): """simple docstring""" return TaConfig.from_pretrained('google/umt5-base' ) def lowercase__ ( self , _a , _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , ): """simple docstring""" if attention_mask is None: a__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: a__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: a__ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__A ) if decoder_head_mask is None: a__ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__A ) if cross_attn_head_mask is None: a__ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__A ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowercase__ ( self ): """simple docstring""" a__ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) a__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input a__ = input_ids.clamp(self.pad_token_id + 1 ) a__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) a__ = self.get_config() a__ = config.num_attention_heads a__ = self.prepare_inputs_dict(__A , __A , __A ) return config, input_dict def lowercase__ ( self ): """simple docstring""" a__ = self.prepare_config_and_inputs() return config, inputs_dict def lowercase__ ( self ): """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowercase__ ( self ): """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowercase__ ( self , _a , _a , _a , _a , _a , _a , ): """simple docstring""" a__ = UMTaModel(config=__A ) model.to(__A ) model.eval() a__ = model( input_ids=__A , decoder_input_ids=__A , attention_mask=__A , decoder_attention_mask=__A , ) a__ = model(input_ids=__A , decoder_input_ids=__A ) a__ = result.last_hidden_state a__ = result.past_key_values a__ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__A ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def lowercase__ ( self , _a , _a , _a , _a , _a , _a , ): """simple docstring""" a__ = UMTaModel(config=__A ).get_decoder().to(__A ).eval() # first forward pass a__ = model(__A , use_cache=__A ) a__ = model(__A ) a__ = model(__A , use_cache=__A ) self.parent.assertTrue(len(__A ) == len(__A ) ) self.parent.assertTrue(len(__A ) == len(__A ) + 1 ) a__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a__ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and a__ = torch.cat([input_ids, next_tokens] , dim=-1 ) a__ = model(__A )['''last_hidden_state'''] a__ = model(__A , past_key_values=__A )['''last_hidden_state'''] # select random slice a__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() a__ = output_from_no_past[:, -1, random_slice_idx].detach() a__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-3 ) ) def lowercase__ ( self , _a , _a , ): """simple docstring""" a__ = UMTaModel(config=__A ).to(__A ).half().eval() a__ = model(**__A )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__A ).any().item() ) @require_torch class _UpperCamelCase ( _A , _A , _A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE:Dict = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) SCREAMING_SNAKE_CASE:Optional[int] = (UMTaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE:int = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE:str = True SCREAMING_SNAKE_CASE:Tuple = False SCREAMING_SNAKE_CASE:int = False SCREAMING_SNAKE_CASE:List[str] = True SCREAMING_SNAKE_CASE:int = True # The small UMT5 model needs higher percentages for CPU/MP tests SCREAMING_SNAKE_CASE:Any = [0.8, 0.9] def lowercase__ ( self ): """simple docstring""" a__ = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def lowercase__ ( self ): """simple docstring""" a__ = self.model_tester.prepare_config_and_inputs() a__ = UMTaModel(config_and_inputs[0] ).to(__A ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __A , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=__A , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def lowercase__ ( self ): """simple docstring""" a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__A ) def lowercase__ ( self ): """simple docstring""" a__ = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] a__ = self.model_tester.prepare_config_and_inputs() a__ = config_and_inputs[0] a__ = UMTaForConditionalGeneration(__A ).eval() model.to(__A ) a__ = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__A ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__A ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__A ), } for attn_name, (name, mask) in zip(__A , head_masking.items() ): a__ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": a__ = torch.ones( config.num_decoder_layers , config.num_heads , device=__A ) a__ = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=__A , return_dict_in_generate=__A , **__A , ) # We check the state of decoder_attentions and cross_attentions just from the last step a__ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def lowercase__ ( self ): """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def lowercase__ ( self ): """simple docstring""" a__ = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=__A ).to(__A ) a__ = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=__A , legacy=__A ) a__ = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] a__ = tokenizer(__A , return_tensors='pt' , padding=__A ).input_ids # fmt: off a__ = torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__A , __A ) a__ = model.generate(input_ids.to(__A ) ) a__ = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] a__ = tokenizer.batch_decode(__A ) self.assertEqual(__A , __A )
394
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
443
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableDiffusionPanoramaPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) _UpperCamelCase = DDIMScheduler() torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCamelCase = CLIPTextModel(_A ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase_ ( self : Optional[Any] , _A : str , _A : int=0 ): _UpperCamelCase = torch.manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionPanoramaPipeline(**_A ) _UpperCamelCase = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = self.get_dummy_inputs(_A ) _UpperCamelCase = sd_pipe(**_A ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : List[Any] ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Optional[int] ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionPanoramaPipeline(**_A ) _UpperCamelCase = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = self.get_dummy_inputs(_A ) _UpperCamelCase = '''french fries''' _UpperCamelCase = sd_pipe(**_A , negative_prompt=_A ) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : int ): _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionPanoramaPipeline(**_A ) _UpperCamelCase = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = self.get_dummy_inputs(_A ) _UpperCamelCase = sd_pipe(**_A , view_batch_size=2 ) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) _UpperCamelCase = StableDiffusionPanoramaPipeline(**_A ) _UpperCamelCase = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = self.get_dummy_inputs(_A ) _UpperCamelCase = sd_pipe(**_A ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=_A ) _UpperCamelCase = StableDiffusionPanoramaPipeline(**_A ) _UpperCamelCase = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = self.get_dummy_inputs(_A ) _UpperCamelCase = sd_pipe(**_A ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Tuple , _A : Tuple=0 ): _UpperCamelCase = torch.manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : str ): _UpperCamelCase = '''stabilityai/stable-diffusion-2-base''' _UpperCamelCase = DDIMScheduler.from_pretrained(_A , subfolder='''scheduler''' ) _UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(_A , scheduler=_A , safety_checker=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() _UpperCamelCase = self.get_inputs() _UpperCamelCase = pipe(**_A ).images _UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _UpperCamelCase = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=_A ) _UpperCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() _UpperCamelCase = self.get_inputs() _UpperCamelCase = pipe(**_A ).images _UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _UpperCamelCase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCamelCase_ ( self : int ): _UpperCamelCase = 0 def callback_fn(_A : int , _A : int , _A : torch.FloatTensor ) -> None: _UpperCamelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _UpperCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _UpperCamelCase = latents[0, -3:, -3:, -1] _UpperCamelCase = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _UpperCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _UpperCamelCase = latents[0, -3:, -3:, -1] _UpperCamelCase = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _UpperCamelCase = False _UpperCamelCase = '''stabilityai/stable-diffusion-2-base''' _UpperCamelCase = DDIMScheduler.from_pretrained(_A , subfolder='''scheduler''' ) _UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(_A , scheduler=_A , safety_checker=_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() _UpperCamelCase = self.get_inputs() pipe(**_A , callback=_A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCamelCase_ ( self : int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = '''stabilityai/stable-diffusion-2-base''' _UpperCamelCase = DDIMScheduler.from_pretrained(_A , subfolder='''scheduler''' ) _UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(_A , scheduler=_A , safety_checker=_A ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCamelCase = self.get_inputs() _UpperCamelCase = pipe(**_A ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
71
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = (DPMSolverSDEScheduler,) UpperCAmelCase = 10 def UpperCamelCase_ ( self : Tuple , **_A : Union[str, Any] ): _UpperCamelCase = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**_A ) return config def UpperCamelCase_ ( self : List[Any] ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def UpperCamelCase_ ( self : List[Any] ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def UpperCamelCase_ ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_A ) def UpperCamelCase_ ( self : Union[str, Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): _UpperCamelCase = scheduler.scale_model_input(_A , _A ) _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): _UpperCamelCase = scheduler.scale_model_input(_A , _A ) _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1e-3 def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(_A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(_A , _A ) _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A , use_karras_sigmas=_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(_A ) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(_A ) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(_A , _A ) _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2
71
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase : def __init__( self , snake_case , snake_case=100 , snake_case=13 , snake_case=30 , snake_case=2 , snake_case=3 , snake_case=True , snake_case=True , snake_case=32 , snake_case=4 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=10 , snake_case=0.02 , snake_case=3 , snake_case=None , snake_case=[0, 1, 2, 3] , ): snake_case_ = parent snake_case_ = 100 snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = scope snake_case_ = out_indices snake_case_ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = num_patches + 1 def a ( self ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels, pixel_labels def a ( self ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def a ( self , snake_case , snake_case , snake_case , snake_case ): snake_case_ = BeitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case_ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case ): snake_case_ = BeitForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case_ = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case ): snake_case_ = self.type_sequence_label_size snake_case_ = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() snake_case_ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ = 1 snake_case_ = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case ): snake_case_ = self.num_labels snake_case_ = BeitForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() snake_case_ = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) snake_case_ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def a ( self ): snake_case_ = self.prepare_config_and_inputs() snake_case_ = config_and_inputs snake_case_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : int = False def a ( self ): snake_case_ = BeitModelTester(self ) snake_case_ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def a ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def a ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def a ( self ): pass def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(snake_case__ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) def a ( self ): if not self.model_tester.is_training: return snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]: continue snake_case_ = model_class(snake_case__ ) model.to(snake_case__ ) model.train() snake_case_ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) snake_case_ = model(**snake_case__ ).loss loss.backward() def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return snake_case_ = False snake_case_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue snake_case_ = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() snake_case_ = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) snake_case_ = model(**snake_case__ ).loss loss.backward() def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = _config_zero_init(snake_case__ ) for model_class in self.all_model_classes: snake_case_ = model_class(config=snake_case__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def a ( self ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BeitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a ( self ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def a ( self ): snake_case_ = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case__ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=snake_case__ , return_tensors='pt' ).pixel_values.to(snake_case__ ) # prepare bool_masked_pos snake_case_ = torch.ones((1, 196) , dtype=torch.bool ).to(snake_case__ ) # forward pass with torch.no_grad(): snake_case_ = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ ) snake_case_ = outputs.logits # verify the logits snake_case_ = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , snake_case__ ) snake_case_ = torch.tensor( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) ) @slow def a ( self ): snake_case_ = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case__ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): snake_case_ = model(**snake_case__ ) snake_case_ = outputs.logits # verify the logits snake_case_ = torch.Size((1, 1000) ) self.assertEqual(logits.shape , snake_case__ ) snake_case_ = torch.tensor([-1.23_85, -1.09_87, -1.01_08] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) snake_case_ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def a ( self ): snake_case_ = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( snake_case__ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): snake_case_ = model(**snake_case__ ) snake_case_ = outputs.logits # verify the logits snake_case_ = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , snake_case__ ) snake_case_ = torch.tensor([1.68_81, -0.27_87, 0.59_01] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) snake_case_ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def a ( self ): snake_case_ = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) snake_case_ = model.to(snake_case__ ) snake_case_ = BeitImageProcessor(do_resize=snake_case__ , size=640 , do_center_crop=snake_case__ ) snake_case_ = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) snake_case_ = Image.open(ds[0]['file'] ) snake_case_ = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): snake_case_ = model(**snake_case__ ) snake_case_ = outputs.logits # verify the logits snake_case_ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , snake_case__ ) snake_case_ = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: snake_case_ = torch.tensor( [ [[-4.92_25, -2.39_54, -3.05_22], [-2.88_22, -1.00_46, -1.75_61], [-2.95_49, -1.32_28, -2.13_47]], [[-5.81_68, -3.41_29, -4.07_78], [-3.86_51, -2.22_14, -3.02_77], [-3.83_56, -2.46_43, -3.35_35]], [[-0.00_78, 3.99_52, 4.07_54], [2.98_56, 4.69_44, 5.00_35], [3.24_13, 4.78_13, 4.99_69]], ] , device=snake_case__ , ) else: snake_case_ = torch.tensor( [ [[-4.89_60, -2.36_88, -3.03_55], [-2.84_78, -0.98_36, -1.74_18], [-2.94_49, -1.33_32, -2.14_56]], [[-5.80_81, -3.41_24, -4.10_06], [-3.85_61, -2.20_81, -3.03_23], [-3.83_65, -2.46_01, -3.36_69]], [[-0.03_09, 3.98_68, 4.05_40], [2.96_40, 4.68_77, 4.99_76], [3.20_81, 4.76_90, 4.99_42]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def a ( self ): snake_case_ = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) snake_case_ = model.to(snake_case__ ) snake_case_ = BeitImageProcessor(do_resize=snake_case__ , size=640 , do_center_crop=snake_case__ ) snake_case_ = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) snake_case_ = Image.open(ds[0]['file'] ) snake_case_ = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): snake_case_ = model(**snake_case__ ) snake_case_ = outputs.logits.detach().cpu() snake_case_ = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(500, 300)] ) snake_case_ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , snake_case__ ) snake_case_ = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) snake_case_ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , snake_case__ )
362
"""simple docstring""" def lowercase__(A ) ->bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
218
0
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , A__ : Optional[int] , A__ : str=1_3 , A__ : List[Any]=7 , A__ : Optional[Any]=True , A__ : Tuple=True , A__ : Union[str, Any]=True , A__ : Any=True , A__ : List[Any]=9_9 , A__ : Optional[Any]=3_2 , A__ : Dict=5 , A__ : Union[str, Any]=4 , A__ : int=3_7 , A__ : List[str]="gelu" , A__ : List[Any]=0.1 , A__ : List[str]=0.1 , A__ : Optional[int]=1_2_8 , A__ : Any=3_2 , A__ : List[Any]=1_6 , A__ : str=2 , A__ : Union[str, Any]=0.02 , A__ : Optional[int]=3 , A__ : Optional[int]=4 , A__ : Optional[int]=None , ) -> Any: '''simple docstring''' a__ : Union[str, Any] = parent a__ : int = batch_size a__ : Any = seq_length a__ : List[Any] = is_training a__ : Any = use_input_mask a__ : Optional[int] = use_token_type_ids a__ : List[Any] = use_labels a__ : Union[str, Any] = vocab_size a__ : Tuple = hidden_size a__ : List[str] = num_hidden_layers a__ : Optional[Any] = num_attention_heads a__ : List[Any] = intermediate_size a__ : int = hidden_act a__ : Optional[Any] = hidden_dropout_prob a__ : Any = attention_probs_dropout_prob a__ : List[Any] = max_position_embeddings a__ : int = type_vocab_size a__ : Union[str, Any] = type_sequence_label_size a__ : Union[str, Any] = initializer_range a__ : int = num_labels a__ : int = num_choices a__ : Any = scope def __lowerCAmelCase ( self : int ) -> Tuple: '''simple docstring''' a__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : str = None if self.use_input_mask: a__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) a__ : int = None if self.use_token_type_ids: a__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ : str = None a__ : List[str] = None a__ : Dict = None if self.use_labels: a__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) a__ : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : Any = self.prepare_config_and_inputs() a__ : Tuple = True a__ : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a__ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self : int , A__ : Dict , A__ : Optional[Any] , A__ : str , A__ : Union[str, Any] , A__ : Dict , A__ : Tuple , A__ : int ) -> Any: '''simple docstring''' a__ : Optional[int] = NezhaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() a__ : Optional[int] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) a__ : Dict = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) a__ : Union[str, Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self : Optional[int] , A__ : Tuple , A__ : Dict , A__ : Optional[Any] , A__ : Dict , A__ : Union[str, Any] , A__ : int , A__ : Optional[Any] , A__ : List[Any] , A__ : Union[str, Any] , ) -> int: '''simple docstring''' a__ : List[str] = True a__ : Optional[Any] = NezhaModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() a__ : Any = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) a__ : Union[str, Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) a__ : Optional[int] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self : Dict , A__ : Dict , A__ : Optional[int] , A__ : Tuple , A__ : List[str] , A__ : Union[str, Any] , A__ : List[str] , A__ : Any ) -> Optional[int]: '''simple docstring''' a__ : Union[str, Any] = NezhaForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() a__ : List[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Tuple , A__ : Tuple , A__ : Any , A__ : Any , A__ : int , A__ : str , A__ : Dict , A__ : int ) -> Any: '''simple docstring''' a__ : int = NezhaForNextSentencePrediction(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() a__ : Any = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCAmelCase ( self : Any , A__ : Optional[Any] , A__ : List[str] , A__ : List[str] , A__ : Any , A__ : List[Any] , A__ : Optional[int] , A__ : Union[str, Any] ) -> List[Any]: '''simple docstring''' a__ : List[str] = NezhaForPreTraining(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() a__ : str = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , next_sentence_label=__UpperCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Optional[int] , A__ : Tuple , A__ : Any , A__ : str , A__ : List[Any] , A__ : Dict , A__ : Tuple ) -> Any: '''simple docstring''' a__ : str = NezhaForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() a__ : Optional[Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[Any] , A__ : int , A__ : List[str] , A__ : List[str] , A__ : int , A__ : Optional[int] , A__ : List[str] , A__ : List[str] ) -> Tuple: '''simple docstring''' a__ : Tuple = self.num_labels a__ : Optional[int] = NezhaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() a__ : Any = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : List[Any] , A__ : List[str] , A__ : Any , A__ : List[str] , A__ : int , A__ : List[Any] , A__ : Union[str, Any] , A__ : Union[str, Any] ) -> Tuple: '''simple docstring''' a__ : Dict = self.num_labels a__ : Optional[int] = NezhaForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() a__ : str = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Tuple , A__ : Optional[Any] , A__ : Any , A__ : Optional[Any] , A__ : Union[str, Any] , A__ : Union[str, Any] , A__ : Dict , A__ : str ) -> int: '''simple docstring''' a__ : List[str] = self.num_choices a__ : Optional[Any] = NezhaForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() a__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ : Any = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' a__ : Tuple = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : Tuple = config_and_inputs a__ : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = True def __lowerCAmelCase ( self : Union[str, Any] , A__ : List[str] , A__ : List[Any] , A__ : List[Any]=False ) -> Dict: '''simple docstring''' a__ : Optional[int] = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): a__ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCamelCase ) a__ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' a__ : List[str] = NezhaModelTester(self ) a__ : Optional[int] = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def __lowerCAmelCase ( self : Any ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' a__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' a__ : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def __lowerCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : int = self.model_tester.prepare_config_and_inputs_for_decoder() a__ : int = None self.model_tester.create_and_check_model_as_decoder( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def __lowerCAmelCase ( self : Dict ) -> str: '''simple docstring''' a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def __lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' a__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*__UpperCamelCase ) def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCamelCase ) def __lowerCAmelCase ( self : Any ) -> List[Any]: '''simple docstring''' a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : List[Any] = NezhaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @slow @require_torch_gpu def __lowerCAmelCase ( self : Dict ) -> Any: '''simple docstring''' a__ , a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return a__ : List[Any] = True a__ : Optional[int] = model_class(config=__UpperCamelCase ) a__ : Tuple = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) a__ : Optional[int] = torch.jit.trace( __UpperCamelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__UpperCamelCase , os.path.join(__UpperCamelCase , '''bert.pt''' ) ) a__ : Tuple = torch.jit.load(os.path.join(__UpperCamelCase , '''bert.pt''' ) , map_location=__UpperCamelCase ) loaded(inputs_dict['''input_ids'''].to(__UpperCamelCase ) , inputs_dict['''attention_mask'''].to(__UpperCamelCase ) ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' a__ : Union[str, Any] = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) a__ : Dict = torch.tensor([[0, 1, 2, 3, 4, 5]] ) a__ : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): a__ : Dict = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] a__ : Dict = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , __UpperCamelCase ) a__ : Dict = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self : str ) -> Any: '''simple docstring''' a__ : List[Any] = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) a__ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) a__ : Tuple = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): a__ : Union[str, Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] a__ : Optional[Any] = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape , __UpperCamelCase ) a__ : Optional[Any] = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1E-4 ) )
719
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "data2vec-audio" def __init__( self : Tuple , A__ : List[str]=3_2 , A__ : Optional[int]=7_6_8 , A__ : List[str]=1_2 , A__ : Any=1_2 , A__ : Any=3_0_7_2 , A__ : Optional[Any]="gelu" , A__ : Any=0.1 , A__ : List[Any]=0.1 , A__ : Dict=0.1 , A__ : Tuple=0.0 , A__ : str=0.1 , A__ : Union[str, Any]=0.1 , A__ : List[Any]=0.02 , A__ : Optional[Any]=1E-5 , A__ : Dict="gelu" , A__ : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , A__ : Any=(5, 2, 2, 2, 2, 2, 2) , A__ : str=(1_0, 3, 3, 3, 3, 2, 2) , A__ : str=False , A__ : Any=1_6 , A__ : Optional[Any]=1_9 , A__ : List[Any]=5 , A__ : Optional[Any]=0.05 , A__ : Optional[Any]=1_0 , A__ : Dict=2 , A__ : int=0.0 , A__ : Optional[Any]=1_0 , A__ : str=0 , A__ : Any="sum" , A__ : Optional[int]=False , A__ : Dict=False , A__ : Dict=2_5_6 , A__ : List[str]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , A__ : str=(5, 3, 3, 1, 1) , A__ : Any=(1, 2, 3, 1, 1) , A__ : Optional[int]=5_1_2 , A__ : List[str]=0 , A__ : Optional[int]=1 , A__ : int=2 , A__ : List[str]=False , A__ : Dict=3 , A__ : Any=2 , A__ : List[str]=3 , A__ : Any=None , **A__ : List[str] , ) -> Optional[int]: '''simple docstring''' super().__init__(**A__ , pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ ) a__ : Optional[Any] = hidden_size a__ : Union[str, Any] = feat_extract_activation a__ : str = list(A__ ) a__ : Dict = list(A__ ) a__ : int = list(A__ ) a__ : Dict = conv_bias a__ : Tuple = num_conv_pos_embeddings a__ : Tuple = num_conv_pos_embedding_groups a__ : str = conv_pos_kernel_size a__ : Dict = len(self.conv_dim ) a__ : str = num_hidden_layers a__ : List[Any] = intermediate_size a__ : List[Any] = hidden_act a__ : str = num_attention_heads a__ : Tuple = hidden_dropout a__ : Union[str, Any] = attention_dropout a__ : Dict = activation_dropout a__ : str = feat_proj_dropout a__ : Optional[Any] = final_dropout a__ : List[str] = layerdrop a__ : Optional[int] = layer_norm_eps a__ : str = initializer_range a__ : Union[str, Any] = vocab_size a__ : int = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a__ : Tuple = mask_time_prob a__ : str = mask_time_length a__ : Dict = mask_time_min_masks a__ : Tuple = mask_feature_prob a__ : Union[str, Any] = mask_feature_length a__ : Optional[Any] = mask_feature_min_masks # ctc loss a__ : Optional[Any] = ctc_loss_reduction a__ : Any = ctc_zero_infinity # adapter a__ : Dict = add_adapter a__ : int = adapter_kernel_size a__ : Tuple = adapter_stride a__ : Union[str, Any] = num_adapter_layers a__ : Any = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. a__ : Union[str, Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. a__ : int = list(A__ ) a__ : Union[str, Any] = list(A__ ) a__ : Dict = list(A__ ) a__ : Dict = xvector_output_dim @property def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' return math.prod(self.conv_stride )
340
0
'''simple docstring''' # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase__ ( _A ): a : List[str] = [False] * len(_A ) a : Optional[int] = [-1] * len(_A ) def dfs(_A , _A ): a : int = True a : Tuple = c for u in graph[v]: if not visited[u]: dfs(_A , 1 - c ) for i in range(len(_A ) ): if not visited[i]: dfs(_A , 0 ) for i in range(len(_A ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph lowerCAmelCase: Optional[int] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
526
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase: Dict = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Optional[int] = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: List[Any] = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCAmelCase: Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
526
1
"""simple docstring""" def __lowerCamelCase ( lowerCAmelCase__ ): A__ , A__ = [], [] while len(_UpperCamelCase ) > 1: A__ , A__ = min(_UpperCamelCase ), max(_UpperCamelCase ) start.append(_UpperCamelCase ) end.append(_UpperCamelCase ) collection.remove(_UpperCamelCase ) collection.remove(_UpperCamelCase ) end.reverse() return start + collection + end if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : List[Any] = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
721
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class snake_case_ ( unittest.TestCase ): """simple docstring""" def __init__( self , __a , __a=7 , __a=3 , __a=30 , __a=400 , __a=True , __a=None , __a=0.9 , __a=None , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , ): """simple docstring""" A__ = size if size is not None else {'shortest_edge': 30} A__ = crop_size if crop_size is not None else {'height': 30, 'width': 30} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize_and_center_crop A__ = size A__ = crop_pct A__ = crop_size A__ = do_normalize A__ = image_mean A__ = image_std def _UpperCAmelCase ( self ): """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class snake_case_ ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: List[Any] = PoolFormerImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ): """simple docstring""" A__ = PoolFormerImageProcessingTester(self ) @property def _UpperCAmelCase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(__a , 'size' ) ) self.assertTrue(hasattr(__a , 'crop_pct' ) ) self.assertTrue(hasattr(__a , 'do_normalize' ) ) self.assertTrue(hasattr(__a , 'image_mean' ) ) self.assertTrue(hasattr(__a , 'image_std' ) ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) A__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def _UpperCAmelCase ( self ): """simple docstring""" pass def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched A__ = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched A__ = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched A__ = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
554
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str]=None ) -> Union[str, Any]: """simple docstring""" if subparsers is not None: UpperCAmelCase = subparsers.add_parser('''test''' ) else: UpperCAmelCase = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=SCREAMING_SNAKE_CASE_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) return parser def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]: """simple docstring""" UpperCAmelCase = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: UpperCAmelCase = script_name else: UpperCAmelCase = f"--config_file={args.config_file} {script_name}" UpperCAmelCase = ['''accelerate-launch'''] + test_args.split() UpperCAmelCase = execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __snake_case ( ) -> Tuple: """simple docstring""" UpperCAmelCase = test_command_parser() UpperCAmelCase = parser.parse_args() test_command(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
51
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict: """simple docstring""" if not head: return True # split the list to two parts UpperCAmelCase, UpperCAmelCase = head.next, head while fast and fast.next: UpperCAmelCase = fast.next.next UpperCAmelCase = slow.next UpperCAmelCase = slow.next UpperCAmelCase = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase = None while second: UpperCAmelCase = second.next UpperCAmelCase = node UpperCAmelCase = second UpperCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase = node.next UpperCAmelCase = head.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head while fast and fast.next: UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase = [slow.val] while slow.next: UpperCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase = cur.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: """simple docstring""" if not head or not head.next: return True UpperCAmelCase = {} UpperCAmelCase = 0 while head: if head.val in d: d[head.val].append(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase = [pos] UpperCAmelCase = head.next pos += 1 UpperCAmelCase = pos - 1 UpperCAmelCase = 0 for v in d.values(): if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0: middle += 1 else: UpperCAmelCase = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
51
1
'''simple docstring''' def A_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def A_ ( ) -> None: """simple docstring""" print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"| 0 | 0 | {nor_gate(0 , 0 )} |" ) print(F"| 0 | 1 | {nor_gate(0 , 1 )} |" ) print(F"| 1 | 0 | {nor_gate(1 , 0 )} |" ) print(F"| 1 | 1 | {nor_gate(1 , 1 )} |" ) if __name__ == "__main__": import doctest doctest.testmod() main()
715
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING A__ : Any =logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class __A ( _SCREAMING_SNAKE_CASE ): def __init__( self : Union[str, Any] , *lowerCamelCase : int , **lowerCamelCase : Optional[int] ): """simple docstring""" super().__init__(*lowerCamelCase , **lowerCamelCase ) self.check_model_type(lowerCamelCase ) def lowercase_( self : Any , lowerCamelCase : Dict=None , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : int=None , **lowerCamelCase : int ): """simple docstring""" __A , __A : Tuple = {}, {} if padding is not None: __A : Any = padding if truncation is not None: __A : Optional[Any] = truncation if top_k is not None: __A : List[str] = top_k return preprocess_params, {}, postprocess_params def __call__( self : Any , lowerCamelCase : Union["Image.Image", str] , lowerCamelCase : str = None , **lowerCamelCase : Tuple ): """simple docstring""" if isinstance(lowerCamelCase , (Image.Image, str) ) and isinstance(lowerCamelCase , lowerCamelCase ): __A : Tuple = {"""image""": image, """question""": question} else: __A : List[Any] = image __A : Any = super().__call__(lowerCamelCase , **lowerCamelCase ) return results def lowercase_( self : int , lowerCamelCase : Optional[int] , lowerCamelCase : Dict=False , lowerCamelCase : str=False ): """simple docstring""" __A : List[str] = load_image(inputs["""image"""] ) __A : Optional[Any] = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=lowerCamelCase , truncation=lowerCamelCase ) __A : Union[str, Any] = self.image_processor(images=lowerCamelCase , return_tensors=self.framework ) model_inputs.update(lowerCamelCase ) return model_inputs def lowercase_( self : List[str] , lowerCamelCase : Tuple ): """simple docstring""" __A : List[str] = self.model(**lowerCamelCase ) return model_outputs def lowercase_( self : str , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any]=5 ): """simple docstring""" if top_k > self.model.config.num_labels: __A : str = self.model.config.num_labels if self.framework == "pt": __A : Optional[Any] = model_outputs.logits.sigmoid()[0] __A , __A : int = probs.topk(lowerCamelCase ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) __A : Optional[Any] = scores.tolist() __A : Dict = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
499
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _A = get_tests_dir('''fixtures''') class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = mock.Mock() lowerCAmelCase_ = 500 lowerCAmelCase_ = {} lowerCAmelCase_ = HTTPError lowerCAmelCase_ = {} # Download this model to make sure it's in the cache. lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''', return_value=_UpperCAmelCase ) as mock_head: lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class A ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): """simple docstring""" lowerCAmelCase_ = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token, repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(_UpperCAmelCase ) feature_extractor.push_to_hub('''test-feature-extractor''', use_auth_token=self._token ) lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase, getattr(_UpperCAmelCase, _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token, repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _UpperCAmelCase, repo_id='''test-feature-extractor''', push_to_hub=_UpperCAmelCase, use_auth_token=self._token ) lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase, getattr(_UpperCAmelCase, _UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(_UpperCAmelCase ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''', use_auth_token=self._token ) lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase, getattr(_UpperCAmelCase, _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token, repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _UpperCAmelCase, repo_id='''valid_org/test-feature-extractor-org''', push_to_hub=_UpperCAmelCase, use_auth_token=self._token ) lowerCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase, getattr(_UpperCAmelCase, _UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() lowerCAmelCase_ = CustomFeatureExtractor.from_pretrained(_UpperCAmelCase ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map, {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''}, ) lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor", trust_remote_code=_UpperCAmelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__, '''CustomFeatureExtractor''' )
431
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" a_ = {} a_ = tokenizer(example["""content"""] , truncation=UpperCAmelCase__ )["""input_ids"""] a_ = len(example["""content"""] ) / len(output["""input_ids"""] ) return output A_ : Optional[int] =HfArgumentParser(PretokenizationArguments) A_ : Optional[Any] =parser.parse_args() if args.num_workers is None: A_ : List[str] =multiprocessing.cpu_count() A_ : Optional[int] =AutoTokenizer.from_pretrained(args.tokenizer_dir) A_ : int =time.time() A_ : Any =load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') A_ : Optional[int] =time.time() A_ : Any =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') A_ : Optional[int] =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
483
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : int = "new-model" if is_tf_available(): class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : int = NewModelConfig @require_tf class snake_case__ ( unittest.TestCase): '''simple docstring''' @slow def __lowercase ( self ) -> Tuple: '''simple docstring''' __snake_case :Optional[Any] = """bert-base-cased""" __snake_case :Optional[int] = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :Tuple = TFAutoModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :List[str] = """bert-base-cased""" __snake_case :Union[str, Any] = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :List[str] = TFAutoModelForPreTraining.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def __lowercase ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case :List[str] = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :List[str] = TFAutoModelForCausalLM.from_pretrained(a__ ) __snake_case , __snake_case :Any = TFAutoModelForCausalLM.from_pretrained(a__ , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def __lowercase ( self ) -> Optional[int]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case :Any = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :int = TFAutoModelWithLMHead.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def __lowercase ( self ) -> Any: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case :List[Any] = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(a__ ) __snake_case , __snake_case :int = TFAutoModelForMaskedLM.from_pretrained(a__ , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def __lowercase ( self ) -> Tuple: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case :Any = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :str = TFAutoModelForSeqaSeqLM.from_pretrained(a__ ) __snake_case , __snake_case :Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(a__ , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def __lowercase ( self ) -> List[str]: '''simple docstring''' for model_name in ["bert-base-uncased"]: __snake_case :Optional[int] = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def __lowercase ( self ) -> Dict: '''simple docstring''' for model_name in ["bert-base-uncased"]: __snake_case :int = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :Optional[Any] = TFAutoModelForQuestionAnswering.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow @require_tensorflow_probability def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __snake_case :Any = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case :Union[str, Any] = TFAutoModelForTableQuestionAnswering.from_pretrained(a__ ) __snake_case , __snake_case :Tuple = TFAutoModelForTableQuestionAnswering.from_pretrained( a__ , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :Dict = TFAutoModelWithLMHead.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=a__ ) , 1_44_10 ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :Optional[int] = TFAutoModelWithLMHead.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=a__ ) , 1_44_10 ) def __lowercase ( self ) -> List[str]: '''simple docstring''' __snake_case :str = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" ) self.assertIsInstance(a__ , a__ ) __snake_case :List[str] = copy.deepcopy(model.config ) __snake_case :Tuple = ["""FunnelBaseModel"""] __snake_case :int = TFAutoModel.from_config(a__ ) self.assertIsInstance(a__ , a__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a__ ) __snake_case :Union[str, Any] = TFAutoModel.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' try: AutoConfig.register("""new-model""" , a__ ) __snake_case :List[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(a__ ): auto_class.register(a__ , a__ ) auto_class.register(a__ , a__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a__ ): auto_class.register(a__ , a__ ) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case :Optional[int] = BertModelTester(self ).get_config() __snake_case :Dict = NewModelConfig(**tiny_config.to_dict() ) __snake_case :Tuple = auto_class.from_config(a__ ) self.assertIsInstance(a__ , a__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a__ ) __snake_case :Any = auto_class.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( a__ , """bert-base is not a local folder and is not a valid model identifier""" ): __snake_case :List[str] = TFAutoModel.from_pretrained("""bert-base""" ) def __lowercase ( self ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( a__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __snake_case :List[Any] = TFAutoModel.from_pretrained(a__ , revision="""aaaaaa""" ) def __lowercase ( self ) -> str: '''simple docstring''' with self.assertRaisesRegex( a__ , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ): __snake_case :Tuple = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def __lowercase ( self ) -> str: '''simple docstring''' with self.assertRaisesRegex(a__ , """Use `from_pt=True` to load this model""" ): __snake_case :str = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" ) def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :int = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: __snake_case :Optional[int] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __snake_case :Tuple = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) with RequestCounter() as counter: __snake_case :str = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
291
import os def UpperCamelCase ( ): '''simple docstring''' __snake_case :List[str] = os.path.dirname(os.path.realpath(snake_case__ ) ) __snake_case :Union[str, Any] = os.path.join(snake_case__ ,"""triangle.txt""" ) with open(snake_case__ ) as f: __snake_case :int = f.readlines() __snake_case :int = [] for line in triangle: __snake_case :List[Any] = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(snake_case__ ) ) a.append(snake_case__ ) for i in range(1 ,len(snake_case__ ) ): for j in range(len(a[i] ) ): __snake_case :Union[str, Any] = a[i - 1][j] if j != len(a[i - 1] ) else 0 __snake_case :Dict = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(snake_case__ ,snake_case__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
291
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowerCAmelCase_ ( __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[Any] = FlaxAutoencoderKL @property def __a ( self ): _lowercase : Optional[Any] = 4 _lowercase : List[str] = 3 _lowercase : int = (3_2, 3_2) _lowercase : List[str] = jax.random.PRNGKey(0 ) _lowercase : Union[str, Any] = jax.random.uniform(_lowerCAmelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __a ( self ): _lowercase : Union[str, Any] = { 'block_out_channels': [3_2, 6_4], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } _lowercase : Optional[Any] = self.dummy_input return init_dict, inputs_dict
66
import random def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> dict: _lowercase : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE ) return graph def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> dict: return { i: [j for j in range(SCREAMING_SNAKE_CASE ) if i != j] for i in range(SCREAMING_SNAKE_CASE ) } if __name__ == "__main__": import doctest doctest.testmod()
66
1
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = { """en""": """Machine learning is great, isn\'t it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, nicht wahr?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] _lowercase : List[str] = { """wmt16-en-de-dist-12-1""": [28.3, 27.52], """wmt16-en-de-dist-6-1""": [27.4, 27.11], """wmt16-en-de-12-1""": [26.9, 25.75], } _lowercase : List[str] = F"""{src_lang}-{tgt_lang}""" _lowercase : List[str] = F"""\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n""" model_card_dir.mkdir(parents=__snake_case , exist_ok=__snake_case ) _lowercase : Optional[Any] = os.path.join(__snake_case , """README.md""" ) print(F"""Generating {path}""" ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as f: f.write(__snake_case ) # make sure we are under the root of the project UpperCAmelCase: int = Path(__file__).resolve().parent.parent.parent UpperCAmelCase: str = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCAmelCase: Tuple = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
707
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCAmelCase: str = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Dict = set() _lowercase : Optional[int] = [] def parse_line(__UpperCAmelCase ): for line in fp: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(__UpperCAmelCase ) > 0: _lowercase : Optional[Any] = """\n""".join(__UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(__UpperCAmelCase ) buffer.clear() continue else: _lowercase : Optional[Any] = line.strip() buffer.append(__UpperCAmelCase ) if from_gh: for filename in os.listdir(__UpperCAmelCase ): _lowercase : Optional[Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if not os.path.isdir(__UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(__UpperCAmelCase ) as fp: parse_line(__UpperCAmelCase ) else: try: with zipfile.ZipFile(__UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(__UpperCAmelCase ) as fp: parse_line(__UpperCAmelCase ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Optional[Any] = set() _lowercase : int = [os.path.join(__UpperCAmelCase , __UpperCAmelCase ) for p in os.listdir(__UpperCAmelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(__UpperCAmelCase , __UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return values.split(""",""" ) UpperCAmelCase: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) UpperCAmelCase: Any = parser.parse_args() UpperCAmelCase: Any = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCAmelCase: str = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCAmelCase: str = extract_warnings(args.output_dir, args.targets) UpperCAmelCase: Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
600
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def UpperCAmelCase__( __UpperCAmelCase : str=None ): __snake_case : Optional[int] = argparse.ArgumentParser(add_help=__UpperCAmelCase , allow_abbrev=__UpperCAmelCase ) # The main config parser __snake_case : List[Any] = config_command_parser(__UpperCAmelCase ) # The subparser to add commands to __snake_case : List[str] = config_parser.add_subparsers(title='subcommands' , dest='subcommand' ) # Then add other parsers with the parent parser default_command_parser(__UpperCAmelCase , parents=[parent_parser] ) update_command_parser(__UpperCAmelCase , parents=[parent_parser] ) return config_parser def UpperCAmelCase__( ): __snake_case : List[str] = get_config_parser() __snake_case : List[Any] = config_parser.parse_args() if not hasattr(__UpperCAmelCase , 'func' ): config_parser.print_help() exit(1 ) # Run args.func(__UpperCAmelCase ) if __name__ == "__main__": main()
576
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : Optional[int] = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __snake_case : List[Any] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __snake_case : str = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __snake_case : Optional[Any] = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 16_000, 'return_attention_mask': False, 'do_normalize': True, } __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case : Any = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) # load decoder from hub __snake_case : int = 'hf-internal-testing/ngram-beam-search-decoder' def lowercase_ ( self , **_UpperCAmelCase ): __snake_case : int = self.add_kwargs_tokens_map.copy() kwargs.update(_UpperCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , **_UpperCAmelCase ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , **_UpperCAmelCase ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_UpperCAmelCase ) def lowercase_ ( self ): shutil.rmtree(self.tmpdirname ) def lowercase_ ( self ): __snake_case : Dict = self.get_tokenizer() __snake_case : Optional[Any] = self.get_feature_extractor() __snake_case : Optional[int] = self.get_decoder() __snake_case : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __snake_case : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _UpperCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(_UpperCAmelCase , 'include' ): WavaVecaProcessorWithLM( tokenizer=_UpperCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.get_feature_extractor() __snake_case : int = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase ) __snake_case : Union[str, Any] = floats_list((3, 1_000) ) __snake_case : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='np' ) __snake_case : Dict = processor(_UpperCAmelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase_ ( self ): __snake_case : List[str] = self.get_feature_extractor() __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : Any = self.get_decoder() __snake_case : int = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase ) __snake_case : str = 'This is a test string' __snake_case : Optional[int] = processor(text=_UpperCAmelCase ) __snake_case : int = tokenizer(_UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self , _UpperCAmelCase=(2, 10, 16) , _UpperCAmelCase=77 ): np.random.seed(_UpperCAmelCase ) return np.random.rand(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.get_feature_extractor() __snake_case : Any = self.get_tokenizer() __snake_case : Dict = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase ) __snake_case : Optional[Any] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case : int = processor.decode(_UpperCAmelCase ) __snake_case : Tuple = decoder.decode_beams(_UpperCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Union[str, Any] = self.get_feature_extractor() __snake_case : Optional[int] = self.get_tokenizer() __snake_case : Union[str, Any] = self.get_decoder() __snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase ) __snake_case : List[str] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case : List[Any] = processor.batch_decode(_UpperCAmelCase ) else: with get_context(_UpperCAmelCase ).Pool() as pool: __snake_case : Tuple = processor.batch_decode(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : List[str] = list(_UpperCAmelCase ) with get_context('fork' ).Pool() as p: __snake_case : List[Any] = decoder.decode_beams_batch(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case , __snake_case : Optional[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_UpperCAmelCase , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(_UpperCAmelCase , decoded_processor.logit_score ) self.assertListEqual(_UpperCAmelCase , decoded_processor.lm_score ) def lowercase_ ( self ): __snake_case : Tuple = self.get_feature_extractor() __snake_case : Dict = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : List[Any] = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase ) __snake_case : int = self._get_dummy_logits() __snake_case : Tuple = 15 __snake_case : int = -20.0 __snake_case : Optional[Any] = -4.0 __snake_case : int = processor.batch_decode( _UpperCAmelCase , beam_width=_UpperCAmelCase , beam_prune_logp=_UpperCAmelCase , token_min_logp=_UpperCAmelCase , ) __snake_case : int = decoded_processor_out.text __snake_case : Dict = list(_UpperCAmelCase ) with get_context('fork' ).Pool() as pool: __snake_case : Tuple = decoder.decode_beams_batch( _UpperCAmelCase , _UpperCAmelCase , beam_width=_UpperCAmelCase , beam_prune_logp=_UpperCAmelCase , token_min_logp=_UpperCAmelCase , ) __snake_case : List[str] = [d[0][0] for d in decoded_decoder_out] __snake_case : Any = [d[0][2] for d in decoded_decoder_out] __snake_case : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , _UpperCAmelCase ) self.assertTrue(np.array_equal(_UpperCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _UpperCAmelCase , atol=1E-3 ) ) self.assertTrue(np.array_equal(_UpperCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _UpperCAmelCase , atol=1E-3 ) ) def lowercase_ ( self ): __snake_case : List[Any] = self.get_feature_extractor() __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : int = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase ) __snake_case : Dict = self._get_dummy_logits() __snake_case : List[str] = 2.0 __snake_case : Union[str, Any] = 5.0 __snake_case : List[str] = -20.0 __snake_case : Tuple = True __snake_case : List[Any] = processor.batch_decode( _UpperCAmelCase , alpha=_UpperCAmelCase , beta=_UpperCAmelCase , unk_score_offset=_UpperCAmelCase , lm_score_boundary=_UpperCAmelCase , ) __snake_case : Tuple = decoded_processor_out.text __snake_case : List[str] = list(_UpperCAmelCase ) decoder.reset_params( alpha=_UpperCAmelCase , beta=_UpperCAmelCase , unk_score_offset=_UpperCAmelCase , lm_score_boundary=_UpperCAmelCase , ) with get_context('fork' ).Pool() as pool: __snake_case : str = decoder.decode_beams_batch( _UpperCAmelCase , _UpperCAmelCase , ) __snake_case : List[str] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , _UpperCAmelCase ) __snake_case : int = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case : Any = processor.decoder.model_container[processor.decoder._model_key] __snake_case : List[str] = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case : List[Any] = os.listdir(_UpperCAmelCase ) __snake_case : Tuple = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : str = snapshot_download('hf-internal-testing/processor_with_lm' ) __snake_case : List[str] = WavaVecaProcessorWithLM.from_pretrained(_UpperCAmelCase ) __snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case : List[str] = os.listdir(_UpperCAmelCase ) __snake_case : Tuple = os.listdir(_UpperCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Any = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case : str = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case : Dict = floats_list((3, 1_000) ) __snake_case : Dict = processor_wavaveca(_UpperCAmelCase , return_tensors='np' ) __snake_case : str = processor_auto(_UpperCAmelCase , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __snake_case : Optional[int] = self._get_dummy_logits() __snake_case : Optional[Any] = processor_wavaveca.batch_decode(_UpperCAmelCase ) __snake_case : Optional[int] = processor_auto.batch_decode(_UpperCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase_ ( self ): __snake_case : List[str] = self.get_feature_extractor() __snake_case : Tuple = self.get_tokenizer() __snake_case : Optional[Any] = self.get_decoder() __snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[str] = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self ): __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case : List[Any] = self._get_dummy_logits()[0] __snake_case : Dict = processor.decode(_UpperCAmelCase , output_word_offsets=_UpperCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def lowercase_ ( self ): __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case : Tuple = self._get_dummy_logits() __snake_case : str = processor.batch_decode(_UpperCAmelCase , output_word_offsets=_UpperCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertListEqual( [' '.join(self.get_from_offsets(_UpperCAmelCase , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase_ ( self ): import torch __snake_case : Tuple = load_dataset('common_voice' , 'en' , split='train' , streaming=_UpperCAmelCase ) __snake_case : Any = ds.cast_column('audio' , datasets.Audio(sampling_rate=16_000 ) ) __snake_case : Tuple = iter(_UpperCAmelCase ) __snake_case : Optional[Any] = next(_UpperCAmelCase ) __snake_case : str = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __snake_case : Any = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case : Optional[int] = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __snake_case : Optional[int] = model(_UpperCAmelCase ).logits.cpu().numpy() __snake_case : Dict = processor.decode(logits[0] , output_word_offsets=_UpperCAmelCase ) __snake_case : Union[str, Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case : List[Any] = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __snake_case : Tuple = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(_UpperCAmelCase , 'word' ) ) , _UpperCAmelCase ) self.assertEqual(' '.join(self.get_from_offsets(_UpperCAmelCase , 'word' ) ) , output.text ) # output times __snake_case : Dict = torch.tensor(self.get_from_offsets(_UpperCAmelCase , 'start_time' ) ) __snake_case : Optional[int] = torch.tensor(self.get_from_offsets(_UpperCAmelCase , 'end_time' ) ) # fmt: off __snake_case : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __snake_case : Optional[Any] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=0.01 ) )
576
1
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( lowerCAmelCase__ :list[float] ) -> float: '''simple docstring''' lowercase = 0.00 lowercase = 0 for resistor in resistors: if resistor <= 0: lowercase = f'Resistor at index {index} has a negative or zero value!' raise ValueError(lowerCAmelCase__ ) first_sum += 1 / float(lowerCAmelCase__ ) index += 1 return 1 / first_sum def UpperCAmelCase__ ( lowerCAmelCase__ :list[float] ) -> float: '''simple docstring''' lowercase = 0.00 lowercase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase = f'Resistor at index {index} has a negative value!' raise ValueError(lowerCAmelCase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
197
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : str ={"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart __lowerCAmelCase : Optional[int] ={ """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } __lowerCAmelCase : Optional[int] ={ """facebook/bart-base""": 1_0_2_4, """facebook/bart-large""": 1_0_2_4, """facebook/bart-large-mnli""": 1_0_2_4, """facebook/bart-large-cnn""": 1_0_2_4, """facebook/bart-large-xsum""": 1_0_2_4, """yjernite/bart_eli5""": 1_0_2_4, } class _A ( lowerCAmelCase ): snake_case__ : Optional[int] = VOCAB_FILES_NAMES snake_case__ : Tuple = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Optional[Any] = ['input_ids', 'attention_mask'] snake_case__ : Dict = BartTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="replace" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=False , __lowerCAmelCase=True , **__lowerCAmelCase , ): """simple docstring""" super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , errors=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __lowerCAmelCase ) != add_prefix_space: lowercase = getattr(__lowerCAmelCase , pre_tok_state.pop("""type""" ) ) lowercase = add_prefix_space lowercase = pre_tok_class(**__lowerCAmelCase ) lowercase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase = """post_processor""" lowercase = getattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) if tokenizer_component_instance: lowercase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase = tuple(state["""sep"""] ) if "cls" in state: lowercase = tuple(state["""cls"""] ) lowercase = False if state.get("""add_prefix_space""" , __lowerCAmelCase ) != add_prefix_space: lowercase = add_prefix_space lowercase = True if state.get("""trim_offsets""" , __lowerCAmelCase ) != trim_offsets: lowercase = trim_offsets lowercase = True if changes_to_apply: lowercase = getattr(__lowerCAmelCase , state.pop("""type""" ) ) lowercase = component_class(**__lowerCAmelCase ) setattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else value lowercase = value def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" lowercase = kwargs.get("""is_split_into_words""" , __lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" lowercase = kwargs.get("""is_split_into_words""" , __lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" lowercase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
197
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=snake_case ): UpperCamelCase =["keras_nlp"] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: requires_backends(self , ['''keras_nlp'''] )
76
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency __lowerCamelCase : Optional[int] = { """E""": 1_2.7_0, """T""": 9.0_6, """A""": 8.1_7, """O""": 7.5_1, """I""": 6.9_7, """N""": 6.7_5, """S""": 6.3_3, """H""": 6.0_9, """R""": 5.9_9, """D""": 4.2_5, """L""": 4.0_3, """C""": 2.7_8, """U""": 2.7_6, """M""": 2.4_1, """W""": 2.3_6, """F""": 2.2_3, """G""": 2.0_2, """Y""": 1.9_7, """P""": 1.9_3, """B""": 1.2_9, """V""": 0.9_8, """K""": 0.7_7, """J""": 0.1_5, """X""": 0.1_5, """Q""": 0.1_0, """Z""": 0.0_7, } __lowerCamelCase : Union[str, Any] = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" __lowerCamelCase : List[Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __snake_case (__UpperCAmelCase ): """simple docstring""" return x[0] def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Union[str, Any] = get_letter_count(__UpperCAmelCase ) lowerCamelCase_ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__UpperCAmelCase ) lowerCamelCase_ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=__UpperCAmelCase ) lowerCamelCase_ : Any = ''''''.join(freq_to_letter[freq] ) lowerCamelCase_ : Union[str, Any] = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__UpperCAmelCase , reverse=__UpperCAmelCase ) lowerCamelCase_ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__UpperCAmelCase ) def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[int] = get_frequency_order(__UpperCAmelCase ) lowerCamelCase_ : Tuple = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
501
0
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __lowerCamelCase ( _a ): a : Optional[int] =["""image_processor"""] a : List[Any] ="""SamImageProcessor""" def __init__( self , snake_case_ ) -> Any: super().__init__(snake_case_ ) UpperCamelCase__ = self.image_processor UpperCamelCase__ = -10 UpperCamelCase__ = self.image_processor.size['longest_edge'] def __call__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_ = None , **snake_case_ , ) -> BatchEncoding: UpperCamelCase__ = self.image_processor( snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) # pop arguments that are not used in the foward but used nevertheless UpperCamelCase__ = encoding_image_processor['original_sizes'] if hasattr(snake_case_ , 'numpy' ): # Checks if Torch or TF tensor UpperCamelCase__ = original_sizes.numpy() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._check_and_preprocess_points( input_points=snake_case_ , input_labels=snake_case_ , input_boxes=snake_case_ , ) UpperCamelCase__ = self._normalize_and_convert( snake_case_ , snake_case_ , input_points=snake_case_ , input_labels=snake_case_ , input_boxes=snake_case_ , return_tensors=snake_case_ , ) return encoding_image_processor def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="pt" , ) -> Tuple: if input_points is not None: if len(snake_case_ ) != len(snake_case_ ): UpperCamelCase__ = [ self._normalize_coordinates(self.target_size , snake_case_ , original_sizes[0] ) for point in input_points ] else: UpperCamelCase__ = [ self._normalize_coordinates(self.target_size , snake_case_ , snake_case_ ) for point, original_size in zip(snake_case_ , snake_case_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: UpperCamelCase__ , UpperCamelCase__ = self._pad_points_and_labels(snake_case_ , snake_case_ ) UpperCamelCase__ = np.array(snake_case_ ) if input_labels is not None: UpperCamelCase__ = np.array(snake_case_ ) if input_boxes is not None: if len(snake_case_ ) != len(snake_case_ ): UpperCamelCase__ = [ self._normalize_coordinates(self.target_size , snake_case_ , original_sizes[0] , is_bounding_box=snake_case_ ) for box in input_boxes ] else: UpperCamelCase__ = [ self._normalize_coordinates(self.target_size , snake_case_ , snake_case_ , is_bounding_box=snake_case_ ) for box, original_size in zip(snake_case_ , snake_case_ ) ] UpperCamelCase__ = np.array(snake_case_ ) if input_boxes is not None: if return_tensors == "pt": UpperCamelCase__ = torch.from_numpy(snake_case_ ) # boxes batch size of 1 by default UpperCamelCase__ = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": UpperCamelCase__ = tf.convert_to_tensor(snake_case_ ) # boxes batch size of 1 by default UpperCamelCase__ = tf.expand_dims(snake_case_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": UpperCamelCase__ = torch.from_numpy(snake_case_ ) # point batch size of 1 by default UpperCamelCase__ = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": UpperCamelCase__ = tf.convert_to_tensor(snake_case_ ) # point batch size of 1 by default UpperCamelCase__ = tf.expand_dims(snake_case_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": UpperCamelCase__ = torch.from_numpy(snake_case_ ) # point batch size of 1 by default UpperCamelCase__ = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": UpperCamelCase__ = tf.convert_to_tensor(snake_case_ ) # point batch size of 1 by default UpperCamelCase__ = tf.expand_dims(snake_case_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[str]: UpperCamelCase__ = max([point.shape[0] for point in input_points] ) UpperCamelCase__ = [] for i, point in enumerate(snake_case_ ): if point.shape[0] != expected_nb_points: UpperCamelCase__ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) UpperCamelCase__ = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(snake_case_ ) UpperCamelCase__ = processed_input_points return input_points, input_labels def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=False ) -> np.ndarray: UpperCamelCase__ , UpperCamelCase__ = original_size UpperCamelCase__ , UpperCamelCase__ = self.image_processor._get_preprocess_shape(snake_case_ , longest_edge=snake_case_ ) UpperCamelCase__ = deepcopy(snake_case_ ).astype(snake_case_ ) if is_bounding_box: UpperCamelCase__ = coords.reshape(-1 , 2 , 2 ) UpperCamelCase__ = coords[..., 0] * (new_w / old_w) UpperCamelCase__ = coords[..., 1] * (new_h / old_h) if is_bounding_box: UpperCamelCase__ = coords.reshape(-1 , 4 ) return coords def SCREAMING_SNAKE_CASE__ ( self , snake_case_=None , snake_case_=None , snake_case_=None , ) -> Union[str, Any]: if input_points is not None: if hasattr(snake_case_ , 'numpy' ): # Checks for TF or Torch tensor UpperCamelCase__ = input_points.numpy().tolist() if not isinstance(snake_case_ , snake_case_ ) or not isinstance(input_points[0] , snake_case_ ): raise ValueError('Input points must be a list of list of floating points.' ) UpperCamelCase__ = [np.array(snake_case_ ) for input_point in input_points] else: UpperCamelCase__ = None if input_labels is not None: if hasattr(snake_case_ , 'numpy' ): UpperCamelCase__ = input_labels.numpy().tolist() if not isinstance(snake_case_ , snake_case_ ) or not isinstance(input_labels[0] , snake_case_ ): raise ValueError('Input labels must be a list of list integers.' ) UpperCamelCase__ = [np.array(snake_case_ ) for label in input_labels] else: UpperCamelCase__ = None if input_boxes is not None: if hasattr(snake_case_ , 'numpy' ): UpperCamelCase__ = input_boxes.numpy().tolist() if ( not isinstance(snake_case_ , snake_case_ ) or not isinstance(input_boxes[0] , snake_case_ ) or not isinstance(input_boxes[0][0] , snake_case_ ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) UpperCamelCase__ = [np.array(snake_case_ ).astype(np.floataa ) for box in input_boxes] else: UpperCamelCase__ = None return input_points, input_labels, input_boxes @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self , *snake_case_ , **snake_case_ ) -> Dict: return self.image_processor.post_process_masks(*snake_case_ , **snake_case_ )
20
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def lowerCAmelCase_( SCREAMING_SNAKE_CASE = 1_00_00_00 , SCREAMING_SNAKE_CASE = 10 ) -> int: """simple docstring""" UpperCamelCase__ = defaultdict(SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCamelCase__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCamelCase__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
20
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Dict = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowerCamelCase, 'width_multiplier')) class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=64, lowerCamelCase=2, lowerCamelCase=3, lowerCamelCase="swish", lowerCamelCase=3, lowerCamelCase=32, lowerCamelCase=0.1, lowerCamelCase=0.0_2, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=10, lowerCamelCase=None, lowerCamelCase=0.2_5, lowerCamelCase=0.0, lowerCamelCase=0.0, ) -> str: """simple docstring""" _lowercase : Optional[Any] = parent _lowercase : Optional[Any] = batch_size _lowercase : List[str] = image_size _lowercase : Optional[int] = patch_size _lowercase : str = num_channels _lowercase : Optional[int] = make_divisible(5_12 * width_multiplier, divisor=8) _lowercase : Optional[Any] = hidden_act _lowercase : List[Any] = conv_kernel_size _lowercase : Any = output_stride _lowercase : Optional[int] = classifier_dropout_prob _lowercase : int = use_labels _lowercase : Any = is_training _lowercase : Optional[Any] = num_labels _lowercase : List[Any] = initializer_range _lowercase : int = scope _lowercase : Optional[Any] = width_multiplier _lowercase : List[Any] = ffn_dropout _lowercase : List[Any] = attn_dropout def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase : Optional[int] = None _lowercase : int = None if self.use_labels: _lowercase : Any = ids_tensor([self.batch_size], self.num_labels) _lowercase : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) _lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase ( self) -> Any: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = MobileViTVaModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Tuple = model(lowerCamelCase) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Dict = self.num_labels _lowercase : Dict = MobileViTVaForImageClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : List[str] = self.num_labels _lowercase : Union[str, Any] = MobileViTVaForSemanticSegmentation(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Union[str, Any] = model(lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) _lowercase : Union[str, Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = config_and_inputs _lowercase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : int = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase_ : List[str] = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ : Tuple = False lowercase_ : int = False lowercase_ : Union[str, Any] = False lowercase_ : str = False def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[Any] = MobileViTVaModelTester(self) _lowercase : Any = MobileViTVaConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds') def UpperCamelCase ( self) -> Tuple: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings') def UpperCamelCase ( self) -> str: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not output attentions') def UpperCamelCase ( self) -> Tuple: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.') def UpperCamelCase ( self) -> Tuple: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def UpperCamelCase ( self) -> int: """simple docstring""" pass def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : str = model_class(lowerCamelCase) _lowercase : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : str = [*signature.parameters.keys()] _lowercase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" def check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase): _lowercase : str = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() with torch.no_grad(): _lowercase : List[Any] = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase)) _lowercase : Optional[int] = outputs.hidden_states _lowercase : Dict = 5 self.assertEqual(len(lowerCamelCase), lowerCamelCase) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowercase : Dict = 2 for i in range(len(lowerCamelCase)): self.assertListEqual( list(hidden_states[i].shape[-2:]), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2) _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Tuple = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Any = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase) @slow def UpperCamelCase ( self) -> Any: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Union[str, Any] = MobileViTVaModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) def UpperCamelCase_( ) -> Optional[int]: _lowercase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCamelCase( unittest.TestCase ): @cached_property def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256') if is_vision_available() else None ) @slow def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[Any] = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256').to( lowerCamelCase) _lowercase : List[Any] = self.default_image_processor _lowercase : Dict = prepare_img() _lowercase : Any = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Union[str, Any] = model(**lowerCamelCase) # verify the logits _lowercase : List[str] = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape, lowerCamelCase) _lowercase : Dict = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01]).to(lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[Any] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Optional[int] = model.to(lowerCamelCase) _lowercase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : List[Any] = prepare_img() _lowercase : Union[str, Any] = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : List[str] = model(**lowerCamelCase) _lowercase : Union[str, Any] = outputs.logits # verify the logits _lowercase : List[Any] = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape, lowerCamelCase) _lowercase : Dict = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ], device=lowerCamelCase, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[Any] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : List[str] = model.to(lowerCamelCase) _lowercase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : List[str] = prepare_img() _lowercase : List[str] = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Union[str, Any] = model(**lowerCamelCase) _lowercase : Any = outputs.logits.detach().cpu() _lowercase : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase, target_sizes=[(50, 60)]) _lowercase : Optional[Any] = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape, lowerCamelCase) _lowercase : List[str] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase) _lowercase : Any = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape, lowerCamelCase)
89
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A ( __snake_case , unittest.TestCase ): __magic_name__ = DebertaTokenizer __magic_name__ = True __magic_name__ = DebertaTokenizerFast def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] A : List[str] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) A : List[Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A : Tuple = {'''unk_token''': '''[UNK]'''} A : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : Union[str, Any] = '''lower newer''' A : List[Any] = '''lower newer''' return input_text, output_text def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : str = self.get_tokenizer() A : List[str] = '''lower newer''' A : int = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A : Any = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : str = tokens + [tokenizer.unk_token] A : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : List[Any] = self.get_tokenizer() A : Tuple = tokenizer('''Hello''' , '''World''' ) A : str = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A : Union[str, Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE ) A : Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE ) A : Tuple = tokenizer.encode( '''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) A : Union[str, Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) A : List[str] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Any = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A : List[str] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A : Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] A : List[Any] = tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE ) A : List[str] = [tokenizer.decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off A : List[str] = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A : Any = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , SCREAMING_SNAKE_CASE ) for expected, decoded in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
634
0
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A = logging.get_logger(__name__) A = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } A = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } A = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase__ ( ) -> Optional[Any]: A = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) A = bs[:] A = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 A = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def lowerCAmelCase__ ( lowerCamelCase__ ) -> Optional[Any]: A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char return pairs class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : str = VOCAB_FILES_NAMES lowerCAmelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : List[Any]="replace" , snake_case : List[str]="<s>" , snake_case : str="</s>" , snake_case : str="</s>" , snake_case : str="<s>" , snake_case : List[str]="<unk>" , snake_case : List[str]="<pad>" , snake_case : Optional[Any]="<mask>" , snake_case : str=False , **snake_case : Any , ) -> str: '''simple docstring''' A = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else bos_token A = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else eos_token A = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else sep_token A = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else cls_token A = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else unk_token A = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token super().__init__( errors=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , **snake_case , ) with open(snake_case , encoding='utf-8' ) as vocab_handle: A = json.load(snake_case ) A = {v: k for k, v in self.encoder.items()} A = errors # how to handle errors in decoding A = bytes_to_unicode() A = {v: k for k, v in self.byte_encoder.items()} with open(snake_case , encoding='utf-8' ) as merges_handle: A = merges_handle.read().split('\n' )[1:-1] A = [tuple(merge.split() ) for merge in bpe_merges] A = dict(zip(snake_case , range(len(snake_case ) ) ) ) A = {} A = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def A_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return len(self.encoder ) def A_ ( self : str ) -> int: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A_ ( self : Any , snake_case : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] A = tuple(snake_case ) A = get_pairs(snake_case ) if not pairs: return token while True: A = min(snake_case , key=lambda snake_case : self.bpe_ranks.get(snake_case , float('inf' ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(snake_case ): try: A = word.index(snake_case , snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(snake_case ) A = new_word if len(snake_case ) == 1: break else: A = get_pairs(snake_case ) A = ' '.join(snake_case ) A = word return word def A_ ( self : List[str] , snake_case : Dict ) -> List[Any]: '''simple docstring''' A = [] for token in re.findall(self.pat , snake_case ): A = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case ).split(' ' ) ) return bpe_tokens def A_ ( self : int , snake_case : Any ) -> Optional[Any]: '''simple docstring''' return self.encoder.get(snake_case , self.encoder.get(self.unk_token ) ) def A_ ( self : Union[str, Any] , snake_case : Optional[int] ) -> List[str]: '''simple docstring''' return self.decoder.get(snake_case ) def A_ ( self : Optional[Any] , snake_case : Any ) -> Optional[int]: '''simple docstring''' A = ''.join(snake_case ) A = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def A_ ( self : List[str] , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case , ensure_ascii=snake_case ) + '\n' ) A = 0 with open(snake_case , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) A = token_index writer.write(' '.join(snake_case ) + '\n' ) index += 1 return vocab_file, merge_file def A_ ( self : Optional[int] , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is None: return [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1] def A_ ( self : Any , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str]=False , **snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case ) > 0 and not text[0].isspace()): A = ' ' + text return (text, kwargs) def A_ ( self : Any , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> Dict: '''simple docstring''' return token_ids_a + [self.eos_token_id] def A_ ( self : Optional[Any] , snake_case : "Conversation" ) -> List[int]: '''simple docstring''' A = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(snake_case ) A = ' '.join(snake_case ) A = self.encode(snake_case ) if len(snake_case ) > self.model_max_length: A = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
702
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCAmelCase__ ( unittest.TestCase ): def A_ ( self : Dict ) -> Dict: '''simple docstring''' A = tempfile.mkdtemp() A = BlipImageProcessor() A = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) A = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) A = InstructBlipProcessor(snake_case , snake_case , snake_case ) processor.save_pretrained(self.tmpdirname ) def A_ ( self : List[str] , **snake_case : str ) -> Dict: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case ).tokenizer def A_ ( self : int , **snake_case : Optional[Any] ) -> Any: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case ).image_processor def A_ ( self : Any , **snake_case : Union[str, Any] ) -> Any: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case ).qformer_tokenizer def A_ ( self : int ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A_ ( self : List[Any] ) -> Tuple: '''simple docstring''' A = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' A = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) A = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) A = self.get_image_processor(do_normalize=snake_case , padding_value=1.0 ) A = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) self.assertIsInstance(processor.qformer_tokenizer , snake_case ) def A_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' A = self.get_image_processor() A = self.get_tokenizer() A = self.get_qformer_tokenizer() A = InstructBlipProcessor( tokenizer=snake_case , image_processor=snake_case , qformer_tokenizer=snake_case ) A = self.prepare_image_inputs() A = image_processor(snake_case , return_tensors='np' ) A = processor(images=snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A_ ( self : Tuple ) -> List[str]: '''simple docstring''' A = self.get_image_processor() A = self.get_tokenizer() A = self.get_qformer_tokenizer() A = InstructBlipProcessor( tokenizer=snake_case , image_processor=snake_case , qformer_tokenizer=snake_case ) A = 'lower newer' A = processor(text=snake_case ) A = tokenizer(snake_case , return_token_type_ids=snake_case ) A = qformer_tokenizer(snake_case , return_token_type_ids=snake_case ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def A_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' A = self.get_image_processor() A = self.get_tokenizer() A = self.get_qformer_tokenizer() A = InstructBlipProcessor( tokenizer=snake_case , image_processor=snake_case , qformer_tokenizer=snake_case ) A = 'lower newer' A = self.prepare_image_inputs() A = processor(text=snake_case , images=snake_case ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def A_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A = self.get_image_processor() A = self.get_tokenizer() A = self.get_qformer_tokenizer() A = InstructBlipProcessor( tokenizer=snake_case , image_processor=snake_case , qformer_tokenizer=snake_case ) A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A = processor.batch_decode(snake_case ) A = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case ) def A_ ( self : Tuple ) -> List[Any]: '''simple docstring''' A = self.get_image_processor() A = self.get_tokenizer() A = self.get_qformer_tokenizer() A = InstructBlipProcessor( tokenizer=snake_case , image_processor=snake_case , qformer_tokenizer=snake_case ) A = 'lower newer' A = self.prepare_image_inputs() A = processor(text=snake_case , images=snake_case ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
109
0
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase__ ( _UpperCAmelCase ): def __init__( self : str , *UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : Optional[int] ): super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = eval_examples SCREAMING_SNAKE_CASE__ = post_process_function def A_ ( self : Any , UpperCAmelCase_ : Optional[Dataset] = None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[List[str]] = None , UpperCAmelCase_ : str = "eval" , **UpperCAmelCase_ : List[str] , ): SCREAMING_SNAKE_CASE__ = gen_kwargs.copy() SCREAMING_SNAKE_CASE__ = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE__ = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE__ = gen_kwargs SCREAMING_SNAKE_CASE__ = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE__ = self.get_eval_dataloader(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE__ = self.compute_metrics SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE__ = eval_loop( UpperCAmelCase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase_ , metric_key_prefix=UpperCAmelCase_ , ) finally: SCREAMING_SNAKE_CASE__ = compute_metrics SCREAMING_SNAKE_CASE__ = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCAmelCase_ , UpperCAmelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE__ = self.post_process_function(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.compute_metrics(UpperCAmelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): SCREAMING_SNAKE_CASE__ = metrics.pop(UpperCAmelCase_ ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCAmelCase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCAmelCase_ ) return metrics def A_ ( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : str = "test" , **UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = gen_kwargs.copy() SCREAMING_SNAKE_CASE__ = self.get_test_dataloader(UpperCAmelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE__ = self.compute_metrics SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE__ = eval_loop( UpperCAmelCase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase_ , metric_key_prefix=UpperCAmelCase_ , ) finally: SCREAMING_SNAKE_CASE__ = compute_metrics SCREAMING_SNAKE_CASE__ = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( UpperCAmelCase_ , UpperCAmelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE__ = self.post_process_function(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , 'predict' ) SCREAMING_SNAKE_CASE__ = self.compute_metrics(UpperCAmelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): SCREAMING_SNAKE_CASE__ = metrics.pop(UpperCAmelCase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCAmelCase_ )
472
from importlib import import_module from .logging import get_logger __snake_case = get_logger(__name__) class lowercase__ : def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int=None ): SCREAMING_SNAKE_CASE__ = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = module._original_module if isinstance(UpperCAmelCase_ , _PatchedModuleObj ) else module class lowercase__ : A__ : Optional[int] =[] def __init__( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple=None ): SCREAMING_SNAKE_CASE__ = obj SCREAMING_SNAKE_CASE__ = target SCREAMING_SNAKE_CASE__ = new SCREAMING_SNAKE_CASE__ = target.split('.' )[0] SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = attrs or [] def __enter__( self : int ): *SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(UpperCAmelCase_ ) ): try: SCREAMING_SNAKE_CASE__ = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): SCREAMING_SNAKE_CASE__ = getattr(self.obj , UpperCAmelCase_ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(UpperCAmelCase_ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): SCREAMING_SNAKE_CASE__ = obj_attr # patch at top level setattr(self.obj , UpperCAmelCase_ , _PatchedModuleObj(UpperCAmelCase_ , attrs=self.attrs ) ) SCREAMING_SNAKE_CASE__ = getattr(self.obj , UpperCAmelCase_ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(UpperCAmelCase_ , UpperCAmelCase_ , _PatchedModuleObj(getattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , attrs=self.attrs ) ) SCREAMING_SNAKE_CASE__ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) # finally set the target attribute setattr(UpperCAmelCase_ , UpperCAmelCase_ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: SCREAMING_SNAKE_CASE__ = getattr(import_module('.'.join(UpperCAmelCase_ ) ) , UpperCAmelCase_ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , UpperCAmelCase_ ) is attr_value: SCREAMING_SNAKE_CASE__ = getattr(self.obj , UpperCAmelCase_ ) setattr(self.obj , UpperCAmelCase_ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" SCREAMING_SNAKE_CASE__ = globals()['__builtins__'][target_attr] setattr(self.obj , UpperCAmelCase_ , self.new ) else: raise RuntimeError(F'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self : Any , *UpperCAmelCase_ : Dict ): for attr in list(self.original ): setattr(self.obj , UpperCAmelCase_ , self.original.pop(UpperCAmelCase_ ) ) def A_ ( self : Any ): self.__enter__() self._active_patches.append(self ) def A_ ( self : List[str] ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
472
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowercase = logging.getLogger(__name__) @dataclass(frozen=UpperCAmelCase ) class __A: SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None @dataclass(frozen=UpperCAmelCase ) class __A: SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if is_torch_available(): import torch from torch.utils.data import Dataset class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = 4_2 def __init__( self : Any , __UpperCamelCase : str , __UpperCamelCase : PreTrainedTokenizer , __UpperCamelCase : str , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Dict=False , __UpperCamelCase : bool = False , ): lowerCamelCase_ = hans_processors[task]() lowerCamelCase_ = os.path.join( UpperCamelCase_ , """cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(UpperCamelCase_ ) , UpperCamelCase_ , ) , ) lowerCamelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase_ = label_list[2], label_list[1] lowerCamelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ = cached_features_file + '.lock' with FileLock(UpperCamelCase_ ): if os.path.exists(UpperCamelCase_ ) and not overwrite_cache: logger.info(F'''Loading features from cached file {cached_features_file}''' ) lowerCamelCase_ = torch.load(UpperCamelCase_ ) else: logger.info(F'''Creating features from dataset file at {data_dir}''' ) lowerCamelCase_ = ( processor.get_dev_examples(UpperCamelCase_ ) if evaluate else processor.get_train_examples(UpperCamelCase_ ) ) logger.info("""Training examples: %s""" , len(UpperCamelCase_ ) ) lowerCamelCase_ = hans_convert_examples_to_features(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) logger.info("""Saving features into cached file %s""" , UpperCamelCase_ ) torch.save(self.features , UpperCamelCase_ ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : List[Any] , __UpperCamelCase : Tuple ): return self.features[i] def lowercase__ ( self : Optional[int] ): return self.label_list if is_tf_available(): import tensorflow as tf class __A: SCREAMING_SNAKE_CASE = 4_2 def __init__( self : int , __UpperCamelCase : str , __UpperCamelCase : PreTrainedTokenizer , __UpperCamelCase : str , __UpperCamelCase : Optional[int] = 1_2_8 , __UpperCamelCase : Tuple=False , __UpperCamelCase : bool = False , ): lowerCamelCase_ = hans_processors[task]() lowerCamelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase_ = label_list[2], label_list[1] lowerCamelCase_ = label_list lowerCamelCase_ = processor.get_dev_examples(UpperCamelCase_ ) if evaluate else processor.get_train_examples(UpperCamelCase_ ) lowerCamelCase_ = hans_convert_examples_to_features(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ): if ex_index % 1_0_0_0_0 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(UpperCamelCase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCamelCase_ = tf.data.Dataset.from_generator( UpperCamelCase_ , ( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ) , ( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def lowercase__ ( self : Optional[int] ): return self.dataset def __len__( self : str ): return len(self.features ) def __getitem__( self : Dict , __UpperCamelCase : Union[str, Any] ): return self.features[i] def lowercase__ ( self : Union[str, Any] ): return self.label_list class __A( UpperCAmelCase ): def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int ): return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase_ , """heuristics_train_set.txt""" ) ) , """train""" ) def lowercase__ ( self : Any , __UpperCamelCase : Dict ): return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase_ , """heuristics_evaluation_set.txt""" ) ) , """dev""" ) def lowercase__ ( self : str ): return ["contradiction", "entailment", "neutral"] def lowercase__ ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : Tuple ): lowerCamelCase_ = [] for i, line in enumerate(UpperCamelCase_ ): if i == 0: continue lowerCamelCase_ = '%s-%s' % (set_type, line[0]) lowerCamelCase_ = line[5] lowerCamelCase_ = line[6] lowerCamelCase_ = line[7][2:] if line[7].startswith("""ex""" ) else line[7] lowerCamelCase_ = line[0] examples.append(InputExample(guid=UpperCamelCase_ , text_a=UpperCamelCase_ , text_b=UpperCamelCase_ , label=UpperCamelCase_ , pairID=UpperCamelCase_ ) ) return examples def __lowerCAmelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : int , ) -> Any: lowerCamelCase_ = {label: i for i, label in enumerate(_lowercase )} lowerCamelCase_ = [] for ex_index, example in tqdm.tqdm(enumerate(_lowercase ) , desc="""convert examples to features""" ): if ex_index % 1_0_0_0_0 == 0: logger.info("""Writing example %d""" % (ex_index) ) lowerCamelCase_ = tokenizer( example.text_a , example.text_b , add_special_tokens=_lowercase , max_length=_lowercase , padding="""max_length""" , truncation=_lowercase , return_overflowing_tokens=_lowercase , ) lowerCamelCase_ = label_map[example.label] if example.label in label_map else 0 lowerCamelCase_ = int(example.pairID ) features.append(InputFeatures(**_lowercase , label=_lowercase , pairID=_lowercase ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(F'''guid: {example}''' ) logger.info(F'''features: {features[i]}''' ) return features lowercase = { '''hans''': 3, } lowercase = { '''hans''': HansProcessor, }
704
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = {'''vocab_file''': '''vocab.txt'''} lowercase = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } lowercase = { '''openbmb/cpm-ant-10b''': 1_0_2_4, } def __lowerCAmelCase ( UpperCAmelCase__ : List[str] ) -> Dict: lowerCamelCase_ = collections.OrderedDict() with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" ) as reader: lowerCamelCase_ = reader.readlines() for index, token in enumerate(UpperCAmelCase__ ): lowerCamelCase_ = token.rstrip("""\n""" ) lowerCamelCase_ = index return vocab class __A( UpperCAmelCase ): def __init__( self : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str]="<unk>" , __UpperCamelCase : List[str]=2_0_0 ): lowerCamelCase_ = vocab lowerCamelCase_ = unk_token lowerCamelCase_ = max_input_chars_per_word def lowercase__ ( self : int , __UpperCamelCase : int ): lowerCamelCase_ = list(__UpperCamelCase ) if len(__UpperCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] lowerCamelCase_ = 0 lowerCamelCase_ = [] while start < len(__UpperCamelCase ): lowerCamelCase_ = len(__UpperCamelCase ) lowerCamelCase_ = None while start < end: lowerCamelCase_ = """""".join(chars[start:end] ) if substr in self.vocab: lowerCamelCase_ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__UpperCamelCase ) lowerCamelCase_ = end return sub_tokens class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE = False def __init__( self : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int]="<d>" , __UpperCamelCase : List[str]="</d>" , __UpperCamelCase : Optional[Any]="<s>" , __UpperCamelCase : Union[str, Any]="</s>" , __UpperCamelCase : List[str]="<pad>" , __UpperCamelCase : Union[str, Any]="<unk>" , __UpperCamelCase : List[Any]="</n>" , __UpperCamelCase : Tuple="</_>" , __UpperCamelCase : Optional[Any]="left" , **__UpperCamelCase : List[str] , ): requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=__UpperCamelCase , eod_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , pad_token=__UpperCamelCase , unk_token=__UpperCamelCase , line_token=__UpperCamelCase , space_token=__UpperCamelCase , padding_side=__UpperCamelCase , **__UpperCamelCase , ) lowerCamelCase_ = bod_token lowerCamelCase_ = eod_token lowerCamelCase_ = load_vocab(__UpperCamelCase ) lowerCamelCase_ = self.encoder[space_token] lowerCamelCase_ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCamelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __UpperCamelCase : x[1] ) ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowercase__ ( self : Any ): return self.encoder[self.bod_token] @property def lowercase__ ( self : Any ): return self.encoder[self.eod_token] @property def lowercase__ ( self : int ): return self.encoder["\n"] @property def lowercase__ ( self : str ): return len(self.encoder ) def lowercase__ ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : Any , __UpperCamelCase : Optional[Any] ): lowerCamelCase_ = [] for x in jieba.cut(__UpperCamelCase , cut_all=__UpperCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__UpperCamelCase ) ) return output_tokens def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Dict , **__UpperCamelCase : str ): lowerCamelCase_ = [i for i in token_ids if i >= 0] lowerCamelCase_ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : Optional[Any] ): return token in self.encoder def lowercase__ ( self : int , __UpperCamelCase : List[str] ): return "".join(__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : int ): return self.encoder.get(__UpperCamelCase , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Any , __UpperCamelCase : Union[str, Any] ): return self.decoder.get(__UpperCamelCase , self.unk_token ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): if os.path.isdir(__UpperCamelCase ): lowerCamelCase_ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: lowerCamelCase_ = (filename_prefix + """-""" if filename_prefix else """""") + save_directory lowerCamelCase_ = 0 if " " in self.encoder: lowerCamelCase_ = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: lowerCamelCase_ = self.encoder["""\n"""] del self.encoder["\n"] lowerCamelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __UpperCamelCase : x[1] ) ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) lowerCamelCase_ = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowercase__ ( self : Any , __UpperCamelCase : List[int] , __UpperCamelCase : List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowercase__ ( self : int , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) return [1] + ([0] * len(__UpperCamelCase ))
103
0
import argparse lowerCAmelCase_ = '''docs/source/_static/js/custom.js''' def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" with open(_UpperCamelCase , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case_ : List[str] = f.readlines() snake_case_ : str = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 snake_case_ : str = f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') lowerCAmelCase_ = parser.parse_args() update_custom_js(args.version)
60
'''simple docstring''' import math def __UpperCamelCase ( a : int ) ->list[int]: snake_case = [] snake_case = 2 snake_case = int(math.sqrt(a ) ) # Size of every segment snake_case = [True] * (end + 1) snake_case = [] while start <= end: if temp[start] is True: in_prime.append(a ) for i in range(start * start , end + 1 , a ): snake_case = False start += 1 prime += in_prime snake_case = end + 1 snake_case = min(2 * end , a ) while low <= n: snake_case = [True] * (high - low + 1) for each in in_prime: snake_case = math.floor(low / each ) * each if t < low: t += each for j in range(a , high + 1 , a ): snake_case = False for j in range(len(a ) ): if temp[j] is True: prime.append(j + low ) snake_case = high + 1 snake_case = min(high + end , a ) return prime print(sieve(10**6))
342
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): def __init__( self : Any , *a : Union[str, Any] , **a : str ) -> None: """simple docstring""" warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , a , ) super().__init__(*a , **a )
396
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def A_ ( __UpperCamelCase : Features ): lowercase = np.inf def set_batch_size(__UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(__UpperCamelCase , __UpperCamelCase ): lowercase = min(__UpperCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): lowercase = min(__UpperCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__UpperCamelCase , __UpperCamelCase ) and feature.dtype == "binary": lowercase = min(__UpperCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__UpperCamelCase , __UpperCamelCase ) return None if batch_size is np.inf else batch_size class _lowerCAmelCase ( __snake_case ): def __init__( self : str , a : NestedDataStructureLike[PathLike] , a : Optional[NamedSplit] = None , a : Optional[Features] = None , a : str = None , a : bool = False , a : bool = False , a : Optional[int] = None , **a : Dict , ) -> Any: """simple docstring""" super().__init__( a , split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) lowercase = path_or_paths if isinstance(a , a ) else {self.split: path_or_paths} lowercase = _PACKAGED_DATASETS_MODULES['''parquet'''][1] lowercase = Parquet( cache_dir=a , data_files=a , features=a , hash=a , **a , ) def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" # Build iterable dataset if self.streaming: lowercase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase = None lowercase = None lowercase = None lowercase = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) lowercase = self.builder.as_dataset( split=self.split , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class _lowerCAmelCase : def __init__( self : Optional[Any] , a : Dataset , a : Union[PathLike, BinaryIO] , a : Optional[int] = None , **a : int , ) -> Optional[Any]: """simple docstring""" lowercase = dataset lowercase = path_or_buf lowercase = batch_size or get_writer_batch_size(dataset.features ) lowercase = parquet_writer_kwargs def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" lowercase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: lowercase = self._write(file_obj=a , batch_size=a , **self.parquet_writer_kwargs ) else: lowercase = self._write(file_obj=self.path_or_buf , batch_size=a , **self.parquet_writer_kwargs ) return written def _lowerCAmelCase ( self : Optional[int] , a : BinaryIO , a : int , **a : List[Any] ) -> int: """simple docstring""" lowercase = 0 lowercase = parquet_writer_kwargs.pop('''path_or_buf''' , a ) lowercase = self.dataset.features.arrow_schema lowercase = pq.ParquetWriter(a , schema=a , **a ) for offset in logging.tqdm( range(0 , len(self.dataset ) , a ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): lowercase = query_table( table=self.dataset._data , key=slice(a , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(a ) written += batch.nbytes writer.close() return written
396
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
567
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase : Optional[int] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=8 ) -> Union[str, Any]: '''simple docstring''' lowercase_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase=5_12 , __lowerCAmelCase=5_12 ) -> Optional[int]: '''simple docstring''' lowercase_ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ = np.array(pil_image.convert("""RGB""" ) ) lowercase_ = arr.astype(np.floataa ) / 127.5 - 1 lowercase_ = np.transpose(__lowerCAmelCase , [2, 0, 1] ) lowercase_ = torch.from_numpy(__lowerCAmelCase ).unsqueeze(0 ) return image class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Optional[int] , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : DDPMScheduler , lowerCAmelCase_ : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , movq=lowerCAmelCase_ , ) lowercase_ = 2 ** (len(self.movq.config.block_out_channels) - 1) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = min(int(num_inference_steps * strength) , lowerCAmelCase_) lowercase_ = max(num_inference_steps - init_timestep , 0) lowercase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=None): """simple docstring""" if not isinstance(lowerCAmelCase_ , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase_)}''') lowercase_ = image.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_) lowercase_ = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ = image else: if isinstance(lowerCAmelCase_ , lowerCAmelCase_) and len(lowerCAmelCase_) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowerCAmelCase_)}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') elif isinstance(lowerCAmelCase_ , lowerCAmelCase_): lowercase_ = [ self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(lowerCAmelCase_) ] lowercase_ = torch.cat(lowerCAmelCase_ , dim=0) else: lowercase_ = self.movq.encode(lowerCAmelCase_).latent_dist.sample(lowerCAmelCase_) lowercase_ = self.movq.config.scaling_factor * init_latents lowercase_ = torch.cat([init_latents] , dim=0) lowercase_ = init_latents.shape lowercase_ = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_) # get latents lowercase_ = self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = init_latents return latents def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Tuple=0): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""") lowercase_ = torch.device(F'''cuda:{gpu_id}''') lowercase_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[str]=0): """simple docstring""" if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0"""): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""") lowercase_ = torch.device(F'''cuda:{gpu_id}''') if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowerCAmelCase_) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ = cpu_offload_with_hook(lowerCAmelCase_ , lowerCAmelCase_ , prev_module_hook=lowerCAmelCase_) # We'll offload the last model manually. lowercase_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" if not hasattr(self.unet , """_hf_hook"""): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase_ , """_hf_hook""") and hasattr(module._hf_hook , """execution_device""") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase_) def __call__( self : str , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 1_0_0 , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : float = 0.3 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ): """simple docstring""" lowercase_ = self._execution_device lowercase_ = guidance_scale > 1.0 if isinstance(lowerCAmelCase_ , lowerCAmelCase_): lowercase_ = torch.cat(lowerCAmelCase_ , dim=0) lowercase_ = image_embeds.shape[0] if isinstance(lowerCAmelCase_ , lowerCAmelCase_): lowercase_ = torch.cat(lowerCAmelCase_ , dim=0) if do_classifier_free_guidance: lowercase_ = image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0) lowercase_ = negative_image_embeds.repeat_interleave(lowerCAmelCase_ , dim=0) lowercase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowerCAmelCase_) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_): lowercase_ = [image] if not all(isinstance(lowerCAmelCase_ , (PIL.Image.Image, torch.Tensor)) for i in image): raise ValueError( F'''Input is in incorrect format: {[type(lowerCAmelCase_) for i in image]}. Currently, we only support PIL image and pytorch tensor''') lowercase_ = torch.cat([prepare_image(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) for i in image] , dim=0) lowercase_ = image.to(dtype=image_embeds.dtype , device=lowerCAmelCase_) lowercase_ = self.movq.encode(lowerCAmelCase_)["""latents"""] lowercase_ = latents.repeat_interleave(lowerCAmelCase_ , dim=0) self.scheduler.set_timesteps(lowerCAmelCase_ , device=lowerCAmelCase_) lowercase_ , lowercase_ = self.get_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = timesteps[:1].repeat(batch_size * num_images_per_prompt) lowercase_ , lowercase_ = downscale_height_and_width(lowerCAmelCase_ , lowerCAmelCase_ , self.movq_scale_factor) lowercase_ = self.prepare_latents( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , image_embeds.dtype , lowerCAmelCase_ , lowerCAmelCase_) for i, t in enumerate(self.progress_bar(lowerCAmelCase_)): # expand the latents if we are doing classifier free guidance lowercase_ = torch.cat([latents] * 2) if do_classifier_free_guidance else latents lowercase_ = {"""image_embeds""": image_embeds} lowercase_ = self.unet( sample=lowerCAmelCase_ , timestep=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , added_cond_kwargs=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ = noise_pred.split(latents.shape[1] , dim=1) lowercase_ , lowercase_ = noise_pred.chunk(2) lowercase_ , lowercase_ = variance_pred.chunk(2) lowercase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , """variance_type""") and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 lowercase_ = self.scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ , )[0] # post-processing lowercase_ = self.movq.decode(lowerCAmelCase_ , force_not_quantize=lowerCAmelCase_)["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''') if output_type in ["np", "pil"]: lowercase_ = image * 0.5 + 0.5 lowercase_ = image.clamp(0 , 1) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": lowercase_ = self.numpy_to_pil(lowerCAmelCase_) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_)
567
1
'''simple docstring''' def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> Optional[Any]: a__ : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def SCREAMING_SNAKE_CASE( __UpperCamelCase = 50_00 ) -> str: a__ : Union[str, Any] = [(i * (3 * i - 1)) // 2 for i in range(1 , a_ )] for i, pentagonal_i in enumerate(a_ ): for j in range(a_ , len(a_ ) ): a__ : Dict = pentagonal_nums[j] a__ : Any = pentagonal_i + pentagonal_j a__ : str = pentagonal_j - pentagonal_i if is_pentagonal(a_ ) and is_pentagonal(a_ ): return b return -1 if __name__ == "__main__": print(F'{solution() = }')
705
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowerCamelCase = TypeVar("""T""") class _a ( Generic[T] ): '''simple docstring''' def __init__( self , __UpperCAmelCase = True ): """simple docstring""" a__ : dict[T, list[T]] = {} # dictionary of lists a__ : Dict = directed def _A ( self , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCAmelCase ) self.adj_list[destination_vertex].append(__UpperCAmelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCAmelCase ) a__ : Optional[Any] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__UpperCAmelCase ) a__ : Optional[int] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: a__ : str = [destination_vertex] a__ : int = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCAmelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCAmelCase ) a__ : List[str] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: a__ : int = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: a__ : List[str] = [destination_vertex] a__ : int = [] return self def __repr__( self ): """simple docstring""" return pformat(self.adj_list )
207
0
'''simple docstring''' def A__ ( __lowerCAmelCase : int ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 lowerCamelCase__ = 1 lowerCamelCase__ = 1 while repunit: lowerCamelCase__ = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def A__ ( __lowerCAmelCase : int = 100_0000 ): lowerCamelCase__ = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'{solution() = }')
50
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : int = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
1
"""simple docstring""" from __future__ import annotations a :Dict = list[list[int]] # assigning initial values to the grid a :Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution a :Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _lowercase ( __lowerCAmelCase ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _lowercase ( __lowerCAmelCase ) -> Matrix | None: if location := find_empty_location(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : List[Any] = digit if sudoku(__lowerCAmelCase ) is not None: return grid SCREAMING_SNAKE_CASE__ : str = 0 return None def _lowercase ( __lowerCAmelCase ) -> None: for row in grid: for cell in row: print(__lowerCAmelCase , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") a :Any = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
12
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Tuple = (DDPMScheduler,) def _a ( self , **_a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = { """num_train_timesteps""": 1_000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_a ) return config def _a ( self ) -> str: """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def _a ( self ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def _a ( self ) -> Union[str, Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_a ) def _a ( self ) -> Any: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_a ) def _a ( self ) -> Optional[int]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def _a ( self ) -> int: """simple docstring""" self.check_over_configs(thresholding=_a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , ) def _a ( self ) -> str: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def _a ( self ) -> str: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_a ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : Any = len(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE__ : str = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_a , _a ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ : int = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance SCREAMING_SNAKE_CASE__ : str = pred_prev_sample SCREAMING_SNAKE_CASE__ : str = torch.sum(torch.abs(_a ) ) SCREAMING_SNAKE_CASE__ : Any = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : Dict = len(_a ) SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_model() SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ : int = model(_a , _a ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ : List[str] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance SCREAMING_SNAKE_CASE__ : Tuple = pred_prev_sample SCREAMING_SNAKE_CASE__ : Any = torch.sum(torch.abs(_a ) ) SCREAMING_SNAKE_CASE__ : int = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler.timesteps for i, timestep in enumerate(_a ): if i == len(_a ) - 1: SCREAMING_SNAKE_CASE__ : Optional[Any] = -1 else: SCREAMING_SNAKE_CASE__ : Tuple = timesteps[i + 1] SCREAMING_SNAKE_CASE__ : int = scheduler.previous_timestep(_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = prev_t.item() self.assertEqual(_a , _a ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(_a , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_a ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : List[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : int = [100, 87, 50, 1, 0] SCREAMING_SNAKE_CASE__ : List[str] = len(_a ) with self.assertRaises(_a , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_a )
12
1
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : str = ['''image_processor''', '''tokenizer'''] A__ : Tuple = '''BlipImageProcessor''' A__ : str = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Any ): """simple docstring""" _snake_case = False super().__init__(__lowerCamelCase , __lowerCamelCase ) _snake_case = self.image_processor def __call__( self : Optional[int] , __lowerCamelCase : ImageInput = None , __lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[bool, str, PaddingStrategy] = False , __lowerCamelCase : Union[bool, str, TruncationStrategy] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[str, TensorType]] = None , **__lowerCamelCase : List[str] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _snake_case = self.tokenizer _snake_case = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) return text_encoding # add pixel_values _snake_case = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) if text is not None: _snake_case = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) else: _snake_case = None if text_encoding is not None: encoding_image_processor.update(__lowerCamelCase ) return encoding_image_processor def __UpperCAmelCase ( self : Dict , *__lowerCamelCase : List[str] , **__lowerCamelCase : Optional[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Any ): """simple docstring""" return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = self.tokenizer.model_input_names _snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
103
"""simple docstring""" from copy import deepcopy class UpperCAmelCase : def __init__( self : Optional[Any] , __lowerCamelCase : list[int] | None = None , __lowerCamelCase : int | None = None ): """simple docstring""" if arr is None and size is not None: _snake_case = size _snake_case = [0] * size elif arr is not None: self.init(__lowerCamelCase ) else: raise ValueError('''Either arr or size must be specified''' ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : list[int] ): """simple docstring""" _snake_case = len(__lowerCamelCase ) _snake_case = deepcopy(__lowerCamelCase ) for i in range(1 , self.size ): _snake_case = self.next_(__lowerCamelCase ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): _snake_case = self.next_(__lowerCamelCase ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCAmelCase ( __lowerCamelCase : int ): """simple docstring""" return index + (index & (-index)) @staticmethod def __UpperCAmelCase ( __lowerCamelCase : int ): """simple docstring""" return index - (index & (-index)) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value _snake_case = self.next_(__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" self.add(__lowerCamelCase , value - self.get(__lowerCamelCase ) ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : int ): """simple docstring""" if right == 0: return 0 _snake_case = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] _snake_case = self.prev(__lowerCamelCase ) return result def __UpperCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" return self.prefix(__lowerCamelCase ) - self.prefix(__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : int ): """simple docstring""" return self.query(__lowerCamelCase , index + 1 ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : int ): """simple docstring""" value -= self.tree[0] if value < 0: return -1 _snake_case = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 _snake_case = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
103
1
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) class __snake_case ( _lowerCamelCase ): def __a ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : int = [label.strip() for label in labels.split(',' ) if label.strip()] return labels def __call__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict: '''simple docstring''' if len(__UpperCamelCase ) == 0 or len(__UpperCamelCase ) == 0: raise ValueError('You must include at least one label and at least one sequence.' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(__UpperCamelCase ) ) if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : Optional[int] = [sequences] snake_case__ : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__UpperCamelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(_lowerCamelCase ) class __snake_case ( _lowerCamelCase ): def __init__( self , __UpperCamelCase=ZeroShotClassificationArgumentHandler() , *__UpperCamelCase , **__UpperCamelCase ) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = args_parser super().__init__(*__UpperCamelCase , **__UpperCamelCase ) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' ) @property def __a ( self ) -> int: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail' ): return ind return -1 def __a ( self , __UpperCamelCase , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=TruncationStrategy.ONLY_FIRST , **__UpperCamelCase ) -> Dict: '''simple docstring''' snake_case__ : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`' ) snake_case__ : Optional[Any] = self.tokenizer.eos_token try: snake_case__ : List[Any] = self.tokenizer( __UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , ) except Exception as e: if "too short" in str(__UpperCamelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. snake_case__ : int = self.tokenizer( __UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors=__UpperCamelCase , padding=__UpperCamelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def __a ( self , **__UpperCamelCase ) -> Any: '''simple docstring''' if kwargs.get('multi_class' , __UpperCamelCase ) is not None: snake_case__ : int = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.' ) snake_case__ : Any = {} if "candidate_labels" in kwargs: snake_case__ : Any = self._args_parser._parse_labels(kwargs['candidate_labels'] ) if "hypothesis_template" in kwargs: snake_case__ : Tuple = kwargs['hypothesis_template'] snake_case__ : Union[str, Any] = {} if "multi_label" in kwargs: snake_case__ : Union[str, Any] = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase , ) -> Union[str, Any]: '''simple docstring''' if len(__UpperCamelCase ) == 0: pass elif len(__UpperCamelCase ) == 1 and "candidate_labels" not in kwargs: snake_case__ : Tuple = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(__UpperCamelCase , **__UpperCamelCase ) def __a ( self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase="This example is {}." ) -> int: '''simple docstring''' snake_case__ , snake_case__ : List[Any] = self._args_parser(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(__UpperCamelCase , __UpperCamelCase ) ): snake_case__ : List[str] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__UpperCamelCase ) - 1, **model_input, } def __a ( self , __UpperCamelCase ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = inputs['candidate_label'] snake_case__ : Optional[Any] = inputs['sequence'] snake_case__ : List[str] = {k: inputs[k] for k in self.tokenizer.model_input_names} snake_case__ : Tuple = self.model(**__UpperCamelCase ) snake_case__ : Dict = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def __a ( self , __UpperCamelCase , __UpperCamelCase=False ) -> Any: '''simple docstring''' snake_case__ : Union[str, Any] = [outputs['candidate_label'] for outputs in model_outputs] snake_case__ : Tuple = [outputs['sequence'] for outputs in model_outputs] snake_case__ : Dict = np.concatenate([output['logits'].numpy() for output in model_outputs] ) snake_case__ : Any = logits.shape[0] snake_case__ : str = len(__UpperCamelCase ) snake_case__ : List[str] = N // n snake_case__ : Dict = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__UpperCamelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently snake_case__ : Optional[int] = self.entailment_id snake_case__ : Optional[int] = -1 if entailment_id == 0 else 0 snake_case__ : List[str] = reshaped_outputs[..., [contradiction_id, entailment_id]] snake_case__ : Optional[int] = np.exp(__UpperCamelCase ) / np.exp(__UpperCamelCase ).sum(-1 , keepdims=__UpperCamelCase ) snake_case__ : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels snake_case__ : Optional[Any] = reshaped_outputs[..., self.entailment_id] snake_case__ : List[Any] = np.exp(__UpperCamelCase ) / np.exp(__UpperCamelCase ).sum(-1 , keepdims=__UpperCamelCase ) snake_case__ : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
699
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : int = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = """poolformer""" def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=16 , __UpperCamelCase=16 , __UpperCamelCase=3 , __UpperCamelCase=4.0 , __UpperCamelCase=[2, 2, 6, 2] , __UpperCamelCase=[64, 128, 320, 512] , __UpperCamelCase=[7, 3, 3, 3] , __UpperCamelCase=[4, 2, 2, 2] , __UpperCamelCase=[2, 1, 1, 1] , __UpperCamelCase=4 , __UpperCamelCase=0.0 , __UpperCamelCase="gelu" , __UpperCamelCase=True , __UpperCamelCase=1E-5 , __UpperCamelCase=0.0_2 , **__UpperCamelCase , ) -> Any: '''simple docstring''' snake_case__ : List[str] = num_channels snake_case__ : Dict = patch_size snake_case__ : Optional[int] = stride snake_case__ : str = padding snake_case__ : List[str] = pool_size snake_case__ : List[Any] = hidden_sizes snake_case__ : List[Any] = mlp_ratio snake_case__ : Union[str, Any] = depths snake_case__ : Dict = patch_sizes snake_case__ : Dict = strides snake_case__ : Dict = num_encoder_blocks snake_case__ : Union[str, Any] = drop_path_rate snake_case__ : List[str] = hidden_act snake_case__ : Optional[Any] = use_layer_scale snake_case__ : int = layer_scale_init_value snake_case__ : Dict = initializer_range super().__init__(**__UpperCamelCase ) class __snake_case ( _lowerCamelCase ): __lowerCamelCase = version.parse("""1.11""" ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __a ( self ) -> float: '''simple docstring''' return 2E-3
699
1
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __UpperCAmelCase ( __lowerCamelCase ) -> str: lowercase__ : Optional[Any] = [] for line in lines: lowercase__ : int = re.sub(r'''#.*''' , '''''' , __lowerCamelCase ) # remove comments if line: filtered_lines.append(__lowerCamelCase ) lowercase__ : Dict = '''\n'''.join(__lowerCamelCase ) # Make a hash from all this code lowercase__ : Any = full_str.encode('''utf-8''' ) return shaaaa(__lowerCamelCase ).hexdigest() # get importable module names and hash for caching lowerCAmelCase_ = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCAmelCase_ = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCAmelCase_ = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCAmelCase_ = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
560
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[Any] = ConsistencyModelPipeline lowerCAmelCase : str = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCAmelCase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowerCAmelCase : Any = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[int] = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' ,subfolder='''test_unet''' ,) return unet @property def UpperCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Any = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' ,subfolder='''test_unet_class_cond''' ,) return unet def UpperCAmelCase ( self : Optional[int] ,_snake_case : int=False ) -> Dict: """simple docstring""" if class_cond: lowercase__ : Optional[int] = self.dummy_cond_unet else: lowercase__ : List[Any] = self.dummy_uncond_unet # Default to CM multistep sampler lowercase__ : Tuple = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) lowercase__ : Dict = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCAmelCase ( self : Optional[int] ,_snake_case : Tuple ,_snake_case : List[Any]=0 ) -> str: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : Dict = torch.manual_seed(_snake_case ) else: lowercase__ : int = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : List[str] = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : Union[str, Any] = self.get_dummy_components() lowercase__ : Dict = ConsistencyModelPipeline(**_snake_case ) lowercase__ : List[str] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : List[str] = self.get_dummy_inputs(_snake_case ) lowercase__ : Union[str, Any] = pipe(**_snake_case ).images assert image.shape == (1, 32, 32, 3) lowercase__ : Optional[Any] = image[0, -3:, -3:, -1] lowercase__ : Dict = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" lowercase__ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : int = self.get_dummy_components(class_cond=_snake_case ) lowercase__ : List[Any] = ConsistencyModelPipeline(**_snake_case ) lowercase__ : Dict = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[Any] = self.get_dummy_inputs(_snake_case ) lowercase__ : Dict = 0 lowercase__ : Union[str, Any] = pipe(**_snake_case ).images assert image.shape == (1, 32, 32, 3) lowercase__ : List[Any] = image[0, -3:, -3:, -1] lowercase__ : Union[str, Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : str = self.get_dummy_components() lowercase__ : int = ConsistencyModelPipeline(**_snake_case ) lowercase__ : List[str] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Union[str, Any] = self.get_dummy_inputs(_snake_case ) lowercase__ : Union[str, Any] = 1 lowercase__ : List[Any] = None lowercase__ : Any = pipe(**_snake_case ).images assert image.shape == (1, 32, 32, 3) lowercase__ : Dict = image[0, -3:, -3:, -1] lowercase__ : List[str] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self : List[str] ) -> int: """simple docstring""" lowercase__ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : Any = self.get_dummy_components(class_cond=_snake_case ) lowercase__ : int = ConsistencyModelPipeline(**_snake_case ) lowercase__ : Dict = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : List[str] = self.get_dummy_inputs(_snake_case ) lowercase__ : Union[str, Any] = 1 lowercase__ : Any = None lowercase__ : Union[str, Any] = 0 lowercase__ : Optional[Any] = pipe(**_snake_case ).images assert image.shape == (1, 32, 32, 3) lowercase__ : List[Any] = image[0, -3:, -3:, -1] lowercase__ : Optional[Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Optional[int] ,_snake_case : Any=0 ,_snake_case : Optional[int]=False ,_snake_case : List[Any]="cpu" ,_snake_case : Tuple=torch.floataa ,_snake_case : List[Any]=(1, 3, 64, 64) ) -> str: """simple docstring""" lowercase__ : Optional[int] = torch.manual_seed(_snake_case ) lowercase__ : Optional[int] = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: lowercase__ : str = self.get_fixed_latents(seed=_snake_case ,device=_snake_case ,dtype=_snake_case ,shape=_snake_case ) lowercase__ : Tuple = latents return inputs def UpperCAmelCase ( self : List[Any] ,_snake_case : int=0 ,_snake_case : Any="cpu" ,_snake_case : Optional[Any]=torch.floataa ,_snake_case : Tuple=(1, 3, 64, 64) ) -> Any: """simple docstring""" if type(_snake_case ) == str: lowercase__ : List[str] = torch.device(_snake_case ) lowercase__ : Tuple = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : Tuple = randn_tensor(_snake_case ,generator=_snake_case ,device=_snake_case ,dtype=_snake_case ) return latents def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Union[str, Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) lowercase__ : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) lowercase__ : Optional[int] = ConsistencyModelPipeline(unet=_snake_case ,scheduler=_snake_case ) pipe.to(torch_device=_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Union[str, Any] = self.get_inputs() lowercase__ : Union[str, Any] = pipe(**_snake_case ).images assert image.shape == (1, 64, 64, 3) lowercase__ : int = image[0, -3:, -3:, -1] lowercase__ : Dict = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" lowercase__ : str = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) lowercase__ : str = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) lowercase__ : List[Any] = ConsistencyModelPipeline(unet=_snake_case ,scheduler=_snake_case ) pipe.to(torch_device=_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : int = self.get_inputs() lowercase__ : Optional[int] = 1 lowercase__ : Union[str, Any] = None lowercase__ : Optional[int] = pipe(**_snake_case ).images assert image.shape == (1, 64, 64, 3) lowercase__ : int = image[0, -3:, -3:, -1] lowercase__ : Any = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" lowercase__ : Optional[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) lowercase__ : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) lowercase__ : Tuple = ConsistencyModelPipeline(unet=_snake_case ,scheduler=_snake_case ) pipe.to(torch_device=_snake_case ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[Any] = self.get_inputs(get_fixed_latents=_snake_case ,device=_snake_case ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_snake_case ,enable_math=_snake_case ,enable_mem_efficient=_snake_case ): lowercase__ : List[str] = pipe(**_snake_case ).images assert image.shape == (1, 64, 64, 3) lowercase__ : int = image[0, -3:, -3:, -1] lowercase__ : str = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) lowercase__ : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) lowercase__ : Any = ConsistencyModelPipeline(unet=_snake_case ,scheduler=_snake_case ) pipe.to(torch_device=_snake_case ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[int] = self.get_inputs(get_fixed_latents=_snake_case ,device=_snake_case ) lowercase__ : List[str] = 1 lowercase__ : Optional[Any] = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_snake_case ,enable_math=_snake_case ,enable_mem_efficient=_snake_case ): lowercase__ : Any = pipe(**_snake_case ).images assert image.shape == (1, 64, 64, 3) lowercase__ : Tuple = image[0, -3:, -3:, -1] lowercase__ : str = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
560
1
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __A ( nn.Module ): lowerCamelCase =42 lowerCamelCase =42 lowerCamelCase =0.0 lowerCamelCase =1 lowerCamelCase =1 lowerCamelCase =True lowerCamelCase =False lowerCamelCase =False lowerCamelCase =False lowerCamelCase =jnp.floataa def lowercase_( self : Optional[Any] ): """simple docstring""" __A : Optional[int] = [] __A : Union[str, Any] = [] for i in range(self.num_layers ): __A : List[Any] = self.in_channels if i == 0 else self.out_channels __A : Dict = FlaxResnetBlockaD( in_channels=lowerCamelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCamelCase ) __A : List[Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCamelCase ) __A : List[str] = resnets __A : Any = attentions if self.add_downsample: __A : Optional[int] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , lowerCamelCase : str , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any]=True ): """simple docstring""" __A : int = () for resnet, attn in zip(self.resnets , self.attentions ): __A : int = resnet(lowerCamelCase , lowerCamelCase , deterministic=lowerCamelCase ) __A : Dict = attn(lowerCamelCase , lowerCamelCase , deterministic=lowerCamelCase ) output_states += (hidden_states,) if self.add_downsample: __A : int = self.downsamplers_a(lowerCamelCase ) output_states += (hidden_states,) return hidden_states, output_states class __A ( nn.Module ): lowerCamelCase =42 lowerCamelCase =42 lowerCamelCase =0.0 lowerCamelCase =1 lowerCamelCase =True lowerCamelCase =jnp.floataa def lowercase_( self : Dict ): """simple docstring""" __A : str = [] for i in range(self.num_layers ): __A : Optional[Any] = self.in_channels if i == 0 else self.out_channels __A : int = FlaxResnetBlockaD( in_channels=lowerCamelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCamelCase ) __A : Any = resnets if self.add_downsample: __A : Optional[int] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Tuple=True ): """simple docstring""" __A : Union[str, Any] = () for resnet in self.resnets: __A : Any = resnet(lowerCamelCase , lowerCamelCase , deterministic=lowerCamelCase ) output_states += (hidden_states,) if self.add_downsample: __A : str = self.downsamplers_a(lowerCamelCase ) output_states += (hidden_states,) return hidden_states, output_states class __A ( nn.Module ): lowerCamelCase =42 lowerCamelCase =42 lowerCamelCase =42 lowerCamelCase =0.0 lowerCamelCase =1 lowerCamelCase =1 lowerCamelCase =True lowerCamelCase =False lowerCamelCase =False lowerCamelCase =False lowerCamelCase =jnp.floataa def lowercase_( self : List[Any] ): """simple docstring""" __A : List[str] = [] __A : Union[str, Any] = [] for i in range(self.num_layers ): __A : Optional[int] = self.in_channels if (i == self.num_layers - 1) else self.out_channels __A : Optional[Any] = self.prev_output_channel if i == 0 else self.out_channels __A : List[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCamelCase ) __A : Dict = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCamelCase ) __A : Union[str, Any] = resnets __A : Any = attentions if self.add_upsample: __A : Any = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : str=True ): """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __A : List[str] = res_hidden_states_tuple[-1] __A : Dict = res_hidden_states_tuple[:-1] __A : Union[str, Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __A : Union[str, Any] = resnet(lowerCamelCase , lowerCamelCase , deterministic=lowerCamelCase ) __A : Optional[Any] = attn(lowerCamelCase , lowerCamelCase , deterministic=lowerCamelCase ) if self.add_upsample: __A : int = self.upsamplers_a(lowerCamelCase ) return hidden_states class __A ( nn.Module ): lowerCamelCase =42 lowerCamelCase =42 lowerCamelCase =42 lowerCamelCase =0.0 lowerCamelCase =1 lowerCamelCase =True lowerCamelCase =jnp.floataa def lowercase_( self : Optional[int] ): """simple docstring""" __A : Tuple = [] for i in range(self.num_layers ): __A : Dict = self.in_channels if (i == self.num_layers - 1) else self.out_channels __A : str = self.prev_output_channel if i == 0 else self.out_channels __A : Dict = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCamelCase ) __A : Any = resnets if self.add_upsample: __A : Tuple = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Tuple=True ): """simple docstring""" for resnet in self.resnets: # pop res hidden states __A : List[Any] = res_hidden_states_tuple[-1] __A : List[Any] = res_hidden_states_tuple[:-1] __A : Any = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __A : str = resnet(lowerCamelCase , lowerCamelCase , deterministic=lowerCamelCase ) if self.add_upsample: __A : Dict = self.upsamplers_a(lowerCamelCase ) return hidden_states class __A ( nn.Module ): lowerCamelCase =42 lowerCamelCase =0.0 lowerCamelCase =1 lowerCamelCase =1 lowerCamelCase =False lowerCamelCase =False lowerCamelCase =jnp.floataa def lowercase_( self : Optional[Any] ): """simple docstring""" __A : List[str] = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __A : List[Any] = [] for _ in range(self.num_layers ): __A : List[Any] = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCamelCase ) __A : Union[str, Any] = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCamelCase ) __A : Optional[Any] = resnets __A : Union[str, Any] = attentions def __call__( self : str , lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : int=True ): """simple docstring""" __A : Dict = self.resnets[0](lowerCamelCase , lowerCamelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __A : List[Any] = attn(lowerCamelCase , lowerCamelCase , deterministic=lowerCamelCase ) __A : Any = resnet(lowerCamelCase , lowerCamelCase , deterministic=lowerCamelCase ) return hidden_states
499
'''simple docstring''' A__ : List[Any] =[ 'Audio', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'ClassLabel', 'Features', 'Sequence', 'Value', 'Image', 'Translation', 'TranslationVariableLanguages', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
499
1
from __future__ import annotations from fractions import Fraction def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> list[str]: snake_case__ = [] snake_case__ = 11 snake_case__ = int('''1''' + '''0''' * digit_len ) for num in range(__lowerCAmelCase , __lowerCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__lowerCAmelCase , __lowerCAmelCase ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 snake_case__ = 10 return solutions def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 2 ) -> int: snake_case__ = 1.0 for fraction in fraction_list(__lowerCAmelCase ): snake_case__ = Fraction(__lowerCAmelCase ) result *= frac.denominator / frac.numerator return int(__lowerCAmelCase ) if __name__ == "__main__": print(solution())
33
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _lowercase = pytest.mark.integration @require_faiss class a_ ( UpperCAmelCase__ ): def lowercase__ ( self : List[Any] ): __snake_case = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(__lowerCAmelCase ) for x in np.arange(3_0 ).tolist()]} ) return dset def lowercase__ ( self : List[str] ): import faiss __snake_case = self._create_dummy_dataset() __snake_case = dset.map( lambda __lowerCAmelCase , __lowerCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ) __snake_case = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT ) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def lowercase__ ( self : Optional[int] ): import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __snake_case , __snake_case = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def lowercase__ ( self : Dict ): import faiss __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __snake_case , __snake_case = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def lowercase__ ( self : Union[str, Any] ): __snake_case = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(__lowerCAmelCase , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def lowercase__ ( self : List[str] ): from elasticsearch import Elasticsearch __snake_case = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __snake_case = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0 ) __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} __snake_case = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=__lowerCAmelCase ) __snake_case , __snake_case = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a_ ( UpperCAmelCase__ ): def lowercase__ ( self : Dict ): import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 1_0 ) # single query __snake_case = np.zeros(5 , dtype=np.floataa ) __snake_case = 1 __snake_case , __snake_case = index.search(__lowerCAmelCase ) self.assertRaises(__lowerCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __snake_case = np.eye(5 , dtype=np.floataa )[::-1] __snake_case , __snake_case = index.search_batch(__lowerCAmelCase ) self.assertRaises(__lowerCAmelCase , index.search_batch , queries[0] ) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCAmelCase ) def lowercase__ ( self : Optional[int] ): import faiss __snake_case = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __snake_case = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCAmelCase ): __snake_case = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def lowercase__ ( self : int ): import faiss __snake_case = faiss.IndexFlat(5 ) __snake_case = FaissIndex(custom_index=__lowerCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def lowercase__ ( self : Tuple ): import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCAmelCase ) as tmp_file: index.save(tmp_file.name ) __snake_case = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __snake_case = np.zeros(5 , dtype=np.floataa ) __snake_case = 1 __snake_case , __snake_case = index.search(__lowerCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase__ ( a ): import faiss __snake_case = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __snake_case = 'index.faiss' __snake_case = f'mock://{index_name}' index.save(a , storage_options=mockfs.storage_options ) __snake_case = FaissIndex.load(a , storage_options=mockfs.storage_options ) __snake_case = np.zeros(5 , dtype=np.floataa ) __snake_case = 1 __snake_case , __snake_case = index.search(a ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a_ ( UpperCAmelCase__ ): def lowercase__ ( self : int ): from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __snake_case = Elasticsearch() __snake_case = {'acknowledged': True} __snake_case = ElasticSearchIndex(es_client=__lowerCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(__lowerCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __snake_case = 'foo' __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __snake_case , __snake_case = index.search(__lowerCAmelCase , request_timeout=3_0 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(__lowerCAmelCase ) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCAmelCase ) # batched queries with timeout __snake_case = ['foo', 'bar', 'foobar'] __snake_case = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __snake_case , __snake_case = index.search_batch(__lowerCAmelCase , request_timeout=3_0 ) __snake_case = [scores[0] for scores in total_scores] __snake_case = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCAmelCase )
356
0
'''simple docstring''' from math import isqrt def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 ,isqrt(lowerCamelCase_) + 1)) def lowerCAmelCase__ ( lowerCamelCase_ : int = 10**6): '''simple docstring''' lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Optional[int] = 1 lowerCAmelCase__ : str = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCamelCase_) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f"""{solution() = }""")
710
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Union[str, Any] =logging.get_logger(__name__) __snake_case : Dict ={'vocab_file': 'sentencepiece.model'} __snake_case : Optional[Any] ={ 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } __snake_case : int ={ 'google/rembert': 2_5_6, } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =VOCAB_FILES_NAMES snake_case_ =PRETRAINED_VOCAB_FILES_MAP snake_case_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self ,__lowerCamelCase ,__lowerCamelCase=False ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase="[CLS]" ,__lowerCamelCase="[SEP]" ,__lowerCamelCase="[UNK]" ,__lowerCamelCase="[SEP]" ,__lowerCamelCase="[PAD]" ,__lowerCamelCase="[CLS]" ,__lowerCamelCase="[MASK]" ,**__lowerCamelCase ,) -> Union[str, Any]: """simple docstring""" super().__init__( do_lower_case=__lowerCamelCase ,remove_space=__lowerCamelCase ,keep_accents=__lowerCamelCase ,bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,unk_token=__lowerCamelCase ,sep_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,cls_token=__lowerCamelCase ,mask_token=__lowerCamelCase ,**__lowerCamelCase ,) lowerCAmelCase__ : int = do_lower_case lowerCAmelCase__ : Optional[Any] = remove_space lowerCAmelCase__ : Any = keep_accents lowerCAmelCase__ : Dict = vocab_file lowerCAmelCase__ : List[str] = spm.SentencePieceProcessor() self.sp_model.Load(__lowerCamelCase ) @property def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" return len(self.sp_model ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : int = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Any = self.__dict__.copy() lowerCAmelCase__ : Dict = None return state def __setstate__(self ,__lowerCamelCase ) -> int: """simple docstring""" lowerCAmelCase__ : Dict = d lowerCAmelCase__ : List[str] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=False ) -> Tuple: """simple docstring""" lowerCAmelCase__ : str = self.sp_model.EncodeAsPieces(__lowerCamelCase ) return pieces def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Dict: """simple docstring""" return self.sp_model.PieceToId(__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[str]: """simple docstring""" return self.sp_model.IdToPiece(__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Any = self.sp_model.decode_pieces(__lowerCamelCase ) return out_string def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> List[int]: """simple docstring""" lowerCAmelCase__ : str = [self.sep_token_id] lowerCAmelCase__ : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ,__lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> List[int]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = [self.sep_token_id] lowerCAmelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__lowerCamelCase ) ) return lowerCAmelCase__ : Union[str, Any] = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file ,__lowerCamelCase ) return (out_vocab_file,)
90
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE_ : Optional[int] =[2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 1_8, 2] SCREAMING_SNAKE_CASE_ : Optional[Any] =True if '''large''' in model_name or '''huge''' in model_name else False SCREAMING_SNAKE_CASE_ : str =True if '''large''' in model_name or '''huge''' in model_name else False SCREAMING_SNAKE_CASE_ : Tuple =True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: SCREAMING_SNAKE_CASE_ : Union[str, Any] =[3, 3, 3, 3] SCREAMING_SNAKE_CASE_ : Optional[Any] =[5, 5, 5, 5] elif "fl4" in model_name: SCREAMING_SNAKE_CASE_ : Dict =[4, 4, 4, 4] SCREAMING_SNAKE_CASE_ : str =[3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: SCREAMING_SNAKE_CASE_ : Union[str, Any] =[3, 3, 3, 3] if "lrf" in model_name: SCREAMING_SNAKE_CASE_ : Optional[Any] =[3, 3, 3, 3] else: SCREAMING_SNAKE_CASE_ : List[Any] =[2, 2, 2, 2] if "tiny" in model_name: SCREAMING_SNAKE_CASE_ : int =9_6 elif "small" in model_name: SCREAMING_SNAKE_CASE_ : Union[str, Any] =9_6 elif "base" in model_name: SCREAMING_SNAKE_CASE_ : int =1_2_8 elif "large" in model_name: SCREAMING_SNAKE_CASE_ : Optional[Any] =1_9_2 elif "xlarge" in model_name: SCREAMING_SNAKE_CASE_ : Dict =2_5_6 elif "huge" in model_name: SCREAMING_SNAKE_CASE_ : str =3_5_2 # set label information SCREAMING_SNAKE_CASE_ : Any ='''huggingface/label-files''' if "large" in model_name or "huge" in model_name: SCREAMING_SNAKE_CASE_ : List[str] ='''imagenet-22k-id2label.json''' else: SCREAMING_SNAKE_CASE_ : Optional[int] ='''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE_ : Optional[Any] =json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE_ : int ={int(UpperCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : Tuple ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : str =FocalNetConfig( embed_dim=UpperCAmelCase_ , depths=UpperCAmelCase_ , focal_levels=UpperCAmelCase_ , focal_windows=UpperCAmelCase_ , use_conv_embed=UpperCAmelCase_ , idalabel=UpperCAmelCase_ , labelaid=UpperCAmelCase_ , use_post_layernorm=UpperCAmelCase_ , use_layerscale=UpperCAmelCase_ , ) return config def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Dict ) -> Dict: if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_ : List[Any] =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_ : List[Any] =name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: SCREAMING_SNAKE_CASE_ : int ='''encoder.''' + name if "encoder.layers" in name: SCREAMING_SNAKE_CASE_ : Optional[int] =name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: SCREAMING_SNAKE_CASE_ : Tuple =name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: SCREAMING_SNAKE_CASE_ : str =name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: SCREAMING_SNAKE_CASE_ : int =name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: SCREAMING_SNAKE_CASE_ : str =name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: SCREAMING_SNAKE_CASE_ : Optional[int] =name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": SCREAMING_SNAKE_CASE_ : Optional[Any] ='''layernorm.weight''' if name == "norm.bias": SCREAMING_SNAKE_CASE_ : Tuple ='''layernorm.bias''' if "head" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] =name.replace('''head''' , '''classifier''' ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] ='''focalnet.''' + name return name def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=False ) -> List[str]: # fmt: off SCREAMING_SNAKE_CASE_ : Dict ={ '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on SCREAMING_SNAKE_CASE_ : int =model_name_to_url[model_name] print('''Checkpoint URL: ''' , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.hub.load_state_dict_from_url(UpperCAmelCase_ , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ : Dict =state_dict.pop(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] =val SCREAMING_SNAKE_CASE_ : List[str] =get_focalnet_config(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =FocalNetForImageClassification(UpperCAmelCase_ ) model.eval() # load state dict model.load_state_dict(UpperCAmelCase_ ) # verify conversion SCREAMING_SNAKE_CASE_ : str ='''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE_ : int =BitImageProcessor( do_resize=UpperCAmelCase_ , size={'''shortest_edge''': 2_5_6} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase_ , crop_size=2_2_4 , do_normalize=UpperCAmelCase_ , image_mean=UpperCAmelCase_ , image_std=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE_ : Tuple =Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) SCREAMING_SNAKE_CASE_ : Tuple =processor(images=UpperCAmelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ : Dict =transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) SCREAMING_SNAKE_CASE_ : Any =image_transforms(UpperCAmelCase_ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCAmelCase_ , atol=1E-4 ) SCREAMING_SNAKE_CASE_ : List[Any] =model(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : str =outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": SCREAMING_SNAKE_CASE_ : Optional[int] =torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": SCREAMING_SNAKE_CASE_ : Any =torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": SCREAMING_SNAKE_CASE_ : Any =torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": SCREAMING_SNAKE_CASE_ : List[str] =torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": SCREAMING_SNAKE_CASE_ : List[str] =torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model and processor of {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: print(f'Pushing model and processor of {model_name} to the hub...' ) model.push_to_hub(f'{model_name}' ) processor.push_to_hub(f'{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) _lowercase = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
443
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class lowercase_ ( A , unittest.TestCase ): __lowerCamelCase = PriorTransformer __lowerCamelCase = "hidden_states" @property def _snake_case ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ : List[str] =4 SCREAMING_SNAKE_CASE_ : Optional[int] =8 SCREAMING_SNAKE_CASE_ : Optional[Any] =7 SCREAMING_SNAKE_CASE_ : Dict =floats_tensor((batch_size, embedding_dim) ).to(__A ) SCREAMING_SNAKE_CASE_ : Dict =floats_tensor((batch_size, embedding_dim) ).to(__A ) SCREAMING_SNAKE_CASE_ : Dict =floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(__A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _snake_case ( self , __A=0 ) -> int: torch.manual_seed(__A ) SCREAMING_SNAKE_CASE_ : str =4 SCREAMING_SNAKE_CASE_ : Union[str, Any] =8 SCREAMING_SNAKE_CASE_ : List[Any] =7 SCREAMING_SNAKE_CASE_ : Tuple =torch.randn((batch_size, embedding_dim) ).to(__A ) SCREAMING_SNAKE_CASE_ : int =torch.randn((batch_size, embedding_dim) ).to(__A ) SCREAMING_SNAKE_CASE_ : List[Any] =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(__A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _snake_case ( self ) -> Union[str, Any]: return (4, 8) @property def _snake_case ( self ) -> int: return (4, 8) def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ : List[Any] ={ '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.dummy_input return init_dict, inputs_dict def _snake_case ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any =PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' , output_loading_info=__A ) self.assertIsNotNone(__A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(__A ) SCREAMING_SNAKE_CASE_ : Optional[int] =model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _snake_case ( self ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] =self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] =self.model_class(**__A ) SCREAMING_SNAKE_CASE_ : List[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Union[str, Any] =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Optional[int] =['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] , __A ) def _snake_case ( self ) -> Dict: SCREAMING_SNAKE_CASE_ : Dict =PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =model.to(__A ) if hasattr(__A , '''set_default_attn_processor''' ): model.set_default_attn_processor() SCREAMING_SNAKE_CASE_ : List[Any] =self.get_dummy_seed_input() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : str =model(**__A )[0] SCREAMING_SNAKE_CASE_ : Any =output[0, :5].flatten().cpu() print(__A ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. SCREAMING_SNAKE_CASE_ : int =torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(__A , __A , rtol=1e-2 ) ) @slow class lowercase_ ( unittest.TestCase ): def _snake_case ( self , __A=1 , __A=768 , __A=77 , __A=0 ) -> str: torch.manual_seed(__A ) SCREAMING_SNAKE_CASE_ : Dict =batch_size SCREAMING_SNAKE_CASE_ : List[str] =embedding_dim SCREAMING_SNAKE_CASE_ : Optional[int] =num_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.randn((batch_size, embedding_dim) ).to(__A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.randn((batch_size, embedding_dim) ).to(__A ) SCREAMING_SNAKE_CASE_ : List[str] =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(__A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def _snake_case ( self , __A , __A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Dict =PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' , subfolder='''prior''' ) model.to(__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =self.get_dummy_seed_input(seed=__A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict =model(**__A )[0] assert list(sample.shape ) == [1, 768] SCREAMING_SNAKE_CASE_ : Dict =sample[0, :8].flatten().cpu() print(__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.tensor(__A ) assert torch_all_close(__A , __A , atol=1e-3 )
443
1
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _lowerCamelCase ( lowercase : List[Any] , lowercase : Tuple ) -> List[str]: _a = [] for part_id in partition_order: _a = df.where(F'SPARK_PARTITION_ID() = {part_id}' ).collect() for row_idx, row in enumerate(lowercase ): expected_row_ids_and_row_dicts.append((F'{part_id}_{row_idx}', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _lowerCamelCase ( ) -> str: _a = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _a = spark.range(100 ).repartition(1 ) _a = Spark(lowercase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _lowerCamelCase ( ) -> List[Any]: _a = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _a = spark.range(10 ).repartition(2 ) _a = [1, 0] _a = _generate_iterable_examples(lowercase , lowercase ) # Reverse the partitions. _a = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , lowercase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _a , _a = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCamelCase ( ) -> Optional[int]: _a = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _a = spark.range(10 ).repartition(1 ) _a = SparkExamplesIterable(lowercase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowercase ): assert row_id == F'0_{i}' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _lowerCamelCase ( ) -> Optional[Any]: _a = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _a = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: _a = lambda lowercase : x.reverse() _a = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [2, 1, 0] ) _a = SparkExamplesIterable(lowercase ).shuffle_data_sources(lowercase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowercase ): _a , _a = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCamelCase ( ) -> List[str]: _a = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _a = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 _a = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 _a = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowercase ): _a , _a = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _a = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 _a = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowercase ): _a , _a = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCamelCase ( ) -> List[Any]: _a = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() _a = spark.range(100 ).repartition(1 ) _a = Spark(lowercase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
718
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : """simple docstring""" @staticmethod def UpperCamelCase__ ( *__a : Optional[int] , **__a : List[Any] ): pass def _lowerCamelCase ( lowercase : Image ) -> str: _a = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" __a =MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int , __a : Tuple ): _a = DepthEstimationPipeline(model=__a , image_processor=__a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCamelCase__ ( self : int , __a : Union[str, Any] , __a : str ): _a = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , __a ) import datasets _a = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) _a = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , __a , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def UpperCamelCase__ ( self : List[Any] ): pass @slow @require_torch def UpperCamelCase__ ( self : List[str] ): _a = "Intel/dpt-large" _a = pipeline("depth-estimation" , model=__a ) _a = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) _a = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def UpperCamelCase__ ( self : Tuple ): # This is highly irregular to have no small tests. self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
521
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ = StableDiffusionPanoramaPipeline A__ = TEXT_TO_IMAGE_PARAMS A__ = TEXT_TO_IMAGE_BATCH_PARAMS A__ = TEXT_TO_IMAGE_IMAGE_PARAMS A__ = TEXT_TO_IMAGE_IMAGE_PARAMS def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = DDIMScheduler() torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _SCREAMING_SNAKE_CASE : List[str] = CLIPTextModel(snake_case__ ) _SCREAMING_SNAKE_CASE : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__=0 ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_components() _SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPanoramaPipeline(**snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) _SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe(**snake_case__ ).images _SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = "cpu" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() _SCREAMING_SNAKE_CASE : Any = StableDiffusionPanoramaPipeline(**snake_case__ ) _SCREAMING_SNAKE_CASE : str = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(snake_case__ ) _SCREAMING_SNAKE_CASE : Dict = "french fries" _SCREAMING_SNAKE_CASE : Dict = sd_pipe(**snake_case__ , negative_prompt=snake_case__ ) _SCREAMING_SNAKE_CASE : str = output.images _SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() _SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionPanoramaPipeline(**snake_case__ ) _SCREAMING_SNAKE_CASE : Dict = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) _SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(snake_case__ ) _SCREAMING_SNAKE_CASE : Dict = sd_pipe(**snake_case__ , view_batch_size=2 ) _SCREAMING_SNAKE_CASE : List[Any] = output.images _SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE : Optional[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = "cpu" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE : int = self.get_dummy_components() _SCREAMING_SNAKE_CASE : Optional[int] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" ) _SCREAMING_SNAKE_CASE : Dict = StableDiffusionPanoramaPipeline(**snake_case__ ) _SCREAMING_SNAKE_CASE : Any = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) _SCREAMING_SNAKE_CASE : Dict = self.get_dummy_inputs(snake_case__ ) _SCREAMING_SNAKE_CASE : Any = sd_pipe(**snake_case__ ).images _SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE : List[Any] = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE : str = self.get_dummy_components() _SCREAMING_SNAKE_CASE : Optional[int] = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , skip_prk_steps=snake_case__ ) _SCREAMING_SNAKE_CASE : Any = StableDiffusionPanoramaPipeline(**snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**snake_case__ ).images _SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE : int = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self , snake_case__=0 ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = torch.manual_seed(snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = "stabilityai/stable-diffusion-2-base" _SCREAMING_SNAKE_CASE : List[str] = DDIMScheduler.from_pretrained(snake_case__ , subfolder="scheduler" ) _SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE : int = self.get_inputs() _SCREAMING_SNAKE_CASE : Any = pipe(**snake_case__ ).images _SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _SCREAMING_SNAKE_CASE : List[str] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE : List[str] = self.get_inputs() _SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**snake_case__ ).images _SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _SCREAMING_SNAKE_CASE : Any = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = 0 def callback_fn(snake_case__ , snake_case__ , snake_case__ ) -> None: _SCREAMING_SNAKE_CASE : Optional[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _SCREAMING_SNAKE_CASE : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _SCREAMING_SNAKE_CASE : Union[str, Any] = latents[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE : str = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: _SCREAMING_SNAKE_CASE : Tuple = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _SCREAMING_SNAKE_CASE : Dict = latents[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE : str = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Tuple = "stabilityai/stable-diffusion-2-base" _SCREAMING_SNAKE_CASE : Dict = DDIMScheduler.from_pretrained(snake_case__ , subfolder="scheduler" ) _SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs() pipe(**snake_case__ , callback=snake_case__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _SCREAMING_SNAKE_CASE : int = "stabilityai/stable-diffusion-2-base" _SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler.from_pretrained(snake_case__ , subfolder="scheduler" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionPanoramaPipeline.from_pretrained(snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ ) _SCREAMING_SNAKE_CASE : str = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() _SCREAMING_SNAKE_CASE : Any = pipe(**snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
572
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : int ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : List[str] = 1 while repunit: _SCREAMING_SNAKE_CASE : Tuple = (1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _lowerCAmelCase ( lowerCamelCase__ : int = 1_0_0_0_0_0_0 ) -> int: _SCREAMING_SNAKE_CASE : Optional[Any] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(lowerCamelCase__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'{solution() = }')
572
1
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __A ( snake_case__ ,unittest.TestCase ): '''simple docstring''' a_ = MobileBertTokenizer a_ = MobileBertTokenizerFast a_ = True a_ = True a_ = filter_non_english a_ = '''google/mobilebert-uncased''' def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() _lowerCAmelCase : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _lowerCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _lowerCAmelCase : Union[str, Any] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): _lowerCAmelCase : Union[str, Any] = "UNwant\u00E9d,running" _lowerCAmelCase : Tuple = "unwanted, running" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[int] = self.tokenizer_class(self.vocab_file ) _lowerCAmelCase : Optional[Any] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_snake_case , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [9, 6, 7, 12, 10, 11] ) def SCREAMING_SNAKE_CASE__ ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = self.get_rust_tokenizer() _lowerCAmelCase : Tuple = "UNwant\u00E9d,running" _lowerCAmelCase : Dict = tokenizer.tokenize(_snake_case ) _lowerCAmelCase : Optional[int] = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) _lowerCAmelCase : Tuple = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) _lowerCAmelCase : List[str] = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) _lowerCAmelCase : List[Any] = self.get_rust_tokenizer() _lowerCAmelCase : int = tokenizer.encode(_snake_case ) _lowerCAmelCase : List[Any] = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) # With lower casing _lowerCAmelCase : Tuple = self.get_tokenizer(do_lower_case=_snake_case ) _lowerCAmelCase : str = self.get_rust_tokenizer(do_lower_case=_snake_case ) _lowerCAmelCase : Tuple = "UNwant\u00E9d,running" _lowerCAmelCase : Dict = tokenizer.tokenize(_snake_case ) _lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) _lowerCAmelCase : int = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) _lowerCAmelCase : Tuple = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) _lowerCAmelCase : List[Any] = self.get_rust_tokenizer() _lowerCAmelCase : List[str] = tokenizer.encode(_snake_case ) _lowerCAmelCase : Dict = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[int] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : int = BasicTokenizer(do_lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : str = BasicTokenizer(do_lower_case=_snake_case , strip_accents=_snake_case ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[Any] = BasicTokenizer(do_lower_case=_snake_case , strip_accents=_snake_case ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Dict = BasicTokenizer(do_lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[Any] = BasicTokenizer(do_lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Dict = BasicTokenizer(do_lower_case=_snake_case , strip_accents=_snake_case ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : int = BasicTokenizer(do_lower_case=_snake_case , strip_accents=_snake_case ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[str] = BasicTokenizer(do_lower_case=_snake_case , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[Any] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _lowerCAmelCase : List[Any] = {} for i, token in enumerate(_snake_case ): _lowerCAmelCase : Dict = i _lowerCAmelCase : Tuple = WordpieceTokenizer(vocab=_snake_case , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def SCREAMING_SNAKE_CASE__ ( self ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def SCREAMING_SNAKE_CASE__ ( self ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def SCREAMING_SNAKE_CASE__ ( self ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_snake_case ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_snake_case ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) _lowerCAmelCase : str = tokenizer.encode("sequence builders" , add_special_tokens=_snake_case ) _lowerCAmelCase : Tuple = tokenizer.encode("multi-sequence build" , add_special_tokens=_snake_case ) _lowerCAmelCase : int = tokenizer.build_inputs_with_special_tokens(_snake_case ) _lowerCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def SCREAMING_SNAKE_CASE__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) _lowerCAmelCase : Any = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _lowerCAmelCase : str = tokenizer_r.encode_plus( _snake_case , return_attention_mask=_snake_case , return_token_type_ids=_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case , ) _lowerCAmelCase : Union[str, Any] = tokenizer_r.do_lower_case if hasattr(_snake_case , "do_lower_case" ) else False _lowerCAmelCase : int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Dict = ["的", "人", "有"] _lowerCAmelCase : Union[str, Any] = "".join(_snake_case ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained(_snake_case , **_snake_case ) _lowerCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) _lowerCAmelCase : Tuple = tokenizer_p.encode(_snake_case , add_special_tokens=_snake_case ) _lowerCAmelCase : Optional[Any] = tokenizer_r.encode(_snake_case , add_special_tokens=_snake_case ) _lowerCAmelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(_snake_case ) _lowerCAmelCase : Any = tokenizer_p.convert_ids_to_tokens(_snake_case ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_snake_case , _snake_case ) self.assertListEqual(_snake_case , _snake_case ) _lowerCAmelCase : str = False _lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) _lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained(_snake_case , **_snake_case ) _lowerCAmelCase : List[str] = tokenizer_r.encode(_snake_case , add_special_tokens=_snake_case ) _lowerCAmelCase : List[Any] = tokenizer_p.encode(_snake_case , add_special_tokens=_snake_case ) _lowerCAmelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(_snake_case ) _lowerCAmelCase : Any = tokenizer_p.convert_ids_to_tokens(_snake_case ) # it is expected that only the first Chinese character is not preceded by "##". _lowerCAmelCase : List[str] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(_snake_case ) ] self.assertListEqual(_snake_case , _snake_case ) self.assertListEqual(_snake_case , _snake_case )
587
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" if isinstance(lowerCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_tf class __A : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): _lowerCAmelCase : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(_snake_case , _snake_case ) _lowerCAmelCase : Tuple = TFVisionTextDualEncoderModel(_snake_case ) _lowerCAmelCase : Any = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase : Any = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase : Union[str, Any] = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase : Any = {"vision_model": vision_model, "text_model": text_model} _lowerCAmelCase : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_snake_case ) _lowerCAmelCase : Dict = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): _lowerCAmelCase , _lowerCAmelCase : List[str] = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase : Optional[int] = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase : Tuple = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) _lowerCAmelCase : List[str] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) _lowerCAmelCase : Dict = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) _lowerCAmelCase : Dict = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) _lowerCAmelCase : Optional[int] = after_output[0].numpy() _lowerCAmelCase : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case , 1E-5 ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase : Tuple = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase : List[str] = model( input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , output_attentions=_snake_case ) _lowerCAmelCase : Optional[Any] = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : List[Any] = to_atuple(vision_model.config.image_size ) _lowerCAmelCase : Optional[int] = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase : Any = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase : int = output.text_model_output.attentions self.assertEqual(len(_snake_case ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case ): _lowerCAmelCase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(_snake_case , _snake_case , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Any = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : int = self.prepare_config_and_inputs() self.check_save_load(**_snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : int = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.get_pretrained_model_and_inputs() _lowerCAmelCase : List[str] = model_a(**_snake_case ) _lowerCAmelCase : List[Any] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_snake_case ) _lowerCAmelCase : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) _lowerCAmelCase : List[str] = model_a(**_snake_case ) _lowerCAmelCase : Any = after_outputs[0].numpy() _lowerCAmelCase : Dict = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case , 1E-5 ) @require_tf class __A ( snake_case__ ,unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) _lowerCAmelCase : Optional[int] = 13 _lowerCAmelCase : Optional[int] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase : Optional[int] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase : Optional[int] = random_attention_mask([batch_size, 4] ) _lowerCAmelCase : Tuple = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): _lowerCAmelCase : Optional[Any] = TFViTModel(_snake_case , name="vision_model" ) _lowerCAmelCase : Union[str, Any] = TFBertModel(_snake_case , name="text_model" ) return vision_model, text_model def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[Any] = TFViTModelTester(self ) _lowerCAmelCase : List[str] = TFBertModelTester(self ) _lowerCAmelCase : str = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase : int = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Dict = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __A ( snake_case__ ,unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. _lowerCAmelCase : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) _lowerCAmelCase : List[Any] = 13 _lowerCAmelCase : Tuple = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase : List[str] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase : List[Any] = random_attention_mask([batch_size, 4] ) _lowerCAmelCase : Optional[int] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase : Optional[int] = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase : Tuple = model( input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , output_attentions=_snake_case ) _lowerCAmelCase : Tuple = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCAmelCase : Any = to_atuple(vision_model.config.image_size ) _lowerCAmelCase : List[str] = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase : Dict = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase : str = output.text_model_output.attentions self.assertEqual(len(_snake_case ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): _lowerCAmelCase : Any = TFDeiTModel(_snake_case , name="vision_model" ) _lowerCAmelCase : int = TFRobertaModel(_snake_case , name="text_model" ) return vision_model, text_model def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[int] = TFDeiTModelTester(self ) _lowerCAmelCase : Union[str, Any] = TFRobertaModelTester(self ) _lowerCAmelCase : Any = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __A ( snake_case__ ,unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) _lowerCAmelCase : List[str] = 13 _lowerCAmelCase : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase : Tuple = random_attention_mask([batch_size, 4] ) _lowerCAmelCase : Any = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): _lowerCAmelCase : Any = TFCLIPVisionModel(_snake_case , name="vision_model" ) _lowerCAmelCase : Any = TFBertModel(_snake_case , name="text_model" ) return vision_model, text_model def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[int] = TFCLIPVisionModelTester(self ) _lowerCAmelCase : Union[str, Any] = TFBertModelTester(self ) _lowerCAmelCase : str = clip_model_tester.prepare_config_and_inputs() _lowerCAmelCase : Dict = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase : Tuple = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Dict = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=_snake_case ) _lowerCAmelCase : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) _lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCAmelCase : Optional[int] = processor( text=["una foto di un gatto", "una foto di un cane"] , images=_snake_case , padding=_snake_case , return_tensors="np" ) _lowerCAmelCase : List[Any] = model(**_snake_case ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _lowerCAmelCase : Any = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _snake_case , atol=1E-3 ) )
587
1
import unittest import numpy as np def __UpperCAmelCase ( __A , __A , __A , __A = None , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase__ = np.shape(__A ) UpperCAmelCase__ = np.shape(__A ) UpperCAmelCase__ = np.shape(__A ) if shape_a[0] != shape_b[0]: UpperCAmelCase__ = ( "Expected the same number of rows for A and B. " F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(__A ) if shape_b[1] != shape_c[1]: UpperCAmelCase__ = ( "Expected the same number of columns for B and C. " F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(__A ) UpperCAmelCase__ = pseudo_inv if a_inv is None: try: UpperCAmelCase__ = np.linalg.inv(__A ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class lowercase__ ( unittest.TestCase ): def _UpperCAmelCase ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase__ = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase__ = np.array([[2, 1], [6, 3]] ) UpperCAmelCase__ = schur_complement(_lowercase , _lowercase , _lowercase ) UpperCAmelCase__ = np.block([[a, b], [b.T, c]] ) UpperCAmelCase__ = np.linalg.det(_lowercase ) UpperCAmelCase__ = np.linalg.det(_lowercase ) UpperCAmelCase__ = np.linalg.det(_lowercase ) self.assertAlmostEqual(_lowercase , det_a * det_s ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" UpperCAmelCase__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase__ = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase__ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_lowercase ): schur_complement(_lowercase , _lowercase , _lowercase ) def _UpperCAmelCase ( self : int ): """simple docstring""" UpperCAmelCase__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase__ = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase__ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_lowercase ): schur_complement(_lowercase , _lowercase , _lowercase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
475
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self : Optional[int] , _lowercase : int = 1_28 , _lowercase : int = 2_56 , _lowercase : float = 2_0_0_0.0 , _lowercase : int = 7_68 , _lowercase : int = 12 , _lowercase : int = 12 , _lowercase : int = 64 , _lowercase : int = 20_48 , _lowercase : float = 0.1 , ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Sequential( nn.Linear(_lowercase , d_model * 4 , bias=_lowercase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_lowercase ) , nn.SiLU() , ) UpperCAmelCase__ = nn.Embedding(_lowercase , _lowercase ) UpperCAmelCase__ = False UpperCAmelCase__ = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) UpperCAmelCase__ = nn.Dropout(p=_lowercase ) UpperCAmelCase__ = nn.ModuleList() for lyr_num in range(_lowercase ): # FiLM conditional T5 decoder UpperCAmelCase__ = DecoderLayer(d_model=_lowercase , d_kv=_lowercase , num_heads=_lowercase , d_ff=_lowercase , dropout_rate=_lowercase ) self.decoders.append(_lowercase ) UpperCAmelCase__ = TaLayerNorm(_lowercase ) UpperCAmelCase__ = nn.Dropout(p=_lowercase ) UpperCAmelCase__ = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) def _UpperCAmelCase ( self : List[str] , _lowercase : Dict , _lowercase : Any ): """simple docstring""" UpperCAmelCase__ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def _UpperCAmelCase ( self : Dict , _lowercase : List[Any] , _lowercase : Union[str, Any] , _lowercase : List[str] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCAmelCase__ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCAmelCase__ = self.conditioning_emb(_lowercase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCAmelCase__ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCAmelCase__ = torch.broadcast_to( torch.arange(_lowercase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCAmelCase__ = self.position_encoding(_lowercase ) UpperCAmelCase__ = self.continuous_inputs_projection(_lowercase ) inputs += position_encodings UpperCAmelCase__ = self.dropout(_lowercase ) # decoder: No padding present. UpperCAmelCase__ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCAmelCase__ = [(x, self.encoder_decoder_mask(_lowercase , _lowercase )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCAmelCase__ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCAmelCase__ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCAmelCase__ = lyr( _lowercase , conditioning_emb=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , )[0] UpperCAmelCase__ = self.decoder_norm(_lowercase ) UpperCAmelCase__ = self.post_dropout(_lowercase ) UpperCAmelCase__ = self.spec_out(_lowercase ) return spec_out class lowercase__ ( nn.Module ): def __init__( self : str , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : int , _lowercase : int , _lowercase : Optional[int] , _lowercase : Union[str, Any]=1E-6 ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_lowercase , d_kv=_lowercase , num_heads=_lowercase , dropout_rate=_lowercase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_lowercase , d_kv=_lowercase , num_heads=_lowercase , dropout_rate=_lowercase , layer_norm_epsilon=_lowercase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_lowercase , d_ff=_lowercase , dropout_rate=_lowercase , layer_norm_epsilon=_lowercase ) ) def _UpperCAmelCase ( self : Optional[Any] , _lowercase : List[Any] , _lowercase : Union[str, Any]=None , _lowercase : Dict=None , _lowercase : int=None , _lowercase : Optional[int]=None , _lowercase : Any=None , ): """simple docstring""" UpperCAmelCase__ = self.layer[0]( _lowercase , conditioning_emb=_lowercase , attention_mask=_lowercase , ) if encoder_hidden_states is not None: UpperCAmelCase__ = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) UpperCAmelCase__ = self.layer[1]( _lowercase , key_value_states=_lowercase , attention_mask=_lowercase , ) # Apply Film Conditional Feed Forward layer UpperCAmelCase__ = self.layer[-1](_lowercase , _lowercase ) return (hidden_states,) class lowercase__ ( nn.Module ): def __init__( self : List[str] , _lowercase : List[Any] , _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : str ): """simple docstring""" super().__init__() UpperCAmelCase__ = TaLayerNorm(_lowercase ) UpperCAmelCase__ = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowercase ) UpperCAmelCase__ = Attention(query_dim=_lowercase , heads=_lowercase , dim_head=_lowercase , out_bias=_lowercase , scale_qk=_lowercase ) UpperCAmelCase__ = nn.Dropout(_lowercase ) def _UpperCAmelCase ( self : Tuple , _lowercase : Tuple , _lowercase : Optional[Any]=None , _lowercase : int=None , ): """simple docstring""" UpperCAmelCase__ = self.layer_norm(_lowercase ) if conditioning_emb is not None: UpperCAmelCase__ = self.FiLMLayer(_lowercase , _lowercase ) # Self-attention block UpperCAmelCase__ = self.attention(_lowercase ) UpperCAmelCase__ = hidden_states + self.dropout(_lowercase ) return hidden_states class lowercase__ ( nn.Module ): def __init__( self : Dict , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ): """simple docstring""" super().__init__() UpperCAmelCase__ = Attention(query_dim=_lowercase , heads=_lowercase , dim_head=_lowercase , out_bias=_lowercase , scale_qk=_lowercase ) UpperCAmelCase__ = TaLayerNorm(_lowercase , eps=_lowercase ) UpperCAmelCase__ = nn.Dropout(_lowercase ) def _UpperCAmelCase ( self : List[str] , _lowercase : List[str] , _lowercase : Dict=None , _lowercase : Dict=None , ): """simple docstring""" UpperCAmelCase__ = self.layer_norm(_lowercase ) UpperCAmelCase__ = self.attention( _lowercase , encoder_hidden_states=_lowercase , attention_mask=attention_mask.squeeze(1 ) , ) UpperCAmelCase__ = hidden_states + self.dropout(_lowercase ) return layer_output class lowercase__ ( nn.Module ): def __init__( self : Dict , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : List[Any] , _lowercase : Tuple ): """simple docstring""" super().__init__() UpperCAmelCase__ = TaDenseGatedActDense(d_model=_lowercase , d_ff=_lowercase , dropout_rate=_lowercase ) UpperCAmelCase__ = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowercase ) UpperCAmelCase__ = TaLayerNorm(_lowercase , eps=_lowercase ) UpperCAmelCase__ = nn.Dropout(_lowercase ) def _UpperCAmelCase ( self : Union[str, Any] , _lowercase : Any , _lowercase : int=None ): """simple docstring""" UpperCAmelCase__ = self.layer_norm(_lowercase ) if conditioning_emb is not None: UpperCAmelCase__ = self.film(_lowercase , _lowercase ) UpperCAmelCase__ = self.DenseReluDense(_lowercase ) UpperCAmelCase__ = hidden_states + self.dropout(_lowercase ) return hidden_states class lowercase__ ( nn.Module ): def __init__( self : Optional[Any] , _lowercase : List[Any] , _lowercase : Dict , _lowercase : Dict ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) UpperCAmelCase__ = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) UpperCAmelCase__ = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) UpperCAmelCase__ = nn.Dropout(_lowercase ) UpperCAmelCase__ = NewGELUActivation() def _UpperCAmelCase ( self : Any , _lowercase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.act(self.wi_a(_lowercase ) ) UpperCAmelCase__ = self.wi_a(_lowercase ) UpperCAmelCase__ = hidden_gelu * hidden_linear UpperCAmelCase__ = self.dropout(_lowercase ) UpperCAmelCase__ = self.wo(_lowercase ) return hidden_states class lowercase__ ( nn.Module ): def __init__( self : str , _lowercase : List[Any] , _lowercase : List[str]=1E-6 ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.ones(_lowercase ) ) UpperCAmelCase__ = eps def _UpperCAmelCase ( self : int , _lowercase : List[Any] ): """simple docstring""" UpperCAmelCase__ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_lowercase ) UpperCAmelCase__ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCAmelCase__ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowercase__ ( nn.Module ): def _UpperCAmelCase ( self : int , _lowercase : torch.Tensor ): """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_lowercase , 3.0 )) )) class lowercase__ ( nn.Module ): def __init__( self : Optional[Any] , _lowercase : List[str] , _lowercase : Dict ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Linear(_lowercase , out_features * 2 , bias=_lowercase ) def _UpperCAmelCase ( self : List[str] , _lowercase : Any , _lowercase : List[str] ): """simple docstring""" UpperCAmelCase__ = self.scale_bias(_lowercase ) UpperCAmelCase__ , UpperCAmelCase__ = torch.chunk(_lowercase , 2 , -1 ) UpperCAmelCase__ = x * (1 + scale) + shift return x
475
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Tuple =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] ={ '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A_ ( __a ): _A :Tuple = '''unispeech''' def __init__( self : List[str] , snake_case__ : int=32 , snake_case__ : Optional[Any]=7_68 , snake_case__ : Tuple=12 , snake_case__ : Optional[Any]=12 , snake_case__ : Any=30_72 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Optional[Any]=0.1 , snake_case__ : Any=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Optional[int]=0.0 , snake_case__ : List[str]=0.0 , snake_case__ : Any=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Any=0.02 , snake_case__ : str=1E-5 , snake_case__ : Dict="group" , snake_case__ : int="gelu" , snake_case__ : int=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , snake_case__ : List[str]=(5, 2, 2, 2, 2, 2, 2) , snake_case__ : int=(10, 3, 3, 3, 3, 2, 2) , snake_case__ : str=False , snake_case__ : Union[str, Any]=1_28 , snake_case__ : Optional[int]=16 , snake_case__ : Tuple=False , snake_case__ : Dict=True , snake_case__ : Optional[Any]=0.05 , snake_case__ : int=10 , snake_case__ : int=2 , snake_case__ : List[str]=0.0 , snake_case__ : Dict=10 , snake_case__ : Any=0 , snake_case__ : Any=3_20 , snake_case__ : Optional[Any]=2 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Union[str, Any]=1_00 , snake_case__ : List[str]=2_56 , snake_case__ : Any=2_56 , snake_case__ : str=0.1 , snake_case__ : Union[str, Any]="mean" , snake_case__ : List[str]=False , snake_case__ : Optional[Any]=False , snake_case__ : Tuple=2_56 , snake_case__ : Union[str, Any]=80 , snake_case__ : Optional[int]=0 , snake_case__ : Any=1 , snake_case__ : List[str]=2 , snake_case__ : Any=0.5 , **snake_case__ : Any , ): super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) lowercase = hidden_size lowercase = feat_extract_norm lowercase = feat_extract_activation lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = conv_bias lowercase = num_conv_pos_embeddings lowercase = num_conv_pos_embedding_groups lowercase = len(self.conv_dim ) lowercase = num_hidden_layers lowercase = intermediate_size lowercase = hidden_act lowercase = num_attention_heads lowercase = hidden_dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = feat_proj_dropout lowercase = final_dropout lowercase = layerdrop lowercase = layer_norm_eps lowercase = initializer_range lowercase = num_ctc_classes lowercase = vocab_size lowercase = do_stable_layer_norm lowercase = use_weighted_layer_sum lowercase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase = apply_spec_augment lowercase = mask_time_prob lowercase = mask_time_length lowercase = mask_time_min_masks lowercase = mask_feature_prob lowercase = mask_feature_length lowercase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase = num_codevectors_per_group lowercase = num_codevector_groups lowercase = contrastive_logits_temperature lowercase = feat_quantizer_dropout lowercase = num_negatives lowercase = codevector_dim lowercase = proj_codevector_dim lowercase = diversity_loss_weight # ctc loss lowercase = ctc_loss_reduction lowercase = ctc_zero_infinity # pretraining loss lowercase = replace_prob @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): return functools.reduce(operator.mul , self.conv_stride , 1 )
72
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class A_ : _A :int _A :int class A_ : def __init__( self : List[str] , snake_case__ : int ): lowercase = [[] for _ in range(snake_case__ )] lowercase = size def __getitem__( self : Optional[int] , snake_case__ : int ): return iter(self._graph[vertex] ) @property def SCREAMING_SNAKE_CASE__ ( self : int ): return self._size def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : int ): if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(snake_case__ , snake_case__ ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case__ : int , snake_case__ : int ): lowercase = deque([start_vertex] ) lowercase = [None] * self.size lowercase = 0 while queue: lowercase = queue.popleft() lowercase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase = current_distance + edge.weight lowercase = distances[edge.destination_vertex] if ( isinstance(snake_case__ , snake_case__ ) and new_distance >= dest_vertex_distance ): continue lowercase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
72
1
import os import time import numpy as np import onnxruntime as ort __UpperCamelCase : Any = '1' __UpperCamelCase : Any = '0' __UpperCamelCase : Any = '1' __UpperCamelCase : List[str] = ort.SessionOptions() __UpperCamelCase : List[str] = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('Create inference session...') __UpperCamelCase : str = ['TensorrtExecutionProvider', 'CUDAExecutionProvider'] __UpperCamelCase : Any = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider) __UpperCamelCase : List[Any] = ort.RunOptions() __UpperCamelCase : Optional[Any] = 128 __UpperCamelCase : Tuple = 1 __UpperCamelCase : Optional[Any] = np.ones((batch, sequence), dtype=np.intaa) __UpperCamelCase : Optional[int] = np.ones((batch, sequence), dtype=np.intaa) __UpperCamelCase : Union[str, Any] = np.ones((batch, sequence), dtype=np.intaa) print('Warm up phase...') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Start inference...') __UpperCamelCase : List[Any] = time.time() __UpperCamelCase : Optional[Any] = 2000 __UpperCamelCase : int = {} for iter in range(max_iters): __UpperCamelCase : Any = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 1000 / max_iters))
248
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __UpperCamelCase : List[Any] = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def A ( _lowercase , _lowercase ): warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , '''sklearn''' ) return (preds == labels).mean() def A ( _lowercase , _lowercase ): warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , '''sklearn''' ) SCREAMING_SNAKE_CASE : int = simple_accuracy(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE : Tuple = fa_score(y_true=_lowercase , y_pred=_lowercase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A ( _lowercase , _lowercase ): warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , '''sklearn''' ) SCREAMING_SNAKE_CASE : str = pearsonr(_lowercase , _lowercase )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = spearmanr(_lowercase , _lowercase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A ( _lowercase , _lowercase , _lowercase ): warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , '''sklearn''' ) assert len(_lowercase ) == len(_lowercase ), f"""Predictions and labels have mismatched lengths {len(_lowercase )} and {len(_lowercase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(_lowercase , _lowercase )} elif task_name == "sst-2": return {"acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "mrpc": return acc_and_fa(_lowercase , _lowercase ) elif task_name == "sts-b": return pearson_and_spearman(_lowercase , _lowercase ) elif task_name == "qqp": return acc_and_fa(_lowercase , _lowercase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "qnli": return {"acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "rte": return {"acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "wnli": return {"acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "hans": return {"acc": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError(_lowercase ) def A ( _lowercase , _lowercase , _lowercase ): warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , '''sklearn''' ) if len(_lowercase ) != len(_lowercase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(_lowercase )} and {len(_lowercase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError(_lowercase )
248
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowercase_ ( a__ , a__ , unittest.TestCase ): __UpperCAmelCase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __UpperCAmelCase = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def __a ( self , a , a , a=False ): UpperCamelCase__ = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class in get_values(a ): UpperCamelCase__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowercase_ ( a__ ): def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=32 , a=32 , a=2 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope UpperCamelCase__ = embedding_size def __a ( self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , a , a , a , a , a , a , a ): UpperCamelCase__ = TFMobileBertModel(config=a ) UpperCamelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase__ = model(a ) UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(a ) UpperCamelCase__ = model(a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , a , a , a , a , a , a , a ): UpperCamelCase__ = TFMobileBertForMaskedLM(config=a ) UpperCamelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , a , a , a , a , a , a , a ): UpperCamelCase__ = TFMobileBertForNextSentencePrediction(config=a ) UpperCamelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , a , a , a , a , a , a , a ): UpperCamelCase__ = TFMobileBertForPreTraining(config=a ) UpperCamelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase__ = model(a ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , a , a , a , a , a , a , a ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFMobileBertForSequenceClassification(config=a ) UpperCamelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , a , a , a , a , a , a , a ): UpperCamelCase__ = self.num_choices UpperCamelCase__ = TFMobileBertForMultipleChoice(config=a ) UpperCamelCase__ = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } UpperCamelCase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , a , a , a , a , a , a , a ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFMobileBertForTokenClassification(config=a ) UpperCamelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , a , a , a , a , a , a , a ): UpperCamelCase__ = TFMobileBertForQuestionAnswering(config=a ) UpperCamelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase__ = model(a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def __a ( self ): UpperCamelCase__ = TFMobileBertModelTest.TFMobileBertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=a , hidden_size=37 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*a ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*a ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*a ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*a ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*a ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*a ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*a ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*a ) @slow def __a ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: UpperCamelCase__ = TFMobileBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @require_tf class lowercase_ ( unittest.TestCase ): @slow def __a ( self ): UpperCamelCase__ = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) UpperCamelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ = model(a )[0] UpperCamelCase__ = [1, 6, 3_05_22] self.assertEqual(output.shape , a ) UpperCamelCase__ = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , a , atol=1e-4 )
223
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a__ : Optional[int] = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['OwlViTFeatureExtractor'] a__ : Tuple = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
223
1
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __UpperCamelCase : int = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ): inspect_dataset(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = path + '.py' assert script_name in os.listdir(_UpperCAmelCase ) assert "__pycache__" not in os.listdir(_UpperCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : int ): inspect_metric(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = path + '.py' assert script_name in os.listdir(_UpperCAmelCase ) assert "__pycache__" not in os.listdir(_UpperCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] ): lowerCAmelCase = get_dataset_config_info(_UpperCAmelCase , config_name=_UpperCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ): with pytest.raises(_UpperCAmelCase ): get_dataset_config_info(_UpperCAmelCase , config_name=_UpperCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] ): lowerCAmelCase = get_dataset_config_names(_UpperCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ): lowerCAmelCase = get_dataset_infos(_UpperCAmelCase ) assert list(infos.keys() ) == expected_configs lowerCAmelCase = expected_configs[0] assert expected_config in infos lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ): lowerCAmelCase = get_dataset_infos(_UpperCAmelCase ) assert expected_config in infos lowerCAmelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): with pytest.raises(_UpperCAmelCase ): get_dataset_split_names(_UpperCAmelCase , config_name=_UpperCAmelCase )
4
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : @staticmethod def __lowerCAmelCase ( *_a, **_a ) -> Union[str, Any]: pass @is_pipeline_test @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @require_torch def __lowerCAmelCase ( self ) -> Tuple: __SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", ) __SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __SCREAMING_SNAKE_CASE = image_classifier(_a, candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_a ), [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ], ) __SCREAMING_SNAKE_CASE = image_classifier([image] * 5, candidate_labels=["A", "B", "C"], batch_size=2 ) self.assertEqual( nested_simplify(_a ), [ [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], ], ) @require_tf def __lowerCAmelCase ( self ) -> Any: __SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", framework="tf" ) __SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __SCREAMING_SNAKE_CASE = image_classifier(_a, candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(_a ), [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], ) __SCREAMING_SNAKE_CASE = image_classifier([image] * 5, candidate_labels=["A", "B", "C"], batch_size=2 ) self.assertEqual( nested_simplify(_a ), [ [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], [ {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, {"score": 0.333, "label": ANY(_a )}, ], ], ) @slow @require_torch def __lowerCAmelCase ( self ) -> Tuple: __SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification", model="openai/clip-vit-base-patch32", ) # This is an image of 2 cats with remotes and no planes __SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __SCREAMING_SNAKE_CASE = image_classifier(_a, candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(_a ), [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ) __SCREAMING_SNAKE_CASE = image_classifier([image] * 5, candidate_labels=["cat", "plane", "remote"], batch_size=2 ) self.assertEqual( nested_simplify(_a ), [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5, ) @slow @require_tf def __lowerCAmelCase ( self ) -> List[str]: __SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification", model="openai/clip-vit-base-patch32", framework="tf" ) # This is an image of 2 cats with remotes and no planes __SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __SCREAMING_SNAKE_CASE = image_classifier(_a, candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(_a ), [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ) __SCREAMING_SNAKE_CASE = image_classifier([image] * 5, candidate_labels=["cat", "plane", "remote"], batch_size=2 ) self.assertEqual( nested_simplify(_a ), [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5, )
693
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __snake_case = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' for attribute in key.split('.' ): SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase_ , UpperCamelCase_ ) if weight_type is not None: SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape else: SCREAMING_SNAKE_CASE__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ = value else: SCREAMING_SNAKE_CASE__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) SCREAMING_SNAKE_CASE__ = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE__ = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue SCREAMING_SNAKE_CASE__ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ = name.split(UpperCamelCase_ )[0].split('.' )[-2] SCREAMING_SNAKE_CASE__ = mapped_key.replace('*' , UpperCamelCase_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ = 'weight_g' elif "weight_v" in name: SCREAMING_SNAKE_CASE__ = 'weight_v' elif "bias" in name: SCREAMING_SNAKE_CASE__ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE__ = 'weight' else: SCREAMING_SNAKE_CASE__ = None set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) continue if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F'Unused weights: {unused_weights}' ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = full_name.split('conv_layers.' )[-1] SCREAMING_SNAKE_CASE__ = name.split('.' ) SCREAMING_SNAKE_CASE__ = int(items[0] ) SCREAMING_SNAKE_CASE__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) SCREAMING_SNAKE_CASE__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) SCREAMING_SNAKE_CASE__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) SCREAMING_SNAKE_CASE__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) SCREAMING_SNAKE_CASE__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCamelCase_ ) @torch.no_grad() def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=True ) -> List[str]: '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE__ = UniSpeechSatConfig.from_pretrained(UpperCamelCase_ ) else: SCREAMING_SNAKE_CASE__ = UniSpeechSatConfig() SCREAMING_SNAKE_CASE__ = '' if is_finetuned: SCREAMING_SNAKE_CASE__ = UniSpeechSatForCTC(UpperCamelCase_ ) else: SCREAMING_SNAKE_CASE__ = UniSpeechSatForPreTraining(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) SCREAMING_SNAKE_CASE__ = model[0].eval() recursively_load_weights(UpperCamelCase_ , UpperCamelCase_ ) hf_wavavec.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __snake_case = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
707
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class lowercase__ ( _UpperCAmelCase ): A__ : Tuple ="""open-llama""" def __init__( self : Tuple , UpperCAmelCase_ : str=100000 , UpperCAmelCase_ : Dict=4096 , UpperCAmelCase_ : Optional[int]=11008 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : Optional[int]="silu" , UpperCAmelCase_ : Tuple=2048 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : List[Any]=1e-6 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Dict=None , **UpperCAmelCase_ : Dict , ): SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = rms_norm_eps SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = kwargs.pop( 'use_memorry_efficient_attention' , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_dropout_prob SCREAMING_SNAKE_CASE__ = use_stable_embedding SCREAMING_SNAKE_CASE__ = shared_input_output_embedding SCREAMING_SNAKE_CASE__ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , tie_word_embeddings=UpperCAmelCase_ , **UpperCAmelCase_ , ) def A_ ( self : str ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'got {self.rope_scaling}' ) SCREAMING_SNAKE_CASE__ = self.rope_scaling.get('type' , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.rope_scaling.get('factor' , UpperCAmelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
400
0
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _A ( __snake_case :Union[str, Any] , __snake_case :List[Any]=False ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = OmegaConf.load(__snake_case ) if display: print(yaml.dump(OmegaConf.to_container(__snake_case ) ) ) return config def _A ( __snake_case :str , __snake_case :List[str]=None , __snake_case :Dict=None ) -> Optional[int]: """simple docstring""" if conf_path is None: __SCREAMING_SNAKE_CASE = "./model_checkpoints/vqgan_only.yaml" __SCREAMING_SNAKE_CASE = load_config(__snake_case , display=__snake_case ) __SCREAMING_SNAKE_CASE = VQModel(**config.model.params ) if ckpt_path is None: __SCREAMING_SNAKE_CASE = "./model_checkpoints/vqgan_only.pt" __SCREAMING_SNAKE_CASE = torch.load(__snake_case , map_location=__snake_case ) if ".ckpt" in ckpt_path: __SCREAMING_SNAKE_CASE = sd["state_dict"] model.load_state_dict(__snake_case , strict=__snake_case ) model.to(__snake_case ) del sd return model def _A ( __snake_case :Optional[int] , __snake_case :Dict ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = model.encode(__snake_case ) print(f'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) __SCREAMING_SNAKE_CASE = model.decode(__snake_case ) return xrec def _A ( __snake_case :List[Any] , __snake_case :List[str]=False ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = string.rsplit("." , 1 ) if reload: __SCREAMING_SNAKE_CASE = importlib.import_module(__snake_case ) importlib.reload(__snake_case ) return getattr(importlib.import_module(__snake_case , package=__snake_case ) , cls ) def _A ( __snake_case :Union[str, Any] ) -> List[Any]: """simple docstring""" if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def _A ( __snake_case :Any , __snake_case :List[Any] , __snake_case :Tuple=True , __snake_case :int=True ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = instantiate_from_config(__snake_case ) if sd is not None: model.load_state_dict(__snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _A ( __snake_case :Union[str, Any] , __snake_case :List[Any] , __snake_case :Any , __snake_case :Tuple ) -> Union[str, Any]: """simple docstring""" if ckpt: __SCREAMING_SNAKE_CASE = torch.load(__snake_case , map_location="cpu" ) __SCREAMING_SNAKE_CASE = pl_sd["global_step"] print(f'''loaded model from global step {global_step}.''' ) else: __SCREAMING_SNAKE_CASE = {"state_dict": None} __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=__snake_case , eval_mode=__snake_case )["model"] return model, global_step
693
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __SCREAMING_SNAKE_CASE : def __init__( self, _a, _a=99, _a=13, _a=7, _a=9, _a=True, _a=True, _a=False, _a=32, _a=5, _a=4, _a=37, _a=8, _a=0.1, _a=0.002, _a=1, _a=0, _a=0, _a=None, _a=None, ) -> Optional[int]: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = encoder_seq_length __SCREAMING_SNAKE_CASE = decoder_seq_length # For common tests __SCREAMING_SNAKE_CASE = self.decoder_seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_attention_mask __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = d_ff __SCREAMING_SNAKE_CASE = relative_attention_num_buckets __SCREAMING_SNAKE_CASE = dropout_rate __SCREAMING_SNAKE_CASE = initializer_factor __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = decoder_start_token_id __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = decoder_layers def __lowerCAmelCase ( self ) -> Optional[int]: return TaConfig.from_pretrained("google/umt5-base" ) def __lowerCAmelCase ( self, _a, _a, _a, _a=None, _a=None, _a=None, _a=None, _a=None, ) -> int: if attention_mask is None: __SCREAMING_SNAKE_CASE = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __SCREAMING_SNAKE_CASE = torch.ones(config.num_hidden_layers, config.num_attention_heads, device=_a ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = torch.ones(config.num_decoder_layers, config.num_attention_heads, device=_a ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE = torch.ones( config.num_decoder_layers, config.num_attention_heads, device=_a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __lowerCAmelCase ( self ) -> Tuple: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __SCREAMING_SNAKE_CASE = input_ids.clamp(self.pad_token_id + 1 ) __SCREAMING_SNAKE_CASE = decoder_input_ids.clamp(self.pad_token_id + 1 ) __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = config.num_attention_heads __SCREAMING_SNAKE_CASE = self.prepare_inputs_dict(_a, _a, _a ) return config, input_dict def __lowerCAmelCase ( self ) -> List[str]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() return config, inputs_dict def __lowerCAmelCase ( self ) -> Optional[int]: return TaConfig( vocab_size=1_66, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ) def __lowerCAmelCase ( self ) -> Union[str, Any]: return TaConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ) def __lowerCAmelCase ( self, _a, _a, _a, _a, _a, _a, ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = UMTaModel(config=_a ) model.to(_a ) model.eval() __SCREAMING_SNAKE_CASE = model( input_ids=_a, decoder_input_ids=_a, attention_mask=_a, decoder_attention_mask=_a, ) __SCREAMING_SNAKE_CASE = model(input_ids=_a, decoder_input_ids=_a ) __SCREAMING_SNAKE_CASE = result.last_hidden_state __SCREAMING_SNAKE_CASE = result.past_key_values __SCREAMING_SNAKE_CASE = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_a ), config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ), 4 ) def __lowerCAmelCase ( self, _a, _a, _a, _a, _a, _a, ) -> Tuple: __SCREAMING_SNAKE_CASE = UMTaModel(config=_a ).get_decoder().to(_a ).eval() # first forward pass __SCREAMING_SNAKE_CASE = model(_a, use_cache=_a ) __SCREAMING_SNAKE_CASE = model(_a ) __SCREAMING_SNAKE_CASE = model(_a, use_cache=_a ) self.parent.assertTrue(len(_a ) == len(_a ) ) self.parent.assertTrue(len(_a ) == len(_a ) + 1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 1), config.vocab_size ) # append to next input_ids and __SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens], dim=-1 ) __SCREAMING_SNAKE_CASE = model(_a )["last_hidden_state"] __SCREAMING_SNAKE_CASE = model(_a, past_key_values=_a )["last_hidden_state"] # select random slice __SCREAMING_SNAKE_CASE = ids_tensor((1,), output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE = output_from_no_past[:, -1, random_slice_idx].detach() __SCREAMING_SNAKE_CASE = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a, _a, atol=1E-3 ) ) def __lowerCAmelCase ( self, _a, _a, ) -> Optional[int]: __SCREAMING_SNAKE_CASE = UMTaModel(config=_a ).to(_a ).half().eval() __SCREAMING_SNAKE_CASE = model(**_a )["last_hidden_state"] self.parent.assertFalse(torch.isnan(_a ).any().item() ) @require_torch class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE__ =( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ =(UMTaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ =( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ =True SCREAMING_SNAKE_CASE__ =False SCREAMING_SNAKE_CASE__ =False SCREAMING_SNAKE_CASE__ =True SCREAMING_SNAKE_CASE__ =True # The small UMT5 model needs higher percentages for CPU/MP tests SCREAMING_SNAKE_CASE__ =[0.8, 0.9] def __lowerCAmelCase ( self ) -> str: __SCREAMING_SNAKE_CASE = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def __lowerCAmelCase ( self ) -> Dict: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE = UMTaModel(config_and_inputs[0] ).to(_a ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _a, (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]), f'''{tmpdirname}/t5_test.onnx''', export_params=_a, opset_version=9, input_names=["input_ids", "decoder_input_ids"], ) @unittest.skipIf(torch_device == "cpu", "Cant do half precision" ) def __lowerCAmelCase ( self ) -> str: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_a ) def __lowerCAmelCase ( self ) -> Tuple: __SCREAMING_SNAKE_CASE = ["encoder_attentions", "decoder_attentions", "cross_attentions"] __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE = config_and_inputs[0] __SCREAMING_SNAKE_CASE = UMTaForConditionalGeneration(_a ).eval() model.to(_a ) __SCREAMING_SNAKE_CASE = { "head_mask": torch.zeros(config.num_layers, config.num_heads, device=_a ), "decoder_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=_a ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=_a ), } for attn_name, (name, mask) in zip(_a, head_masking.items() ): __SCREAMING_SNAKE_CASE = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __SCREAMING_SNAKE_CASE = torch.ones( config.num_decoder_layers, config.num_heads, device=_a ) __SCREAMING_SNAKE_CASE = model.generate( config_and_inputs[1]["input_ids"], num_beams=1, max_length=3, output_attentions=_a, return_dict_in_generate=_a, **_a, ) # We check the state of decoder_attentions and cross_attentions just from the last step __SCREAMING_SNAKE_CASE = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ), 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def __lowerCAmelCase ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def __lowerCAmelCase ( self ) -> List[Any]: __SCREAMING_SNAKE_CASE = UMTaForConditionalGeneration.from_pretrained("google/umt5-small", return_dict=_a ).to(_a ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("google/umt5-small", use_fast=_a, legacy=_a ) __SCREAMING_SNAKE_CASE = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] __SCREAMING_SNAKE_CASE = tokenizer(_a, return_tensors="pt", padding=_a ).input_ids # fmt: off __SCREAMING_SNAKE_CASE = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(_a, _a ) __SCREAMING_SNAKE_CASE = model.generate(input_ids.to(_a ) ) __SCREAMING_SNAKE_CASE = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(_a ) self.assertEqual(_a, _a )
693
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a :List[Any] = logging.get_logger(__name__) a :Optional[int] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class __a (UpperCamelCase_ , UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Any = """focalnet""" def __init__( self , _a=224 , _a=4 , _a=3 , _a=96 , _a=False , _a=[192, 384, 768, 768] , _a=[2, 2, 6, 2] , _a=[2, 2, 2, 2] , _a=[3, 3, 3, 3] , _a="gelu" , _a=4.0 , _a=0.0 , _a=0.1 , _a=False , _a=1E-4 , _a=False , _a=False , _a=False , _a=0.02 , _a=1E-5 , _a=32 , _a=None , _a=None , **_a , ) -> Optional[Any]: """simple docstring""" super().__init__(**_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_size SCREAMING_SNAKE_CASE__ : str = patch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE__ : Union[str, Any] = embed_dim SCREAMING_SNAKE_CASE__ : List[str] = use_conv_embed SCREAMING_SNAKE_CASE__ : List[str] = hidden_sizes SCREAMING_SNAKE_CASE__ : Optional[int] = depths SCREAMING_SNAKE_CASE__ : Any = focal_levels SCREAMING_SNAKE_CASE__ : Optional[Any] = focal_windows SCREAMING_SNAKE_CASE__ : Any = hidden_act SCREAMING_SNAKE_CASE__ : Tuple = mlp_ratio SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = drop_path_rate SCREAMING_SNAKE_CASE__ : str = use_layerscale SCREAMING_SNAKE_CASE__ : int = layerscale_value SCREAMING_SNAKE_CASE__ : Optional[int] = use_post_layernorm SCREAMING_SNAKE_CASE__ : Any = use_post_layernorm_in_modulation SCREAMING_SNAKE_CASE__ : Union[str, Any] = normalize_modulator SCREAMING_SNAKE_CASE__ : str = initializer_range SCREAMING_SNAKE_CASE__ : Any = layer_norm_eps SCREAMING_SNAKE_CASE__ : Any = encoder_stride SCREAMING_SNAKE_CASE__ : Optional[int] = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names )
12
"""simple docstring""" from math import sqrt def _lowercase ( __lowerCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase ( __lowerCAmelCase = 1_0001 ) -> int: SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Tuple = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f'{solution() = }')
12
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase ( UpperCAmelCase ) ->Union[str, Any]: # picklable for multiprocessing """simple docstring""" return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase ( ) ->str: """simple docstring""" with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" __magic_name__ : Tuple = [1, 2, 3] with pytest.raises(lowercase_ ): with parallel_backend('''unsupported backend''' ): map_nested(lowercase_, lowercase_, num_proc=2 ) with pytest.raises(lowercase_ ): with parallel_backend('''unsupported backend''' ): map_nested(lowercase_, lowercase_, num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''', [2, -1] ) def lowerCAmelCase ( UpperCAmelCase ) ->Dict: """simple docstring""" __magic_name__ : Optional[int] = [1, 2] __magic_name__ : List[Any] = {'''a''': 1, '''b''': 2} __magic_name__ : List[Any] = {'''a''': [1, 2], '''b''': [3, 4]} __magic_name__ : Any = {'''a''': {'''1''': 1}, '''b''': 2} __magic_name__ : Any = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} __magic_name__ : Optional[int] = [2, 3] __magic_name__ : Any = {'''a''': 2, '''b''': 3} __magic_name__ : List[str] = {'''a''': [2, 3], '''b''': [4, 5]} __magic_name__ : List[str] = {'''a''': {'''1''': 2}, '''b''': 3} __magic_name__ : List[Any] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(lowercase_, lowercase_, num_proc=lowercase_ ) == expected_map_nested_sa assert map_nested(lowercase_, lowercase_, num_proc=lowercase_ ) == expected_map_nested_sa assert map_nested(lowercase_, lowercase_, num_proc=lowercase_ ) == expected_map_nested_sa assert map_nested(lowercase_, lowercase_, num_proc=lowercase_ ) == expected_map_nested_sa assert map_nested(lowercase_, lowercase_, num_proc=lowercase_ ) == expected_map_nested_sa
154
"""simple docstring""" from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __SCREAMING_SNAKE_CASE : str = 2_9_9_7_9_2_4_5_8 # Symbols __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = symbols('''ct x y z''') def lowerCAmelCase_( lowercase_ : float ) -> float: if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase_( lowercase_ : float ) -> float: return 1 / sqrt(1 - beta(lowercase_ ) ** 2 ) def lowerCAmelCase_( lowercase_ : float ) -> np.ndarray: return np.array( [ [gamma(lowercase_ ), -gamma(lowercase_ ) * beta(lowercase_ ), 0, 0], [-gamma(lowercase_ ) * beta(lowercase_ ), gamma(lowercase_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase_( lowercase_ : float , lowercase_ : np.ndarray | None = None ) -> np.ndarray: # Ensure event is not empty if event is None: _lowerCamelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(lowercase_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __SCREAMING_SNAKE_CASE : List[str] = transform(2_9_9_7_9_2_4_5) print('''Example of four vector: ''') print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __SCREAMING_SNAKE_CASE : Tuple = {ct: c, x: 1, y: 1, z: 1} __SCREAMING_SNAKE_CASE : int = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
661
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ :Optional[Any] = logging.get_logger(__name__) a_ :Any = {"vocab_file": "spm_char.model"} a_ :str = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } a_ :Optional[int] = { "microsoft/speecht5_asr": 1_024, "microsoft/speecht5_tts": 1_024, "microsoft/speecht5_vc": 1_024, } class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__( self : int, _snake_case : Optional[int], _snake_case : int="<s>", _snake_case : Optional[Any]="</s>", _snake_case : Optional[Any]="<unk>", _snake_case : Union[str, Any]="<pad>", _snake_case : Optional[Dict[str, Any]] = None, **_snake_case : Optional[int], ) ->None: snake_case__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_snake_case, eos_token=_snake_case, unk_token=_snake_case, pad_token=_snake_case, sp_model_kwargs=self.sp_model_kwargs, **_snake_case, ) snake_case__ : Union[str, Any] = vocab_file snake_case__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) @property def lowercase_ ( self : List[Any] ) ->Any: return self.sp_model.get_piece_size() def lowercase_ ( self : List[Any] ) ->Tuple: snake_case__ : int = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) ->Optional[Any]: snake_case__ : Optional[Any] = self.__dict__.copy() snake_case__ : Dict = None return state def __setstate__( self : List[Any], _snake_case : str ) ->str: snake_case__ : Optional[int] = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): snake_case__ : Tuple = {} snake_case__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self : Union[str, Any], _snake_case : str ) ->List[str]: return self.sp_model.encode(_snake_case, out_type=_snake_case ) def lowercase_ ( self : Tuple, _snake_case : Optional[int] ) ->Tuple: return self.sp_model.piece_to_id(_snake_case ) def lowercase_ ( self : List[str], _snake_case : Union[str, Any] ) ->Union[str, Any]: snake_case__ : Optional[Any] = self.sp_model.IdToPiece(_snake_case ) return token def lowercase_ ( self : Optional[int], _snake_case : int ) ->int: snake_case__ : List[str] = [] snake_case__ : List[str] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_snake_case ) + token snake_case__ : int = [] else: current_sub_tokens.append(_snake_case ) out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def lowercase_ ( self : List[str], _snake_case : Optional[int], _snake_case : Union[str, Any]=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Union[str, Any], _snake_case : List[int], _snake_case : Optional[List[int]] = None, _snake_case : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case, token_ids_a=_snake_case, already_has_special_tokens=_snake_case ) snake_case__ : Tuple = [1] if token_ids_a is None: return ([0] * len(_snake_case )) + suffix_ones return ([0] * len(_snake_case )) + ([0] * len(_snake_case )) + suffix_ones def lowercase_ ( self : Optional[int], _snake_case : str, _snake_case : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Tuple = os.path.join( _snake_case, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case, 'wb' ) as fi: snake_case__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
243
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ :str = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Optional[int] = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
243
1
'''simple docstring''' import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str ) -> Optional[int]: """simple docstring""" with open(_SCREAMING_SNAKE_CASE ) as metadata_file: UpperCAmelCase_ : List[Any] = json.load(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata["model_config"] ) # Load in the weights from the checkpoint_path UpperCAmelCase_ : Any = torch.load(_SCREAMING_SNAKE_CASE , map_location="cpu" ) # Load the entity vocab file UpperCAmelCase_ : Optional[Any] = load_entity_vocab(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks UpperCAmelCase_ : List[Any] = AddedToken("<ent>" , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = AddedToken("<ent2>" , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = LukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens UpperCAmelCase_ : str = state_dict["embeddings.word_embeddings.weight"] UpperCAmelCase_ : Dict = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) UpperCAmelCase_ : Any = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) UpperCAmelCase_ : int = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCAmelCase_ : List[str] = F'''encoder.layer.{layer_index}.attention.self.''' UpperCAmelCase_ : Tuple = state_dict[prefix + matrix_name] UpperCAmelCase_ : Union[str, Any] = state_dict[prefix + matrix_name] UpperCAmelCase_ : Optional[int] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCAmelCase_ : List[str] = state_dict["entity_embeddings.entity_embeddings.weight"] UpperCAmelCase_ : int = entity_emb[entity_vocab["[MASK]"]] UpperCAmelCase_ : Dict = LukeModel(config=_SCREAMING_SNAKE_CASE ).eval() UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if not (len(_SCREAMING_SNAKE_CASE ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'''Missing keys {", ".join(_SCREAMING_SNAKE_CASE )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F''' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}''' ) # Check outputs UpperCAmelCase_ : Optional[Any] = LukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task="entity_classification" ) UpperCAmelCase_ : Tuple = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) UpperCAmelCase_ : Optional[Any] = (39, 42) UpperCAmelCase_ : List[str] = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , add_prefix_space=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) UpperCAmelCase_ : Dict = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": UpperCAmelCase_ : str = torch.Size((1, 42, 10_24) ) UpperCAmelCase_ : List[Any] = torch.tensor( [[0.0_133, 0.0_865, 0.0_095], [0.3_093, -0.2_576, -0.7_418], [-0.1_720, -0.2_117, -0.2_869]] ) else: # base UpperCAmelCase_ : int = torch.Size((1, 42, 7_68) ) UpperCAmelCase_ : Dict = torch.tensor([[0.0_037, 0.1_368, -0.0_091], [0.1_099, 0.3_329, -0.1_095], [0.0_765, 0.5_335, 0.1_179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": UpperCAmelCase_ : int = torch.Size((1, 1, 10_24) ) UpperCAmelCase_ : Optional[Any] = torch.tensor([[0.0_466, -0.0_106, -0.0_179]] ) else: # base UpperCAmelCase_ : int = torch.Size((1, 1, 7_68) ) UpperCAmelCase_ : Optional[Any] = torch.tensor([[0.1_457, 0.1_044, 0.0_174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = {} with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" ) as f: for index, line in enumerate(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ , UpperCAmelCase_ : List[str] = line.rstrip().split("\t" ) UpperCAmelCase_ : List[str] = index return entity_vocab if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) _lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
71
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _snake_case : __A : Dict =BlenderbotConfig __A : Union[str, Any] ={} __A : Any ="gelu" def __init__( self ,_snake_case ,_snake_case=13 ,_snake_case=7 ,_snake_case=True ,_snake_case=False ,_snake_case=99 ,_snake_case=32 ,_snake_case=2 ,_snake_case=4 ,_snake_case=37 ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=20 ,_snake_case=2 ,_snake_case=1 ,_snake_case=0 ,): UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : str = batch_size UpperCAmelCase_ : Dict = seq_length UpperCAmelCase_ : int = is_training UpperCAmelCase_ : Optional[Any] = use_labels UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Optional[int] = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : List[Any] = max_position_embeddings UpperCAmelCase_ : str = eos_token_id UpperCAmelCase_ : List[Any] = pad_token_id UpperCAmelCase_ : List[Any] = bos_token_id def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) UpperCAmelCase_ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) UpperCAmelCase_ : Optional[Any] = tf.concat([input_ids, eos_tensor] ,axis=1 ) UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) UpperCAmelCase_ : List[str] = prepare_blenderbot_inputs_dict(_snake_case ,_snake_case ,_snake_case ) return config, inputs_dict def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): UpperCAmelCase_ : Tuple = TFBlenderbotModel(config=_snake_case ).get_decoder() UpperCAmelCase_ : int = inputs_dict["input_ids"] UpperCAmelCase_ : Dict = input_ids[:1, :] UpperCAmelCase_ : Any = inputs_dict["attention_mask"][:1, :] UpperCAmelCase_ : int = inputs_dict["head_mask"] UpperCAmelCase_ : Optional[int] = 1 # first forward pass UpperCAmelCase_ : List[str] = model(_snake_case ,attention_mask=_snake_case ,head_mask=_snake_case ,use_cache=_snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : Optional[int] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) UpperCAmelCase_ : Any = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and UpperCAmelCase_ : Union[str, Any] = tf.concat([input_ids, next_tokens] ,axis=-1 ) UpperCAmelCase_ : Any = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) UpperCAmelCase_ : Any = model(_snake_case ,attention_mask=_snake_case )[0] UpperCAmelCase_ : List[Any] = model(_snake_case ,attention_mask=_snake_case ,past_key_values=_snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice UpperCAmelCase_ : str = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) UpperCAmelCase_ : List[str] = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_snake_case ,_snake_case ,rtol=1E-3 ) def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : Dict=None , ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: UpperCAmelCase_ : Dict = tf.cast(tf.math.not_equal(_SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase_ : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Union[str, Any] =(TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __A : List[str] =(TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __A : Dict =( { "conversational": TFBlenderbotForConditionalGeneration, "feature-extraction": TFBlenderbotModel, "summarization": TFBlenderbotForConditionalGeneration, "text2text-generation": TFBlenderbotForConditionalGeneration, "translation": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __A : Any =True __A : Dict =False __A : Dict =False def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = TFBlenderbotModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self ,config_class=_snake_case ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_snake_case ) @require_tokenizers @require_tf class _snake_case (unittest.TestCase): __A : Optional[int] =["My friends are cool but they eat too many carbs."] __A : Optional[Any] ="facebook/blenderbot-400M-distill" @cached_property def UpperCamelCase__ ( self ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = self.tokenizer(self.src_text ,return_tensors="tf" ) UpperCAmelCase_ : Union[str, Any] = self.model.generate( model_inputs.input_ids ,) UpperCAmelCase_ : str = self.tokenizer.batch_decode(generated_ids.numpy() ,skip_special_tokens=_snake_case )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
71
1
import re from filelock import FileLock try: import nltk lowerCamelCase__ = True except (ImportError, ModuleNotFoundError): lowerCamelCase__ = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __lowerCAmelCase (_UpperCamelCase ): re.sub('<n>' , '' , _UpperCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_UpperCamelCase ) )
720
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[str] = len(_UpperCamelCase ) __lowerCAmelCase : Tuple = [[0] * n for i in range(_UpperCamelCase )] for i in range(_UpperCamelCase ): __lowerCAmelCase : Any = y_points[i] for i in range(2 , _UpperCamelCase ): for j in range(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : int = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
549
0
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever _UpperCamelCase = logging.getLogger(__name__) class lowerCamelCase__ ( snake_case ): def __init__( self ,A ,A ,A ,A=None ): super().__init__( A ,question_encoder_tokenizer=A ,generator_tokenizer=A ,index=A ,init_retrieval=A ,) UpperCAmelCase = None def _UpperCamelCase ( self ,A ): logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually UpperCAmelCase = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCAmelCase = str(distributed_port + 1 ) UpperCAmelCase = dist.new_group(ranks=A ,backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _UpperCamelCase ( self ): return dist.get_rank(group=self.process_group ) == 0 def _UpperCamelCase ( self ,A ,A ,A=torch.floataa ): UpperCAmelCase = torch.empty(A ,dtype=A ) dist.scatter(A ,src=0 ,scatter_list=A ,group=self.process_group ) return target_tensor def _UpperCamelCase ( self ): UpperCAmelCase = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCAmelCase = next((addr for addr in addrs if addr.startswith("""e""" )) ,A ) return ifname def _UpperCamelCase ( self ,A ,A ): # single GPU training if not dist.is_initialized(): UpperCAmelCase , UpperCAmelCase = self._main_retrieve(A ,A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A ) # distributed training UpperCAmelCase = dist.get_world_size(group=self.process_group ) # gather logic UpperCAmelCase = None if self._is_main(): UpperCAmelCase = [torch.empty(question_hidden_states.shape ,dtype=torch.floataa ) for _ in range(A )] dist.gather(torch.tensor(A ) ,dst=0 ,gather_list=A ,group=self.process_group ) # scatter logic UpperCAmelCase = question_hidden_states.shape[0] UpperCAmelCase = [] UpperCAmelCase = [] if self._is_main(): assert len(A ) == world_size UpperCAmelCase , UpperCAmelCase = self._main_retrieve(torch.cat(A ).numpy() ,A ) UpperCAmelCase , UpperCAmelCase = torch.tensor(A ), torch.tensor(A ) UpperCAmelCase = self._chunk_tensor(A ,A ) UpperCAmelCase = self._chunk_tensor(A ,A ) UpperCAmelCase = self._scattered(A ,[n_queries, n_docs] ,target_type=torch.intaa ) UpperCAmelCase = self._scattered(A ,[n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(A )
341
"""simple docstring""" _UpperCamelCase = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) _UpperCamelCase = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = from_type.lower().strip("""s""" ) UpperCAmelCase = to_type.lower().strip("""s""" ) UpperCAmelCase = UNIT_SYMBOL.get(_snake_case , _snake_case ) UpperCAmelCase = UNIT_SYMBOL.get(_snake_case , _snake_case ) if from_sanitized not in METRIC_CONVERSION: UpperCAmelCase = ( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_snake_case )}''' ) raise ValueError(_snake_case ) if to_sanitized not in METRIC_CONVERSION: UpperCAmelCase = ( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_snake_case )}''' ) raise ValueError(_snake_case ) UpperCAmelCase = METRIC_CONVERSION[from_sanitized] UpperCAmelCase = METRIC_CONVERSION[to_sanitized] UpperCAmelCase = 1 if from_exponent > to_exponent: UpperCAmelCase = from_exponent - to_exponent else: UpperCAmelCase = -(to_exponent - from_exponent) return value * pow(10 , _snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
341
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a ( __magic_name__ ): _snake_case = '''dandelin/vilt-b32-finetuned-vqa''' _snake_case = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) _snake_case = '''image_qa''' _snake_case = AutoProcessor _snake_case = AutoModelForVisualQuestionAnswering _snake_case = ['''image''', '''text'''] _snake_case = ['''text'''] def __init__( self : Optional[int], *SCREAMING_SNAKE_CASE_ : Tuple, **SCREAMING_SNAKE_CASE_ : Optional[Any] ): requires_backends(self, ['''vision'''] ) super().__init__(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : int, SCREAMING_SNAKE_CASE_ : "Image", SCREAMING_SNAKE_CASE_ : str ): return self.pre_processor(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_tensors='''pt''' ) def __snake_case ( self : Tuple, SCREAMING_SNAKE_CASE_ : str ): with torch.no_grad(): return self.model(**SCREAMING_SNAKE_CASE_ ).logits def __snake_case ( self : str, SCREAMING_SNAKE_CASE_ : Union[str, Any] ): snake_case : Optional[Any] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
555
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
555
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE__ = NewType('''DataClass''', Any) SCREAMING_SNAKE_CASE__ = NewType('''DataClassType''', Any) def A ( __UpperCamelCase ) -> List[Any]: if isinstance(__UpperCamelCase , __UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def A ( __UpperCamelCase ) -> Callable[[str], Any]: A__ = {str(__UpperCamelCase ): choice for choice in choices} return lambda __UpperCamelCase : str_to_choice.get(__UpperCamelCase , __UpperCamelCase ) def A ( *, __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = None , **__UpperCamelCase , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls A__ = {} if aliases is not None: A__ = aliases if help is not None: A__ = help return dataclasses.field(metadata=__UpperCamelCase , default=__UpperCamelCase , default_factory=__UpperCamelCase , **__UpperCamelCase ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Iterable[DataClassType] def __init__( self : Optional[int] , _snake_case : Union[DataClassType, Iterable[DataClassType]] , **_snake_case : Tuple ): """simple docstring""" if "formatter_class" not in kwargs: A__ = ArgumentDefaultsHelpFormatter super().__init__(**_snake_case ) if dataclasses.is_dataclass(_snake_case ): A__ = [dataclass_types] A__ = list(_snake_case ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_snake_case ) @staticmethod def _a ( _snake_case : ArgumentParser , _snake_case : dataclasses.Field ): """simple docstring""" A__ = F'''--{field.name}''' A__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _snake_case ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) A__ = kwargs.pop('aliases' , [] ) if isinstance(_snake_case , _snake_case ): A__ = [aliases] A__ = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(_snake_case , 'UnionType' ) and isinstance(_snake_case , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_snake_case ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F''' Problem encountered in field \'{field.name}\'.''' ) if type(_snake_case ) not in field.type.__args__: # filter `str` in Union A__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] A__ = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) A__ = ( field.type.__args__[0] if isinstance(_snake_case , field.type.__args__[1] ) else field.type.__args__[1] ) A__ = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) A__ = {} if origin_type is Literal or (isinstance(field.type , _snake_case ) and issubclass(field.type , _snake_case )): if origin_type is Literal: A__ = field.type.__args__ else: A__ = [x.value for x in field.type] A__ = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: A__ = field.default else: A__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument A__ = copy(_snake_case ) # Hack because type=bool in argparse does not behave as we want. A__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. A__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way A__ = default # This tells argparse we accept 0 or 1 value after --field_name A__ = '?' # This is the value that will get picked if we do --field_name (without value) A__ = True elif isclass(_snake_case ) and issubclass(_snake_case , _snake_case ): A__ = field.type.__args__[0] A__ = '+' if field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() elif field.default is dataclasses.MISSING: A__ = True else: A__ = field.type if field.default is not dataclasses.MISSING: A__ = field.default elif field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() else: A__ = True parser.add_argument(_snake_case , *_snake_case , **_snake_case ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): A__ = False parser.add_argument(F'''--no_{field.name}''' , action='store_false' , dest=field.name , **_snake_case ) def _a ( self : Any , _snake_case : DataClassType ): """simple docstring""" if hasattr(_snake_case , '_argument_group_name' ): A__ = self.add_argument_group(dtype._argument_group_name ) else: A__ = self try: A__ = get_type_hints(_snake_case ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_snake_case ): A__ = '.'.join(map(_snake_case , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(_snake_case ): if not field.init: continue A__ = type_hints[field.name] self._parse_dataclass_field(_snake_case , _snake_case ) def _a ( self : Optional[int] , _snake_case : Optional[Any]=None , _snake_case : Any=False , _snake_case : int=True , _snake_case : List[Any]=None , _snake_case : int=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): A__ = [] if args_filename: args_files.append(Path(_snake_case ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values A__ = ArgumentParser() args_file_parser.add_argument(_snake_case , type=_snake_case , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) A__ , A__ = args_file_parser.parse_known_args(args=_snake_case ) A__ = vars(_snake_case ).get(args_file_flag.lstrip('-' ) , _snake_case ) if cmd_args_file_paths: args_files.extend([Path(_snake_case ) for p in cmd_args_file_paths] ) A__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last A__ = file_args + args if args is not None else file_args + sys.argv[1:] A__ , A__ = self.parse_known_args(args=_snake_case ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(_snake_case ) if f.init} A__ = {k: v for k, v in vars(_snake_case ).items() if k in keys} for k in keys: delattr(_snake_case , _snake_case ) A__ = dtype(**_snake_case ) outputs.append(_snake_case ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_snake_case ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def _a ( self : Dict , _snake_case : Dict[str, Any] , _snake_case : bool = False ): """simple docstring""" A__ = set(args.keys() ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(_snake_case ) if f.init} A__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) A__ = dtype(**_snake_case ) outputs.append(_snake_case ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(_snake_case )}''' ) return tuple(_snake_case ) def _a ( self : Dict , _snake_case : str , _snake_case : bool = False ): """simple docstring""" with open(Path(_snake_case ) , encoding='utf-8' ) as open_json_file: A__ = json.loads(open_json_file.read() ) A__ = self.parse_dict(_snake_case , allow_extra_keys=_snake_case ) return tuple(_snake_case ) def _a ( self : Tuple , _snake_case : str , _snake_case : bool = False ): """simple docstring""" A__ = self.parse_dict(yaml.safe_load(Path(_snake_case ).read_text() ) , allow_extra_keys=_snake_case ) return tuple(_snake_case )
9
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def A ( __UpperCamelCase ) -> Union[str, Any]: if hor == 128: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 64, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A__ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A__ = model.state_dict() A__ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65_536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> List[str]: A__ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65_536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A__ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A__ = model A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
9
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig A__ : Dict = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class __magic_name__ ( __A ): UpperCamelCase_ = '''tapas''' def __init__( self , A_=3_0522 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=1024 , A_=[3, 256, 256, 2, 256, 256, 10] , A_=0.02 , A_=1E-12 , A_=0 , A_=10.0 , A_=0 , A_=1.0 , A_=None , A_=1.0 , A_=False , A_=None , A_=1.0 , A_=1.0 , A_=False , A_=False , A_="ratio" , A_=None , A_=None , A_=64 , A_=32 , A_=False , A_=True , A_=False , A_=False , A_=True , A_=False , A_=None , A_=None , **A_ , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=A_ , **A_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _lowercase: str = vocab_size _lowercase: str = hidden_size _lowercase: Optional[Any] = num_hidden_layers _lowercase: Any = num_attention_heads _lowercase: List[str] = hidden_act _lowercase: Tuple = intermediate_size _lowercase: Optional[int] = hidden_dropout_prob _lowercase: Optional[int] = attention_probs_dropout_prob _lowercase: Tuple = max_position_embeddings _lowercase: int = type_vocab_sizes _lowercase: Optional[Any] = initializer_range _lowercase: Any = layer_norm_eps # Fine-tuning task hyperparameters _lowercase: int = positive_label_weight _lowercase: int = num_aggregation_labels _lowercase: Optional[int] = aggregation_loss_weight _lowercase: List[str] = use_answer_as_supervision _lowercase: List[str] = answer_loss_importance _lowercase: List[Any] = use_normalized_answer_loss _lowercase: Dict = huber_loss_delta _lowercase: List[str] = temperature _lowercase: List[str] = aggregation_temperature _lowercase: int = use_gumbel_for_cells _lowercase: Tuple = use_gumbel_for_aggregation _lowercase: int = average_approximation_function _lowercase: List[str] = cell_selection_preference _lowercase: Tuple = answer_loss_cutoff _lowercase: str = max_num_rows _lowercase: Optional[int] = max_num_columns _lowercase: Tuple = average_logits_per_cell _lowercase: Optional[int] = select_one_column _lowercase: Tuple = allow_empty_column_selection _lowercase: int = init_cell_selection_weights_to_zero _lowercase: Optional[Any] = reset_position_index_per_cell _lowercase: Any = disable_per_token_loss # Aggregation hyperparameters _lowercase: Dict = aggregation_labels _lowercase: Union[str, Any] = no_aggregation_label_index if isinstance(self.aggregation_labels , A_ ): _lowercase: List[str] = {int(A_ ): v for k, v in aggregation_labels.items()}
704
"""simple docstring""" def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" if num <= 0: raise ValueError('''Input must be a positive integer''' ) _lowercase: Tuple = [True] * (num + 1) _lowercase: List[str] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , _UpperCamelCase ): _lowercase: List[str] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() A__ : List[Any] = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
272
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case_ = 16 snake_case_ = 32 def __lowercase (_SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :Any = 16 ): SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_SCREAMING_SNAKE_CASE :Optional[Any] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Tuple = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : List[str] = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Dict = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_SCREAMING_SNAKE_CASE :Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : int = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : str = 8 else: SCREAMING_SNAKE_CASE : str = None return tokenizer.pad( _SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : List[str] = DataLoader( tokenized_datasets['''train'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case_ = mocked_dataloaders # noqa: F811 def __lowercase (_SCREAMING_SNAKE_CASE :Optional[Any] , _SCREAMING_SNAKE_CASE :List[str] ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _SCREAMING_SNAKE_CASE ) == "1": SCREAMING_SNAKE_CASE : str = 2 # New Code # SCREAMING_SNAKE_CASE : List[Any] = int(args.gradient_accumulation_steps ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(args.local_sgd_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE : Any = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_SCREAMING_SNAKE_CASE ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Optional[Any] = config["lr"] SCREAMING_SNAKE_CASE : str = int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE : List[str] = int(config['''seed'''] ) SCREAMING_SNAKE_CASE : Optional[Any] = int(config['''batch_size'''] ) SCREAMING_SNAKE_CASE : str = evaluate.load('''glue''' , '''mrpc''' ) set_seed(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Union[str, Any] = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) # Instantiate scheduler SCREAMING_SNAKE_CASE : List[str] = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=1_00 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE : str = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE ): model.train() with LocalSGD( accelerator=_SCREAMING_SNAKE_CASE , model=_SCREAMING_SNAKE_CASE , local_sgd_steps=_SCREAMING_SNAKE_CASE , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : int = model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = output.loss accelerator.backward(_SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE : Tuple = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _SCREAMING_SNAKE_CASE ) def __lowercase (): SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument( '''--local_sgd_steps''' , type=_SCREAMING_SNAKE_CASE , default=8 , help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE : Optional[int] = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
507
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def snake_case__ ( lowercase , lowercase ): assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def snake_case__ ( lowercase , lowercase , lowercase , lowercase ): lowerCAmelCase_: Any = tmp_path / "cache" lowerCAmelCase_: int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase_: Optional[int] = SqlDatasetReader( "dataset" , "sqlite:///" + sqlite_path , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_sql_dataset(lowercase , lowercase ) @require_sqlalchemy @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def snake_case__ ( lowercase , lowercase , lowercase , lowercase ): lowerCAmelCase_: List[str] = tmp_path / "cache" lowerCAmelCase_: int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase_: List[str] = features.copy() if features else default_expected_features lowerCAmelCase_: Any = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase_: int = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , features=lowercase , cache_dir=lowercase ).read() _check_sql_dataset(lowercase , lowercase ) def snake_case__ ( lowercase ): with contextlib.closing(sqlitea.connect(lowercase ) ) as con: lowerCAmelCase_: Any = con.cursor() cur.execute("SELECT * FROM dataset" ) for row in cur: yield row @require_sqlalchemy def snake_case__ ( lowercase , lowercase , lowercase ): lowerCAmelCase_: Optional[int] = tmp_path / "cache" lowerCAmelCase_: Optional[Any] = os.path.join(lowercase , "tmp.sql" ) lowerCAmelCase_: str = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=lowercase ).read() SqlDatasetWriter(lowercase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=1 ).write() lowerCAmelCase_: Union[str, Any] = iter_sql_file(lowercase ) lowerCAmelCase_: str = iter_sql_file(lowercase ) for rowa, rowa in zip(lowercase , lowercase ): assert rowa == rowa @require_sqlalchemy def snake_case__ ( lowercase , lowercase , lowercase ): lowerCAmelCase_: str = tmp_path / "cache" lowerCAmelCase_: Optional[int] = os.path.join(lowercase , "tmp.sql" ) lowerCAmelCase_: Optional[Any] = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=lowercase ).read() SqlDatasetWriter(lowercase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=2 ).write() lowerCAmelCase_: Optional[Any] = iter_sql_file(lowercase ) lowerCAmelCase_: Optional[int] = iter_sql_file(lowercase ) for rowa, rowa in zip(lowercase , lowercase ): assert rowa == rowa @require_sqlalchemy def snake_case__ ( lowercase , lowercase , lowercase ): lowerCAmelCase_: Union[str, Any] = tmp_path / "cache" lowerCAmelCase_: int = os.path.join(lowercase , "tmp.sql" ) lowerCAmelCase_: Any = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=lowercase ).read() with pytest.raises(lowercase ): SqlDatasetWriter(lowercase , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=0 ).write()
613
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase__ : List[Any] = None UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : str = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ : Any = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } UpperCamelCase__ : Optional[Any] = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } UpperCamelCase__ : Optional[Any] = '''▁''' # Segments (not really needed) UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 1 UpperCamelCase__ : List[Any] = 2 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : List[Any] = 4 class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Union[str, Any] = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : List[Any] = '''left''' _A : List[Any] = XLNetTokenizer def __init__( self : Union[str, Any] , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : str="<s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : Union[str, Any]="<unk>" , lowerCAmelCase__ : Optional[int]="<sep>" , lowerCAmelCase__ : Optional[Any]="<pad>" , lowerCAmelCase__ : int="<cls>" , lowerCAmelCase__ : Optional[int]="<mask>" , lowerCAmelCase__ : Optional[Any]=["<eop>", "<eod>"] , **lowerCAmelCase__ : List[str] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( vocab_file=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Dict = 3 __SCREAMING_SNAKE_CASE : Tuple = do_lower_case __SCREAMING_SNAKE_CASE : Union[str, Any] = remove_space __SCREAMING_SNAKE_CASE : Dict = keep_accents __SCREAMING_SNAKE_CASE : str = vocab_file __SCREAMING_SNAKE_CASE : str = False if not self.vocab_file else True def UpperCamelCase__ ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] __SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : str = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase__ ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
178
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def lowerCAmelCase_ ( _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : List[Any] = SwinvaConfig() __SCREAMING_SNAKE_CASE : List[Any] = swinva_name.split("""_""" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = name_split[1] if "to" in name_split[3]: __SCREAMING_SNAKE_CASE : Dict = int(name_split[3][-3:] ) else: __SCREAMING_SNAKE_CASE : str = int(name_split[3] ) if "to" in name_split[2]: __SCREAMING_SNAKE_CASE : Optional[Any] = int(name_split[2][-2:] ) else: __SCREAMING_SNAKE_CASE : Optional[int] = int(name_split[2][6:] ) if model_size == "tiny": __SCREAMING_SNAKE_CASE : Dict = 96 __SCREAMING_SNAKE_CASE : List[str] = (2, 2, 6, 2) __SCREAMING_SNAKE_CASE : List[Any] = (3, 6, 12, 24) elif model_size == "small": __SCREAMING_SNAKE_CASE : List[str] = 96 __SCREAMING_SNAKE_CASE : int = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE : int = (3, 6, 12, 24) elif model_size == "base": __SCREAMING_SNAKE_CASE : int = 1_28 __SCREAMING_SNAKE_CASE : str = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE : Optional[int] = (4, 8, 16, 32) else: __SCREAMING_SNAKE_CASE : List[str] = 1_92 __SCREAMING_SNAKE_CASE : Union[str, Any] = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE : Dict = (6, 12, 24, 48) if "to" in swinva_name: __SCREAMING_SNAKE_CASE : int = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __SCREAMING_SNAKE_CASE : int = 2_18_41 __SCREAMING_SNAKE_CASE : str = """huggingface/label-files""" __SCREAMING_SNAKE_CASE : List[str] = """imagenet-22k-id2label.json""" __SCREAMING_SNAKE_CASE : List[str] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Optional[int] = idalabel __SCREAMING_SNAKE_CASE : str = {v: k for k, v in idalabel.items()} else: __SCREAMING_SNAKE_CASE : str = 10_00 __SCREAMING_SNAKE_CASE : Optional[int] = """huggingface/label-files""" __SCREAMING_SNAKE_CASE : Any = """imagenet-1k-id2label.json""" __SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE : int = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Optional[int] = idalabel __SCREAMING_SNAKE_CASE : Dict = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Any = img_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_classes __SCREAMING_SNAKE_CASE : int = embed_dim __SCREAMING_SNAKE_CASE : Dict = depths __SCREAMING_SNAKE_CASE : str = num_heads __SCREAMING_SNAKE_CASE : int = window_size return config def lowerCAmelCase_ ( _lowerCamelCase: int ): if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: __SCREAMING_SNAKE_CASE : Optional[int] = """encoder.""" + name if "attn.proj" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __SCREAMING_SNAKE_CASE : Any = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: __SCREAMING_SNAKE_CASE : str = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if name == "norm.weight": __SCREAMING_SNAKE_CASE : Tuple = """layernorm.weight""" if name == "norm.bias": __SCREAMING_SNAKE_CASE : Optional[int] = """layernorm.bias""" if "head" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""head""" , """classifier""" ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = """swinv2.""" + name return name def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: Optional[Any] ): for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : Optional[Any] = orig_state_dict.pop(_lowerCamelCase ) if "mask" in key: continue elif "qkv" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = key.split(""".""" ) __SCREAMING_SNAKE_CASE : List[str] = int(key_split[1] ) __SCREAMING_SNAKE_CASE : Dict = int(key_split[3] ) __SCREAMING_SNAKE_CASE : str = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __SCREAMING_SNAKE_CASE : Optional[int] = val[:dim, :] __SCREAMING_SNAKE_CASE : str = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE : Dict = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Optional[Any] = val[:dim] __SCREAMING_SNAKE_CASE : int = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : int = val[-dim:] else: __SCREAMING_SNAKE_CASE : Optional[Any] = val return orig_state_dict def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : Union[str, Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() __SCREAMING_SNAKE_CASE : int = get_swinva_config(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = SwinvaForImageClassification(_lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE : Optional[int] = convert_state_dict(timm_model.state_dict() , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" __SCREAMING_SNAKE_CASE : List[Any] = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swinva_name.replace("""_""" , """-""" ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE : int = timm_model(inputs["""pixel_values"""] ) __SCREAMING_SNAKE_CASE : Dict = model(**_lowerCamelCase ).logits assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) print(F"Saving model {swinva_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase ) , organization="""nandwalritik""" , commit_message="""Add model""" , ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase__ : Optional[int] = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
178
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = (DEISMultistepScheduler,) _lowerCamelCase = (("""num_inference_steps""", 25),) def snake_case_ ( self , **__A ): __a = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**__A ) return config def snake_case_ ( self , __A=0 , **__A ): __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __A ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config(**__A ) __a = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # copy over dummy past residuals __a = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__A ) __a = scheduler_class.from_pretrained(__A ) new_scheduler.set_timesteps(__A ) # copy over dummy past residuals __a = dummy_past_residuals[: new_scheduler.config.solver_order] __a , __a = sample, sample for t in range(__A , time_step + scheduler.config.solver_order + 1 ): __a = scheduler.step(__A , __A , __A , **__A ).prev_sample __a = new_scheduler.step(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case_ ( self ): pass def snake_case_ ( self , __A=0 , **__A ): __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __A ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__A ) scheduler.set_timesteps(__A ) # copy over dummy past residuals (must be after setting timesteps) __a = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__A ) __a = scheduler_class.from_pretrained(__A ) # copy over dummy past residuals new_scheduler.set_timesteps(__A ) # copy over dummy past residual (must be after setting timesteps) __a = dummy_past_residuals[: new_scheduler.config.solver_order] __a = scheduler.step(__A , __A , __A , **__A ).prev_sample __a = new_scheduler.step(__A , __A , __A , **__A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case_ ( self , __A=None , **__A ): if scheduler is None: __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__A ) __a = scheduler_class(**__A ) __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__A ) __a = scheduler_class(**__A ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(__A ) for i, t in enumerate(scheduler.timesteps ): __a = model(__A , __A ) __a = scheduler.step(__A , __A , __A ).prev_sample return sample def snake_case_ ( self ): __a = dict(self.forward_default_kwargs ) __a = kwargs.pop("""num_inference_steps""" , __A ) for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**__A ) __a = self.dummy_sample __a = 0.1 * sample if num_inference_steps is not None and hasattr(__A , """set_timesteps""" ): scheduler.set_timesteps(__A ) elif num_inference_steps is not None and not hasattr(__A , """set_timesteps""" ): __a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __a = [residual + 0.2, residual + 0.15, residual + 0.10] __a = dummy_past_residuals[: scheduler.config.solver_order] __a = scheduler.timesteps[5] __a = scheduler.timesteps[6] __a = scheduler.step(__A , __A , __A , **__A ).prev_sample __a = scheduler.step(__A , __A , __A , **__A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults __a = DEISMultistepScheduler(**self.get_scheduler_config() ) __a = self.full_loop(scheduler=__A ) __a = torch.mean(torch.abs(__A ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 __a = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __a = DPMSolverMultistepScheduler.from_config(scheduler.config ) __a = UniPCMultistepScheduler.from_config(scheduler.config ) __a = DEISMultistepScheduler.from_config(scheduler.config ) __a = self.full_loop(scheduler=__A ) __a = torch.mean(torch.abs(__A ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 def snake_case_ ( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__A ) def snake_case_ ( self ): self.check_over_configs(thresholding=__A ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__A , prediction_type=__A , sample_max_value=__A , algorithm_type="""deis""" , solver_order=__A , solver_type=__A , ) def snake_case_ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def snake_case_ ( self ): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__A , solver_type=__A , prediction_type=__A , algorithm_type=__A , ) __a = self.full_loop( solver_order=__A , solver_type=__A , prediction_type=__A , algorithm_type=__A , ) assert not torch.isnan(__A ).any(), "Samples have nan numbers" def snake_case_ ( self ): self.check_over_configs(lower_order_final=__A ) self.check_over_configs(lower_order_final=__A ) def snake_case_ ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__A , time_step=0 ) def snake_case_ ( self ): __a = self.full_loop() __a = torch.mean(torch.abs(__A ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 def snake_case_ ( self ): __a = self.full_loop(prediction_type="""v_prediction""" ) __a = torch.mean(torch.abs(__A ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def snake_case_ ( self ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config(thresholding=__A , dynamic_thresholding_ratio=0 ) __a = scheduler_class(**__A ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter.half() scheduler.set_timesteps(__A ) for i, t in enumerate(scheduler.timesteps ): __a = model(__A , __A ) __a = scheduler.step(__A , __A , __A ).prev_sample assert sample.dtype == torch.floataa
99
def _SCREAMING_SNAKE_CASE ( __lowercase : str ) -> str: """simple docstring""" __A = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _SCREAMING_SNAKE_CASE ( __lowercase : str ) -> dict[str, str]: """simple docstring""" __A = [chr(i + 6_5 ) for i in range(2_6 )] # Remove duplicate characters from key __A = remove_duplicates(key.upper() ) __A = len(__lowercase ) # First fill cipher with key characters __A = {alphabet[i]: char for i, char in enumerate(__lowercase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__lowercase ) , 2_6 ): __A = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __A = alphabet[i - offset] __A = char return cipher_alphabet def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : dict[str, str] ) -> str: """simple docstring""" return "".join(cipher_map.get(__lowercase , __lowercase ) for ch in message.upper() ) def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : dict[str, str] ) -> str: """simple docstring""" __A = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__lowercase , __lowercase ) for ch in message.upper() ) def _SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" __A = input("""Enter message to encode or decode: """ ).strip() __A = input("""Enter keyword: """ ).strip() __A = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __A = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __A = create_cipher_map(__lowercase ) print(func(__lowercase , __lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
637
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : str = logging.get_logger(__name__) __A : List[str] = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'timesformer' def __init__( self : List[Any] , lowerCamelCase : List[Any]=2_24 , lowerCamelCase : List[str]=16 , lowerCamelCase : Optional[Any]=3 , lowerCamelCase : List[Any]=8 , lowerCamelCase : List[str]=7_68 , lowerCamelCase : Optional[Any]=12 , lowerCamelCase : Any=12 , lowerCamelCase : Any=30_72 , lowerCamelCase : str="gelu" , lowerCamelCase : Tuple=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : str=0.02 , lowerCamelCase : Any=1E-6 , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Tuple="divided_space_time" , lowerCamelCase : int=0 , **lowerCamelCase : List[str] , ) -> Union[str, Any]: super().__init__(**lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = image_size lowerCAmelCase_ : Optional[Any] = patch_size lowerCAmelCase_ : Optional[Any] = num_channels lowerCAmelCase_ : Any = num_frames lowerCAmelCase_ : int = hidden_size lowerCAmelCase_ : Any = num_hidden_layers lowerCAmelCase_ : Any = num_attention_heads lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : Optional[int] = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : Tuple = qkv_bias lowerCAmelCase_ : List[Any] = attention_type lowerCAmelCase_ : List[Any] = drop_path_rate
712
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __A : List[Any] = 5_0000 __A : str = 5000 __A , __A : List[str] = os.path.split(__file__) __A : str = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def UpperCamelCase_ ( A__ : datasets.Dataset , A__ : List[Any] ): '''simple docstring''' for i in range(A__ ): lowerCAmelCase_ : str = dataset[i] @get_duration def UpperCamelCase_ ( A__ : datasets.Dataset , A__ : Dict , A__ : Union[str, Any] ): '''simple docstring''' for i in range(0 , len(A__ ) , A__ ): lowerCAmelCase_ : Optional[int] = dataset[i : i + batch_size] @get_duration def UpperCamelCase_ ( A__ : datasets.Dataset , A__ : Union[str, Any] , A__ : List[str] ): '''simple docstring''' with dataset.formatted_as(type=A__ ): for i in range(A__ ): lowerCAmelCase_ : List[Any] = dataset[i] @get_duration def UpperCamelCase_ ( A__ : datasets.Dataset , A__ : Union[str, Any] , A__ : Optional[Any] , A__ : int ): '''simple docstring''' with dataset.formatted_as(type=A__ ): for i in range(0 , A__ , A__ ): lowerCAmelCase_ : Tuple = dataset[i : i + batch_size] def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = {"""num examples""": SPEED_TEST_N_EXAMPLES} lowerCAmelCase_ : List[Any] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_00}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10_00}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10_00}), ] lowerCAmelCase_ : Dict = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_00}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10_00}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10_00}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) lowerCAmelCase_ : Dict = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) lowerCAmelCase_ : str = generate_example_dataset( os.path.join(A__ , """dataset.arrow""" ) , A__ , num_examples=A__ , seq_shapes={"""list""": (1_00,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(A__ ) ) lowerCAmelCase_ : List[str] = func(A__ , **A__ ) print("""shuffling dataset""" ) lowerCAmelCase_ : Tuple = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(A__ ) ) lowerCAmelCase_ : List[str] = func( A__ , **A__ ) with open(A__ , """wb""" ) as f: f.write(json.dumps(A__ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
398
0
'''simple docstring''' import string import numpy def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , SCREAMING_SNAKE_CASE__ ) class lowercase__ : '''simple docstring''' A_ : Union[str, Any] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) A_ : Dict = numpy.vectorize(lambda _snake_case : x % 36 ) A_ : str = numpy.vectorize(_snake_case ) def __init__( self , __snake_case ): _SCREAMING_SNAKE_CASE : Tuple = self.modulus(__snake_case ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _SCREAMING_SNAKE_CASE : Optional[Any] = encrypt_key.shape[0] def UpperCAmelCase_ ( self , __snake_case ): return self.key_string.index(__snake_case ) def UpperCAmelCase_ ( self , __snake_case ): return self.key_string[round(__snake_case )] def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[str] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _SCREAMING_SNAKE_CASE : Optional[Any] = det % len(self.key_string ) _SCREAMING_SNAKE_CASE : List[str] = len(self.key_string ) if greatest_common_divisor(__snake_case , len(self.key_string ) ) != 1: _SCREAMING_SNAKE_CASE : str = ( f"""determinant modular {req_l} of encryption key({det}) """ f"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(__snake_case ) def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : Dict = [char for char in text.upper() if char in self.key_string] _SCREAMING_SNAKE_CASE : Union[str, Any] = chars[-1] while len(__snake_case ) % self.break_key != 0: chars.append(__snake_case ) return "".join(__snake_case ) def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : str = self.process_text(text.upper() ) _SCREAMING_SNAKE_CASE : List[Any] = """""" for i in range(0 , len(__snake_case ) - self.break_key + 1 , self.break_key ): _SCREAMING_SNAKE_CASE : Optional[Any] = text[i : i + self.break_key] _SCREAMING_SNAKE_CASE : Tuple = [self.replace_letters(__snake_case ) for char in batch] _SCREAMING_SNAKE_CASE : Tuple = numpy.array([vec] ).T _SCREAMING_SNAKE_CASE : Union[str, Any] = self.modulus(self.encrypt_key.dot(__snake_case ) ).T.tolist()[ 0 ] _SCREAMING_SNAKE_CASE : Any = """""".join( self.replace_digits(__snake_case ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _SCREAMING_SNAKE_CASE : List[str] = det % len(self.key_string ) _SCREAMING_SNAKE_CASE : str = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _SCREAMING_SNAKE_CASE : Any = i break _SCREAMING_SNAKE_CASE : Any = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__snake_case ) ) def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : List[Any] = self.make_decrypt_key() _SCREAMING_SNAKE_CASE : int = self.process_text(text.upper() ) _SCREAMING_SNAKE_CASE : Optional[int] = """""" for i in range(0 , len(__snake_case ) - self.break_key + 1 , self.break_key ): _SCREAMING_SNAKE_CASE : str = text[i : i + self.break_key] _SCREAMING_SNAKE_CASE : Union[str, Any] = [self.replace_letters(__snake_case ) for char in batch] _SCREAMING_SNAKE_CASE : str = numpy.array([vec] ).T _SCREAMING_SNAKE_CASE : Tuple = self.modulus(decrypt_key.dot(__snake_case ) ).T.tolist()[0] _SCREAMING_SNAKE_CASE : List[Any] = """""".join( self.replace_digits(__snake_case ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = int(input("""Enter the order of the encryption key: """ ) ) _SCREAMING_SNAKE_CASE : str = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : Tuple = [int(SCREAMING_SNAKE_CASE__ ) for x in input().split()] hill_matrix.append(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : int = HillCipher(numpy.array(SCREAMING_SNAKE_CASE__ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) _SCREAMING_SNAKE_CASE : str = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": _SCREAMING_SNAKE_CASE : Optional[int] = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(SCREAMING_SNAKE_CASE__ ) ) elif option == "2": _SCREAMING_SNAKE_CASE : Tuple = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
533
'''simple docstring''' import math def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _SCREAMING_SNAKE_CASE : List[str] = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1 , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = factor * value _SCREAMING_SNAKE_CASE : Optional[Any] = value while not is_prime(SCREAMING_SNAKE_CASE__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ ) return value
533
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowercase = '''pt''' elif is_tf_available(): lowercase = '''tf''' else: lowercase = '''jax''' class __lowerCamelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Any = PerceiverTokenizer snake_case__ : Tuple = False def a_ ( self ): super().setUp() __SCREAMING_SNAKE_CASE : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a_ ( self ): return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def a_ ( self , **a__ ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **a__ ) def a_ ( self , a__ , a__=False , a__=20 , a__=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __SCREAMING_SNAKE_CASE : Dict = [] for i in range(len(a__ ) ): try: __SCREAMING_SNAKE_CASE : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=a__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) __SCREAMING_SNAKE_CASE : Optional[int] = list(filter(lambda a__ : re.match(R"^[ a-zA-Z]+$" , t[1] ) , a__ ) ) __SCREAMING_SNAKE_CASE : Dict = list(filter(lambda a__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=a__ ) , a__ ) ) if max_length is not None and len(a__ ) > max_length: __SCREAMING_SNAKE_CASE : Dict = toks[:max_length] if min_length is not None and len(a__ ) < min_length and len(a__ ) > 0: while len(a__ ) < min_length: __SCREAMING_SNAKE_CASE : Union[str, Any] = toks + toks # toks_str = [t[1] for t in toks] __SCREAMING_SNAKE_CASE : Any = [t[0] for t in toks] # Ensure consistency __SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(a__ , clean_up_tokenization_spaces=a__ ) if " " not in output_txt and len(a__ ) > 1: __SCREAMING_SNAKE_CASE : Dict = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a__ ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a__ ) ) if with_prefix_space: __SCREAMING_SNAKE_CASE : int = " " + output_txt __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(a__ , add_special_tokens=a__ ) return output_txt, output_ids def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[Any] = self.perceiver_tokenizer __SCREAMING_SNAKE_CASE : Optional[int] = "Unicode €." __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(a__ ) __SCREAMING_SNAKE_CASE : int = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , a__ ) # decoding __SCREAMING_SNAKE_CASE : Dict = tokenizer.decode(a__ ) self.assertEqual(a__ , "[CLS]Unicode €.[SEP]" ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer("e è é ê ë" ) __SCREAMING_SNAKE_CASE : Optional[Any] = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , a__ ) # decoding __SCREAMING_SNAKE_CASE : int = tokenizer.decode(a__ ) self.assertEqual(a__ , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def a_ ( self ): __SCREAMING_SNAKE_CASE : str = self.perceiver_tokenizer __SCREAMING_SNAKE_CASE : List[str] = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off __SCREAMING_SNAKE_CASE : Optional[Any] = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __SCREAMING_SNAKE_CASE : Tuple = tokenizer(a__ , padding=a__ , return_tensors=a__ ) self.assertIsInstance(a__ , a__ ) if FRAMEWORK != "jax": __SCREAMING_SNAKE_CASE : Tuple = list(batch.input_ids.numpy()[0] ) else: __SCREAMING_SNAKE_CASE : str = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a__ , a__ ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Dict = self.perceiver_tokenizer __SCREAMING_SNAKE_CASE : Optional[Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] __SCREAMING_SNAKE_CASE : int = tokenizer(a__ , padding=a__ , return_tensors=a__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , a__ ) self.assertIn("attention_mask" , a__ ) self.assertNotIn("decoder_input_ids" , a__ ) self.assertNotIn("decoder_attention_mask" , a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Dict = self.perceiver_tokenizer __SCREAMING_SNAKE_CASE : Optional[int] = [ "Summary of the text.", "Another summary.", ] __SCREAMING_SNAKE_CASE : str = tokenizer( text_target=a__ , max_length=32 , padding="max_length" , truncation=a__ , return_tensors=a__ ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def a_ ( self ): # safety check on max_len default value so we are sure the test works __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : Union[str, Any] = " He is very happy, UNwant\u00E9d,running" __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(a__ , add_special_tokens=a__ ) tokenizer.save_pretrained(a__ ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.__class__.from_pretrained(a__ ) __SCREAMING_SNAKE_CASE : int = after_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) shutil.rmtree(a__ ) __SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : int = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) __SCREAMING_SNAKE_CASE : int = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(a__ , add_special_tokens=a__ ) tokenizer.save_pretrained(a__ ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.__class__.from_pretrained(a__ ) __SCREAMING_SNAKE_CASE : Dict = after_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.__class__.from_pretrained(a__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a__ ) with open(os.path.join(a__ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __SCREAMING_SNAKE_CASE : List[Any] = json.load(a__ ) with open(os.path.join(a__ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __SCREAMING_SNAKE_CASE : Optional[int] = json.load(a__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [f'<extra_id_{i}>' for i in range(125 )] __SCREAMING_SNAKE_CASE : List[Any] = added_tokens_extra_ids + [ "an_additional_special_token" ] __SCREAMING_SNAKE_CASE : Dict = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(a__ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a__ , a__ ) with open(os.path.join(a__ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a__ , a__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __SCREAMING_SNAKE_CASE : Tuple = tokenizer_class.from_pretrained( a__ , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __SCREAMING_SNAKE_CASE : Optional[int] = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=a__ )] __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_class.from_pretrained( a__ , additional_special_tokens=a__ , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "�" ) def a_ ( self ): pass def a_ ( self ): pass def a_ ( self ): pass def a_ ( self ): pass def a_ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizers(fast=a__ , do_lower_case=a__ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __SCREAMING_SNAKE_CASE : int = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] __SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_tokens_to_string(a__ ) self.assertIsInstance(a__ , a__ )
564
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowercase = logging.get_logger(__name__) class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *a__ , **a__ ): warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , a__ , ) super().__init__(*a__ , **a__ )
564
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : int ): UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = BlipImageProcessor() UpperCAmelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) UpperCAmelCase = BlipProcessor(a__ , a__ ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self : Dict , **a__ : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).tokenizer def __snake_case ( self : Dict , **a__ : List[str] ): return AutoProcessor.from_pretrained(self.tmpdirname , **a__ ).image_processor def __snake_case ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self : Tuple ): UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self : List[str] ): UpperCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase = self.get_image_processor(do_normalize=a__ , padding_value=1.0 ) UpperCAmelCase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=a__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a__ ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(a__ , return_tensors='''np''' ) UpperCAmelCase = processor(images=a__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case ( self : Any ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = processor(text=a__ ) UpperCAmelCase = tokenizer(a__ , return_token_type_ids=a__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self : str ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = processor(text=a__ , images=a__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(a__ ): processor() def __snake_case ( self : List[str] ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ ) UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase = processor.batch_decode(a__ ) UpperCAmelCase = tokenizer.batch_decode(a__ ) self.assertListEqual(a__ , a__ ) def __snake_case ( self : int ): UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BlipProcessor(tokenizer=a__ , image_processor=a__ ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = processor(text=a__ , images=a__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
51
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") A_ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) a__: Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) a__: int = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) a__: Optional[int] = field( default=lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the training data.'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) a__: Optional[str] = field(default=lowerCAmelCase , metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: lowerCamelCase_ = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCamelCase_ = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __lowerCamelCase : a__: str = field( default=lowerCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a__: Optional[str] = field( default=lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) a__: str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) a__: bool = field( default=lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase_ = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCamelCase_ = data_args.train_file.split('''.''' )[-1] lowerCamelCase_ = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCamelCase_ = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files lowerCamelCase_ = load_dataset('''csv''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCamelCase_ = load_dataset('''json''' ,data_files=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCamelCase_ = raw_datasets['''train'''].features['''label'''].names lowerCamelCase_ = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # load tapex tokenizer lowerCamelCase_ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,add_prefix_space=lowerCAmelCase__ ,) lowerCamelCase_ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) ,config=lowerCAmelCase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCamelCase_ = {'''Refused''': 0, '''Entailed''': 1} lowerCamelCase_ = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCamelCase_ = min(data_args.max_seq_length ,tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase__ ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase__ ): lowerCamelCase_ = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] lowerCamelCase_ = pd.DataFrame.from_records(_table_content[1:] ,columns=_table_content[0] ) return _table_pd lowerCamelCase_ = examples['''statement'''] lowerCamelCase_ = list(map(_convert_table_text_to_pandas ,examples['''table_text'''] ) ) lowerCamelCase_ = tokenizer(lowerCAmelCase__ ,lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ) lowerCamelCase_ = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): lowerCamelCase_ = raw_datasets.map( lowerCAmelCase__ ,batched=lowerCAmelCase__ ,load_from_cache_file=not data_args.overwrite_cache ,desc='''Running tokenizer on dataset''' ,) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) lowerCamelCase_ = raw_datasets['''test'''] if data_args.max_predict_samples is not None: lowerCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase__ ) ) ,3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions ,lowerCAmelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCAmelCase__ ,pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,data_collator=lowerCAmelCase__ ,) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_metrics('''train''' ,lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) lowerCamelCase_ = min(lowerCAmelCase__ ,len(lowerCAmelCase__ ) ) trainer.log_metrics('''eval''' ,lowerCAmelCase__ ) trainer.save_metrics('''eval''' ,lowerCAmelCase__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCamelCase_ = predict_dataset.remove_columns('''label''' ) lowerCamelCase_ = trainer.predict(lowerCAmelCase__ ,metric_key_prefix='''predict''' ).predictions lowerCamelCase_ = np.argmax(lowerCAmelCase__ ,axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir ,'''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ ,'''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowerCAmelCase__ ): lowerCamelCase_ = label_list[item] writer.write(f"{index}\t{item}\n" ) lowerCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
29
0
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __SCREAMING_SNAKE_CASE : def __init__( self , _UpperCamelCase = "cpu" , _UpperCamelCase = "openai/clip-vit-large-patch14" ): """simple docstring""" lowerCAmelCase__ = device lowerCAmelCase__ = CLIPTokenizerFast.from_pretrained(_UpperCamelCase ) lowerCAmelCase__ = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] lowerCAmelCase__ = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] lowerCAmelCase__ = torchvision.transforms.Normalize(self.image_mean , self.image_std ) lowerCAmelCase__ = torchvision.transforms.Resize(2_24 ) lowerCAmelCase__ = torchvision.transforms.CenterCrop(2_24 ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.resize(_UpperCamelCase ) lowerCAmelCase__ = self.center_crop(_UpperCamelCase ) lowerCAmelCase__ = self.normalize(_UpperCamelCase ) return images def __call__( self , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.tokenizer(text=_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase__ = self.preprocess_img(_UpperCamelCase ) lowerCAmelCase__ = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class __SCREAMING_SNAKE_CASE ( nn.Module): def __init__( self , _UpperCamelCase=10 , _UpperCamelCase=0.01 , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase="image" , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False , ): """simple docstring""" super().__init__() lowerCAmelCase__ = None lowerCAmelCase__ = device if device else get_device() if vqgan: lowerCAmelCase__ = vqgan else: lowerCAmelCase__ = load_vqgan(self.device , conf_path=_UpperCamelCase , ckpt_path=_UpperCamelCase ) self.vqgan.eval() if clip: lowerCAmelCase__ = clip else: lowerCAmelCase__ = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) lowerCAmelCase__ = ProcessorGradientFlow(device=self.device ) lowerCAmelCase__ = iterations lowerCAmelCase__ = lr lowerCAmelCase__ = log lowerCAmelCase__ = make_grid lowerCAmelCase__ = return_val lowerCAmelCase__ = quantize lowerCAmelCase__ = self.vqgan.decoder.z_shape def UpperCamelCase__ ( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=5 , _UpperCamelCase=True ): """simple docstring""" lowerCAmelCase__ = [] if output_path is None: lowerCAmelCase__ = './animation.gif' if input_path is None: lowerCAmelCase__ = self.save_path lowerCAmelCase__ = sorted(glob(input_path + '/*' ) ) if not len(_UpperCamelCase ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(_UpperCamelCase ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) lowerCAmelCase__ = total_duration / len(_UpperCamelCase ) lowerCAmelCase__ = [frame_duration] * len(_UpperCamelCase ) if extend_frames: lowerCAmelCase__ = 1.5 lowerCAmelCase__ = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(_UpperCamelCase ) ) imageio.mimsave(_UpperCamelCase , _UpperCamelCase , duration=_UpperCamelCase ) print(F"gif saved to {output_path}" ) def UpperCamelCase__ ( self , _UpperCamelCase=None , _UpperCamelCase=None ): """simple docstring""" if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError lowerCAmelCase__ = preprocess(Image.open(_UpperCamelCase ) , target_image_size=2_56 ).to(self.device ) lowerCAmelCase__ = preprocess_vqgan(_UpperCamelCase ) lowerCAmelCase__ , *lowerCAmelCase__ = self.vqgan.encode(_UpperCamelCase ) return z def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.latent.detach().requires_grad_() lowerCAmelCase__ = base_latent + transform_vector if self.quantize: lowerCAmelCase__ , *lowerCAmelCase__ = self.vqgan.quantize(_UpperCamelCase ) else: lowerCAmelCase__ = trans_latent return self.vqgan.decode(_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowerCAmelCase__ = self.clip_preprocessor(text=_UpperCamelCase , images=_UpperCamelCase , return_tensors='pt' , padding=_UpperCamelCase ) lowerCAmelCase__ = self.clip(**_UpperCamelCase ) lowerCAmelCase__ = clip_outputs.logits_per_image if weights is not None: lowerCAmelCase__ = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self._get_clip_similarity(pos_prompts['prompts'] , _UpperCamelCase , weights=(1 / pos_prompts['weights']) ) if neg_prompts: lowerCAmelCase__ = self._get_clip_similarity(neg_prompts['prompts'] , _UpperCamelCase , weights=neg_prompts['weights'] ) else: lowerCAmelCase__ = torch.tensor([1] , device=self.device ) lowerCAmelCase__ = -torch.log(_UpperCamelCase ) + torch.log(_UpperCamelCase ) return loss def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = torch.randn_like(self.latent , requires_grad=_UpperCamelCase , device=self.device ) lowerCAmelCase__ = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() lowerCAmelCase__ = self._add_vector(_UpperCamelCase ) lowerCAmelCase__ = loop_post_process(_UpperCamelCase ) lowerCAmelCase__ = self._get_CLIP_loss(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) print('CLIP loss' , _UpperCamelCase ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=_UpperCamelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" wandb.init(reinit=_UpperCamelCase , project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: lowerCAmelCase__ = Image.open(_UpperCamelCase ) lowerCAmelCase__ = image.resize((2_56, 2_56) ) wandb.log('Original Image' , wandb.Image(_UpperCamelCase ) ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" if not prompts: return [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] if isinstance(_UpperCamelCase , _UpperCamelCase ): lowerCAmelCase__ = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(_UpperCamelCase , (tuple, list) ): lowerCAmelCase__ = prompt[0] lowerCAmelCase__ = float(prompt[1] ) elif ":" in prompt: lowerCAmelCase__ , lowerCAmelCase__ = prompt.split(':' ) lowerCAmelCase__ = float(_UpperCamelCase ) else: lowerCAmelCase__ = prompt lowerCAmelCase__ = 1.0 processed_prompts.append(_UpperCamelCase ) weights.append(_UpperCamelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(_UpperCamelCase , device=self.device ), } def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=None , ): """simple docstring""" if image_path: lowerCAmelCase__ = self._get_latent(_UpperCamelCase ) else: lowerCAmelCase__ = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert pos_prompts, "You must provide at least one positive prompt." lowerCAmelCase__ = self.process_prompts(_UpperCamelCase ) lowerCAmelCase__ = self.process_prompts(_UpperCamelCase ) if save_final and save_path is None: lowerCAmelCase__ = os.path.join('./outputs/' , '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(_UpperCamelCase ): os.makedirs(_UpperCamelCase ) else: lowerCAmelCase__ = save_path + '_' + get_timestamp() os.makedirs(_UpperCamelCase ) lowerCAmelCase__ = save_path lowerCAmelCase__ = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(_UpperCamelCase ) ) lowerCAmelCase__ = loop_post_process(_UpperCamelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ): if show_intermediate: show_pil(_UpperCamelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'Image': wandb.Image(_UpperCamelCase )} ) if show_final: show_pil(_UpperCamelCase ) if save_final: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}_final.png" ) )
365
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case : Any = logging.get_logger(__name__) __snake_case : Tuple = {"""tokenizer_file""": """tokenizer.json"""} __snake_case : str = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Union[str, Any] = ['''input_ids''', '''attention_mask'''] _SCREAMING_SNAKE_CASE : Union[str, Any] = None def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="<unk>" , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<pad>" , _UpperCamelCase=False , _UpperCamelCase=False , **_UpperCamelCase , ): """simple docstring""" super().__init__( _UpperCamelCase , _UpperCamelCase , tokenizer_file=_UpperCamelCase , unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase , **_UpperCamelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _UpperCamelCase ) != add_prefix_space: lowerCAmelCase__ = getattr(_UpperCamelCase , pre_tok_state.pop('type' ) ) lowerCAmelCase__ = add_prefix_space lowerCAmelCase__ = pre_tok_class(**_UpperCamelCase ) lowerCAmelCase__ = add_prefix_space def UpperCamelCase__ ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = kwargs.get('is_split_into_words' , _UpperCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" ' pretokenized inputs.' ) return super()._batch_encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase__ ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = kwargs.get('is_split_into_words' , _UpperCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" ' pretokenized inputs.' ) return super()._encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" lowerCAmelCase__ = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) + [self.eos_token_id] ) if len(_UpperCamelCase ) > self.model_max_length: lowerCAmelCase__ = input_ids[-self.model_max_length :] return input_ids
365
1
from manim import * class __lowercase ( __UpperCamelCase ): def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' A_ = Rectangle(height=0.5 , width=0.5 ) A_ = Rectangle(height=0.25 , width=0.25 ) A_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) A_ = [mem.copy() for i in range(6 )] A_ = [mem.copy() for i in range(6 )] A_ = VGroup(*a__ ).arrange(a__ , buff=0 ) A_ = VGroup(*a__ ).arrange(a__ , buff=0 ) A_ = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) A_ = Text('''CPU''' , font_size=2_4 ) A_ = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) A_ = [mem.copy() for i in range(4 )] A_ = VGroup(*a__ ).arrange(a__ , buff=0 ) A_ = Text('''GPU''' , font_size=2_4 ) A_ = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) A_ = [mem.copy() for i in range(6 )] A_ = VGroup(*a__ ).arrange(a__ , buff=0 ) A_ = Text('''Model''' , font_size=2_4 ) A_ = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) A_ = [] A_ = [] A_ = [] for i, rect in enumerate(a__ ): rect.set_stroke(a__ ) A_ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=a__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=a__ , buff=0.0 ) self.add(a__ ) model_cpu_arr.append(a__ ) self.add(*a__ , *a__ , *a__ ) A_ = [mem.copy() for i in range(6 )] A_ = VGroup(*a__ ).arrange(a__ , buff=0 ) A_ = Text('''Loaded Checkpoint''' , font_size=2_4 ) A_ = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(a__ ) A_ = [] A_ = [] for i, rect in enumerate(a__ ): A_ = fill.copy().set_fill(a__ , opacity=0.7 ) target.move_to(a__ ) ckpt_arr.append(a__ ) A_ = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(a__ ) self.add(*a__ , *a__ ) A_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A_ = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) A_ = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=1_8 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a__ ) A_ = MarkupText( F"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) A_ = [meta_mem.copy() for i in range(6 )] A_ = [meta_mem.copy() for i in range(6 )] A_ = VGroup(*a__ ).arrange(a__ , buff=0 ) A_ = VGroup(*a__ ).arrange(a__ , buff=0 ) A_ = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) A_ = Text('''Disk''' , font_size=2_4 ) A_ = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(a__ , run_time=3 ) , Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) ) A_ = [] for i, rect in enumerate(a__ ): A_ = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(a__ , run_time=1.5 ) ) self.play(*a__ ) self.play(FadeOut(a__ ) ) A_ = MarkupText(F"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ , run_time=3 ) ) self.play( FadeOut(a__ , a__ , *a__ , *a__ ) , ) self.wait()
141
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() UpperCAmelCase__ : int = logging.get_logger(__name__) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: UpperCamelCase__ : Any = WavaVecaForSequenceClassification.from_pretrained(__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = downstream_dict['projector.weight'] UpperCamelCase__ : str = downstream_dict['projector.bias'] UpperCamelCase__ : str = downstream_dict['model.post_net.linear.weight'] UpperCamelCase__ : Tuple = downstream_dict['model.post_net.linear.bias'] return model def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: UpperCamelCase__ : Any = WavaVecaForAudioFrameClassification.from_pretrained(__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = downstream_dict['model.linear.weight'] UpperCamelCase__ : List[Any] = downstream_dict['model.linear.bias'] return model def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: UpperCamelCase__ : int = WavaVecaForXVector.from_pretrained(__SCREAMING_SNAKE_CASE , config=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = downstream_dict['connector.weight'] UpperCamelCase__ : Any = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): UpperCamelCase__ : Tuple = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] UpperCamelCase__ : Optional[int] = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] UpperCamelCase__ : Optional[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] UpperCamelCase__ : Tuple = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] UpperCamelCase__ : int = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] UpperCamelCase__ : str = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] UpperCamelCase__ : Any = downstream_dict['objective.W'] return model @torch.no_grad() def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: UpperCamelCase__ : Optional[Any] = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' ) UpperCamelCase__ : int = checkpoint['Downstream'] UpperCamelCase__ : Any = WavaVecaConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = WavaVecaFeatureExtractor.from_pretrained( __SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , do_normalize=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): UpperCamelCase__ : int = convert_classification(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif arch.endswith('ForAudioFrameClassification' ): UpperCamelCase__ : List[Any] = convert_diarization(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif arch.endswith('ForXVector' ): UpperCamelCase__ : Tuple = convert_xvector(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: UpperCamelCase__ : Dict = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(__SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase__ : Tuple = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') UpperCAmelCase__ : List[str] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
410
0
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowerCamelCase_(*__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=2 )-> Dict: from .. import __version__ _SCREAMING_SNAKE_CASE : int = take_from _SCREAMING_SNAKE_CASE : Union[str, Any] = () if not isinstance(args[0] , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : int = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(__SCREAMING_SNAKE_CASE ): raise ValueError( F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" F""" version {__version__} is >= {version_name}""" ) _SCREAMING_SNAKE_CASE : str = None if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__SCREAMING_SNAKE_CASE ),) _SCREAMING_SNAKE_CASE : str = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): values += (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),) _SCREAMING_SNAKE_CASE : Optional[int] = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: _SCREAMING_SNAKE_CASE : Tuple = F"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: _SCREAMING_SNAKE_CASE : int = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , __SCREAMING_SNAKE_CASE , stacklevel=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0: _SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] _SCREAMING_SNAKE_CASE : Dict = call_frame.filename _SCREAMING_SNAKE_CASE : Union[str, Any] = call_frame.lineno _SCREAMING_SNAKE_CASE : str = call_frame.function _SCREAMING_SNAKE_CASE : List[Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(__SCREAMING_SNAKE_CASE ) == 0: return elif len(__SCREAMING_SNAKE_CASE ) == 1: return values[0] return values
705
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Optional[int]: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Optional[int]: _SCREAMING_SNAKE_CASE : List[str] = tmp_path / """cache""" _SCREAMING_SNAKE_CASE : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Tuple: _SCREAMING_SNAKE_CASE : int = tmp_path / """cache""" _SCREAMING_SNAKE_CASE : str = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE : List[Any] = features.copy() if features else default_expected_features _SCREAMING_SNAKE_CASE : List[Any] = ( Features({feature: Value(__SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _SCREAMING_SNAKE_CASE : Optional[Any] = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Tuple: _SCREAMING_SNAKE_CASE : Tuple = tmp_path / """cache""" _SCREAMING_SNAKE_CASE : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE : Dict = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , split=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> str: if issubclass(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = parquet_path elif issubclass(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = [parquet_path] _SCREAMING_SNAKE_CASE : Optional[Any] = tmp_path / """cache""" _SCREAMING_SNAKE_CASE : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE : str = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=("train",) )-> Union[str, Any]: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for split in splits: _SCREAMING_SNAKE_CASE : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = tmp_path / """cache""" _SCREAMING_SNAKE_CASE : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _SCREAMING_SNAKE_CASE : Tuple = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Dict: _SCREAMING_SNAKE_CASE : Optional[int] = tmp_path / """cache""" _SCREAMING_SNAKE_CASE : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE : List[str] = features.copy() if features else default_expected_features _SCREAMING_SNAKE_CASE : str = ( Features({feature: Value(__SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _SCREAMING_SNAKE_CASE : int = ParquetDatasetReader({"""train""": parquet_path} , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Dict: if split: _SCREAMING_SNAKE_CASE : Union[str, Any] = {split: parquet_path} else: _SCREAMING_SNAKE_CASE : Optional[int] = """train""" _SCREAMING_SNAKE_CASE : Any = {"""train""": parquet_path, """test""": parquet_path} _SCREAMING_SNAKE_CASE : List[str] = tmp_path / """cache""" _SCREAMING_SNAKE_CASE : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _SCREAMING_SNAKE_CASE : Union[str, Any] = ParquetDatasetReader(__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> List[Any]: _SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetWriter(__SCREAMING_SNAKE_CASE , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _SCREAMING_SNAKE_CASE : Tuple = pq.ParquetFile(tmp_path / """foo.parquet""" ) _SCREAMING_SNAKE_CASE : str = pf.read() assert dataset.data.table == output_table def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Union[str, Any]: _SCREAMING_SNAKE_CASE : Dict = str(shared_datadir / """test_image_rgb.jpg""" ) _SCREAMING_SNAKE_CASE : Optional[Any] = {"""image""": [image_path]} _SCREAMING_SNAKE_CASE : Optional[Any] = Features({"""image""": Image()} ) _SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_dict(__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Tuple = ParquetDatasetWriter(__SCREAMING_SNAKE_CASE , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _SCREAMING_SNAKE_CASE : List[str] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=__SCREAMING_SNAKE_CASE ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> int: assert get_writer_batch_size(__SCREAMING_SNAKE_CASE ) == expected
635
0
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCAmelCase: Optional[int] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=5_1_2, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def lowerCamelCase__ ( _A ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) lowerCAmelCase: Optional[int] = parser.parse_args() lowerCAmelCase: Any = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
526
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCAmelCase: Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') lowerCAmelCase: Optional[int] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) lowerCAmelCase: int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a__: lowercase__ = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """The column name of the images in the files. If not set, will try to use 'image' or 'img'."""} , ) lowercase__ = field(default=lowerCamelCase__ , metadata={"""help""": """A folder containing the training data."""} ) lowercase__ = field(default=lowerCamelCase__ , metadata={"""help""": """A folder containing the validation data."""} ) lowercase__ = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) lowercase__ = field(default=32 , metadata={"""help""": """The size of the square patches to use for masking."""} ) lowercase__ = field( default=0.6 , metadata={"""help""": """Percentage of patches to mask."""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowercase__ = field( default=lowerCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowercase_ ( self : List[Any] ): a : Any = {} if self.train_dir is not None: a : Dict = self.train_dir if self.validation_dir is not None: a : Union[str, Any] = self.validation_dir a : Any = data_files if data_files else None @dataclass class a__: lowercase__ = field( default=lowerCamelCase__ , metadata={ """help""": ( """The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a """ """checkpoint identifier on the hub. """ """Don't set if you want to train a model from scratch.""" ) } , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(lowerCamelCase__ )} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ = field( default=lowerCamelCase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"""} , ) lowercase__ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowercase__ = field(default=lowerCamelCase__ , metadata={"""help""": """Name or path of preprocessor config."""} ) lowercase__ = field( default=lowerCamelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowercase__ = field( default=lowerCamelCase__ , metadata={ """help""": ( """The size (resolution) of each image. If not specified, will use `image_size` of the configuration.""" ) } , ) lowercase__ = field( default=lowerCamelCase__ , metadata={ """help""": ( """The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.""" ) } , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Stride to use for the encoder."""} , ) class a__: def __init__( self : List[str] , __snake_case : int=1_92 , __snake_case : int=32 , __snake_case : List[str]=4 , __snake_case : Union[str, Any]=0.6 ): a : Any = input_size a : Union[str, Any] = mask_patch_size a : int = model_patch_size a : Tuple = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('Input size must be divisible by mask patch size' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('Mask patch size must be divisible by model patch size' ) a : str = self.input_size // self.mask_patch_size a : Union[str, Any] = self.mask_patch_size // self.model_patch_size a : str = self.rand_size**2 a : Tuple = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : str ): a : List[str] = np.random.permutation(self.token_count )[: self.mask_count] a : List[str] = np.zeros(self.token_count , dtype=__snake_case ) a : Any = 1 a : List[str] = mask.reshape((self.rand_size, self.rand_size) ) a : Tuple = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def lowerCamelCase__ ( _A ): a : str = torch.stack([example['pixel_values'] for example in examples] ) a : List[str] = torch.stack([example['mask'] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def lowerCamelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a , a , a : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a , a , a : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mim' , _A , _A ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a : int = training_args.get_process_log_level() logger.setLevel(_A ) transformers.utils.logging.set_verbosity(_A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. a : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. a : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. a : Union[str, Any] = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _A ) and data_args.train_val_split > 0.0: a : Any = ds['train'].train_test_split(data_args.train_val_split ) a : str = split['train'] a : Any = split['test'] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a : Tuple = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: a : Any = AutoConfig.from_pretrained(model_args.config_name_or_path , **_A ) elif model_args.model_name_or_path: a : Optional[int] = AutoConfig.from_pretrained(model_args.model_name_or_path , **_A ) else: a : Optional[int] = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(_A , 'decoder_type' ): a : List[str] = 'simmim' # adapt config a : str = model_args.image_size if model_args.image_size is not None else config.image_size a : Union[str, Any] = model_args.patch_size if model_args.patch_size is not None else config.patch_size a : Any = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { 'image_size': model_args.image_size, 'patch_size': model_args.patch_size, 'encoder_stride': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: a : Union[str, Any] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **_A ) elif model_args.model_name_or_path: a : Union[str, Any] = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **_A ) else: a : List[Any] = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } a : int = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: a : Tuple = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) a : Union[str, Any] = AutoModelForMaskedImageModeling.from_config(_A ) if training_args.do_train: a : Tuple = ds['train'].column_names else: a : Dict = ds['validation'].column_names if data_args.image_column_name is not None: a : Optional[Any] = data_args.image_column_name elif "image" in column_names: a : str = 'image' elif "img" in column_names: a : Union[str, Any] = 'img' else: a : str = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py a : Optional[int] = Compose( [ Lambda(lambda _A : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator a : Dict = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(_A ): a : Dict = [transforms(_A ) for image in examples[image_column_name]] a : Optional[int] = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: a : List[Any] = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_A ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: a : str = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_A ) # Initialize our trainer a : List[str] = Trainer( model=_A , args=_A , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_A , data_collator=_A , ) # Training if training_args.do_train: a : str = None if training_args.resume_from_checkpoint is not None: a : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: a : Dict = last_checkpoint a : Optional[int] = trainer.train(resume_from_checkpoint=_A ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: a : List[Any] = trainer.evaluate() trainer.log_metrics('eval' , _A ) trainer.save_metrics('eval' , _A ) # Write model card and (optionally) push to hub a : str = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'masked-image-modeling', 'dataset': data_args.dataset_name, 'tags': ['masked-image-modeling'], } if training_args.push_to_hub: trainer.push_to_hub(**_A ) else: trainer.create_model_card(**_A ) if __name__ == "__main__": main()
526
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : int = 1_2_8 ,SCREAMING_SNAKE_CASE__ : int = 2_5_6 ,SCREAMING_SNAKE_CASE__ : float = 2000.0 ,SCREAMING_SNAKE_CASE__ : int = 7_6_8 ,SCREAMING_SNAKE_CASE__ : int = 1_2 ,SCREAMING_SNAKE_CASE__ : int = 1_2 ,SCREAMING_SNAKE_CASE__ : int = 6_4 ,SCREAMING_SNAKE_CASE__ : int = 2_0_4_8 ,SCREAMING_SNAKE_CASE__ : float = 0.1 ,): super().__init__() __lowerCamelCase : Optional[int] = nn.Sequential( nn.Linear(SCREAMING_SNAKE_CASE__ ,d_model * 4 ,bias=SCREAMING_SNAKE_CASE__) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=SCREAMING_SNAKE_CASE__) ,nn.SiLU() ,) __lowerCamelCase : List[Any] = nn.Embedding(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = False __lowerCamelCase : Dict = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = nn.Dropout(p=SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = nn.ModuleList() for lyr_num in range(SCREAMING_SNAKE_CASE__): # FiLM conditional T5 decoder __lowerCamelCase : str = DecoderLayer(d_model=SCREAMING_SNAKE_CASE__ ,d_kv=SCREAMING_SNAKE_CASE__ ,num_heads=SCREAMING_SNAKE_CASE__ ,d_ff=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__) self.decoders.append(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = TaLayerNorm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = nn.Dropout(p=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : List[Any] = torch.mul(query_input.unsqueeze(-1) ,key_input.unsqueeze(-2)) return mask.unsqueeze(-3) def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __lowerCamelCase : Dict = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype) __lowerCamelCase : List[Any] = self.conditioning_emb(SCREAMING_SNAKE_CASE__).unsqueeze(1) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __lowerCamelCase : List[Any] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __lowerCamelCase : str = torch.broadcast_to( torch.arange(SCREAMING_SNAKE_CASE__ ,device=decoder_input_tokens.device) ,(batch, seq_length) ,) __lowerCamelCase : Any = self.position_encoding(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = self.continuous_inputs_projection(SCREAMING_SNAKE_CASE__) inputs += position_encodings __lowerCamelCase : List[str] = self.dropout(SCREAMING_SNAKE_CASE__) # decoder: No padding present. __lowerCamelCase : Tuple = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype) # Translate encoding masks to encoder-decoder masks. __lowerCamelCase : Union[str, Any] = [(x, self.encoder_decoder_mask(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)) for x, y in encodings_and_masks] # cross attend style: concat encodings __lowerCamelCase : Union[str, Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1) __lowerCamelCase : Any = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1) for lyr in self.decoders: __lowerCamelCase : Optional[int] = lyr( SCREAMING_SNAKE_CASE__ ,conditioning_emb=SCREAMING_SNAKE_CASE__ ,encoder_hidden_states=SCREAMING_SNAKE_CASE__ ,encoder_attention_mask=SCREAMING_SNAKE_CASE__ ,)[0] __lowerCamelCase : Dict = self.decoder_norm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = self.post_dropout(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = self.spec_out(SCREAMING_SNAKE_CASE__) return spec_out class A_ ( nn.Module ): def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : List[Any]=1E-6): super().__init__() __lowerCamelCase : List[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=SCREAMING_SNAKE_CASE__ ,d_kv=SCREAMING_SNAKE_CASE__ ,num_heads=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__)) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=SCREAMING_SNAKE_CASE__ ,d_kv=SCREAMING_SNAKE_CASE__ ,num_heads=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__ ,layer_norm_epsilon=SCREAMING_SNAKE_CASE__ ,)) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=SCREAMING_SNAKE_CASE__ ,d_ff=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__ ,layer_norm_epsilon=SCREAMING_SNAKE_CASE__)) def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ,): __lowerCamelCase : Any = self.layer[0]( SCREAMING_SNAKE_CASE__ ,conditioning_emb=SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,) if encoder_hidden_states is not None: __lowerCamelCase : Tuple = torch.where(encoder_attention_mask > 0 ,0 ,-1E10).to( encoder_hidden_states.dtype) __lowerCamelCase : Dict = self.layer[1]( SCREAMING_SNAKE_CASE__ ,key_value_states=SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,) # Apply Film Conditional Feed Forward layer __lowerCamelCase : Optional[Any] = self.layer[-1](SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) return (hidden_states,) class A_ ( nn.Module ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : str): super().__init__() __lowerCamelCase : str = TaLayerNorm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = TaFiLMLayer(in_features=d_model * 4 ,out_features=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = Attention(query_dim=SCREAMING_SNAKE_CASE__ ,heads=SCREAMING_SNAKE_CASE__ ,dim_head=SCREAMING_SNAKE_CASE__ ,out_bias=SCREAMING_SNAKE_CASE__ ,scale_qk=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = nn.Dropout(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : int=None ,): # pre_self_attention_layer_norm __lowerCamelCase : Any = self.layer_norm(SCREAMING_SNAKE_CASE__) if conditioning_emb is not None: __lowerCamelCase : Dict = self.FiLMLayer(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) # Self-attention block __lowerCamelCase : Optional[int] = self.attention(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__) return hidden_states class A_ ( nn.Module ): def __init__( self : str ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : str): super().__init__() __lowerCamelCase : List[str] = Attention(query_dim=SCREAMING_SNAKE_CASE__ ,heads=SCREAMING_SNAKE_CASE__ ,dim_head=SCREAMING_SNAKE_CASE__ ,out_bias=SCREAMING_SNAKE_CASE__ ,scale_qk=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = TaLayerNorm(SCREAMING_SNAKE_CASE__ ,eps=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = nn.Dropout(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Tuple=None ,SCREAMING_SNAKE_CASE__ : int=None ,): __lowerCamelCase : Optional[int] = self.layer_norm(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = self.attention( SCREAMING_SNAKE_CASE__ ,encoder_hidden_states=SCREAMING_SNAKE_CASE__ ,attention_mask=attention_mask.squeeze(1) ,) __lowerCamelCase : int = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__) return layer_output class A_ ( nn.Module ): def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : List[Any]): super().__init__() __lowerCamelCase : Optional[int] = TaDenseGatedActDense(d_model=SCREAMING_SNAKE_CASE__ ,d_ff=SCREAMING_SNAKE_CASE__ ,dropout_rate=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = TaFiLMLayer(in_features=d_model * 4 ,out_features=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = TaLayerNorm(SCREAMING_SNAKE_CASE__ ,eps=SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = nn.Dropout(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[str]=None): __lowerCamelCase : List[Any] = self.layer_norm(SCREAMING_SNAKE_CASE__) if conditioning_emb is not None: __lowerCamelCase : List[str] = self.film(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = self.DenseReluDense(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__) return hidden_states class A_ ( nn.Module ): def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : List[str]): super().__init__() __lowerCamelCase : List[Any] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = nn.Linear(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,bias=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = nn.Dropout(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = NewGELUActivation() def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any]): __lowerCamelCase : Tuple = self.act(self.wi_a(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Tuple = self.wi_a(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = hidden_gelu * hidden_linear __lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = self.wo(SCREAMING_SNAKE_CASE__) return hidden_states class A_ ( nn.Module ): def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Tuple=1E-6): super().__init__() __lowerCamelCase : Dict = nn.Parameter(torch.ones(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : List[Any] = eps def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : str): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 __lowerCamelCase : Dict = hidden_states.to(torch.floataa).pow(2).mean(-1 ,keepdim=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __lowerCamelCase : str = hidden_states.to(self.weight.dtype) return self.weight * hidden_states class A_ ( nn.Module ): def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : torch.Tensor): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(SCREAMING_SNAKE_CASE__ ,3.0)))) class A_ ( nn.Module ): def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Dict): super().__init__() __lowerCamelCase : List[str] = nn.Linear(SCREAMING_SNAKE_CASE__ ,out_features * 2 ,bias=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Tuple): __lowerCamelCase : Dict = self.scale_bias(SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : Union[str, Any] = torch.chunk(SCREAMING_SNAKE_CASE__ ,2 ,-1) __lowerCamelCase : str = x * (1 + scale) + shift return x
337
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> list[int]: if length <= 0 or not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(lowerCamelCase__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
337
1
'''simple docstring''' from __future__ import annotations def A__ ( A : str): '''simple docstring''' return [ord(A) - 96 for elem in plain] def A__ ( A : list[int]): '''simple docstring''' return "".join(chr(elem + 96) for elem in encoded) def A__ ( ): '''simple docstring''' UpperCamelCase : Dict = encode(input("-> ").strip().lower()) print("Encoded: " , A) print("Decoded:" , decode(A)) if __name__ == "__main__": main()
173
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=2 , lowerCamelCase=99 , lowerCamelCase=0 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=5_12 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=2 , lowerCamelCase=4 , lowerCamelCase="last" , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=0 , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : Any = parent UpperCamelCase : int = batch_size UpperCamelCase : str = seq_length UpperCamelCase : Dict = is_training UpperCamelCase : int = use_input_lengths UpperCamelCase : int = use_token_type_ids UpperCamelCase : Any = use_labels UpperCamelCase : List[Any] = gelu_activation UpperCamelCase : Optional[int] = sinusoidal_embeddings UpperCamelCase : str = causal UpperCamelCase : Tuple = asm UpperCamelCase : Any = n_langs UpperCamelCase : Any = vocab_size UpperCamelCase : Optional[Any] = n_special UpperCamelCase : Optional[Any] = hidden_size UpperCamelCase : List[str] = num_hidden_layers UpperCamelCase : Optional[int] = num_attention_heads UpperCamelCase : str = hidden_dropout_prob UpperCamelCase : List[Any] = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : List[str] = type_sequence_label_size UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : Union[str, Any] = num_labels UpperCamelCase : int = num_choices UpperCamelCase : Union[str, Any] = summary_type UpperCamelCase : Union[str, Any] = use_proj UpperCamelCase : Optional[int] = scope UpperCamelCase : Any = bos_token_id def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : List[str] = None if self.use_input_lengths: UpperCamelCase : Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase : List[str] = None if self.use_token_type_ids: UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase : List[str] = None UpperCamelCase : Union[str, Any] = None UpperCamelCase : Dict = None if self.use_labels: UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : str = ids_tensor([self.batch_size] , 2 ).float() UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> Dict: '''simple docstring''' UpperCamelCase : Optional[Any] = XLMModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCamelCase : Optional[Any] = model(lowerCamelCase , lengths=lowerCamelCase , langs=lowerCamelCase ) UpperCamelCase : Optional[Any] = model(lowerCamelCase , langs=lowerCamelCase ) UpperCamelCase : List[str] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> int: '''simple docstring''' UpperCamelCase : Optional[int] = XLMWithLMHeadModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCamelCase : Tuple = model(lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> Tuple: '''simple docstring''' UpperCamelCase : Union[str, Any] = XLMForQuestionAnsweringSimple(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCamelCase : List[str] = model(lowerCamelCase ) UpperCamelCase : Optional[int] = model(lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase ) UpperCamelCase : int = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> int: '''simple docstring''' UpperCamelCase : Optional[int] = XLMForQuestionAnswering(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCamelCase : List[str] = model(lowerCamelCase ) UpperCamelCase : Any = model( lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , cls_index=lowerCamelCase , is_impossible=lowerCamelCase , p_mask=lowerCamelCase , ) UpperCamelCase : Optional[Any] = model( lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , cls_index=lowerCamelCase , is_impossible=lowerCamelCase , ) ((UpperCamelCase) , ) : Any = result_with_labels.to_tuple() UpperCamelCase : Dict = model(lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase ) ((UpperCamelCase) , ) : Tuple = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : int = XLMForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCamelCase : List[Any] = model(lowerCamelCase ) UpperCamelCase : Dict = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> List[Any]: '''simple docstring''' UpperCamelCase : Dict = self.num_labels UpperCamelCase : int = XLMForTokenClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCamelCase : Union[str, Any] = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : Optional[int] = self.num_choices UpperCamelCase : Dict = XLMForMultipleChoice(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCamelCase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Optional[int] = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Optional[int] = config_and_inputs UpperCamelCase : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ) -> Tuple: '''simple docstring''' UpperCamelCase : Tuple = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCamelCase : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) UpperCamelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' UpperCamelCase : Tuple = XLMModelTester(self ) UpperCamelCase : Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase , emb_dim=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertListEqual( [isinstance(lowerCamelCase , lowerCamelCase ) for iter_attentions in attentions] , [True] * len(lowerCamelCase ) ) self.assertEqual(len(lowerCamelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCamelCase ): # adds PAD dummy token UpperCamelCase : Dict = min_length + idx + 1 UpperCamelCase : int = min_length + idx + 1 UpperCamelCase : Union[str, Any] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=1 ) -> Optional[int]: '''simple docstring''' self.assertIsInstance(lowerCamelCase , lowerCamelCase ) self.assertListEqual( [isinstance(lowerCamelCase , lowerCamelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCamelCase ) , ) self.assertEqual(len(lowerCamelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCamelCase ): # adds PAD dummy token UpperCamelCase : Tuple = min_length + idx + 1 UpperCamelCase : str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCamelCase ) , ) pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Union[str, Any] = XLMModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' UpperCamelCase : int = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(lowerCamelCase ) UpperCamelCase : Optional[int] = torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCamelCase ) # the president UpperCamelCase : Any = [ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCamelCase : List[Any] = model.generate(lowerCamelCase , do_sample=lowerCamelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCamelCase )
173
1
'''simple docstring''' import math def __lowerCamelCase ( _UpperCamelCase : int ): '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = int(math.sqrt(_UpperCamelCase ) ) # Size of every segment UpperCAmelCase_ = [True] * (end + 1) UpperCAmelCase_ = [] while start <= end: if temp[start] is True: in_prime.append(_UpperCamelCase ) for i in range(start * start , end + 1 , _UpperCamelCase ): UpperCAmelCase_ = False start += 1 prime += in_prime UpperCAmelCase_ = end + 1 UpperCAmelCase_ = min(2 * end , _UpperCamelCase ) while low <= n: UpperCAmelCase_ = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase_ = math.floor(low / each ) * each if t < low: t += each for j in range(_UpperCamelCase , high + 1 , _UpperCamelCase ): UpperCAmelCase_ = False for j in range(len(_UpperCamelCase ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase_ = high + 1 UpperCAmelCase_ = min(high + end , _UpperCamelCase ) return prime print(sieve(10**6))
43
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 255 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[float, List[float]]] = [0.4814_5466, 0.457_8275, 0.4082_1073] , UpperCAmelCase__ : Optional[Union[float, List[float]]] = [0.2686_2954, 0.2613_0258, 0.2757_7711] , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[str, Any]=7 , UpperCAmelCase__ : Optional[int]=30 , UpperCAmelCase__ : Union[str, Any]=400 , UpperCAmelCase__ : List[Any]=3 , ) ->Dict: UpperCAmelCase_ = parent UpperCAmelCase_ = do_resize UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 288} UpperCAmelCase_ = size_divisor UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_pad UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution def lowerCAmelCase__ ( self : Tuple ) ->List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCAmelCase__ ( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict=False ) ->Any: if not batched: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] UpperCAmelCase_ = size / min(UpperCAmelCase__ , UpperCAmelCase__ ) if h < w: UpperCAmelCase_ , UpperCAmelCase_ = size, scale * w else: UpperCAmelCase_ , UpperCAmelCase_ = scale * h, size UpperCAmelCase_ = int((1333 / 800) * size ) if max(UpperCAmelCase__ , UpperCAmelCase__ ) > max_size: UpperCAmelCase_ = max_size / max(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = newh * scale UpperCAmelCase_ = neww * scale UpperCAmelCase_ , UpperCAmelCase_ = int(newh + 0.5 ), int(neww + 0.5 ) UpperCAmelCase_ , UpperCAmelCase_ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase_ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : item[0] )[0] UpperCAmelCase_ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase ( lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = BridgeTowerImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : Optional[int] ) ->str: UpperCAmelCase_ = BridgeTowerImageProcessingTester(self ) @property def lowerCAmelCase__ ( self : List[str] ) ->Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : Optional[int] ) ->int: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''size_divisor''' ) ) def lowerCAmelCase__ ( self : Optional[int] ) ->Union[str, Any]: pass def lowerCAmelCase__ ( self : List[str] ) ->Union[str, Any]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self : Any ) ->Optional[int]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self : int ) ->List[str]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
43
1
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand UpperCAmelCase_ : Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) UpperCAmelCase_ : Optional[int] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) UpperCAmelCase_ : List[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) UpperCAmelCase_ : Any = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) UpperCAmelCase_ : Any = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) UpperCAmelCase_ : Any = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) UpperCAmelCase_ : Optional[Any] = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def _UpperCamelCase ()-> Dict: '''simple docstring''' __snake_case , __snake_case = randrange(len(_lowerCamelCase ) ), randrange(len(_lowerCamelCase ) ) __snake_case = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] __snake_case , __snake_case = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _UpperCamelCase (_lowerCamelCase : int = 1_00 )-> Any: '''simple docstring''' return (generate_random_hand() for _ in range(_lowerCamelCase )) @pytest.mark.parametrize('''hand, expected''' , _lowerCamelCase ) def _UpperCamelCase (_lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] )-> str: '''simple docstring''' assert PokerHand(_lowerCamelCase )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , _lowerCamelCase ) def _UpperCamelCase (_lowerCamelCase : Tuple , _lowerCamelCase : int )-> Any: '''simple docstring''' assert PokerHand(_lowerCamelCase )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , _lowerCamelCase ) def _UpperCamelCase (_lowerCamelCase : Tuple , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] )-> Optional[int]: '''simple docstring''' __snake_case = PokerHand(_lowerCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , _lowerCamelCase ) def _UpperCamelCase (_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict )-> Union[str, Any]: '''simple docstring''' assert PokerHand(_lowerCamelCase )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , _lowerCamelCase ) def _UpperCamelCase (_lowerCamelCase : Dict , _lowerCamelCase : List[Any] )-> int: '''simple docstring''' assert PokerHand(_lowerCamelCase )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , _lowerCamelCase ) def _UpperCamelCase (_lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] )-> List[Any]: '''simple docstring''' assert PokerHand(_lowerCamelCase ).compare_with(PokerHand(_lowerCamelCase ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _UpperCamelCase (_lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : List[Any] )-> Tuple: '''simple docstring''' assert PokerHand(_lowerCamelCase ).compare_with(PokerHand(_lowerCamelCase ) ) == expected def _UpperCamelCase ()-> Optional[Any]: '''simple docstring''' __snake_case = [PokerHand(_lowerCamelCase ) for hand in SORTED_HANDS] __snake_case = poker_hands.copy() shuffle(_lowerCamelCase ) __snake_case = chain(sorted(_lowerCamelCase ) ) for index, hand in enumerate(_lowerCamelCase ): assert hand == poker_hands[index] def _UpperCamelCase ()-> List[Any]: '''simple docstring''' __snake_case = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=_lowerCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _UpperCamelCase ()-> List[str]: '''simple docstring''' __snake_case = PokerHand('''2C 4S AS 3D 5C''' ) __snake_case = True __snake_case = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _UpperCamelCase ()-> Dict: '''simple docstring''' __snake_case = 0 __snake_case = os.path.abspath(os.path.dirname(_lowerCamelCase ) ) __snake_case = os.path.join(_lowerCamelCase , '''poker_hands.txt''' ) with open(_lowerCamelCase ) as file_hand: for line in file_hand: __snake_case = line[:14].strip() __snake_case = line[15:].strip() __snake_case , __snake_case = PokerHand(_lowerCamelCase ), PokerHand(_lowerCamelCase ) __snake_case = player.compare_with(_lowerCamelCase ) if output == "Win": answer += 1 assert answer == 3_76
24
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __a ( _lowerCAmelCase ): @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Dict: """simple docstring""" UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) UpperCamelCase = BertTokenizer.from_pretrained("bert-base-uncased" ) UpperCamelCase = bertabert.config.encoder.vocab_size UpperCamelCase = tokenizer.sep_token_id UpperCamelCase = tokenizer.cls_token_id UpperCamelCase = 128 UpperCamelCase = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) UpperCamelCase = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) UpperCamelCase = train_dataset.select(range(32 ) ) UpperCamelCase = val_dataset.select(range(16 ) ) UpperCamelCase = 4 def _map_to_encoder_decoder_inputs(UpperCAmelCase_ : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase = tokenizer(batch["article"] , padding="max_length" , truncation=UpperCAmelCase_ , max_length=512 ) UpperCamelCase = tokenizer(batch["highlights"] , padding="max_length" , truncation=UpperCAmelCase_ , max_length=128 ) UpperCamelCase = inputs.input_ids UpperCamelCase = inputs.attention_mask UpperCamelCase = outputs.input_ids UpperCamelCase = outputs.input_ids.copy() UpperCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] UpperCamelCase = outputs.attention_mask assert all(len(UpperCAmelCase_ ) == 512 for x in inputs.input_ids ) assert all(len(UpperCAmelCase_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(UpperCAmelCase_ : Any ): UpperCamelCase = pred.label_ids UpperCamelCase = pred.predictions # all unnecessary tokens are removed UpperCamelCase = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) UpperCamelCase = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCAmelCase_ ) )] ) / len(UpperCAmelCase_ ) return {"accuracy": accuracy} # map train dataset UpperCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset UpperCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = SeqaSeqTrainingArguments( output_dir=UpperCAmelCase_ , per_device_train_batch_size=UpperCAmelCase_ , per_device_eval_batch_size=UpperCAmelCase_ , predict_with_generate=UpperCAmelCase_ , evaluation_strategy="steps" , do_train=UpperCAmelCase_ , do_eval=UpperCAmelCase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase = SeqaSeqTrainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , compute_metrics=_compute_metrics , train_dataset=UpperCAmelCase_ , eval_dataset=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , ) # start training trainer.train()
554
0
def __A ( _A , _A ): """simple docstring""" if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
525
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint SCREAMING_SNAKE_CASE : str = { """169M""": 12, """430M""": 24, """1B5""": 24, """3B""": 32, """7B""": 32, """14B""": 40, } SCREAMING_SNAKE_CASE : Dict = { """169M""": 768, """430M""": 1024, """1B5""": 2048, """3B""": 2560, """7B""": 4096, """14B""": 5120, } def __A ( _A ): """simple docstring""" __a = list(state_dict.keys() ) for name in state_dict_keys: __a = state_dict.pop(_A ) # emb -> embedding if name.startswith("emb." ): __a = name.replace("emb." , "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): __a = name.replace("blocks.0.ln0" , "blocks.0.pre_ln" ) # att -> attention __a = re.sub(r"blocks\.(\d+)\.att" , r"blocks.\1.attention" , _A ) # ffn -> feed_forward __a = re.sub(r"blocks\.(\d+)\.ffn" , r"blocks.\1.feed_forward" , _A ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): __a = name.replace(".time_mix_k" , ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): __a = name.replace(".time_mix_v" , ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): __a = name.replace(".time_mix_r" , ".time_mix_receptance" ) if name != "head.weight": __a = "rwkv." + name __a = weight return state_dict def __A ( _A , _A , _A , _A=None , _A=None , _A=False , _A=None ): """simple docstring""" if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) __a = 5_0277 __a = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: __a = PreTrainedTokenizerFast(tokenizer_file=_A ) __a = len(_A ) tokenizer.save_pretrained(_A ) # 2. Build the config __a = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __a = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) __a = RwkvConfig( vocab_size=_A , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_A ) # 3. Download model file then convert state_dict __a = hf_hub_download(_A , _A ) __a = torch.load(_A , map_location="cpu" ) __a = convert_state_dict(_A ) # 4. Split in shards and save __a , __a = shard_checkpoint(_A ) for shard_file, shard in shards.items(): torch.save(_A , os.path.join(_A , _A ) ) if index is not None: __a = os.path.join(_A , _A ) # Save the index as well with open(_A , "w" , encoding="utf-8" ) as f: __a = json.dumps(_A , indent=2 , sort_keys=_A ) + "\n" f.write(_A ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." ) __a = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __a = torch.load(os.path.join(_A , _A ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_A , _A ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) __a = AutoModelForCausalLM.from_pretrained(_A ) model.push_to_hub(_A , max_shard_size="2GB" ) tokenizer.push_to_hub(_A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
525
1
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Union[str, Any] = VideoToVideoSDPipeline a__ : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} a__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} a__ : Any = PipelineTesterMixin.required_optional_params - {"""latents"""} a__ : Any = False # No `output_type`. a__ : Union[str, Any] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def _lowercase (self : List[Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(__a ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _lowercase (self : List[Any] , __a : Optional[int] , __a : Tuple=0 ): # 3 frames UpperCAmelCase_ = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(__a ) else: UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(__a ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def _lowercase (self : Tuple ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = VideoToVideoSDPipeline(**__a ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_dummy_inputs(__a ) UpperCAmelCase_ = "np" UpperCAmelCase_ = sd_pipe(**__a ).frames UpperCAmelCase_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) UpperCAmelCase_ = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowercase (self : List[Any] ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__a , expected_max_diff=5E-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def _lowercase (self : List[Any] ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def _lowercase (self : Optional[Any] ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def _lowercase (self : str ): pass def _lowercase (self : Optional[Any] ): return super().test_progress_bar() @slow @skip_mps class __A ( unittest.TestCase ): def _lowercase (self : str ): UpperCAmelCase_ = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = torch.randn((1, 10, 3, 1024, 576) , generator=__a ) UpperCAmelCase_ = video.to("cuda" ) UpperCAmelCase_ = "Spiderman is surfing" UpperCAmelCase_ = pipe(__a , video=__a , generator=__a , num_inference_steps=3 , output_type="pt" ).frames UpperCAmelCase_ = np.array([-1.0_45_89_84, -1.1_27_92_97, -0.9_66_30_86, -0.91_50_39_06, -0.75_09_76_56] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
78
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class A_(unittest.TestCase ): """simple docstring""" def __init__( self , A , A=100 , A=13 , A=30 , A=2 , A=3 , A=True , A=True , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=10 , A=0.0_2 , A=3 , ): _lowerCamelCase : str = parent _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : int = batch_size _lowerCamelCase : Tuple = image_size _lowerCamelCase : Optional[Any] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : Tuple = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : int = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : List[str] = type_sequence_label_size _lowerCamelCase : int = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCamelCase : Optional[Any] = (image_size // patch_size) ** 2 _lowerCamelCase : Optional[int] = num_patches + 1 def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : List[Any] = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) return config, pixel_values, labels def _lowerCAmelCase ( self , A , A , A ): _lowerCamelCase : Tuple = FlaxBeitModel(config=A ) _lowerCamelCase : List[str] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , A , A , A ): _lowerCamelCase : List[str] = FlaxBeitForMaskedImageModeling(config=A ) _lowerCamelCase : Any = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowerCAmelCase ( self , A , A , A ): _lowerCamelCase : Optional[Any] = self.type_sequence_label_size _lowerCamelCase : Tuple = FlaxBeitForImageClassification(config=A ) _lowerCamelCase : Tuple = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase : List[Any] = 1 _lowerCamelCase : str = FlaxBeitForImageClassification(A ) _lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : List[Any] = model(A ) def _lowerCAmelCase ( self ): _lowerCamelCase : str = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Optional[Any] = config_and_inputs _lowerCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class A_(SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ : List[Any] = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = FlaxBeitModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowerCAmelCase ( self ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self ): _lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(A ) _lowerCamelCase : int = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , A ) def _lowerCAmelCase ( self ): _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase : Dict = self._prepare_for_class(A , A ) _lowerCamelCase : str = model_class(A ) @jax.jit def model_jitted(A , **A ): return model(pixel_values=A , **A ) with self.subTest('JIT Enabled' ): _lowerCamelCase : List[Any] = model_jitted(**A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowerCamelCase : Optional[int] = model_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowerCAmelCase ( self ): for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) _lowerCamelCase : Dict = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(A ) def UpperCAmelCase_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class A_(unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self ): _lowerCamelCase : List[str] = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Any = image_processor(images=A , return_tensors='np' ).pixel_values # prepare bool_masked_pos _lowerCamelCase : Optional[Any] = np.ones((1, 196) , dtype=A ) # forward pass _lowerCamelCase : Optional[int] = model(pixel_values=A , bool_masked_pos=A ) _lowerCamelCase : Optional[int] = outputs.logits # verify the logits _lowerCamelCase : str = (1, 196, 8192) self.assertEqual(logits.shape , A ) _lowerCamelCase : Dict = np.array( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , A , atol=1E-2 ) ) @slow def _lowerCAmelCase ( self ): _lowerCamelCase : Any = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) _lowerCamelCase : Tuple = self.default_image_processor _lowerCamelCase : Dict = prepare_img() _lowerCamelCase : Optional[Any] = image_processor(images=A , return_tensors='np' ) # forward pass _lowerCamelCase : Tuple = model(**A ) _lowerCamelCase : Optional[int] = outputs.logits # verify the logits _lowerCamelCase : int = (1, 1000) self.assertEqual(logits.shape , A ) _lowerCamelCase : Tuple = np.array([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ) self.assertTrue(np.allclose(logits[0, :3] , A , atol=1E-4 ) ) _lowerCamelCase : str = 281 self.assertEqual(logits.argmax(-1 ).item() , A ) @slow def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) _lowerCamelCase : Any = self.default_image_processor _lowerCamelCase : Union[str, Any] = prepare_img() _lowerCamelCase : Tuple = image_processor(images=A , return_tensors='np' ) # forward pass _lowerCamelCase : Union[str, Any] = model(**A ) _lowerCamelCase : Optional[int] = outputs.logits # verify the logits _lowerCamelCase : List[Any] = (1, 2_1841) self.assertEqual(logits.shape , A ) _lowerCamelCase : Tuple = np.array([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ) self.assertTrue(np.allclose(logits[0, :3] , A , atol=1E-4 ) ) _lowerCamelCase : List[Any] = 2396 self.assertEqual(logits.argmax(-1 ).item() , A )
437
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase ={ "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase =[ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __lowerCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure)
405
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCAmelCase ="2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCAmelCase =concatenate_datasets __lowerCAmelCase =DownloadConfig __lowerCAmelCase =DownloadManager __lowerCAmelCase =DownloadMode __lowerCAmelCase =DownloadConfig __lowerCAmelCase =DownloadMode __lowerCAmelCase =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
405
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Union[str, Any] = """vit_mae""" def __init__( self : List[str] , a__ : List[Any]=768 , a__ : List[str]=12 , a__ : Union[str, Any]=12 , a__ : Optional[int]=3072 , a__ : int="gelu" , a__ : Optional[int]=0.0 , a__ : Optional[int]=0.0 , a__ : str=0.02 , a__ : Union[str, Any]=1E-12 , a__ : Union[str, Any]=224 , a__ : Union[str, Any]=16 , a__ : Dict=3 , a__ : List[str]=True , a__ : Tuple=16 , a__ : Optional[int]=512 , a__ : Dict=8 , a__ : str=2048 , a__ : Optional[Any]=0.75 , a__ : Tuple=False , **a__ : List[str] , ): super().__init__(**a__ ) __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = qkv_bias __magic_name__ = decoder_num_attention_heads __magic_name__ = decoder_hidden_size __magic_name__ = decoder_num_hidden_layers __magic_name__ = decoder_intermediate_size __magic_name__ = mask_ratio __magic_name__ = norm_pix_loss
432
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( a , a , a ) -> Union[str, Any]: '''simple docstring''' # Initialise PyTorch model __magic_name__ = BertConfig.from_json_file(a ) print(F'''Building PyTorch model from configuration: {config}''' ) __magic_name__ = BertForPreTraining(a ) # Load weights from tf checkpoint load_tf_weights_in_bert(a , a , a ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , a ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
432
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = "resnet" _UpperCAmelCase = ["basic", "bottleneck"] def __init__( self ,_A=3 ,_A=64 ,_A=[256, 512, 1024, 2048] ,_A=[3, 4, 6, 3] ,_A="bottleneck" ,_A="relu" ,_A=False ,_A=None ,_A=None ,**_A ,): '''simple docstring''' super().__init__(**_A ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _lowerCAmelCase : Dict = num_channels _lowerCAmelCase : Optional[int] = embedding_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : int = depths _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : Any = downsample_in_first_stage _lowerCAmelCase : Union[str, Any] = ['stem'] + [F"""stage{idx}""" for idx in range(1 ,len(_A ) + 1 )] _lowerCAmelCase : Dict = get_aligned_output_features_output_indices( out_features=_A ,out_indices=_A ,stage_names=self.stage_names ) class __UpperCamelCase ( a__ ): _UpperCAmelCase = version.parse("1.11" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-3
701
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
0
"""simple docstring""" from __future__ import annotations from random import random from typing import Generic, TypeVar __A = TypeVar("""KT""") __A = TypeVar("""VT""") class _lowerCAmelCase ( Generic[KT, VT] ): """simple docstring""" def __init__( self , __UpperCAmelCase = "root" , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :List[str] = key lowerCAmelCase__ :List[Any] = value lowerCAmelCase__ :list[Node[KT, VT]] = [] def __repr__( self ): '''simple docstring''' return F"Node({self.key}: {self.value})" @property def snake_case ( self ): '''simple docstring''' return len(self.forward ) class _lowerCAmelCase ( Generic[KT, VT] ): """simple docstring""" def __init__( self , __UpperCAmelCase = 0.5 , __UpperCAmelCase = 1_6 ): '''simple docstring''' lowerCAmelCase__ :Node[KT, VT] = Node[KT, VT]() lowerCAmelCase__ :Optional[Any] = 0 lowerCAmelCase__ :Tuple = p lowerCAmelCase__ :List[Any] = max_level def __str__( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = list(self ) if len(__UpperCAmelCase ) == 0: return F"SkipList(level={self.level})" lowerCAmelCase__ :Union[str, Any] = max((len(str(__UpperCAmelCase ) ) for item in items) , default=4 ) lowerCAmelCase__ :Any = max(__UpperCAmelCase , 4 ) + 4 lowerCAmelCase__ :Tuple = self.head lowerCAmelCase__ :Any = [] lowerCAmelCase__ :List[Any] = node.forward.copy() lines.append(F"[{node.key}]".ljust(__UpperCAmelCase , '-' ) + '* ' * len(__UpperCAmelCase ) ) lines.append(' ' * label_size + '| ' * len(__UpperCAmelCase ) ) while len(node.forward ) != 0: lowerCAmelCase__ :Dict = node.forward[0] lines.append( F"[{node.key}]".ljust(__UpperCAmelCase , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(__UpperCAmelCase ) ) lowerCAmelCase__ :Union[str, Any] = node.forward lines.append('None'.ljust(__UpperCAmelCase ) + '* ' * len(__UpperCAmelCase ) ) return F"SkipList(level={self.level})\n" + "\n".join(__UpperCAmelCase ) def __iter__( self ): '''simple docstring''' lowerCAmelCase__ :Any = self.head while len(node.forward ) != 0: yield node.forward[0].key lowerCAmelCase__ :str = node.forward[0] def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = 1 while random() < self.p and level < self.max_level: level += 1 return level def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = [] lowerCAmelCase__ :Tuple = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: lowerCAmelCase__ :Any = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__UpperCAmelCase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Tuple = self._locate_node(__UpperCAmelCase ) if node is not None: for i, update_node in enumerate(__UpperCAmelCase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: lowerCAmelCase__ :Optional[Any] = node.forward[i] else: lowerCAmelCase__ :str = update_node.forward[:i] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :str = self._locate_node(__UpperCAmelCase ) if node is not None: lowerCAmelCase__ :Tuple = value else: lowerCAmelCase__ :Optional[Any] = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __UpperCAmelCase ): update_vector.append(self.head ) lowerCAmelCase__ :int = level lowerCAmelCase__ :int = Node(__UpperCAmelCase , __UpperCAmelCase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__UpperCAmelCase ) else: lowerCAmelCase__ :Dict = new_node def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = self._locate_node(__UpperCAmelCase ) if node is not None: return node.value return None def __A () ->str: """simple docstring""" lowerCAmelCase__ :Optional[int] = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) lowerCAmelCase__ :List[str] = skip_list.head lowerCAmelCase__ :Any = {} while node.level != 0: lowerCAmelCase__ :Optional[Any] = node.forward[0] lowerCAmelCase__ :Optional[int] = node.value assert len(_SCREAMING_SNAKE_CASE ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def __A () ->Dict: """simple docstring""" lowerCAmelCase__ :str = SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) lowerCAmelCase__ :str = skip_list.head lowerCAmelCase__ :List[Any] = {} while node.level != 0: lowerCAmelCase__ :int = node.forward[0] lowerCAmelCase__ :str = node.value if len(_SCREAMING_SNAKE_CASE ) != 4: print() assert len(_SCREAMING_SNAKE_CASE ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def __A () ->int: """simple docstring""" lowerCAmelCase__ :List[Any] = SkipList() assert skip_list.find('Some key' ) is None def __A () ->Any: """simple docstring""" lowerCAmelCase__ :Dict = SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def __A () ->Tuple: """simple docstring""" lowerCAmelCase__ :List[str] = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def __A () ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ :Dict = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def __A () ->Optional[int]: """simple docstring""" lowerCAmelCase__ :List[str] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def __A () ->int: """simple docstring""" lowerCAmelCase__ :str = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 142 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(_SCREAMING_SNAKE_CASE ): yield node.key for forward_node in node.forward: yield from traverse_keys(_SCREAMING_SNAKE_CASE ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __A () ->Optional[int]: """simple docstring""" def is_sorted(_SCREAMING_SNAKE_CASE ): return all(next_item >= item for item, next_item in zip(_SCREAMING_SNAKE_CASE , lst[1:] ) ) lowerCAmelCase__ :Optional[Any] = SkipList() for i in range(10 ): skip_list.insert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) def __A () ->Any: """simple docstring""" for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __A () ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :Optional[int] = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
93
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowerCamelCase : Tuple = '''Usage of script: script_name <size_of_canvas:int>''' lowerCamelCase : List[Any] = [0] * 1_00 + [1] * 10 random.shuffle(choice) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Dict = [[False for i in range(lowerCAmelCase_ )] for j in range(lowerCAmelCase_ )] return canvas def snake_case_ ( lowerCAmelCase_ : list[list[bool]] ): for i, row in enumerate(lowerCAmelCase_ ): for j, _ in enumerate(lowerCAmelCase_ ): __lowercase : Dict = bool(random.getrandbits(1 ) ) def snake_case_ ( lowerCAmelCase_ : list[list[bool]] ): __lowercase : Optional[int] = np.array(lowerCAmelCase_ ) __lowercase : List[str] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(lowerCAmelCase_ ): for c, pt in enumerate(lowerCAmelCase_ ): __lowercase : str = __judge_point( lowerCAmelCase_ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __lowercase : Dict = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __lowercase : list[list[bool]] = current_canvas.tolist() return return_canvas def snake_case_ ( lowerCAmelCase_ : bool , lowerCAmelCase_ : list[list[bool]] ): __lowercase : Dict = 0 __lowercase : List[Any] = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __lowercase : Dict = pt if pt: if alive < 2: __lowercase : Tuple = False elif alive == 2 or alive == 3: __lowercase : Tuple = True elif alive > 3: __lowercase : Optional[int] = False else: if alive == 3: __lowercase : Dict = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowerCamelCase : str = int(sys.argv[1]) # main working structure of this module. lowerCamelCase : Optional[int] = create_canvas(canvas_size) seed(c) lowerCamelCase ,lowerCamelCase : Tuple = plt.subplots() fig.show() lowerCamelCase : Dict = ListedColormap(['''w''', '''k''']) try: while True: lowerCamelCase : Optional[Any] = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
149
0
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __snake_case : List[Any] = logging.get_logger(__name__) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = CLIPConfig __lowercase : Union[str, Any] = ['CLIPEncoderLayer'] def __init__( self , _SCREAMING_SNAKE_CASE ) -> str: super().__init__(_SCREAMING_SNAKE_CASE ) A_ = CLIPVisionModelWithProjection(config.vision_config ) A_ = nn.Linear(config.vision_config.projection_dim , 1 ) A_ = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.5 , _SCREAMING_SNAKE_CASE=0.5 ) -> List[Any]: A_ = self.vision_model(_SCREAMING_SNAKE_CASE )[0] A_ = self.p_head(_SCREAMING_SNAKE_CASE ) A_ = nsfw_detected.flatten() A_ = nsfw_detected > p_threshold A_ = nsfw_detected.tolist() if any(_SCREAMING_SNAKE_CASE ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(_SCREAMING_SNAKE_CASE ): if nsfw_detected_: A_ = np.zeros(images[idx].shape ) A_ = self.w_head(_SCREAMING_SNAKE_CASE ) A_ = watermark_detected.flatten() A_ = watermark_detected > w_threshold A_ = watermark_detected.tolist() if any(_SCREAMING_SNAKE_CASE ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(_SCREAMING_SNAKE_CASE ): if watermark_detected_: A_ = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
174
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = OpenAIGPTTokenizer __lowercase : Union[str, Any] = OpenAIGPTTokenizerFast __lowercase : str = True __lowercase : List[Any] = False def __A ( self ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] A_ = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) A_ = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_SCREAMING_SNAKE_CASE ) ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: return "lower newer", "lower newer" def __A ( self ) -> Optional[Any]: A_ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) A_ = '''lower''' A_ = ['''low''', '''er</w>'''] A_ = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = tokens + ['''<unk>'''] A_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE=15 ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # Simple input A_ = '''This is a simple input''' A_ = ['''This is a simple input 1''', '''This is a simple input 2'''] A_ = ('''This is a simple input''', '''This is a pair''') A_ = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Simple input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Simple input self.assertRaises( _SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' , ) # Pair input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Pair input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Pair input self.assertRaises( _SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' , ) def __A ( self ) -> List[Any]: pass @require_ftfy @require_spacy @require_tokenizers class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' pass
174
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase__ : Tuple = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Dict = 'dpr' def __init__( self : List[str] , __magic_name__ : List[Any]=30522 , __magic_name__ : Optional[Any]=768 , __magic_name__ : str=12 , __magic_name__ : Optional[int]=12 , __magic_name__ : List[str]=3072 , __magic_name__ : Union[str, Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : Tuple=512 , __magic_name__ : int=2 , __magic_name__ : Dict=0.02 , __magic_name__ : Any=1E-12 , __magic_name__ : Tuple=0 , __magic_name__ : Union[str, Any]="absolute" , __magic_name__ : int = 0 , **__magic_name__ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = projection_dim lowerCAmelCase__ = position_embedding_type
48
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : int = "xglm" A__ : List[Any] = ["past_key_values"] A__ : str = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self , snake_case_=256008 , snake_case_=2048 , snake_case_=1024 , snake_case_=4096 , snake_case_=24 , snake_case_=16 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=True , snake_case_=True , snake_case_=2 , snake_case_=1 , snake_case_=0 , snake_case_=2 , **snake_case_ , ) -> List[str]: _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = d_model _UpperCAmelCase = ffn_dim _UpperCAmelCase = num_layers _UpperCAmelCase = attention_heads _UpperCAmelCase = activation_function _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = layerdrop _UpperCAmelCase = init_std _UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase = use_cache super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , **snake_case_ , )
426
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : int = logging.get_logger(__name__) class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = "timm_backbone" def __init__( self : Tuple ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : Tuple=3 ,lowerCamelCase__ : int=True ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : str=None ,**lowerCamelCase__ : Optional[int] ,): super().__init__(**lowerCamelCase__ ) UpperCAmelCase__ = backbone UpperCAmelCase__ = num_channels UpperCAmelCase__ = features_only UpperCAmelCase__ = use_pretrained_backbone UpperCAmelCase__ = True UpperCAmelCase__ = out_indices if out_indices is not None else (-1,)
632
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Any = logging.get_logger(__name__) lowerCAmelCase__ : str = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = "ctrl" snake_case__ = ["past_key_values"] snake_case__ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Any ,lowerCamelCase__ : str=246_534 ,lowerCamelCase__ : List[str]=256 ,lowerCamelCase__ : Optional[int]=1_280 ,lowerCamelCase__ : Any=8_192 ,lowerCamelCase__ : int=48 ,lowerCamelCase__ : Optional[Any]=16 ,lowerCamelCase__ : Union[str, Any]=0.1 ,lowerCamelCase__ : Dict=0.1 ,lowerCamelCase__ : List[str]=1e-6 ,lowerCamelCase__ : List[str]=0.0_2 ,lowerCamelCase__ : Tuple=True ,**lowerCamelCase__ : Optional[Any] ,): UpperCAmelCase__ = vocab_size UpperCAmelCase__ = n_positions UpperCAmelCase__ = n_embd UpperCAmelCase__ = n_layer UpperCAmelCase__ = n_head UpperCAmelCase__ = dff UpperCAmelCase__ = resid_pdrop UpperCAmelCase__ = embd_pdrop UpperCAmelCase__ = layer_norm_epsilon UpperCAmelCase__ = initializer_range UpperCAmelCase__ = use_cache super().__init__(**lowerCamelCase__ )
632
1
'''simple docstring''' import baseaa def __UpperCAmelCase ( lowerCamelCase_) -> bytes: return baseaa.aaaencode(string.encode('utf-8')) def __UpperCAmelCase ( lowerCamelCase_) -> str: return baseaa.aaadecode(lowerCamelCase_).decode('utf-8') if __name__ == "__main__": import doctest doctest.testmod()
596
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCAmelCase__ = get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=0) -> int: os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) with FSDP.state_dict_type( lowerCamelCase_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config): UpperCamelCase__ : List[str] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCamelCase__ : List[Any] = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' UpperCamelCase__ : int = os.path.join(lowerCamelCase_ , lowerCamelCase_) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}') torch.save(lowerCamelCase_ , lowerCamelCase_) logger.info(f'Model saved to {output_model_file}') elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCamelCase__ : str = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) UpperCamelCase__ : Optional[Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_) logger.info(f'Saving model to {output_model_file}') torch.save(lowerCamelCase_ , lowerCamelCase_) logger.info(f'Model saved to {output_model_file}') elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCamelCase__ : List[str] = os.path.join(lowerCamelCase_ , f'{MODEL_NAME}_{model_index}') os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) logger.info(f'Saving model to {ckpt_dir}') UpperCamelCase__ : str = {'model': state_dict} dist_cp.save_state_dict( state_dict=lowerCamelCase_ , storage_writer=dist_cp.FileSystemWriter(lowerCamelCase_) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=0) -> int: accelerator.wait_for_everyone() with FSDP.state_dict_type( lowerCamelCase_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(lowerCamelCase_) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object') return UpperCamelCase__ : Dict = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' UpperCamelCase__ : Tuple = os.path.join(lowerCamelCase_ , lowerCamelCase_) logger.info(f'Loading model from {input_model_file}') UpperCamelCase__ : Union[str, Any] = torch.load(lowerCamelCase_) logger.info(f'Model loaded from {input_model_file}') elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCamelCase__ : Any = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) UpperCamelCase__ : Optional[Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_) logger.info(f'Loading model from {input_model_file}') UpperCamelCase__ : Optional[Any] = torch.load(lowerCamelCase_) logger.info(f'Model loaded from {input_model_file}') elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCamelCase__ : Dict = ( os.path.join(lowerCamelCase_ , f'{MODEL_NAME}_{model_index}') if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}') UpperCamelCase__ : Dict = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=lowerCamelCase_ , storage_reader=dist_cp.FileSystemReader(lowerCamelCase_) , planner=DefaultLoadPlanner() , ) UpperCamelCase__ : Optional[Any] = state_dict['model'] logger.info(f'Model loaded from {ckpt_dir}') model.load_state_dict(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=0) -> Tuple: os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) with FSDP.state_dict_type( lowerCamelCase_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config): UpperCamelCase__ : Tuple = FSDP.optim_state_dict(lowerCamelCase_ , lowerCamelCase_) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: UpperCamelCase__ : List[Any] = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) UpperCamelCase__ : Any = os.path.join(lowerCamelCase_ , lowerCamelCase_) logger.info(f'Saving Optimizer state to {output_optimizer_file}') torch.save(lowerCamelCase_ , lowerCamelCase_) logger.info(f'Optimizer state saved in {output_optimizer_file}') else: UpperCamelCase__ : Optional[Any] = os.path.join(lowerCamelCase_ , f'{OPTIMIZER_NAME}_{optimizer_index}') os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) logger.info(f'Saving Optimizer state to {ckpt_dir}') dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(lowerCamelCase_) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=0) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( lowerCamelCase_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCamelCase__ : Any = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: UpperCamelCase__ : Tuple = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) UpperCamelCase__ : Optional[Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_) logger.info(f'Loading Optimizer state from {input_optimizer_file}') UpperCamelCase__ : Dict = torch.load(lowerCamelCase_) logger.info(f'Optimizer state loaded from {input_optimizer_file}') else: UpperCamelCase__ : Optional[Any] = ( os.path.join(lowerCamelCase_ , f'{OPTIMIZER_NAME}_{optimizer_index}') if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}') UpperCamelCase__ : Tuple = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(lowerCamelCase_) , ) UpperCamelCase__ : Dict = optim_state['optimizer'] logger.info(f'Optimizer loaded from {ckpt_dir}') UpperCamelCase__ : int = FSDP.optim_state_dict_to_load(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) optimizer.load_state_dict(lowerCamelCase_)
596
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : List[str] ): A = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: A = 1024 A = 4096 A = 24 A = 16 A = [5, 11, 17, 23] A = [256, 512, 1024, 1024] A = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: A = 768 A = [1, 1, 1, 0.5] A = [256, 512, 768, 768] A = 150 A = 16 A = (1, 384, 384) A = False A = 'project' if "ade" in checkpoint_url: A = True A = 768 A = [1, 1, 1, 0.5] A = 150 A = 16 A = 'huggingface/label-files' A = 'ade20k-id2label.json' A = json.load(open(cached_download(hf_hub_url(snake_case__ , snake_case__ , repo_type='dataset' ) ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = [1, 150, 480, 480] return config, expected_shape def _snake_case ( snake_case__ : List[Any] ): A = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : str ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: A = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: A = name.replace('patch_embed' , '' ) if "pos_embed" in name: A = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: A = name.replace('proj' , 'projection' ) if "blocks" in name: A = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: A = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: A = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: A = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: A = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: A = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: A = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: A = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: A = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: A = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: A = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: A = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: A = name.replace('conv1' , 'convolution1' ) if "conv2" in name: A = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: A = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: A = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: A = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: A = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: A = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: A = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: A = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: A = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: A = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: A = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: A = name.replace('pretrained' , 'dpt' ) if "bn" in name: A = name.replace('bn' , 'batch_norm' ) if "head" in name: A = name.replace('head' , 'head.head' ) if "encoder.norm" in name: A = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: A = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: A = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: A = name.replace('..' , '.' ) if "stem.conv" in name: A = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: A = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: A = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: A = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: A = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: A = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: A = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def _snake_case ( snake_case__ : int , snake_case__ : Any ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' ) A = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[: config.hidden_size, :] A = in_proj_bias[: config.hidden_size] A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A = in_proj_weight[ -config.hidden_size :, : ] A = in_proj_bias[-config.hidden_size :] def _snake_case ( ): A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def _snake_case ( snake_case__ : Any , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Tuple ): A , A = get_dpt_config(snake_case__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") A = torch.load(snake_case__ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(snake_case__ ) # rename keys for key in state_dict.copy().keys(): A = state_dict.pop(snake_case__ ) A = val # read in qkv matrices read_in_q_k_v(snake_case__ , snake_case__ ) # load HuggingFace model A = DPTForSemanticSegmentation(snake_case__ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # Check outputs on an image A = 480 if 'ade' in checkpoint_url else 384 A = DPTImageProcessor(size=snake_case__ ) A = prepare_img() A = image_processor(snake_case__ , return_tensors='pt' ) # forward pass A = model(**snake_case__ ).logits if 'ade' in checkpoint_url else model(**snake_case__ ).predicted_depth if show_prediction: A = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=snake_case__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) _lowercase = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
700
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any ,A_ : Optional[Any] ,A_ : Tuple=13 ,A_ : Optional[Any]=7 ,A_ : Dict=True ,A_ : Optional[Any]=True ,A_ : str=True ,A_ : Union[str, Any]=True ,A_ : Optional[Any]=True ,A_ : Tuple=False ,A_ : Optional[int]=False ,A_ : str=False ,A_ : int=2 ,A_ : Union[str, Any]=99 ,A_ : int=0 ,A_ : Dict=32 ,A_ : List[str]=5 ,A_ : Any=4 ,A_ : str=0.1 ,A_ : Any=0.1 ,A_ : int=512 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.02 ,A_ : Optional[Any]=2 ,A_ : List[str]=4 ,A_ : Optional[int]="last" ,A_ : str=True ,A_ : List[str]=None ,A_ : List[Any]=0 ,) -> int: A = parent A = batch_size A = seq_length A = is_training A = use_input_lengths A = use_token_type_ids A = use_labels A = gelu_activation A = sinusoidal_embeddings A = causal A = asm A = n_langs A = vocab_size A = n_special A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = summary_type A = use_proj A = scope A = bos_token_id def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_input_lengths: A = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,2 ).float() A = ids_tensor([self.batch_size] ,self.num_choices ) A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : int ,A_ : Dict ,A_ : Optional[Any] ,A_ : Optional[Any] ,A_ : Any ,A_ : List[str] ,A_ : Optional[int] ,) -> Tuple: A = XLMModel(config=A_ ) model.to(A_ ) model.eval() A = model(A_ ,lengths=A_ ,langs=A_ ) A = model(A_ ,langs=A_ ) A = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : str ,A_ : Union[str, Any] ,A_ : Any ,A_ : Any ,A_ : Any ,A_ : Union[str, Any] ,A_ : List[str] ,A_ : List[str] ,A_ : List[str] ,) -> Union[str, Any]: A = XLMWithLMHeadModel(A_ ) model.to(A_ ) model.eval() A = model(A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ,A_ : Tuple ,A_ : str ,A_ : int ,A_ : str ,A_ : Optional[Any] ,A_ : Any ,A_ : Any ,A_ : Dict ,) -> List[str]: A = XLMForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,start_positions=A_ ,end_positions=A_ ) A = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[int] ,A_ : Dict ,A_ : Optional[Any] ,A_ : List[Any] ,A_ : List[str] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : str ,A_ : Any ,) -> Optional[int]: A = XLMForQuestionAnswering(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,p_mask=A_ ,) A = model( A_ ,start_positions=A_ ,end_positions=A_ ,cls_index=A_ ,is_impossible=A_ ,) ((A) , ) = result_with_labels.to_tuple() A = model(A_ ,start_positions=A_ ,end_positions=A_ ) ((A) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Union[str, Any] ,A_ : Tuple ,A_ : int ,A_ : Union[str, Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : str ,) -> List[Any]: A = XLMForSequenceClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ) A = model(A_ ,labels=A_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any] ,A_ : str ,A_ : Tuple ,A_ : List[str] ,A_ : Dict ,A_ : Dict ,A_ : Union[str, Any] ,A_ : Dict ,A_ : Any ,) -> Any: A = self.num_labels A = XLMForTokenClassification(A_ ) model.to(A_ ) model.eval() A = model(A_ ,attention_mask=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : str ,A_ : int ,A_ : Tuple ,A_ : List[Any] ,A_ : List[str] ,A_ : List[str] ,A_ : Optional[Any] ,A_ : int ,) -> Tuple: A = self.num_choices A = XLMForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() A = model( A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase: Dict = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowerCamelCase: Optional[Any] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : Any ,A_ : str ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ,A_ : str=False ) -> Dict: A = super()._prepare_for_class(A_ ,A_ ,return_labels=A_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = XLMModelTester(self ) A = ConfigTester(self ,config_class=A_ ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Dict ,A_ : List[Any] ,A_ : List[Any] ,A_ : Dict ,A_ : Union[str, Any] ,A_ : List[Any]=False ,A_ : Tuple=1 ) -> List[Any]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_attentions in attentions] ,[True] * len(A_ ) ) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = min_length + idx + 1 A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ,A_ : List[str] ,A_ : Dict ,A_ : Optional[Any] ,A_ : Dict ,A_ : Tuple=False ,A_ : Optional[Any]=1 ) -> List[str]: self.assertIsInstance(A_ ,A_ ) self.assertListEqual( [isinstance(A_ ,A_ ) for iter_hidden_states in hidden_states] ,[True] * len(A_ ) ,) self.assertEqual(len(A_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A_ ): # adds PAD dummy token A = min_length + idx + 1 A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(A_ ) ,) pass @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = XLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(A_ ) A = torch.tensor([[14, 447]] ,dtype=torch.long ,device=A_ ) # the president A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A = model.generate(A_ ,do_sample=A_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,A_ )
22
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3_0 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=1_0 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=None , ) -> int: _SCREAMING_SNAKE_CASE : Tuple = parent _SCREAMING_SNAKE_CASE : List[str] = batch_size _SCREAMING_SNAKE_CASE : Dict = image_size _SCREAMING_SNAKE_CASE : str = patch_size _SCREAMING_SNAKE_CASE : List[Any] = num_channels _SCREAMING_SNAKE_CASE : Any = is_training _SCREAMING_SNAKE_CASE : int = use_labels _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers _SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : List[str] = intermediate_size _SCREAMING_SNAKE_CASE : List[Any] = hidden_act _SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size _SCREAMING_SNAKE_CASE : Dict = initializer_range _SCREAMING_SNAKE_CASE : Any = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _SCREAMING_SNAKE_CASE : Tuple = (image_size // patch_size) ** 2 _SCREAMING_SNAKE_CASE : List[Any] = num_patches + 1 def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: _SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ) -> Any: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = TFViTModel(config=__snake_case ) _SCREAMING_SNAKE_CASE : List[Any] = model(__snake_case , training=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _SCREAMING_SNAKE_CASE : Optional[Any] = self.image_size // 2 _SCREAMING_SNAKE_CASE : Tuple = pixel_values[:, :, :image_size, :image_size] _SCREAMING_SNAKE_CASE : Optional[Any] = model(__snake_case , interpolate_pos_encoding=__snake_case , training=__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : Optional[int] = self.type_sequence_label_size _SCREAMING_SNAKE_CASE : Dict = TFViTForImageClassification(__snake_case ) _SCREAMING_SNAKE_CASE : Dict = model(__snake_case , labels=__snake_case , training=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _SCREAMING_SNAKE_CASE : Tuple = self.image_size // 2 _SCREAMING_SNAKE_CASE : Optional[Any] = pixel_values[:, :, :image_size, :image_size] _SCREAMING_SNAKE_CASE : Dict = model(__snake_case , interpolate_pos_encoding=__snake_case , training=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _SCREAMING_SNAKE_CASE : str = 1 _SCREAMING_SNAKE_CASE : Optional[Any] = TFViTForImageClassification(__snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : Dict = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs _SCREAMING_SNAKE_CASE : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' __snake_case = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () __snake_case = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : Optional[int] = TFViTModelTester(self ) _SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=3_7 ) def UpperCamelCase_ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def UpperCamelCase_ ( self ) -> Dict: pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def UpperCamelCase_ ( self ) -> Any: pass def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Dict = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _SCREAMING_SNAKE_CASE : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , tf.keras.layers.Layer ) ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Dict = model_class(__snake_case ) _SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE : Optional[Any] = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , __snake_case ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : Union[str, Any] = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(__snake_case ) def lowerCamelCase__ (): _SCREAMING_SNAKE_CASE : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ) -> List[str]: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) _SCREAMING_SNAKE_CASE : int = self.default_image_processor _SCREAMING_SNAKE_CASE : Optional[int] = prepare_img() _SCREAMING_SNAKE_CASE : List[str] = image_processor(images=__snake_case , return_tensors="tf" ) # forward pass _SCREAMING_SNAKE_CASE : List[Any] = model(**__snake_case ) # verify the logits _SCREAMING_SNAKE_CASE : Optional[int] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __snake_case ) _SCREAMING_SNAKE_CASE : Any = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , __snake_case , atol=1E-4 )
249
'''simple docstring''' from datetime import datetime as dt import os from github import Github A__ : str =[ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase = g.get_repo("""huggingface/transformers""" ) _lowerCAmelCase = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCAmelCase : i.created_at , reverse=lowerCAmelCase ) _lowerCAmelCase = comments[0] if len(lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
207
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
454
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def _A ( _lowerCAmelCase ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) __lowercase =precision __lowercase =ceil(precision / 14 ) __lowercase =426_880 * Decimal(10_005 ).sqrt() __lowercase =1 __lowercase =13_591_409 __lowercase =Decimal(_lowerCAmelCase ) for k in range(1 , _lowerCAmelCase ): __lowercase =factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCAmelCase ) ** 3) linear_term += 545_140_134 exponential_term *= -262_537_412_640_768_000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCamelCase = 50 print(f"The first {n} digits of pi is: {pi(n)}")
454
1